Experimental Analysis of Locality Sensitive
Hashing Techniques for High-Dimensional
Approximate Nearest Neighbor Searches

Omid Jafari0000—0003—3422—2755] 4 Parth Nagarkarmooo*oom*6284*9251]

1 New Mexico State University, Las Cruces, US
2 {ojafari, nagarkar}@nmsu.edu

Abstract. Finding nearest neighbors in high-dimensional spaces is a
fundamental operation in many multimedia retrieval applications. Exact
tree-based approaches are known to suffer from the notorious curse of
dimensionality for high-dimensional data. Approximate searching tech-
niques sacrifice some accuracy while returning good enough results for
faster performance. Locality Sensitive Hashing (LLSH) is a popular tech-
nique for finding approximate nearest neighbors. There are two main
benefits of LSH techniques: they provide theoretical guarantees on the
query results, and they are highly scalable. The most dominant costs for
existing external memory-based LSH techniques are algorithm time and
index I/Os required to find candidate points. Existing works do not com-
pare both of these costs in their evaluation. In this experimental survey
paper, we show the impact of both these costs on the overall perfor-
mance. We compare three state-of-the-art techniques on six real-world
datasets, and show the importance of comparing these costs to achieve
a more fair comparison.

Keywords: Locality Sensitive Hashing - High-Dimensional Spaces - Ap-
proximate Nearest Neighbor.

1 Introduction

Many large multimedia retrieval applications require efficient processing of near-
est neighbor queries in high-dimensional spaces. Exact tree-based indexing struc-
tures, such as KD-tree, SR-tree, etc., work well for low-dimensional spaces (<
10) but suffer from the notorious curse of dimensionality for high-dimensional
spaces. They are often outperformed by brute-force linear scans [4]. One solu-
tion to this problem is to search for good enough approximate results instead.
Approximate techniques sacrifice some accuracy for a significant improvement in
the overall processing time. In many applications where 100% is not needed, this
tradeoff is very useful in saving time. The goal of the approximate version of the
nearest neighbor problem, also called c-approximate Nearest Neighbor search, is
to return points that are within ¢ R distance from the query point. Here, ¢ > 1
is a user-defined approximation ratio and R denotes the distance of the query
point and its nearest neighbor.

1.1 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [8] is one of the most popular techniques for
finding approximate nearest neighbors in high-dimensional spaces. LSH was first
introduced in [8] for the Hamming distance, but was later extended to several
distances, such as the popular Euclidean distance [6]. LSH uses random hash
projections to map the original high-dimensional space to the projected low-
dimensional space. The main idea behind LSH is that nearby points in the
original high-dimensional space will map to similar hash buckets in the low-
dimensional space with a higher probability than dissimilar or far away points.
Since LSH was first proposed in [8], there have been several works that have fo-
cused on improving the search accuracy and/or performance [3,7,9,16,18,23,15].

1.2 Motivation for using LSH

Locality Sensitive Hashing (LSH) is known for two main advantages: its sub-
linear query performance (in terms of the data size) and theoretical guarantees
on the query accuracy. Additionally, LSH uses random hash functions which are
data-independent (i.e. data properties such as data distribution are not needed
to generate these random hash functions), and the generation of these hash
functions is a simple process that takes negligible time. Additionally, the data
distribution does not affect the generation of these hash functions. Hence, in
applications where data is changing or where newer data is coming in, these
hash functions do not require any change during runtime. While the original LSH
index structure suffered from large index sizes (in order to obtain a high query
accuracy) [3,18], state-of-the-art LSH techniques [7,9] have alleviated this issue
by using advanced methods such as Collision Counting and Virtual Rehashing. In
addition to their fast index maintenance, fast query performance, and theoretical
guarantees on the query accuracy, LSH algorithms are easy to implement as
external memory-based algorithms, and hence are more scalable than in-memory
algorithms (such as graph-based ANN algorithms) [15].

