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Abstract. Similarity search in high-dimensional spaces is an important
primitive operation in many diverse application domains. Locality Sensi-
tive Hashing (LSH) is a popular technique for solving the Approximate
Nearest Nearest Neighbor (ANN) problem in high-dimensional spaces.
Along with creating fair machine learning models, there is also a need
for creating data structures that target different types of fairness. In this
paper, we propose a fair variant of the ANN problem that targets Equal
opportunity in group fairness in the ANN domain. We formally intro-
duce the notion of fair ANN for Equal opportunity in group fairness.
Additionally, we present an efficient disk-based index structure for find-
ing Fair approximate nearest neighbors using Locality Sensitive Hashing
(FairLSH ). Moreover, we present an advanced version of FairLSH that
uses cost models to further balance the trade-off between I/O cost and
processing time. Finally, we experimentally show that FairLSH returns
fair results with a very low I/O cost and processing time when compared
with the state-of-the-art LSH techniques.

Keywords: Approximate Nearest Neighbor Search · Similarity Search
· Locality Sensitive Hashing · Fairness · Equal Opportunity

1 Introduction

In recent years, many real-world applications use machine learning algorithms
for their decision making systems (e.g. job interviews, credit card offers, etc.).
Often, these algorithms make discriminative and biased decisions towards spe-
cific individuals or group of individuals. There have been several works (such as
[14,7,22,17]) that have studied different types of fairness and biases in these deci-
sion making systems. Moreover, even if algorithms may not be biased, they could
amplify the latent bias that exists in the data. As a result, researchers have pro-
posed new methods to deal with the algorithmic and data biases in classification
[1], clustering [4,18], optimization [6], risk management [9], resource allocation
[10], and many other domains.
Bias in the data used for training machine learning algorithms is a major chal-
lenge in developing fair algorithms. Here, in a rather different problem, we are
interested in handling the bias imposed by the data structures used by such
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algorithms. In particular, data structures, regardless of how the data is handled
and how it is collected, involve bias in the way they respond to searches.
In general, fairness can be divided into two categories: 1) individual fairness and
2) group fairness. The goal of individual fairness is to treat similar individuals
similarly and the goal of group fairness is to treat similar groups of individuals
similarly. Both categories can be further divided into sub-categories [21]. One
such sub-category of group fairness is Equal Opportunity, which states that if
individuals in multiple groups of people qualify for an outcome, those groups of
people should receive the outcome at equal rates [21].
Finding nearest neighbors of a given query is an important problem in many
domains. For high-dimensional datasets, the traditional index structures suffer
from the well-known problem of Curse of Dimensionality [8]. It is shown that
even linear searches are faster than using these traditional index structures for
high-dimensional datasets [5]. A solution to this problem is to search for approx-
imate nearest neighbors instead of exact neighbors that results in much better
running times. Locality Sensitive Hashing (LSH) [12] is a popular technique for
solving the Approximate Nearest Neighbor (ANN) problem in high-dimensional
spaces that takes a sub-linear time (with respect to the dataset size) to find the
approximate nearest neighbors of a given query. LSH maps points in the high-
dimensional space to a lower-dimensional space by using random projections.
The intuition behind LSH is that close points in the high-dimensional space
will map to the same hash buckets in the lower-dimensional space with a high
probability and vice-versa.

1.1 Motivation

An important benefit of LSH is that it provides theoretical guarantees on the
accuracy of the results. Moreover, LSH is a data-independent method (i.e. the
index structure is not affected by data properties such as data distribution).
Therefore, when the distribution of data changes, data-dependent methods (such
as deep hashing approaches) need to re-generate the indexes. Additionally, LSH
is known for its ease of disk-based implementations, making it very scalable as
the dataset size grows [19]. Often, in various applications, there is a need to run
approximate nearest neighbor searches in order to find fair neighbors of a given
query. In these applications, there is a growing need to remove discrimination
and bias towards specific individuals or a group of individuals. Here, the goal of
fairness is to remove arbitrariness of the search strategy and base it upon pre-
defined conditions such that neighbors of a given query that belong to different
groups would have the same probability of being chosen in the final results.
There is no existing work that studies the equal opportunity of group fairness
in the domain of ANN search. Existing state-of-the-art LSH approaches lead to
wasted I/O while tackling the equal opportunity notion in group fairness (because
they are not designed to efficiently search for fair nearest neighbors). Therefore,
in this paper, our goal is to design a fair, yet efficient, disk-based LSH index
structure, called FairLSH, that can reduce the I/O costs and processing times
for finding the fair nearest neighbors.
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1.2 Contributions

