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ABSTRACT
Identifying and understanding quality phrases from context is a
fundamental task in text mining. The most challenging part of this
task arguably lies in uncommon, emerging, and domain-specific
phrases. The infrequent nature of these phrases significantly hurts
the performance of phrase mining methods that rely on sufficient
phrase occurrences in the input corpus. Context-aware tagging
models, though not restricted by frequency, heavily rely on do-
main experts for either massive sentence-level gold labels or hand-
crafted gazetteers. In this work, we propose UCPhrase, a novel
unsupervised context-aware quality phrase tagger. Specifically, we
induce high-quality phrase spans as silver labels from consistently
co-occurring word sequences within each document. Compared
with typical context-agnostic distant supervision based on existing
knowledge bases (KBs), our silver labels root deeply in the input
domain and context, thus having unique advantages in preserv-
ing contextual completeness and capturing emerging, out-of-KB
phrases. Training a conventional neural tagger based on silver labels
usually faces the risk of overfitting phrase surface names. Alterna-
tively, we observe that the contextualized attention maps generated
from a Transformer-based neural language model effectively reveal
the connections between words in a surface-agnostic way. There-
fore, we pair such attention maps with the silver labels to train a
lightweight span prediction model, which can be applied to new in-
put to recognize (unseen) quality phrases regardless of their surface
names or frequency. Thorough experiments on various tasks and
datasets, including corpus-level phrase ranking, document-level
keyphrase extraction, and sentence-level phrase tagging, demon-
strate the superiority of our design over state-of-the-art pre-trained,
unsupervised, and distantly supervised methods.
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1 INTRODUCTION
Quality phrases refer to informative multi-word sequences that
“appear consecutively in the text, forming a complete semantic unit in
certain contexts or the given document” [10]. Identifying and under-
standing quality phrases from context is a fundamental task in text
mining. Automated quality phrase tagging serves as a cornerstone
in a broad spectrum of downstream applications, including but
not limited to entity recognition [35], text classification [1], and
information retrieval [5].

The most challenging open problem in this task is how to recog-
nize uncommon, emerging phrases, especially in specific domains.
These phrases are essential in the sense of their significant semantic
meanings and the large volume—following a typical Zipfian dis-
tribution, uncommon phrases can add up to a significant portion
of quality phrases [37]. Moreover, emerging phrases are critical
in understanding domain-specific documents, such as scientific
papers, since new terminologies often come along with transforma-
tive innovations. However, mining such sparse long-tail phrases is
nontrivial, since a frequency threshold has long ruled them out in
traditional phrase mining methods [6, 8, 23, 25, 34] due to the lack
of reliable frequency-related corpus-level signals (e.g., the mutual
information of its sub-ngrams). For instance, AutoPhrase [34] only
recognizes phrases with at least 10 occurrences by default.

For infrequent phrases, the tagging process largely relies on
local context. Recent advances in neural language models have un-
leashed the power of sentence-level contextualized features in build-
ing chunking- and tagging-based models [27, 36]. These context-
aware models can even recognize unseen phrases from new input
texts, thus being no longer restricted by frequency. However, train-
ing a domain-specific tagger of reasonably high quality requires
expensive, hard-to-scale effort from domain experts for massive
sentence-level gold labels or handcrafted gazetteers.

In this work, we propose UCPhrase, a novel unsupervised context-
aware quality phrase tagger. It first induces high-quality silver labels
directly from the corpus under the unsupervised setting, and then
trains a tailored Transformer-based neural model that can recognize
quality phrases in new sentences. Figure 1 presents an overview of
UCPhrase. The two major steps are detailed as follows.

By imitating the reading process of humans, we derive super-
vision directly from the input corpus. Given a document, human
readers can quickly recognize new phrases or terminologies from
the consistently used word sequences within the document. The
“document” here refers to a collection of sentences centered on the
same topic, such as sentences from an abstract of a scientific paper
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The [heat island effect] is from … The term [heat
island] is also used … [heat island effect] is found 
to be … 

… like other cities including [New York] … 
happens in cities including …  about [New York].

Figure 1: An overview of our UCPhrase: unsupervised context-aware quality phrase tagging.

and tweets mentioning the same hashtag. Inspired by this obser-
vation, we propose to extract core phrases from each document,
which are maximal contiguous word sequences that appear in the
document more than once. The “maximal” here means that if one
expands this word sequence further towards the left or right, its
frequency within this document will drop. To avoid uninformative
phrases (e.g., “of a”), we conduct simple filtering of stopwords be-
fore finalizing the silver labels. Note that our proposed silver label
generation follows a per-document manner. Therefore, compared
with typical context-agnostic distant supervision based on exist-
ing knowledge bases or dictionaries [34–36], our supervision roots
deeply in the input domain and context, thus having unique advan-
tages in preserving contextual completeness of matched spans and
capturing much more emerging phrases.

