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ABSTRACT
Finding nearest neighbors (NN) is a fundamental operation in many
diverse domains such as machine learning, information retrieval,
multimedia retrieval, etc. Due to the data deluge and the applica-
tion of nearest neighbor queries in many applications where fast
performance is necessary, efficient index structures are required to
speed up finding nearest neighbors. Different application domains
have different data characteristics, which require different types of
indexing techniques. While the internal searches are often hidden
from the top-level application, it is beneficial for a data scientist
to understand these fundamental operations and choose a correct
indexing technique to improve the performance of the overall end-
to-end workflow. Choosing the correct index structure to solve a
Nearest Neighbor query can be a daunting task. A wrong choice
can potentially lead to low accuracy, slower execution times, or in
worst cases, both. The objective of this tutorial is to present the
audience with the knowledge to choose the correct index structure
for their specific task application. We present the state-of-the-art
Nearest Neighbor indexing techniques for different data character-
istics. We also present the effect, in terms of time and accuracy, of
choosing the wrong index structure for different application needs.
We conclude the tutorial with a discussion on the future challenges
in the Nearest Neighbor search domain.
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1 TUTORIAL OUTLINE
In this section, we present the outline of our proposed tutorial. In
the first part of our tutorial, we will review the motivation, the
Nearest Neighbor problem definition, and the seminal and state-of-
the-art index structures that improved the efficiency and retrieval
of Nearest Neighbor queries. We will particularly focus on the fol-
lowing distinctions: index structures designed for in-memory vs
external memory and low-dimensional vs high-dimensional data.In
the second part of our tutorial, we will include a hands-on coding
session in which we will present the different state-of-the-art Near-
est Neighbor techniques for different data and application needs.
We will especially focus on the important challenge of parameter
tuning and show the effects of wrong parameters on the overall
query performance and/or accuracy.
Motivation: Finding nearest neighbors (NN) is a fundamental op-
eration in many tasks in different domains. For example, finding
nearby points of interest (such as restaurants, etc.) is a popular
query operation in geospatial applications. While Convolutional
Neural Networks (CNNs) are commonly used to extract important
features from images, similar images are found by searching for
nearest neighbors of the extracted features [20]. Themain difference
between these two applications is the data dimensionality. Gener-
ally, while geospatial applications produce data that are 2D (latitude
and longitude information for each point), image feature vectors
are high-dimensional in nature (> 100). While traditional hierar-
chical index structures, such as R-trees [10] or k-d trees [3], work
effectively for low-dimensional (< 10) data, they suffer from the no-
torious curse of dimensionality for moderate and high-dimensional
data, where their performance is often worse than a brute-force
linear search. Additionally, when large data cannot be stored in
main memory, index structures need to be particularly designed
for external memory storage and retrieval. The goal of our tutorial
is to present these differences in application requirements, data
characteristics, and their effect of the index design.
Definition:We first formally define the Nearest Neighbor search
problem. Given a 𝑑-dimensional database D, D consists of 𝑛 𝑑-
dimensional points that belong to a bounded space R𝑑 . Given a
query 𝑞, the goal of the NN problem is to find a point 𝑥 ∈ D such
that | |𝑞, 𝑥 | | ≤ | |𝑞, 𝑝 | | for any point 𝑝 ∈ D. Here, | |𝑥1, 𝑥2 | | denotes
the Euclidean distance between two points 𝑥1 and 𝑥2.1 When this
definition is generalized to find 𝑘 nearest neighbor points, the query
is called a k-NN query. Similarly, a range query returns any nearby
point 𝑝 if | |𝑞, 𝑝 | | ≤ 𝑅 is satisfied for a specified search radius 𝑅.
Range Queries in Low-Dimensional Spaces: B+-tree is one of
the most popularly used disk-based hierarchical index structure for
1Due to its popularity and wide applicability, we will assume that the distance metric
is Euclidean in this tutorial.
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efficiently solving range queries on one-dimensional data. For For
spatial data, R-tree [11] and its variants group nearby data objects
and represent them in Minimum Bounding Rectangles (MBRs) in
each level of the tree. R-trees are very effective disk-based spatial
index structures. Hierarchical index structures such as M-trees [5]
leverage the triangular inequality property of metric distances. In-
stead of vector space representation of the data points, M-trees
work directly on the distance between any two given points. Addi-
tionally, space-filling curves, such as the popular Z-order curves
[17] and Hilbert curves [12], are used to convert low-dimensional
data to one-dimensional data, which can then be indexed using
B+-trees (or other hierarchical index structures).
ApproximateNearestNeighbors (ANN) inHigh-Dimensional
Spaces: For moderate to high-dimensional data (𝑑 > 10), traditional
hierarchical index structures are often out-performed even by linear
scans [4] due to the well-known phenomenon Curse of Dimension-
ality. One common solution to the Curse of Dimensionality problem
is to look for approximate results instead of exact results. In ap-
plications where 100% accuracy is not necessary, finding results
that are good enough is much faster than searching for exact re-
sults [6]. Approximate solutions offer a trade-off between accuracy
and performance. The approximate version of the nearest neighbor
problem, also called c-approximate Nearest Neighbor search (c-ANN),
is to return points that are within 𝑐 ∗ 𝑅 distance from the query
object. Here, 𝑐 > 1 is a user-defined approximation ratio and 𝑅 is
the distance of the query object from its nearest neighbor. When the
c-approximate Nearest Neighbor search is also generalized to find 𝑘
nearest neighbor points, it is called the c-k-ANN problem. Popular
techniques for solving the Approximate Nearest Neighbor (ANN)
problem can be classified into external-memory based techniques
and in-memory based techniques.
External-memory based ANN Techniques: Locality Sensitive
Hashing (LSH), first proposed in [9], is one of the most popular
external-memory based ANN techniques. The goal of LSH is to
create random projections and hash data points to these random
projections. The intuition behind LSH is that points that are nearby
in the original high-dimensional space will be mapped to same (or
nearby) hash buckets in the random projections. While it was orig-
inally proposed for the Hamming distance, it was later extended to
the Euclidean distance in the seminal work E2LSH [6]. There are
two main benefits of LSH: 1) LSH provides sub-linear query per-
formance in terms of the data size, and 2) LSH provides theoretical
guarantees on the accuracy of the return result. While the original
LSH architecture suffered from large index sizes, state-of-the-art
LSH techniques, namely C2LSH [7] and QALSH [13], proposed
a Collision Counting method that solved this issue. In [7], the au-
thors theoretically showed that two nearby points in the original
space would collide in at least 𝑙 (out of𝑚) hash layers for a user-
input probability −1𝛿 . By using this proposed technique of Collision
Counting, C2LSH created only one hash function per hash layer, and
hence reduced the index size while presenting accurate and fast re-
sults. QALSH [13] proposed query-aware hash functions where the
hash bucket boundaries are decided after the query arrives, hence
resulting in more accurate results. Recently, the state-of-the-art
HD-Index [2] was proposed that utilized Hilbert key-based hierar-
chical trees to represent lower-dimensional disjoint partitions of
the original space. HD-Index leverages the triangular inequality