In this paper, we propose an efficient, disk-based index structure for finding Fair
approximate nearest neighbors using Locality Sensitive Hashing, called FairLSH.
The following are the primary contributions of this paper:

– We formally introduce the notion of fair approximate near neighbors for equal
opportunity in group fairness.

– We present a tree-based and disk-based index structure, called FairLSH-Basic,
that reduces disk I/O costs and processing times for finding fair approximate
nearest neighbors.

– We further improve the efficiency by proposing a cost model-based variant of
our index structure, called FairLSH-Advanced, that uses a user-input thresh-
old to tune the trade-off between I/O costs and processing times, and hence
further improve performance.

– Lastly, we experimentally evaluate the both variants of FairLSH on several
datasets for different fairness scenarios and show that FairLSH outperforms
the state-of-the-art techniques in terms of performance efficiency.

To the best of our knowledge, we are the first work that tackles the group fairness
notion of equal opportunity in the ANN domain.

2 Related Work

2.1 LSH and its variants

Locality Sensitive Hashing (LSH) is one the most popular techniques for solving
the Approximate Nearest Neighbor (ANN) problem in high-dimensional spaces.
LSH was first proposed in [12] for the Hamming distance and was later extended
for the Euclidean distance in [8]. Then, the concepts of Collision Counting and
Virtual Rehashing were introduced in [11] that solved the two main drawbacks
of E2LSH [8], which were large index sizes and a large search radius. The idea
of using query-aware hash functions where the indexes are created such that
the query is an anchor of a bucket was proposed in QALSH [15] to solve the
issue when close points to the query were mapped to different buckets. More-
over, QALSH uses B+-trees as its index structure for efficient lookups and range
queries on the hash functions.
I-LSH [19] was recently proposed to improve the I/O cost of QALSH by incre-
mentally increasing the search radius in the projected space instead of using
exponential radius increases. However, as shown in [16], I-LSH achieves this I/O
cost optimization at the expense of a costly processing time spent on finding
closest points in the projected space. Recently, PM-LSH [24] was proposed to
utilize a confidence interval value and estimate the Euclidean distance with the
goal of reducing the overall query processing time. Moreover, a method, called
R2LSH [20], was proposed that uses two-dimensional projected spaces (instead
of one-dimensional spaces) to improve the I/O cost of the query processing.
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2.2 Fairness in ANN Search

Definitions of fairness are commonly categorized as 1) group fairness, in which
the aim is to treat different groups equally, and 2) individual fairness, in which
the purpose is to treat individual people of the same profile similarly [21]. So
far, only two works have studied the idea of fairness in the ANN domain.
[13] proposes to remove the bias from exact neighborhood and approximate
neighborhood (E2LSH) searches by using sampling techniques with the goal of
providing individual fairness. Additionally, another work [3] has been proposed
that considers equal opportunity in individual fairness in the sense that all points
near a query should have the same probability to be returned. In [3], authors
first use uniform sampling techniques and then build a data structure for fair
similarity search under inner product. Very recently, a joint work [2] containing
[13] and [3] has been proposed that connects ideas from both works (i.e. equal
opportunity and independent range sampling). Our proposed work is different
from the prior works [13,3,2] in two main aspects: 1) Unlike these prior works
that focus on individual fairness, our work focuses on equal opportunity in group
fairness, and 2) these prior works are designed specifically for the original LSH
design (E2LSH). Particularly, their proposed data structures are applicable only
for LSH designs that use the multiple hash functions in multiple hash tables
(Compound Hash Keys). State-of-the-art LSH designs, such as [11,15,19], use
advanced techniques such as Collision Counting that makes having multiple
hash tables unnecessary (thus saving on space and time). Our proposed work is
designed specifically for these state-of-the-art LSH designs.