We further design a tailored neural tagger to fit our silver labels
better. Training a conventional neural tagger based on silver labels
usually faces a high risk of overfitting the observed labels [24].
With access to the word-identifiable embedding features, it is easy
for the model to achieve nearly zero training error by rigidly mem-
orizing the surface names of training labels. Alternatively, we find
that the contextualized attention distributions generated from a
Transformer-based neural language model could capture the con-
nections between words in a surface-agnostic way [19]. Intuitively,
the attention maps of quality phrases should reveal distinct patterns
from ordinary word spans. Moreover, attention-based features block
the direct access to the surface names of training labels, and force
the model to learn about more general context patterns. Therefore,
we pair such surface-agnostic features based on attention maps
with the silver labels to train a neural tagging model, which can be
applied to new input to recognize (unseen) quality phrases. Specifi-
cally, given an unlabeled sentence of 𝑁 words, we first encode the
sentence with a pre-trained Transformer-based language model
and obtain the attention maps as features. The 𝑁 ×𝑁 matrices from
different Transformer layers and attention heads can be viewed
as images to be classified with multiple channels. A lightweight
CNN-based classifier is then trained to distinguish quality phrases
from randomly sampled negative spans.

Thorough experiments on various tasks and datasets, including
corpus-level phrase ranking, document-level keyphrase extraction,
and sentence-level phrase tagging, demonstrate the superiority of
our design over state-of-the-art unsupervised, distantly supervised
methods, and pre-trained off-the-shelf tagging models. It is note-
worthy that our trained model is robust to the noise in the core
phrases—our case studies in Section 4.7 show that the model can
identify inferior training labels by assigning extremely low scores.

Efficiency wise, thanks to the rich semantic and syntactic knowl-
edge in the pre-trained language model, we can simply use the gen-
erated attention maps as informative features without fine-tuning

the language model. Hence we only need to update the lightweight
classification model during training, making the training process
as fast as one inference pass of the language model through the
corpus with limited resource consumption.
To the best of our knowledge, UCPhrase is the first unsupervised
context-aware quality phrase tagger. It enjoys the rich knowledge
from the pre-trained neural language models. The learned phrase
tagger works efficiently and effectively without reliance on human
annotations, existing knowledge bases, or phrase dictionaries. We
summarize our key contributions as follows:
• We propose to mine silver labels that root deeply in the input do-
main and context by recognizing core phrases, i.e., maximal word
sequences that occur consistently in a per-document manner.
• We propose to replace the conventional contextualized word
representations with surface-agnostic attention maps generated
by pre-trained Transformer-based language models to alleviate
the risk of overfitting silver labels.
• We conduct extensive experiments, ablation studies, and case
studies to compare UCPhrase with state-of-the-art unsupervised,
distantly supervised methods, and pre-trained off-the-shelf tag-
ging models. The results verify the superiority of our method 1.

2 PROBLEM DEFINITION
Given a sequence of words [𝑤1, . . . ,𝑤𝑁 ], a quality phrase is a
contiguous span of words [𝑤𝑖 , . . . ,𝑤𝑖+𝑘 ] that form a complete and
informative semantic unit in context. Though some studies also
view unigrams as potential phrases, in this work, we focus on
multi-word phrases (𝑘 > 0), which are more informative, yet more
challenging to get due to both diversity and sparsity.

To effectively capture phrases with potential overlaps, e.g., “in-
formation extraction” in “information extraction systems”, we adopt
the span prediction framework, where each possible span in the
sentence is assigned a binary label. To avoid a quadratic growth of
the size of candidate spans, we follow previous work [25, 34] to set
a maximum span length 𝐾 . We also explore alternative classifiers
based on the sequence labeling framework in Section 3.

3 UCPHRASE: METHODOLOGY
Figure 1 presents an overview of UCPhrase. As an unsupervised
method, UCPhrase first mines core phrases directly from each docu-
ment as silver labels and extracts surface-agnostic attention features
with a pre-trained language model. A lightweight classifier is then
trained with silver labels and randomly sampled negative labels.
Algorithm 1 shows the detailed training process.

1Code and data: https://github.com/xgeric/UCPhrase-exp.

https://github.com/xgeric/UCPhrase-reproduce
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Figure 2: Comparing core phrases with context-agnostic distant supervision. (a) An illustrative example with context. Our core phrases pre-
serve better contextual completeness and discover emerging new concepts introduced in the document. (b) Distributions of the generated
silver labels with their occurrences in the corpus. The X-axis represents bins of phrase occurrences in the corpus. The Y-axis (exponential)
represents the number of unique phrases in each bin. (c) Distributions of the generated silver labels with their lengths (# of words).

Algorithm 1: UCPhrase: unsupervised model training
Input: A corpus of𝑀 unlabeled documents, {𝑑𝑚 }𝑀𝑚=1;
a pre-trained language model (LM); the attention-based lightweight
classification model 𝑓 ( ·;𝜃 ) to be trained.
// Generate silver labels as supervision (Sec. 3.1)
for each document 𝑑𝑚 do
P+𝑚 = 𝑀𝑖𝑛𝑒𝐶𝑜𝑟𝑒𝑃ℎ𝑟𝑎𝑠𝑒𝑠 (𝑑𝑚) .
Randomly sample remaining spans as negative set P−𝑚 .