and the Ptolemaic inequality further prune the candidates for a
given query.
In-memory basedANNTechniques:There are several in-memory
based techniques proposed to solve the ANN problem. One of the
popular in-memory based libraries to solve the ANN problem is
Flann [18]. The goal of Flann is to automatically choose the best
ANN algorithm and optimum parameters for a given dataset. In
particular, Flann uses hierarchical k-means trees or multiple ran-
domized k-d trees depending on the dataset characteristics. Another
in-memory based method is to use Proximity graphs for efficient
searching [1, 15, 16]. These techniques design approximations for
graphs such as Delaunay graph, Navigable Small-World Networks,
Relative Neighborhood Graphs, etc. Product Quantization [14] and
its variants [8, 19] use the vector quantization approach to create
compact codes for high-dimensional vectors. These techniques di-
vide the original high-dimensional space into the Cartesian product
of a low-dimensional subspaces. These subspaces are then quan-
tized independently. The key benefit is the representation of the
quantized subspaces using compact codes.

1.1 Coding Session
In the coding session, we will execute the well-known nearest
neighbor search algorithms on several scenarios. The goal of this
session is to experimentally show the audience how to run different
NN search algorithms and familiarize them with the different user-
defined parameters of each algorithm. We will specifically focus on
presenting the following scenarios:2

• Scenario 1: We will consider multiple geospatial applica-
tions in this scenario. Our goal is to present techniques that
work for low to moderate dimensional data. Specifically, we
will use 2 datasets (UrbanGB and Travel Reviews) in this
scenario.3 We will look for top-k objects to different queries
in these spatial datasets. We will present the results for using
Space-filling curves with a B+-tree, R-tree, and a k-d tree.
We will present the effect of parameters such as the block
size in these index structures.

• Scenario 2: In this scenario, we will use the popular high-
dimensional image dataset, Sift1M (dimensionality = 128).4
The goal of this scenario is to present high-dimensional data
and their corresponding queries. We will also present the
effect of curse of dimensionality on hierarchical structures
presented in Scenario 1. Importantly, we will also show the
benefit of approximate searching, i.e. why approximate re-
sults are preferred over exact results for high-dimensional
data. We will also compare the times of hierarchical struc-
tures with linear scan results to emphasize the curse of di-
mensionality. Additionally, we will present the popular ANN
techniques of HD-Index, HNSW, and OPQ in this scenario.
We will present the effect of important parameters such as
allowed error probability.