3 Background and Key Concepts

In this section, we describe the key concepts behind LSH. Given a dataset D with
n points in a d-dimensional Euclidean space Rd and a query point q in the same
space, the goal of c-ANN search (for an approximation ratio c > 1) is to return
points o ∈ D such that ‖o−q‖ ≤ c×‖o∗−q‖, where o∗ is the true nearest neighbor
of q in D and ‖‖ is the Euclidean distance between two points. Similarily, c-k-
ANN search aims at returning top-k points such that ‖oi − q‖ ≤ c × ‖o∗i − q‖
where 1 ≤ i ≤ k.

Definition 1 (LSH Family). A hash function family H is called (r, c, p1, p2)-
sensitive if it satisfies the following conditions for any two points x and y in a
d-dimensional dataset D ⊂ Rd:

– if ‖x− y‖ ≤ R, then Pr[h(x) = h(y)] ≥ p1, and
– if ‖x− y‖ > cR, then Pr[h(x) = h(y)] ≤ p2

Here, p1 and p2 are probabilities, R is the distance between two points (commonly
referred to as the radius), and c is an approximation ratio. LSH requires c > 1
and p1 > p2. The conditions show that the probability of mapping two points to
a same hash value decreases as their distance increases.
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Definition 2 (Collision Counting). In [11], it is theoretically shown that only
those points that collide (are mapped to the same bucket) with the query in at
least l projections (out of m) are chosen as candidates. Here, l is the collision
count threshold and calculated as l = �α×m�, where α is the collision threshold
percentage calculated using α = zp1+p2

1+z and m is the total number of projections

calculated as m = � ln( 1
δ )

2(p1−p2)2
(1 + z)2�. Here, z =

√
ln( 2β )/ ln(

1
δ ), where β is

the allowed false positive percentage (i.e. the allowed number of points whose
distance with a query point is greater than cR). [11] sets β = 100

n , where n is the
cardinality of the dataset.

Definition 3 (Virtual Rehashing). [11] starts query processing with a very
small radius, and then, exponentially increases the radius in the following se-
quence: R = 1, c, c2, c3, ..., where c is an approximation ratio. If at level-R,
enough candidates are not found, the radius is increased until found.

4 Problem Specification

Definition 4 (Fair ANN). The definition of Fair ANN in this paper is focused
on the equal opportunity problem in group fairness in the ANN domain. Given
a dataset D with n points in a d-dimensional Euclidean space Rd, a query point
q, and two groups of points in D labeled oA and oB, the goal of Fair ANN
is to find top-	k/2
 points oA ∈ D and top-	k/2
 points oB ∈ D, such that

‖oAi − q‖ ≤ c× ‖oA,∗
i − q‖ and ‖oBi − q‖ ≤ c× ‖oB,∗

i − q‖, where 1 ≤ i ≤ 	k/2
,
and oA,∗

i and oB,∗
i are the true nearest neighbors of q in D from each group.

In this paper, our goal is to return Fair ANN for a given query q while reducing
the overall I/O costs and processing times while maintaining the accuracy of
the result. Note that, in this work, we only focus on two distinct groups in the
dataset. We leave the problem of Fair ANN for multiple groups as future work.
In section 5, we present the design of our index structure, FairLSH.

5 FairLSH

In this section, we first describe the naive approaches for solving the Fair ANN
problem using the existing LSH methods. We then present the design of our
proposed index structure, FairLSH, which consists of two variants: FairLSH-
Basic and FairLSH-Advanced. Given a query point, our goal is to efficiently
return top-	k/2
 NN from each of the two groups of points in the dataset.

5.1 Naive Approaches

In Section 3, we explained how LSH families are used to map high-dimensional
points into a lower-dimensional space while preserving locality. In order to re-
trieve fair results, we make the following changes to existing LSH methods:
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Fig. 1: (a) QALSH leaf nodes (top) compared to (b) FairLSH leaf nodes (bottom)