// Generate surface-agnostic features using LM (Sec. 3.2)
for each labeled span 𝑝𝑖 ∈ P =

⋃
𝑀

{P−𝑚, P+𝑚 } do
X𝑝𝑖 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (LM, 𝑝𝑖 )

D𝑡𝑟𝑎𝑖𝑛, D𝑣𝑎𝑙𝑖𝑑 = 𝑠𝑝𝑙𝑖𝑡 (XP , P) .
// Train a classifier based on features & labels (Sec. 3.3)
repeat

Sample a minibatch {XP𝑏 , P𝑏 } from D𝑡𝑟𝑎𝑖𝑛 .
Update model parameters with loss ℓ (𝑓 (XP𝑏 ;𝜃 ), P𝑏 ) .

until F1 score on D𝑣𝑎𝑙𝑖𝑑 drops;
Output: The trained classification model 𝑓 .

3.1 Silver Label Generation
As the first step, we seek to collect high-quality phrases in the
input corpus following an unsupervised way, which will be our
silver labels for the tagging model training. A common practice for
automated label fetching is to conduct a context-agnostic matching
between the corpus and a given quality phrase list, either mined
with unsupervised models or collected from an existing knowl-
edge base (KB). Such methods, as we show later, can suffer from
incomplete labels due to the negligence of context.

On the contrary, based on the definition of phrases, we look
for consistently used word sequences in context. We propose to
treat documents as context and collect high-quality phrases directly
from each document. The “document” here refers to a collection of
sentences centered on the same topic, such as sentences from an ab-
stract of a scientific paper and tweets mentioning the same hashtag.
This way, we expect to preserve better contextual completeness
that reflects the original writing intention.

We view a document 𝑑𝑚 as a contiguous word sequence [𝑤1, . . .,
𝑤𝑁 ] and then mine max contiguous sequential patterns. A valid
pattern here is a word span [𝑤𝑖 , . . . ,𝑤 𝑗 ] that appear more than
once in the input sequence. One can easily adjust the frequency
threshold to balance the quality and quantity of valid patterns.

In this work, we simply use the minimum requirement of two
occurrences without further tuning, and find it works well for both
short documents like paper abstracts and long documents like news
reports. To preserve completeness, we only leave max patterns that
are not sub-patterns of any other valid patterns. Uninformative
patterns like “of a” are removed with a stopword list widely used
by previous work [25, 34]. We treat the remaining max patterns as
core phrases of document 𝑑𝑚 , and add them to the positive training
samples P+𝑚 . An equal number of negative samples are randomly
drawn from the remaining spans in 𝑑𝑚 , denoted as P−𝑚 .

Figure 2 compares the silver labels generated by our core phrases
with those by distant supervision, which follows a context-agnostic
string matching from the Wikipedia entities. From the real example
in Figure 2(a), “heat island effect” is not a Wikipedia entity, but
“island effect” is one. Distant supervision hence generates a flawed
label by favoring the popular, incomplete phrases and partially
matching the real phrase. Similar examples are quite common es-
pecially when it comes to compound phrases, like “biomedical data
mining”. On the contrary, our core phrase mining can generate
labels with better contextual completeness. Core phrase mining
can also dynamically capture concepts or expressions newly intro-
duced in each document, such as the “core phrases” in this paper.
Figure 2(b) confirms this by showing the distribution of unique
phrases of the two types of silver labels, mined from the KP20k CS
publication corpus and the KPTimes news corpus, with respect to
their frequency. In particular, core phrase mining discovers more
unique phrases with less than 10 occurrences in the corpus (30x on
KP20k, 9x on KPTimes). As Figure 2(c) demonstrates, core phrases
outnumber matched Wiki titles on all length ranges. Overall, core
phrase mining discovers much more unique phrases than distant
supervision (20x on KP20k, 6x on KPTimes).

Of course, there also inevitably exist noises inmined core phrases
due to random word combinations consistently used in some doc-
uments, e.g., “countries including”. Fortunately, since we collected
core phrases from each document independently, such noisy labels
will not spread and be amplified to the entire corpus. In fact, among
the tagged core phrases randomly sampled from two datasets, the
overall proportion of high-quality labels is over 90%. The large
volume of reasonably high-quality silver labels provides a robust
foundation for us to train a span classifier that learns about general
context patterns to distinguish noisy spans. As Section 4.7 shows,
the final classifier can assign extremely low scores to false-positive
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Figure 3: Illustration of the attention map generated by one of the
pre-trained RoBERTa layers, averaged over all attention heads.

phrases in training labels.
In summary, document-level core phrase mining provides a sim-

ple and effective way to automatically fetch abundant context-
aware silver labels of reasonably good quality without relying on
external KBs. In ablation studies (Section 4.6) we show that models
trained with such free silver labels can outperform the same models
trained with distant supervision.