1.3 Motivation of our Experimental Survey

Locality Sensitive Hashing techniques have two dominant costs for finding near-
est neighbors: 1) cost of reading the index files from the external memory to
the main memory (which we call Indez I/0s), and 2) cost of finding candidates
and removing false positives (which we call Algorithm time). As mentioned in
Section 1.2, one of the benefits of LSH is that it is a scalable algorithm. Some of
the existing LSH techniques (e.g. C2LSH [7] and QALSH [9]) are not entirely ex-
ternal memory-based (i.e. even though the indexes are stored on the disk, their
implementations require the entire data and indexes should fit into the main
memory during the index creation phase). Thus, existing works (such as [1])
do not compare their results with C2LSH and QALSH on large datasets since
they do not fit in the main memory. Additionally, some recent works (such as
[15]) only compare the Index I/Os without comparing the important Algorithm

time. This leads to other recent papers (such as [14,13,25]) to unfairly compare
their Algorithm time with QALSH or I-LSH [15] since they are deemed as the
state-of-the-art LSH techniques.

1.4 Contributions of this Experimental Survey paper

In this paper, we carefully present a detailed experimental analysis on three
state-of-the-art external memory-based LSH algorithms, C2LSH [7], QALSH [9],
and I-LSH [15]. Our contributions are as follows:

— We modify the implementations of C2LSH and QALSH to create fully ex-
ternal memory-based implementations such that the entire dataset and/or
the entire index do not need to be in the main memory for the algorithms
to work during index generation or query processing.?

— We show the importance of experimentally analyzing and comparing the
Index 1/0Os and Algorithm time of all algorithms.

— We compare these three algorithms on real datasets with different charac-
teristics under differing system parameters.

To the best of our knowledge, we are the first work to present a detailed analysis
of these three state-of-the-art LSH techniques.

2 Related Work

Nearest Neighbor problem is an important problem for multimedia applications
in many diverse domains such as multimedia retrieval, image processing, ma-
chine learning, etc. Since tree-based index structures can be outperformed by a
linear scan, due to the curse of dimensionality, in high-dimensional spaces, ap-
proximate techniques are preferred due to their fast performance at the expense
of some accuracy. These techniques can be broadly classified into three main
categories: Hashing-based methods, Partition-based methods, and Graph-based
methods.? Hashing-based methods can be further classified into learning-based
hashing techniques and random hashing techniques. The benefit of random hash-
ing techniques, such as Locality Sensitive Hashing [8], are that they are easy to
construct, no need for training data, and easy to maintain and update. Addi-
tionally, LSH provides a sub-linear (in terms of the data size) query performance
and theoretical guarantees on the query accuracy.

Locality Sensitive Hashing and its variants: The main idea of Locality
Sensitive Hashing is to create random projections and hash data points in these
random projections such that nearby data points in the original high-dimensional
space will be mapped to the same hash bucket with a higher probability com-
pared to data points that are far apart from each other. It was originally pro-
posed in [8] for the Hamming distance and then later extended to the popular

3 These implementations will be made public.
* We refer the reader to a recent survey [14] for an in-depth survey on these categories.

Euclidean distance [6]. In this original work on Euclidean distance (E2LSH),
instead of a single hash function (or a projection), a hash table consisted of
several hash functions (represented by Compound Hash Keys) was built to re-
duce false positives. But this also generated false negatives. Hence several hash
tables had to be used to reduce the number of false positives and false nega-
tives, while keeping the accuracy of the query high. The main drawbacks of this
approach were the size of the index structure (since large number of hash ta-
bles were required to return the desired number of results with a high accuracy)
and the need to determine the width of the hash bucket during index creation
(a larger width returned enough results but also with a potential of too many
false positives, whereas a smaller width had a potential of misses resulting in in-
sufficient results). This user-defined width, which was mainly dependent on the
data distribution, had to be often determined through a trial and error process.
LSH-Forest [3] was proposed where the compound hash-keys were hierarchically
stored such that the algorithm could stop at a higher level in the tree if more
results were needed. In Multi-probe LSH [18], the authors proposed a technique
to probe into neighboring buckets when more results were needed. The intuition
is that neighboring buckets are more likely to contain nearby points. Hence, if
the bucket width was underestimated (which is better than overestimation which
can lead to significant wasteful processing), neighboring buckets were probed to
find the desired number of results.