Naive Strategy 1: A naive strategy to find top-	k/2
 nearest points from each
group is to simply divide the dataset into two separate datasets (based on their
labels), and run LSH individually on the two separate datasets. The drawbacks
of this strategy are: 1) it is not space efficient since two sets of indexes need to
be maintained, and 2) redundant processing needs to be performed on the two
sets of indexes which results in an increase in the overall query processing time.
Naive Strategy 2: All LSH-based methods have several stopping conditions
that make the search algorithm stop once enough points are found. In the sec-
ond naive strategy, we change these stopping conditions to continue the search
algorithm until enough points are found from each group of points.
For example, Figure 1(a) shows the leaf nodes of a B+-tree from QALSH [15].
In this example, the query is point ID 2 which is located in Node 1, white points
are from group A, and red points are from group B. Assuming that k = 8, then
our goal is to find four nearest points from each of the groups A and B.
In this example, the original QALSH method will start reading Node 1 and
fetching the first four points and it will continue reading Node 2. After that,
since the stopping conditions are met, the algorithm will stop. However, we only
find two nearest points (5 and 6) and the results are not fair. Naive strategy 2
changes stopping conditions such that the algorithm continues reading Node 3
and Node 4 as well. By doing this, the algorithm finds enough points from each
group and if more than enough points are found, they can be pruned at another
step using Euclidean distance calculations.
The main drawback of this naive strategy (as it can also be seen in the given ex-
ample) is that extra and unnecessary nodes are read which results in an increase
in the I/O cost. As a result, we present two variants of a novel index structure
in the next section that use threaded B+-trees and cost models to optimize the
I/O cost and processing time.

5.2 Design of FairLSH-Basic

The main intuition behind FairLSH-Basic is that when enough nearest neighbors
of a group are found, we should avoid reading the points of that group from the
disk. Hence, our goal is to skip those points that will lead to unnecessary I/O in
order to improve processing time.
Skipping the points in the current LSH index structures has several challenges
that include: 1) Since hashed points are ordered without considering their groups,
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Algorithm 1: Query phase of FairLSH-Basic and FairLSH-Advanced

Input: D is the dataset; �q is the query point; L is the label of dataset points;
I is m index structures created in indexing phase; k is the number of
nearest neighbors to find; l is the collision threshold, �a is the random
vector generated in the indexing phase.

Output: �k/2� nearest points to �q in D from each label
Variable: cc is the collision count of points; C is the candidates list; R is the

number of nodes to read
1 h(�q) := �a.�q;
2 Find query leaf node in m index structures;
3 Let R = 1;
4 while TRUE do
5 for i = 1 to m do
6 Read R nodes around the query node;
7 if �k/2� label A nearest neighbors are found then
8 Set next round nodes to only label B nodes;

9 else
10 Set next round nodes to adjacent nodes;

11 foreach point �o in leaf node do
12 cc[�o] := cc[�o] + 1 if cc[�o] ≥ l then
13 Add �o to C;

14 if (|{o|o ∈ C ∧ L[o] = 1 ∧ ‖o− q‖ ≤ c×R}| ≥ �k/2�) and
(|{o|o ∈ C ∧ L[o] = 2 ∧ ‖o− q‖ ≤ c×R}| ≥ �k/2�) then

15 break;

16 R := R× c;

17 return {o|o ∈ C ∧ L[o] = 1 ∧ ‖o− q‖ ≤ c×R} and
{o|o ∈ C ∧ L[o] = 2 ∧ ‖o− q‖ ≤ c×R}

when reading a “page-size” of data from the disk, we might get points from
different groups (e.g. node 2 of Figure 1(a)), and 2) The current index structures
only have pointers to the sibling nodes and there is no possibility to avoid certain
nodes of hash functions (that contain unnecessary data) in the index structure.
FairLSH-Basic uses a group-aware strategy when creating the leaf nodes to
only allow points belonging to the same group to be added to a single leaf
node and to create a new leaf node when a new point belongs to a different
group. Furthermore, FairLSH-Basic uses threaded B+-tree structures that allow
arbitrary pointers between different nodes of the tree. In the current version of
FairLSH-Basic, these arbitrary pointers are created between leaf nodes belonging
to group B and the idea of using smart pointers where the algorithm can detect
which nodes require pointers between them is left for future work.
In the query phase of FairLSH-Basic, the goal is to find 	k/2
 nearest points from
each group to a given query point. Similar to other tree-based LSH methods, the
leaf nodes are searched in an exponential search radius manner (starting from
the query node) and the collision counting process (explained in section 3) is
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Fig. 2: Breakdown of node containing (a) sparse and (b) dense groups