3.2 Surface-agnostic Feature Extraction
To build an effective context-aware tagger for quality phrases, in
addition to labels, we need to figure out the contextualized feature
representation for each span. Traditional word-identifiable features
(e.g., contextualized embedding) make it easy for a classification
model to overfit the silver labels by rigidly memorizing the surface
names of training labels. A degenerated name-matching model can
easily achieve zero training error without really learning about any
useful, generalizable features.

In principle, the recognition of a phrase should depend on the
role that it plays in the sentence. Kim et al. [19] show that the
structure information of a sentence can be largely captured by its
attention distribution. Therefore, we propose to obtain surface-
agnostic features from the attention distributions generated by a
pre-trained Transformer-based language model encoder (LM), such
as BERT [7] and RoBERTa [26].

Given a sentence [𝑤1, . . . ,𝑤𝑁 ], we encode it with a language
model pre-trained on a corpus from the same domain (e.g., scientific
domain). Suppose this language model has 𝐿 layers, and each layer
has 𝐻 attention heads. Each attention head ℎ from layer 𝑙 produces
an attention map A𝑙,ℎ ∈ R𝑁×𝑁 of the sentence. We denote the
aggregated attention map from attention heads of all layers as
A ∈ R𝑁×𝑁×(𝐻 ·𝐿) , where A𝑖, 𝑗 ∈ R𝐻 ·𝐿 is a vector that contains the
attention scores from 𝑤𝑖 to 𝑤 𝑗 . Finally, for each candidate span
𝑝 = [𝑤𝑖 , . . . ,𝑤 𝑗 ], we denote its feature as X𝑝 = A𝑖 ... 𝑗,𝑖 ... 𝑗 .

Ideally, the attention maps of quality phrases should reveal dis-
tinct patterns of word connections. Figure 3 shows a real example
of the generated attention map of a sentence. The chunks on the
attention map lead to a clear separation of different parts of the
sentence. From all chunks, our final span classifier (Section 3.3)
accurately distinguishes the quality phrases (“coal mine”, “heat is-
land effects”) from ordinary spans (e.g., “We can”), indicating the
informativeness of the attention features.
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Figure 4: An alternative classifier based on attention-level LSTM.

Efficient Implementation. Thanks to the rich syntactic and se-
mantic knowledge in the pre-trained language model, the generated
attention maps are already informative enough for phrase tagging.
In this work, we adopt the RoBERTa model [26], one of the state-of-
the-art Transformer-based language models, as a feature extractor
without the need for further fine-tuning. We only need to apply
the pre-trained RoBERTa model for one inference pass through the
target corpus for feature extraction.

The overall efficiency now mainly depends on the size of the
attention map, which is 𝑁 ×𝑁 ×(𝐻 ·𝐿). 𝑁 is restricted to the length
of each span during training, and for inference, we apply sentence-
level encoding, with each sentence restricted to at most 64 tokens.
Depth wise, existing studies have observed considerable redun-
dancy in the outputs of different Transformer layers, including
attention distributions [14, 15]. For this reason, as the default set-
ting of UCPhrase, we only preserve attention maps from the first 3
layers in RoBERTa (i.e., 𝐿 = 3). As RoBERTa has 12 layers in total,
this saves 75% of resource consumption. We have quantitatively
compared the final tagging performance of using 3 layers vs. us-
ing all 12 layers in Section 4.6. As the experimental results suggest,
using 3 layers exhibits comparable performance with the full model.

3.3 Lightweight Span Classifier
With the labels and features in-house, we are ready to build a
classifier to recognize spans of quality phrases. Our framework is
general and compatible with various classification models. For the
sake of efficiency, we wish to find a lightweight classifier.

Given the attention map of a 𝑘-word span, an accurate classifier
should effectively capture inter-word relationships from different
LM layers and at different ranges. Naturally, the attention map can
be viewed as a square image of 𝑘 pixels for both height and width,
with 𝐻 ·𝐿 channels. We can now transform the phrase classification
problem into an image classification problem: given a multi-channel
image (attention map), we want to predict whether the correspond-
ing word span is a quality phrase. Specifically, we apply a two-layer
convolutional neural network (CNN) model on the multi-channel
attention map. The output is then fed to a logistic regression layer
to assign a binary label for the corresponding span. During the
training process, the classification model 𝑓 (·;𝜃 ) parameterized by
𝜃 is learned by minimizing the loss over the training set {XP ,P}:

𝜃 = argmin
𝜃

1
|P |

|P |∑
𝑖=1

ℓ (𝑝𝑖 , 𝑓 (X𝑝𝑖 ;𝜃 )),

where 𝑝𝑖 ∈ P =
𝑀⋃

𝑚=1
{P−𝑚,P+𝑚} represents the 𝑖-th labeled span, and

ℓ is the binary cross entropy loss function. The model is updated
with minibatch-based stochastic gradient descent.
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Note that 𝜃 here only includes the parameters in the two CNN
layers and the logistic regression layer during training, whichmakes
the training process efficient in terms of resource consumption. In
fact, the checkpoint of training parameters from each epoch can be
stored in a 22 KB file on disk.
Alternative Classifiers. In our study, we also considered some
alternative classifiers. One intuitive choice here is LSTM-basedmod-
els following the sequence labeling framework. We illustrate the
general idea in Figure 4. Specifically, for sentence [𝑤1,𝑤2, . . . ,𝑤𝑁 ],
we first encode the attention map A ∈ R𝑁×𝑁×(𝐻 ·𝐿) with forward
and backward runs of LSTM to get an attention-based word repre-
sentation through the final output of both LSTMs as follows,

−→
R 𝑖 = LSTM(A𝑖,𝑖 ,A𝑖,𝑖+1, . . . ,A𝑖,𝑁 )last,
←−
R 𝑖 = LSTM(A𝑖,𝑖 ,A𝑖,𝑖−1, . . . ,A𝑖,1)last,

R𝑖 = [
−→
R 𝑖 ,
←−
R 𝑖 ], 1 ≤ 𝑖 ≤ 𝑁 .

Another bidirectional LSTM layer is built upon the word represen-
tations R to extract the feature F, i.e.,

−→
F 1,2,...,𝑁 = LSTM(R1,R2, . . . ,R𝑁 ),

←−
F 𝑁,𝑁−1,...,1 = LSTM(R𝑁 ,R𝑁−1, . . . ,R1) .

Scheme wise, there are two popular labeling schemes in sequence
labeling: (1) Tie-or-Break, which is predicting whether each consec-
utive pair of words belong to the same phrase, and (2) BIO Tagging,
which is tagging phrases in the sentence through a Begin-Inside-
Outside scheme [32]. We are not using BIOES [33] as we focus on
multi-word phrases. For the Tie-or-Break tagging scheme, we apply a
2-layer Multi-layer Perceptron followed by a Sigmoid classification
function to predict whether the [−→F 𝑖 ,

←−
F 𝑖+1] representation corre-

sponds to a tie between word 𝑖 and word 𝑖+1 or a break. For the BIO
tagging scheme, in a word-wise manner, we concatenate the rep-
resentations −→F 1,2,...,𝑁 and←−F 𝑁,𝑁−1,...,1 into 𝑁 representations for
each sentence, and then send them through a Conditional Random
Field (CRF) layer [18, 22] to predict the BIO tags for phrases.

Other training procedures for both of the classifiers are the same
as the aforementioned default span classifier. These alternative clas-
sifiers have comparable performance, as confirmed in Section 4.6.

4 EXPERIMENTS
We compare our UCPhrase with previous studies on multi-word
phrase mining tasks on two datasets and three tasks at different

Table 1: Dataset statistics on KP20k and KPTimes.

Statistics KP20k KPTimes
Train Set

# documents 527,090 259,923
# words per document 176 907

Test Set
# documents 20,000 20,000
# multi-word keyphrases 37,289 24,920
# unique 24,626 8,970
# absent in training corpus 4,171 2,940

granularity: corpus-level phrase ranking, document-level keyphrase
extraction, and sentence-level phrase tagging.

4.1 Evaluation Tasks and Metrics
We evaluate all methods on the following three tasks. Figure 5
illustrates the tasks and evaluation metrics with some examples.
Task I: Phrase Ranking is a popular evaluation task in previous
statistics-based phrase mining work [6, 8, 23, 25, 34]. Specifically,
it evaluates the “global” rank list of phrases that a method finds
from the input corpus. Since UCPhrase does not explicitly compute
a “global” score for each phrase, we use the average logits of all
occurrences of a predicted phrase to rank phrases.

In our experiments, for each method2 on each dataset, we quan-
titatively evaluate the precision of the phrases found in the top-
ranked 5,000 and 50,000 phrases, denoted as P@5K and P@50K.
Since it is expensive to hire annotators to annotate all these phrases,
we estimate the precision scores by randomly sampling 200 phrases
from rank lists. Extracted phrases from different methods are shuf-
fled and mixed before presenting to the annotators.
Task II: Keyphrase Extraction is a classic task to extract salient
phrases that best summarize a document [9], which essentially has
two stages: candidate generation and keyphrase ranking. At the first
stage, we treat all compared methods as candidate phrase extractors
and evaluate the recall of generated candidates. In each document,
the recall measures how many gold keyphrases are extracted in the
candidate list. For fair comparison, we preserve the same number
of candidates from the rank list of each method for evaluation.

For the end-the-end performance, we apply the classic TF-IDF
model to rank the candidate phrases extracted by different methods.
In each document, we follow the standard evaluation method [13]
to calculate the 𝐹1 score of the top-10 ranked phrases (F1@10). The
reported recall and 𝐹1 scores are averaged in a macro way across
2Except for methods that does not report any form of scores for ranking.