Later, C2LSH [7] introduced two main concepts of Collision Counting and Vir-
tual Rehashing that solved the two main drawbacks of E2LSH [6]. In C2LSH,
the authors proposed to create m base hash functions and choose candidate
points based on how many times a data point collides with the query point (and
hence instead of creating several hash tables of several hash functions, only 1
table of m base hash functions is needed), which reduced the size of the index
structure. Additionally, in Virtual Rehashing, the neighboring buckets in each
hash function are read incrementally when sufficient number of results are not
found. In SK-LSH [16], the authors propose a linear ordering on the Compound
Hash Keys (using a space-filling curve) such that nearby Compound Hash Keys
are stored on the same (or nearby) page on the disk, thus reducing the total
number of I/Os. The design of SK-LSH is still build on the original E2LSH, and
hence suffers from the parameter tuning problem, where the user is expected to
enter important parameters such as number of hash functions and the radius at
which k results will be found. QALSH [9] was later proposed that built query-
aware hash functions such that the hash value of the query point is considered
as the anchor bucket during query processing and this idea would solve the is-
sue when close points to a query were partitioned into different buckets when
query was near the bucket boundaries. Additionally, B+trees are built on each
hash function for efficient lookups into neighboring buckets (which translate to
range queries). QALSH utilizes the concepts of Collision Counting and Virtual
Rehashing. HD-Index [1] was introduced which generated Hilbert keys of the
dataset points and also stored the distances of points to each other to efficiently
prune the results based on distance filters. Due to the reliance on space-filling

curves (Hilbert curves) and B+-trees, HD-Index cannot scale for moderately
high-dimensional datasets [1]. SRS [22] uses the Euclidean distance between two
points in the projected space to estimate their distance in the original space. In
order to find the next nearest neighbor in the projected space, SRS uses an R-tree
to index the points in the projected space. This incremental finding of the NN is
similar to I-LSH. The main goal of SRS is to introduce a very lightweight index
structure to solve the ANN problem. SRS is shown to suffer from memory leaks
and slow running times as compared with C2LSH [1], and hence not included
in our work. Recently, I-LSH [15], which is considered to be the state-of-the-
art LSH technique [13], was proposed to improve the Virtual Rehashing process
of QALSH (where the range of the lookups are incremented exponentially). In
I-LSH, the authors propose to increase the range of the lookups based on the
distance to the nearest point (in the projected space) instead of increasing the
range exponentially. While this strategy results in less disk I/Os, it also leads
to high disk seeks (random I/Os) and algorithm time as we show in Section 4.
Very recently, an in-memory LSH algorithm, PM-LSH [25] was proposed where
the idea was to estimate the Euclidean distance based on a tunable confidence
interval value such that the overall query processing time is reduced.

3 State-of-the-art Techniques

In this section, we will introduce the concepts introduced by the three state-
of-the-art external memory-based LSH techniques, C2LSH [7], QALSH [9], and
I-LSH [15]. We primarily use the terminologies and formulations introduced in
E2LSH [6] and C2LSH [7]. Due to space limitations, we ask the reader to refer
to [7] for detailed formulations. C2LSH [7] introduced the concepts of Collision
Counting and Virtual Rehashing. In [7], authors theoretically show that two
close points x and y collide in at least [hash layers (out of m hash layers) with a
probability 1 —§. Further, only those points that collide at least [times with the
query point, where [is the collision count threshold, are chosen as candidates.
C2LSH creates only one hash function per hash table, and hence the number of
hash functions are equal to the number of hash table.