carried away. However, when enough nearest neighbors are found from a group
and we only need to get nearest neighbors from the other group, FairLSH uses
its arbitrary pointers to skip unnecessary nodes instead of doing a range query
(line 8 of Algorithm 1).
An example of how the search process of FairLSH-Basic works is shown in Figure
1 (b). In this example, the query resides in Node 1, white points are from group
A, and red points are from group B. With an assumption of k = 8, our goal is to
find four nearest neighbors from each group. FairLSH-Basic starts by reading
Node 1 and fetching the first four points, and now, we have enough neighbors
from group one (assuming that the query is also a point from group one). After
that, FairLSH-Basic reads Node 2 and fetches two points from group two. From
this moment, since we only need to read group two points, the algorithm jumps
to Node 6 and reads the remaining points from that node. This way, FairLSH-
Basic has saved the I/O cost of reading three unnecessary nodes (3, 4, and 5).
Note that the indexing phase prevents points from multiple groups to be in the
same node (e.g. points 17, 18, 19, and 20 in one node); therefore, FairLSH-Basic
can always skip unnecessary nodes.
It is worth mentioning that Figure 1 is only showcasing one projection as a
simple example; in the real scenario, we have several hash projections with more
complex distributions. In Section 6, we show that FairLSH-Basic performs much
better than state-of-the-art techniques.

5.3 Drawbacks of FairLSH-Basic

The main benefit of FairLSH-Basic is that it is effective in reducing disk I/O
costs when points from different groups are not sparsely distributed in the nodes.
Although the indexes are created offline, FairLSH-Basic has a processing over-
head in the query phase which is related to the extra pointers between the nodes
(compared to only performing a range query search). However, this processing
overhead is negligible compared to the savings in disk I/O cost, especially when
we have a dense distribution of group points. In this scenario, as shown in Fig-
ure 2 (a), FairLSH-Basic breaks down the nodes containing a mixed group of
points (i.e. points from group A and group B) and eliminates the need to read
unnecessary points from the indexes.
On the other hand, the processing overhead of FairLSH-Basic increases when
points from different groups are sparsely distributed in the nodes. Figure 2(b)
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shows an example of this scenario. In this scenario, FairLSH-Basic breaks down
the nodes which results in multiple nodes containing only one point. As a result,
the indexes will contain more pointers and more “book-keeping” is required
during the query processing phase. We also observed that in reality, both of the
mentioned scenarios (i.e. sparse and dense distribution) happen in the indexes.
In other words, different hash functions in the same index structure can have
nodes containing a sparse distribution of group points, and also nodes containing
a dense distribution of group points.

5.4 Design of FairLSH-Advanced

To remedy the drawbacks of FairLSH-Basic, we present a cost-based strategy,
FairLSH-Advanced, that can smartly detect if breaking down a node is going to
positively or negatively affect the overall performance.
There are three costs associated with reading a node into the main memory: 1)
Cs: cost of disk seeks, 2) Ch: cost of reading the header (i.e. pointers), and 3)
Cp: cost of reading the payload (i.e. points). Cs is defined as IOcalls× seekspeed,
where seekspeed is the time it takes to perform a disk seek and can be obtained
from disk manufacturer or by benchmarking the disk. Ch is defined as nodecount×
nodeheadersize × IOspeed, where nodecount is the number of nodes we are going
to read, nodeheadersize is the header size of each node, and IOspeed is the time it
takes to read data from the disk and can be obtained from disk manufacturer.
Finally, Cp is defined as pointscount × IOspeed, where pointscount is the number
of points that we want to read from the disk.
Given a node in the indexing phase, the goal of FairLSH-Advanced is to decide
whether breaking down a node is going to be beneficial or not. Therefore, we
introduce a cost to represent each scenario (i.e. CBefore and CAfter for the cost
before and after breaking down the node respectively) and the difference of these
two costs can be used to make the decision. Thus, we have:

CBefore = Cs,B + Ch,B + Cp,B (1)

CAfter = Cs,A + Ch,A + Cp,A (2)