Table 2: Evaluation results (%) of three tasks for all compared methods on datasets on two domains.

Method Type Method Name
Task I: Phrase Ranking Task II: KP Extract. Task III: Phrase Tagging

KP20k KPTimes KP20K KPTimes KP20k KPTimes

P@5K P@50K P@5K P@50K Rec. F1@10 Rec. F1@10 Prec. Rec. F1 Prec. Rec. F1

Pre-trained
PKE [3] – – – – 57.1 12.6 61.9 4.4 54.1 63.9 58.6 56.1 62.2 59.0
Spacy [17] – – – – 59.5 15.3 60.8 8.6 56.3 68.7 61.9 61.9 62.9 62.4
StanfordNLP [27] – – – – 51.7 13.9 60.8 8.7 48.3 60.7 53.8 56.9 60.3 58.6

Distantly Supervised AutoPhrase [34] 97.5 96.0 96.5 95.5 62.9 18.2 77.8 10.3 55.2 45.2 49.7 44.2 47.7 45.9
Wiki+RoBERTa 100.0 98.5 99.0 96.5 73.0 19.2 64.5 9.4 58.1 64.2 61.0 60.9 65.6 63.2

Unsupervised TopMine [8] 81.5 78.0 85.5 71.0 53.3 15.0 63.4 8.5 39.8 41.4 40.6 32.0 36.3 34.0
UCPhrase (ours) 96.5 96.5 96.5 95.5 72.9 19.7 83.4 10.9 69.9 78.3 73.9 69.1 78.9 73.5

all documents in the same dataset.
Task III: Phrase Tagging is a fine-grained task that aims to find
all occurrences of phrases in sentences. Specifically, it evaluates
the extracted phrase spans for each sentence. We treat each phrase
mining method as a sentence tagger that identifies starting and
ending boundaries of phrases in a sentence. We randomly sample
200 sentences on each dataset and ask three annotators to tag
all spans of multi-word phrases. Each sentence is annotated by
all annotators independently, and the agreement between human
annotations is around 90%. We then pool all annotations together,
evaluate the predicted spans, and report the overall precision,
recall and F1 scores. Note that these scores are computed in a micro
average fashion following previous work on entity recognition [35].

4.2 Datasets
We adopt two commonly used datasets from different domains to
evaluate all different methods.
• KP20k [29] is a collection of titles & abstracts from Computer
Science papers—527,090 for training and 20,000 for testing.
• KPTimes [12] consists of news articles on New York Times from
2006 to 2017, supplemented with 10,000 more news articles from
Japan Times. In total, there are 259,923 articles for training, and
20,000 articles for testing.

Following Gururangan et al. [16], sentence separation and tokeniza-
tion is conducted with Spacy [17] for postprocessing. All three
tasks are evaluated on the test sets. Statistics of the two datasets
are shown in Table 1. Note that 17% unique keyphrases in the test
of KP20k never occur in the corresponding training corpus. On
KPTimes the absence ratio is 33%. Hence, the task can be challeng-
ing for models relying on phrase frequencies and models rigidly
memorizing training phrases.

4.3 Compared Methods
We compare the proposed method with existing methods under the
same scenario, where no gold annotations for training are available.
This leads to three categories: unsupervised phrase miningmethods,
distantly supervised methods with an existing KB, and pre-trained
off-the-shelf toolkits. For each method that requires training (i.e.,
all the unsupervised and distantly supervised ones), we use the
unlabeled documents from the training set for model learning.
For unsupervised methods we consider:
• ToPMine [8], the state-of-the-art unsupervised phrase mining
method building upon statistical features.
• UCPhrase, the proposed method in this work.

For distantly supervised methods, we use silver labels generated
from the Wiki Entities, which is firstly used in [34].
• AutoPhrase [34] leverages statistics-based phrase classifier and
further enhances it with a POS-guided phrasal segmentation
model for sentence tagging and phrase frequency rectification.
• Wiki+RoBERTa is a strong baseline that we propose here. It can
be viewed as a variant of UCPhrase with the same span prediction
framework and the same pre-trained LM as our method but
following distant supervision. Also, it uses the output states from
the last layer of the pre-trained RoBERTa as feature instead of
attention maps. As shown in [24], stopping the model training
early is an essential intervention for distantly supervised tagging
models. To fully unleash the potential of the Wiki+RoBERTa
baseline, we manually stop its training process after the first
epoch to avoid overfitting. This indeed achieves a better test
performance than stopping after more epochs.

For off-the-shelf toolkits we consider the linguistic-based methods
that are pre-trained with labeled pos-tagging or parsing data.
• PKE [3] is a widely used toolkit for keyphrase extraction. Its
phrase mining module is a chunking model based on a supervised
POS-tagging model from NLTK [2] and a set of grammar rules.
• Spacy [17] is an industrial library with a pre-trained phrase
chunking model based on supervised POS tagging and parsing.
• StanfordCoreNLP [27] is a long recognized NLP package whose
chunking model is based on dependency parsing.