Instead of assuming a magic radius (which traditional LSH methods did),
C2LSH sets the initial radius R to 1. It is possible that with R = 1, there are
not enough results for a top-k query to be returned. C2LSH increases the radius
of the query in the following sequence: R = 1,¢,c?,c3.... If at level-R, enough
candidates are not found, the radius is increased until enough query results are
found. This exponential expansion process is called Virtual Rehashing.

Moreover, C2LSH uses two terminating conditions to stop the algorithm.
These conditions specify that 1) at the end of each virtual rehashing at least &
candidates should have been found whose Euclidean distance to the query are
less than or equal to cR, and 2) at any point, k + On candidates are found.

QALSH introduces query-aware hash functions. For a query ¢, once the query
projection is found by computing hq(q), QALSH uses the query as the “anchor”
to find the anchor bucket with width w with the interval |hq(q) — 5, ha(q) + 5.

If the projected location for a point z falls in the same anchor bucket as g,
ie., |ha(0) — ha(q)] < %, then QALSH considers that o has collided with ¢
under ho. QALSH [9] also utilizes these concepts of Collision Counting and
Virtual Rehashing to build query-aware hash functions. Another main difference
of QALSH is that it uses B+-trees to represent the hash tables. An exponential
expansion in each hash table is thus the same as a range query on a B+-tree. By
using query-aware hash functions and B+-trees, QALSH improves the theoretical
bounds by reducing the total number of hash functions required to satisfy the
quality guarantee. Additionally, QALSH can work for any approximation ratio,
¢, greater than 1, while C2LSH can only work for ¢ > 2. While the reduction
in number of hash functions generates a smaller index, the overhead of using
B+-trees makes QALSH much slower as we experimentally show in Section 4.
I-LSH [15] uses query-aware hash functions (proposed by QALSH) and pro-
poses an incremental expansion strategy to reduce overall index I/Os. In order to
do that, I-LL.SH finds the next closest point in each projection. While this process
leads to less overall index I/Os, it still requires disk seeks and (as we show in
Section 4) the algorithm overhead is far more than the savings in the disk I/Os.

4 Experimental Analysis

In this section, we first explain our experimental evaluation plan. We experimen-
tally analyze C2LSH, QALSH, and I-LSH on different datasets and report the
results for varying criteria. All experiments were run on the nodes of the Big-
dat cluster ® with the following specifications: two Intel Xeon E5-2695, 256GB
RAM, and CentOS 6.5 operating system. All codes were written in C++11 and
compiled with gce v4.7.2 with the -O3 optimization flag. As mentioned in Sec-
tion 1.4, we extend the implementations of C2LSH and QALSH to be completely
external-memory based implementations (i.e. the entire dataset or the index files
are not needed to be in the main memory in order to construct the LSH indexes).

4.1 Datasets
We use the following six diverse high-dimensional datasets in our experiments:

— P53]5] consists of 31,002 5409-dimensional points which are generated based
on the biophysical features of mutant p53 proteins.

— LabelMe[19] consists of 181,093 512-dimensional points which were gener-
ated by running the GIST feature extraction algorithm on annotated images.

— Sift1M][10] consists of 1,000,000 128-dimensional points that were created
by running the SIFT feature extraction algorithm on real images.

— DeeplM consists of 1,000,000 96-dimensional points sampled from the
DeeplB dataset introduced in [2].

— Mnist8M|[17] This dataset contains 8,100,000 784-dimensional points that
represent images of the digits 0 to 9 which are grayscale and of size 28 x 28.

— Tiny80M]24] This dataset contains 79, 302, 017 384-dimensional points gen-
erated using Gist feature extraction algorithm on 80 million colored images.