Note that Cs,B , Ch,B , and Cp,B are the cost of disk seeks, cost of reading the
header, and cost of reading the payload respectively before we break down a
node, and Cs,A, Ch,A, and Cp,A are the costs after we break down a node.
As an example, we consider the nodes in Figure 2 and assume that seekspeed = 6,
nodeheadersize = 3, and IOspeed = 13. In Figure 2(a), before breakdown, we have
IOcalls = 1, nodecount = 1, and pointscount = 4. When we break the node down,
we have IOcalls = 4, nodecount = 4, and pointscount = 4. Therefore, we have
CBefore = (1 × 6) + (1 × 3 × 13) + (4 × 13) = 97, CAfter = (4 × 6) + (4 × 3 ×
13) + (4 × 13) = 232, and CAfter − CBefore = 232 − 97 = 135. Similarly, in
Figure 2(b), we have CBefore = (1× 6) + (1× 3× 13) + (4× 13) = 97, CAfter =
(2× 6) + (2× 3× 13) + (4× 13) = 142, and CAfter − CBefore = 142− 97 = 45.
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{
break down, if CAfter − CBefore ≤ θ

do not break down, if CAfter − CBefore > θ
(3)

FairLSH-Advanced utilizes a user-input parameter, called θ, in the indexing
phase. As shown in Equation 3, if the CAfter − CBefore of a node is lower
than θ, the node will be broken down and vice versa. Since nodes have different
costs, it is crucial to find a good θ value such that the index will be efficient
enough in the query processing phase. Note that the query processing phase
of FairLSH-Advanced is similar to FairLSH-Basic (Algorithm 1). In Section 6,
we show how using the cost-based strategy and the user-input parameter can
improve the performance of FairLSH-Basic.

6 Experimental Evaluation

In this section, we evaluate the effectiveness and fairness of our two proposed
methods, FairLSH-Basic and FairLSH-Advanced. All experiments were run on
a machine with the following specifications: Intel Core i7-6700, 16GB RAM,
2TB HDD, and Ubuntu 20.04 OS. All codes were written in C++ and compiled
with gcc v9.3.0 with the -O3 optimization flag. Since the code of PM-LSH was
not released when writing this paper, we compare our two strategies with the
following state-of-the-art disk-based alternatives:

– C2LSH: Fair top-k results are found using C2LSH [11].
– QALSH: Fair top-k results are found using QALSH [15].

We modified existing state-of-the-art algorithms (C2LSH and QALSH) to output
fair nearest neighbors by using the naive strategy explained in Section 5.1.

6.1 Datasets

Due to the lack of availability of high-dimensional real-world datasets that target
fairness, we create synthetic datasets for our experimental setup. In order to
cover different scenarios that might happen in different applications, we construct
seven synthetic datasets. There are two groups in each dataset and the goal
of this paper is to give both of these groups the same opportunity (i.e. equal
opportunity) to appear in the final results. We assign a binary label (A or B in
our explanation) to each dataset point to represent these groups. Each one of the
groups contain 50% of the dataset. In this work, we experiment with scenarios
where A and B have different distributions. Label A data points are generated
using a Beta distribution with α = 2 and β = 8, and label B data points are
generated using a Beta distribution with α = 8 and β = 2. For future work,
we will experiment with different types of distributions and different values of
α and β. Table 1, summarizes the characteristics of our synthetic datasets. We
choose 100 random points as our queries and report the average as the final
result. We also experimented on datasets with 100, 000 points with 100 and
1, 000 dimensionas, and we observed similar results. Due to space limitations,
we do not include those results.
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Name # of Points # of Dim.

D1 500, 000 100
D2 1, 000, 000 100
D3 500, 000 1, 000
D4 1, 000, 000 1, 000

Table 1: Characteristics of the datasets

1

1.05

1.1

1.15

1.2

Fa
irR

at
io

Dataset

Fig. 7: Fairness Accuracy Ratio

6.2 Evaluation Criteria

The performance and fairness of the compared techniques are evaluated using
the following criteria:

– Index IO Size: The amount of total data read from index files.
– Wasted IO Size: The amount of unnecessary data read from index files

(e.g. reading label A points while we have enough label A candidates and
should only look for label B candidates).

– Algorithm Time: The processing time of index files once they are read
into the main memory. The algorithm time consists of operations such as
Collision Counting which are explained in section 3.