4.4 Reproduction Details
For KPTimes, we use the official RoBERTa model pre-trained on
documents from the general domain. On the KP20k dataset, we
use the “allenai/cs_roberta_base” RoBERTa model [16]3. The model
is based on the standard pre-trained RoBERTa model, and then
trained on unlabeled Computer Science publications. This domain-
adapted model performs slightly better on the KP20k dataset than
the original model. We adopt the Adam [20] optimizer with the
default parameters for model training. The learning rate is set to
0.001. As described in Algorithm 1, we train the classifier until its
performance on the 10% hold-out validation setD𝑣𝑎𝑙𝑖𝑑 drops. Other
details have been covered in Section 3. We will publish our data
and code base for reproduction.

4.5 Evaluation Results
From Table 2 we can see that UCPhrase achieves the best overall
performance on all the three evaluation tasks. The performance
3 https://huggingface.co/allenai/cs_roberta_base

https://huggingface.co/allenai/cs_roberta_base


Table 3: Ablation study of UCPhrase model variants (%).

KP Extract. Phrase Tagging
Design Choices KP20k KPTimes KP20k KPTimes

supervision feature fine-tune Rec. F1@10 Rec. F1@10 Prec. Rec. F1 Prec. Rec. F1
UCPhrase core attention no 72.9 19.7 83.4 10.9 69.9 78.3 73.9 69.1 78.9 73.5

Variants
Wiki attention no 68.7 17.7 79.4 10.7 72.1 71.9 72.0 64.1 67.6 65.8
Wiki embedding no 73.0 19.2 64.5 9.4 60.9 65.6 63.2 60.9 65.6 63.2
core embedding no 79.3 19.7 78.7 10.2 68.4 74.6 71.4 55.7 64.8 59.9
core embedding yes 80.3 19.7 73.9 9.9 68.6 74.8 71.6 53.3 64.5 59.0

Table 4: Comparison of attention feature aggregated from different
numbers of Transformer layers, evaluated on KP20k (%).

# Layers KP Extract. Phrase Tagging
Rec. F1@10 Prec. Rec. F1

3 72.9 19.7 69.9 78.3 73.9
12 81.8 20.6 69.4 76.8 72.9

gap becomes more vivid as the task becomes more fine-grained.
In the corpus-level phrase ranking task, most methods show very

high precision (i.e., ≥ 95%) on the top 50,000 mined phrases from
each dataset. Notably, UCPhrase significantly outperforms the only
other unsupervised method ToPMine and is able to perform on par
with distantly supervised methods.

In the document-level keyphrase extraction task, UCPhrase has
better recall than most compared methods, demonstrating a cover-
age of high-quality phrases. Wiki+RoBERTa has slightly better re-
call on the KP20k dataset (0.1%) within a reasonable range, consider-
ingWiki+RoBERTa has access to hundreds of thousands keyphrases
from Wiki Entities. Note that UCPhrase outperforms all the com-
pared methods on the end-to-end performance (i.e., 𝐹1@10), which
verifies its value to the application of keyphrase extraction.

In the sentence-level phrase tagging task, UCPhrase achieves
𝐹1 scores of more than 73% on both datasets, showing significant
advantages (i.e., > 10% in 𝐹1) over all the compared methods. This
is truly encouraging given the facts that (1) UCPhrase is an unsu-
pervised phrase mining model that requires no human effort, and
(2) even human annotators cannot fully agree with each other on
some particular phrases, and have around 10% disagreement on this
task. This phrase tagging task makes clear that UCPhrase is able
to find phrases much more accurately than compared methods. In
Section 4.6 we apply comprehensive comparison between different
models on real examples, for a more straightforward visualization
of the pros and cons of compared methods.

4.6 Ablation studies
To gain deeper insights, we apply extensive ablation studies to test
model variants from several aspects, as summarized in Table 3. For
supervision, we compare the silver labels generated by unsuper-
vised core phrase mining (core), and those generated by distant
supervision with Wikipedia entities (Wiki). For the type of features,
we compare the attention map features (attention), and the output
states of RoBERTa (embedding).
Supervision: Core Phrase vs. Distant Supervision. When us-
ing the same type of feature, unsupervisedmodels with core phrases
as supervision significantly outperform distantly supervised mod-
els on most metrics by a clear gap. The better completeness and

Table 5: Exploring LSTM-based classifiers as alternatives based on
Tie-or-Break and BIO labeling schemes, evaluated on KP20k (%).