5 Supported by NSF Award #1337884

4.2 Evaluation Criteria and Parameters

The goal of our paper is to present a detailed analysis of the performance and
accuracy of the state-of-the-art LSH techniques. We randomly choose 50 queries
and report the average of the results. We used the same parameters suggested
in their papers (w = 2.781 for QALSH and w = 2.184 for C2LSH). We choose
0 =0.1 and ¢ = 2 (since C2LSH cannot give guarantees for ¢ < 2). Since I-LSH
uses the same hash functions as QALSH, their index size and index construction
time are the same. [9] shows the difference between these two criteria for C2LSH
and QALSH for different datasets, and hence we avoid it in this paper.

After careful analysis of performance of LSH techniques, we present the fol-
lowing breakdown of the query processing time (QPT):

— Index Read Cost: LSH techniques need to read index files (from the exter-
nal memory) in order to find the candidates. This dominant cost of reading
index files can be further broken down into the number of disk seeks (i.e.
random I/Os) and the total amount of data read. Following [15], we also
consider the number of disk seeks and amount read in our cost formulation.

— Algorithm Time: Another dominant cost in LSH processing is the process-
ing of index files once they are read into the main memory. LSH techniques
need to find points that are considered as candidates. Techniques such as
Collision Counting (explained in 3) are included in this cost.

— False Positive Removal Cost: Once a point is deemed as a candidate,
its Euclidean distance with the query point is calculated. Since the state-of-
the-art LSH techniques have an upper bound of the number of candidates
(which is set to k + 100), this cost is negligible as compared to the previous
two costs. Due to space limitations and since we observed that this cost is
less than 0.5 ms for all algorithms, we do not show the results of this cost.

It is well-known that random I/Os are much more expensive than sequential
I/0s [12]. Additionally, the difference in the cost changes significantly depending
on whether the external storage medium is an HDD or an SSD. The difference in
the costs of random I/Os and sequential I/Os is significantly more in HDDs than
in SSDs (mainly because random disk seeks are faster in SSDs than HDDs) [11].
We noticed that the number of disk seeks are significantly different in these LSH
techniques due to how they find neighboring points in projected spaces. Hence,
we model the overall Query Processing Time (QPT) for both HDDs and SSDs.
For an HDD, we use the reported benchmarks for Seagate Barracuda HDD with
7200 RPM and 1TB: average disk seek requires 8.5 ms and the average data read
rate is 0.156 MB/ms [21]. Similarly, for an SSD, we use the reported benchmarks
for the Seagate Barracuda 120 SSD with 1TB storage: average disk seek requires
0.01 ms and the average data read rate is 0.56 MB/ms [20].

We use the same accuracy measure, the overall ratio, used in several prior
works [7,9,16,15]: + Zle Il‘lg;”)gl‘ll. Here, o; is the ith point returned by the tech-
nique and o] is the true ith nearest point from ¢ (ground truth). The closer the
ratio is to 1, the higher is the accuracy of the LSH technique.

P53 Dataset LabelMe Dataset Sift Dataset

40000
6000 6000 /~+—0—0—‘_H—.—.-
—o
4000 4000
20000
»—o—
2000 2000 10000
—h kA kA A Ak S S — — — — — — — —
0 f=t—t—t—t—t—t—t—t—4 o F——F—"F—————— 0 F———F—
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100
Deep Dataset Mnist Dataset Tiny Dataset
50000 400000 5000000
W— 350000 g ’
40000 300000 4000000 /
30000 250000 3000000
10000 100000 1000000
50000
0 F———F—7—T 77— 0 5 0%+ %
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100

Fig. 1: Number of Disk Seeks (Y axis) for different k (X Axis) on 6 datasets

P53 Dataset LabelMe Dataset Sift Dataset
40 250

NEssssssnat 148 o A
1/—-’—0—4—0—0—0—***‘

20 /
2 100 {
:
5 /‘—.—A—A—A—A—A—A—A—
-

0 —————————— 00— 0O ——F——— 77—
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100

250 Deep Dataset 1600 Mnist Dataset 25000 Tiny Dataset
| oo oo oo o—o—op 1400 | >
200 | 1200 20000
800

50 400 5000

|k £
200 W |+ .