– Query Processing Time: The overall time of finding fair approximate
nearest neighbors. We observed that the wall-clock times were not consis-
tent (i.e. running the same query multiple times on the same indexes would
return drastically different results, mainly because of disk cache and in-
struction cache issues). Therefore, following [23], for a Seagate 1TB HDD
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with 7200 RPM, we consider a random seek to cost 8.5 ms on average,
and the average time to read data to be 0.156 MB/ms. Thus, we have
QPT = #DiskSeeks× 8.5 + dataRead× 0.156 +AlgT ime+ FPRemTime,
where FPRemTime is the cost of reading the candidate data points and
computing their exact Euclidean diatance for removing false positives. We
do not report individual FPRemTime results since they are similar for dif-
ferent methods and negligible (less than one millisecond).

– Accuracy: In order to define an accuracy metric, we consider the Euclidean
distance (between the candidate and query) and fairness. The ground truth
of our problem is the closest points of each label to the given query. For
example, for k = 100, if the dataset is split into 50% label A points and
50% label B points, the goal is to find the 50 closest label A points and the
50 closest label B points to the given query. We define our accuracy metric,
called FairRatio, as following:

FairRatio =
1

k

⎛
⎝� k

2 �∑
i=1

∥∥oAi − q
∥∥∥∥∥oA,∗

i − q
∥∥∥ +

� k
2 �∑

i=1

∥∥oBi − q
∥∥∥∥∥oB,∗

i − q
∥∥∥
⎞
⎠ (4)

where oAi and oBi are the ith label A and label B points respectively that

are returned by the LSH technique, and oA,∗
i and oB,∗

i are the ith label A
and label B points from the query in the ground truth. FairRatio of 1 means
that the returned results are fair and have the same distance from the query
as the ground truth. The closer this value is to 1, the higher the accuracy.

6.3 Parameter Settings

For the state-of-the-art methods, we used the same parameters suggested in their
papers. For QALSH, FairLSH-Basic, and FairLSH-Advanced (since we use the
same hashing formula as QALSH as explained in section 5), we used w = 2.781,
δ = 0.1, and c = 2. For C2LSH, we used w = 2.184, δ = 0.1, and c = 2.
In this work, we focus on only two data point labels (A and B) in the dataset,
k = 100, and the goal of finding 50 nearest points from label A and 50 nearest
points from label B. We leave experimenting on other parameter settings for
future work. For FairLSH-Advanced, we tried different values of θ and observed
improvements over compared methods for all experimented values. Due to space
limitations, we only show results for θ = 100.

6.4 Discussion of the Results

In this section, we compare the performance and accuracy of FairLSH-Basic
and FairLSH-Advanced using the criteria explained in section 6.2 against the
state-of-the-art methods.

– Index IO Size: Figure 3 shows the total amount of data read from the index
files. Since C2LSH has more index files compared to other methods, it always
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has a higher I/O cost compared to the other methods. FairLSH-Basic has a
lower amount of data read compared to C2LSH and QALSH since its index
structure is designed to not read unnecessary points from the disk. FairLSH-
Advanced has the lowest amount of index I/O since its index structure is
further optimized to skip reading unnecessary node headers.

– Wasted IO Size: Figure 4 shows the amount of unnecessary data read from
the index files. Wasted I/O happens when, in the query processing phase,
enough nearest neighbors from group A are already found; but the algorithm
keeps reading data related to group A. The wasted I/O size of FairLSH-Basic
and FairLSH-Advanced are several orders of magnitude smaller compared to
C2LSH and QALSH. FairLSH-Advanced has a slightly higher wasted I/O size
than FairLSH-Basic since it is sacrificing wasted I/O over algorithm time.

– Algorithm Time: Figure 5 shows the time needed by the algorithms to find
the candidates (excluding the time taken to read index files). QALSH has the
highest algorithm time for all datasets since it uses non-optimized B+-trees
that become significantly larger as the dataset size grows. It is interesting to
note that although FairLSH-Basic and FairLSH-Advanced use more complex
tree structures (due to more number of pointers), their algorithm time is lower
than C2LSH and QALSH. This is due to avoiding processing of unnecessary
nodes which offsets the overhead of using additional tree pointers. FairLSH-
Advanced has a lower algorithm time than FairLSH-Basic since it is using cost
models to optimize the index structures and balance the trade-off between
wasted I/O cost and algorithm time.