• Scenario 3: In this scenario, we will use a popular real very
high-dimensional dataset, P53 (dimensionality = 5409), that

2For experiments that take longer time to finish, we will precompute the results and
present the execution times.
3http://archive.ics.uci.edu/ml
4http://corpus-texmex.irisa.fr
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represents biophysical models of mutant p53 proteins.5. We
will show how popular ANN techniques fare for very high-
dimensional datasets.

In our experiments, we plan to show indexing time, query pro-
cessing time, space usage, and the I/O usage (for external-memory
based algorithms).

2 DURATION
The proposed tutorial will be 3 hours long. We will spend 1.5 hours
reviewing the most important, along with state-of-the-art, works
in the NN domain. We will then spend 1.5 hours with hands-on
coding (especially parameter tuning) of different index structures
for different data characteristics.

3 DETAILS OF PREVIOUS TUTORIALS
The authors have not presented any prior tutorials on this topic.

4 GOALS OF THIS TUTORIAL
Finding Nearest Neighbors (NN) is a well studied problem in the
database community. Traditional tree-based structures are well-
suited to solve the low-dimensional NN problem, while hashing-
based index structures are popularly used to find nearest neighbors
in high-dimensional spaces. Due to its application in various do-
mains (with potentially different characteristics), different indexing
techniques are necessary to solve the NN problem. Our main goal
in this tutorial is to present the audience with the knowledge to
choose the correct index structure given specific requirements. Of-
ten, the internal data structures used to find Nearest Neighbors
are hidden from the top-level application. The efficiency and ac-
curacy (for finding approximate nearest neighbors) of an index
structure can change drastically for different data characteristics.
Understanding these differences between different index structures
(and their appropriate usage) can lead to a significant performance
improvement of the overall end-to-end workflow. This tutorial is
specifically designed for data scientists who need to efficiently
find Nearest Neighbors in their end-to-end application workflow
(e.g. using machine learning techniques to find similar multimedia
objects).

5 TARGET AUDIENCE
The tutorial will include the review of technical details of semi-
nal works and state-of-the-art index structures for finding nearest
neighbors. The technical material in the tutorial is appropriate for
anyonewith a Bachelors degree in Computer Science. The codes pre-
sented in the tutorial will be in popular languages such as C++ and
Java. Knowledge about metric spaces, Euclidean distance measure,
and traditional data structures such as Binary trees, B+-trees, etc.
is necessary. We will present the formal definitions of the nearest
neighbor problem (and its variants), its usage in various real-world
applications, and the popular state-of-the-art index structures that
efficiently solve the NN problem in this tutorial.

6 PROPOSERS
The tutorial will be presented by the following presenters:

5https://archive.ics.uci.edu/ml/datasets/p53+Mutants

• Parth Nagarkar is an Assistant Professor in Computer Sci-
ence at New Mexico State University. His research is broadly
in the exciting area of big data management. He is particu-
larly interested in building scalable index structures and
distributed systems which empower efficient large-scale,
high-dimensional data processing. In the tutorial, he will
be in charge of introducing the motivation and the Nearest
Neighbor problem, and then present the Approximate Near-
est Neighbor (ANN) problem in high-dimensional spaces,
along with different techniques that are commonly used to
solve the ANN problem.

• Arnab Bhattacharya is an Associate Professor in Com-
puter Science at the Indian Institute of Technology, Kan-
pur. His research interests are broadly in database query-
ing. His recent works have focused on high-dimensional
indexing and graph querying. In this tutorial, he will be
in charge of presenting the Nearest Neighbor problem in
low-dimensional spaces and the popular techniques used to
efficiently solve this problem. He will also discuss the future
challenges in the NN domain.

• Omid Jafari is a Ph.D. student at New Mexico State Univer-
sity. His research focuses on improving Approximate Nearest
Neighbor techniques such as Locality Sensitive Hashing. He
will be responsible for presenting the different state-of-the-
art techniques in the Nearest Neighbor problem domain
during the coding session of the tutorial.

6.1 Availability
The above three members of this tutorial team will be presenting
during the tutorial.

7 REFERENCES
In this tutorial, we will focus on the following seminal and state-
of-the-art works in the Nearest Neighbor problem domain: R-trees
[10], kd-trees [3], M-trees [5], Locality Sensitive Hashing (LSH)
and its variants [6, 7, 9, 13], HD-Index [2], Proximity graph-based
techniques [1, 15, 16] and Product Quantization and its variants
[8, 14, 19].

8 RESEARCH CHALLENGES
At the end of the tutorial, we will discuss potential research di-
rections in the NN domain. With the ever increasing data and the
need for faster answers, approximate query processing is a very
important research topic. Many approximate techniques, such as
LSH, give theoretical guarantees on the query results. Existing ap-
proximate techniques focus on giving theoretical guarantees on the
recall, but not on the often used evaluation metric, mean average
precision (mAP). We will discuss these challenges in this tutorial.
Additionally, we will present the potential research directions in
creating distributed and parallel versions of popular techniques in
the NN domain.
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