0 ———————————7 0" 0O T
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100

Fig.2: Amount of Data Read (in MB) (Y axis) for k (X Axis) on 6 datasets

4.3 Discussion of the Performance Results

Number of Disk Seeks: Figure 1 shows the required number of disk seeks
(random I/0Os). We observed that the performance of I-LSH degrades as dataset
size becomes large. This is because I-LSH needs to find the closest projected
point each time the radius needs to be expanded, which further requires reading
the indexed points from the disk several times. We also observe that QALSH
has a better performance compared to C2LSH for smaller datasets, but as the
dataset size increases, the number of seeks are significantly higher than C2LSH
and I-LSH. This is happening because the search radiuses of QALSH are larger
than C2LSH in larger datasets, which results in higher disk seeks.

08 P53 Dataset 5 LabelMe Dataset 20 Sift Dataset

0.7] ——
06 At 4 M 25
20

05 W 3 4

01 s —h—h—h—h——h—h—h—}
0 ¢—4—9—t—9—0—t—0t—0—0 0 +—0—0—0—0—0—0—0—0—2 0 —0—0—0—90—90—0—90—0—»
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100
Deep Dataset Mnist Dataset Tiny Dataset
35 250 7000
g -8-C2LSH
30 6000
|] 200 ~-QALSH
25 5000 || —a-risH
20 150 4000
15 100 3000
“
5 1000
A A ———h—h—
0 00— 00—+ 0 00009000 0 —F———0—0—1—0—0
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100

Fig. 3: Algorithm Time (in s) (Y axis) for k (X Axis) on 6 datasets

P53 Dataset LabelMe Dataset Sift Dataset
25 70 400

350
20 — 60
50 300

15 40 § o

10 30

150
s | o—o——————+——2 20 ~@-C2LSH —-QALSH —&-I-LSH 100
10 50
A —h—h—h—h—h—k——4 |
0 LA B e B e S 0 L e e B e B 0 — T T T T T T
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100
Deep Dataset Mnist Dataset Tiny Dataset
500 3500 50001
400 |_opre—t——s——t 3000 40001 3
2500

300 2000

200 20001
1000
100 10001
500
0o ——————— 71— 1 0 9 —9—9—9—90—90—90—90—¢ 1859929059+
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100

Fig.4: HDD Query Processing Time (in s) (Y axis) for & (X Axis) on 6 datasets

Amount of Data Read: Figure 2 shows the total amount of data that was
read from the index files. I-.LSH always has the least amount of data read for
all datasets because it incrementally searches for the nearest points in the pro-
jections instead of having buckets and fixed widths. However, we later show
that these I/O savings are offset by the processing time of finding these nearest
points. C2LSH reads more data than QALSH for most datasets (except Mnist)
since QALSH uses less hash projections because they are query-aware.

Algorithm Time: Figure 3 shows the time needed to find the candidates (ex-
cluding the I/O times). This figure shows the huge overhead of I-LSH which
is caused due to their incremental searching strategy. Also, since I-LSH and
QALSH both use B+-trees, which become huge for the larger datasets, their

08 P53 Dataset 5 LabelMe Dataset 20 Sift Dataset

0.7 ik ——2—
A/t\/" 25 &
0.6 =k 4
05 W 3 1
0.2 1 s
01 _ a—h—h—h—h—h—h—h—h—4
0 — T 0 I T A e S e S e 0 —r————r—rr
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100
Deep Dataset Mnist Dataset Tiny Dataset
35 300 7000
~8-C2LSH
30 W 250 6000 —e-QALSH
25 200 D D O 5000 || -A-l-LsH
20 4000
. [easn vansn wus] | 20
~®-C2LSH —#-QALSH —A-I-LSH
10 100 2000 {
4
5 50 1000
h—h—h—h— Ak —A—h—h——}
0 T 0 00— 90—+ 0 =r—tr—tr—tr—r—r—r
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100