– Query Processing Time: Figure 6 shows the overall time required to solve a
given k-NN query and retrieve fair neighbors. FairLSH-Basic is always faster
than C2LSH and QALSH because of savings in wasted I/O and algorithm
time. FairLSH-Advanced is the fastest method compared to the others since
its index structures are optimized to significantly reduce algorithm time while
increasing wasted I/O cost slightly.

– Accuracy: Figure 7 shows the accuracy of all techniques. C2LSH and QALSH
have a similar accuracy for all datasets, and FairLSH-Basic and FairLSH-
Advanced have a slightly lower accuracy (i.e. higher FairRatio). The reason
of this difference in accuracy is because when FairLSH-Basic and FairLSH-
Advanced find enough nearest neighbors of a group, they will stop reading
and processing points belonging to that group. However, C2LSH and QALSH
continue this process and get more nearest neighbors and return the closest k
neighbors at the end. We should mention that a difference of 0.05 in FairRatio
is very small compared to the savings in I/O costs and algorithm time.

7 Conclusion and Future Work

In this paper, we define the group fairness notion of Equal Opportunity in the
context of Approximate Nearest Neighbor domain. We proposed a novel index
structure for efficiently finding fair top-k approximate nearest neighbors using
Locality Sensitive Hashing, called FairLSH. Existing LSH-based techniques are
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not capable of efficiently finding fair nearest neighbors to a given query. We
proposed two novel strategies, FairLSH-Basic and FairLSH-Advanced, which
uses threaded B+-trees and advanced cost models to optimize the overall query
processing cost. Experimental results show the benefit of our proposed structures
over state-of-the-art techniques. In the future, we plan to introduce a user-defined
parameter to adjust the trade-off between fairness, accuracy, and processing
time. We also plan to provide theoretical guarantees for the results of FairLSH.
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5. Chávez, E., et al., “Searching in metric spaces,” CSUR 2001.
6. Chierichetti, F., et al., “Matroids, matchings, and fairness,” AISTATS 2019.
7. Chouldechova, A., “Fair prediction with disparate impact: A study of bias in re-

cidivism prediction instruments,” Big data 2017.
8. Datar, M., et al., “Locality-sensitive hashing scheme based on p-stable distribu-

tions,” SOCG 2004.
9. Donini, M., et al., “Empirical risk minimization under fairness constraints,” NIPS

2018.
10. Elzayn, H., et al., “Fair algorithms for learning in allocation problems,” FAccT

2019.
11. Gan, J., et al., “Locality-sensitive hashing scheme based on dynamic collision

counting,” SIGMOD 2012.
12. Gionis, A., et al., “Similarity search in high dimensions via hashing,” VLDB 1999.
13. Har-Peled, S., et al., “Near neighbor: Who is the fairest of them all?,” NIPS 2019.
14. Hardt, M., et al., “Equality of opportunity in supervised learning,” NIPS 2016.
15. Huang, Q., et al., “Query-aware locality-sensitive hashing for approximate nearest

neighbor search,” VLDB 2015.
16. Jafari, O., et al., “Experimental Analysis of Locality Sensitive Hashing Techniques

for High-Dimensional Approximate Nearest Neighbor Searches,” ADC 2021.
17. Kleinberg, J., et al., “Human decisions and machine predictions,” QJE 2018.
18. Kleindessner, M., et al., “Guarantees for spectral clustering with fairness con-

straints,” arXiv 2019.
19. Liu, W., et al., “I-lsh: I/o efficient c-approximate nearest neighbor search in high-

dimensional space,” ICDE 2019.
20. Lu, K., Kudo, M., “R2lsh: A nearest neighbor search scheme based on two-

dimensional projected spaces,” ICDE 2020.
21. Mehrabi, N., et al., “A survey on bias and fairness in machine learning,” arXiv

2019.
22. E.O., Munoz, et al., “Big data: A report on algorithmic systems, opportunity, and

civil rights,” Executive Office of the President 2016.
23. Seagate ST2000DM001 Manual.: https://www.seagate.com/files/

staticfiles/docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf
24. Zheng, B., et al., “Pm-lsh: A fast and accurate lsh framework for high-dimensional

approximate nn search,” VLDB 2020.