Fig.5: SSD Query Processing Time (in s) (Y axis) for k (X Axis) on 6 datasets

P53 Dataset LabelMe Dataset Sift Dataset
11 11 112
1.06
1.04 1.04
1.04
1.02 1.02 1.02 b
1 1 14
0.98 T T T T T 0.98 — T T 0.98 L S B s B
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100
Deep Dataset Mnist Dataset Tiny Dataset
112 =2 248 11

11 ~®-C2LSH ~-QALSH & -LSH 112
218 11

1.08 -
188 1.08 ~@-C2LSH —#-QALSH -&-I-LSH

104 1.58 1.04 /M
et 1on 4

0.98 — T T T T T T T T 0.98 L s B B B B B 0.98 T T
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100

Fig. 6: Accuracy Ratio (Y axis) for different k& (X Axis) on 6 datasets

performance degrades heavily in these cases. Since C2LSH does not have any
overhead of additional index structures (such as B+-tree), it has the least Al-
gorithm time for all datasets. In terms of Algorithm Time, I-LSH is faster than
QALSH (except for the P53 dataset - which is the smallest dataset in our ex-
periments) mainly because it has to process less hash functions than QALSH [15].

Query Processing Time (on HDD): Figure 4 shows the overall time re-
quired to solve a given k-NN query on a Hard Disk Drive. I-LSH performs the
best for smaller datasets (P53 and LabelMe) because its Algorithm Time over-
head is small, but as the dataset size increases, the Algorithm Time overhead
offsets the savings in disk seeks and performs worse than C2LSH (but better

than QALSH). Except for the smallest dataset (P53), QALSH is the slowest of
the three algorithms. It works good for smaller datasets (P53) but does not scale
well for moderate and large sized datasets. For larger datasets, C2LSH is always
the fastest technique since its having better algorithm time and number of disk
seeks compared to the other two algorithms.

Query Processing Time (on SSD): Figure 5 shows the overall time required
to solve a given k-NN query on a Solid State Drive. In SSDs, I/O operations are
much faster and the overall Query Processing Time is mainly dominated by the
algorithm time. Therefore, C2LSH (which has the best Algorithm time) always
performs the best on SSDs (for all datasets) followed by I-LSH (except for the
smallest dataset, P53).

Accuracy Ratio: Figure 6 shows the accuracy of the compared techniques. Ra-
tios are always greater than or equal to 1 and having a ratio equal to 1 equates
to the highest accuracy. Except for the Mnist dataset, C2LSH produces the best
accuracy among the three algorithms. QALSH is more accurate than I-LSH,
which we believe is mainly because it uses more hash functions than I-LSH. Ex-
cept for C2LSH’s accuracy on the Mnist dataset, all three algorithms produce
accurate results for all datasets.

Overall, we find that C2LSH can find k-NN results faster than QALSH and I-
LSH, mainly because of the simplicity of their hash functions (i.e. an additional
index structure, B+-tree, is not used). Additionally, all three algorithms produce
accurate results (with C2LSH producing slightly better accurate results than
QALSH and I-LSH for most datasets).

5 Conclusion

Locality Sensitive Hashing is a popular technique for solving Approximate Near-
est Neighbor queries in high-dimensional spaces. In this paper, we presented a
detailed experimental analysis on three popular state-of-the-art LSH algorithms,
C2LSH, QALSH, and I-LSH. We presented our analysis on diverse datasets with
varying characteristics (cardinality and dimensionality). We show that while re-
ducing disk seeks is important, it cannot be at the expense of Algorithm time,
which can be a dominant cost in the overall query processing time for large
datasets. We importantly show that improvements in one aspect of the LSH
workflow (e.g. disk seeks), does not necessarily result in overall query processing
performance improvement.

References

1. Arora, A., et al., “Hd-index: Pushing the scalability-accuracy boundary for ap-
proximate knn search,” VLDB 2018.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Babenko, A., et al., “Efficient indexing of billion-scale datasets of deep descriptors,”

CVPR 2016.

Bawa, M., et al., “Lsh forest: Self-tuning indexes for similarity search,” WWW
2005.

Chévez, E., et al., “Searching in metric spaces,” CSUR 2001.

Danziger, S.A., et al., “Predicting positive p53 cancer rescue regions using most
informative positive (mip) active learning,” PLoS computational biology 2009.
Datar, M., et al., “Locality-sensitive hashing scheme based on p-stable distribu-
tions,” SOCG 2004.

Gan, J., et al., “Locality-sensitive hashing scheme based on dynamic collision
counting,” SIGMOD 2012.

Gionis, A., et al., “Similarity search in high dimensions via hashing,” VLDB 1999.
Huang, Q., et al., “Query-aware locality-sensitive hashing for approximate nearest
neighbor search,” VLDB 2015.

Jegou, H., et al., “Product quantization for nearest neighbor search,” TPAMI 2010.
Kim, A., et al., “Optimally leveraging density and locality for exploratory browsing
and sampling,” HILDA 2018.

Leis, V., et al., “Query optimization through the looking glass, and what we found
running the join order benchmark,” VLDB 2018.

Li, M., et al., “I/o efficient approximate nearest neighbour search based on learned
functions,” ICDFE 2020.

Li, W., et al., “Approximate nearest neighbor search on high dimensional data -
experiments, analyses, and improvement,” TKDE 2019.

Liu, W., et al., “I-Ish: I/o efficient c-approximate nearest neighbor search in high-
dimensional space,” ICDE 2019.

Liu, Y., et al., “Sk-Ish: An efficient index structure for approximate nearest neigh-
bor search,” VLDB 2014.

Loosli, G., et al., “Training invariant support vector machines using selective sam-
pling,” Large scale kernel machines 2007.

Lv, Q., et al., “Multi-probe Ish: Efficient indexing for high-dimensional similarity
search,” VLDB 2007.

Russell, B.C., et al., “Labelme: a database and web-based tool for image annota-
tion.,” IJCV 2008.

Seagate Barracuda 120 SSD Manual.: https://wuw.seagate.com/www-content/
datasheets/pdfs/barracuda-120-sata-DS2022-1-1909US-en_US. pdf

Seagate ST2000DMO001 Manual.: https://www.seagate.com/files/
staticfiles/docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf

Sun, Y., et al., “Srs: Solving c-approximate nearest neighbor queries in high di-
mensional euclidean space with a tiny index,” VLDB 2014.

Tao, Y., et al., “Efficient and accurate nearest neighbor and closest pair search in
high-dimensional space,” TODS 2010.

Torralba, A., et al., “80 million tiny images: A large data set for nonparametric
object and scene recognition,” TPAMI 2008.

Zheng, B., et al., “Pm-Ish: A fast and accurate Ish framework for high-dimensional
approximate nn search,” VLDB 2020.

https://www.seagate.com/www-content/datasheets/pdfs/barracuda-120-sata-DS2022-1-1909US-en_US.pdf
https://www.seagate.com/www-content/datasheets/pdfs/barracuda-120-sata-DS2022-1-1909US-en_US.pdf
https://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf
https://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf

	Experimental Analysis of Locality Sensitive Hashing Techniques for High-Dimensional Approximate Nearest Neighbor Searches
	Introduction
	Locality Sensitive Hashing
	Motivation for using LSH
	Motivation of our Experimental Survey
	Contributions of this Experimental Survey paper

	Related Work
	State-of-the-art Techniques
	Experimental Analysis
	Datasets
	Evaluation Criteria and Parameters
	Discussion of the Performance Results

	Conclusion