Classifier
KP Extract. Phrase Tagging
Rec. F1@10 Prec. Rec. F1

CNN (default in UCPhrase) 68.1 18.7 69.9 78.3 73.9
LSTM w/ Tie-or-Break 72.4 19.3 68.1 72.3 70.1
LSTM w/ BIO 66.2 18.1 71.0 76.7 73.7

larger volume of core phrases bring unique advantages in training
context-aware tagging models, not to mention the labels are fetched
from the corpus for free without relying on an external KB. More-
over, the better diversity of core phrases effectively alleviates the
risk of overfitting. It is also worth mentioning that different from
the distantly supervised embedding model, the embedding-based
model trained with core phrases does not require any manual early
stopping to achieve satisfying performance.
Features: Attention vs. Embedding. When using the same type
of supervision, models with attention features are almost always
better than embedding-based features. This verifies our intuition
that word-identifiable embeddings allow the classifier to easily
overfit silver labels, while the surface-agnostic attention features
force the model to learn about informative contextual features, and
thus having a better ability of generalization.
Attention: First Few Layers vs. Full Layers. Table 4 compares
UCPhrase trained with attention features aggregated from the first
3 layers of RoBERTa and those aggregated from all 12 layers, with
intuitions explained in Section 3.2. The two models achieve com-
parable performance, while the small model only requires 25%
resource consumption.
Alternative Classifiers. Table 5 compares our model with the
the Tie-or-Break classifier and the BIO classifier as introduced in
Section 3.3. Overall, the alternative classifiers have comparable
performances, indicating the ability of our proposed method to
generalize to different tagging schemes and model architectures.

4.7 Case Studies
In spite of the reasonably high quality of the silver labels, we are
curious about whether our final span classifier is robust to the
noisy silver labels. To this end, we feed the silver labels to the span
classifier and investigate the predicted probability scores. Table 7
presents the silver labels with probabilities below 1% and above 99%
respectively. As it shows, our classifier successfully distinguishes
high-quality core phrases from noisy spans, including typos (italic
font) that happen to be used consistently in some document. The
classifier draws a clear line between these two kinds of spans based



Table 6: Sentences tagged with different methods described in Section 4.3.

KP20k KPTimes

Spacy We are interested in improving the Varshamov bound for [finite values] of
length 𝑛 and [minimum distance] 𝑑 . We employ a [counting lemma] to this
end which we find particularly useful in relation to [Varshamov graphs] .

The [United States] , at least theoretically , taxes companies on their [global profits] .
But companies with a lot of [intellectual property] – notably [technology and phar-
maceutical companies] – get away with paying a fraction of that amount .

AutoPhrase We are interested in improving the [Varshamov bound] for finite values of
length 𝑛 and [minimum distance] 𝑑 . We employ a [counting lemma] to this
end which we find particularly useful in relation to Varshamov graphs .

The [United States] , at least theoretically , taxes companies on their global profits . But
companies with a lot of [intellectual property] – notably [technology and pharma-
ceutical companies] – get away with paying a fraction of that amount .

RoBERTa We are interested in improving the Varshamov bound for finite values of length
𝑛 and minimum distance 𝑑 . We employ a [counting lemma] to this end which
we find particularly useful in relation to Varshamov graphs .

The [United States] , at least theoretically , [taxes companies] on their [global prof-
its] . [But companies] with a lot of [intellectual property] – notably technology and
[pharmaceutical companies] – get away with paying a fraction of that amount .

UCPhrase We are interested in improving the [Varshamov bound] for [finite values] of
length 𝑛 and [minimum distance] 𝑑 . We employ a [counting lemma] to this
end which we find particularly useful in relation to [Varshamov graphs] .

The [United States] , at least theoretically , taxes companies on their [global prof-
its] . But companies with a lot of [intellectual property] – notably technology and
[pharmaceutical companies] – get away with paying a fraction of that amount .

on their attention features, which reflect their distinct roles in sen-
tences. We have attempted to remove the low-score ones from the
silver labels and re-train the classifier, however, the final perfor-
mance changes little. This further verifies the robustness of our
model, and its ability to capture general context features rather
than rigid memorization.

Table 6 presents sentences tagged with representative methods
from each category. As it shows, pre-trained models like Spacy
can hardly adapt to a new domain without human annotations.
For instance, it fails to recognize “Varshamov bound” as a phrase
for recognizing “bound” as a verb. Statistics-based methods like
AutoPhrase tend to miss uncommon phrases in the corpus, such as
“Varshamov graphs”, “finite values”, and “global profiles”. The widely
used distantly supervised methods based on word representations
from a pre-trained language model (e.g., RoBERTa) can easily over-
fit the phrases in the KB, even though we have applied manual early
stopping. The consequence of rigid memorization comes in two
folds. First, the model can miss a lot of out-of-KB phrases, such as
the terminologies in KP20k. Second, it can recognize false phrases
just because they have similar surface names with real phrases. In
the example from KPTimes, the model recognizes “taxes compa-
nies” and “but companies” as two phrases, while “taxes” is used as
a verb in this sentence, and “but” is a conjunction word. Overall,
the results generated by UCPhrase are more accurate. There is also
an interesting case in the example from KPTimes, where RoBERTa
and UCPhrase recognize “pharmaceutical companies” as a complete
phrase, while Spacy and AutoPhrase think “technology and” is also
part of the phrase. It is debatable which one is better: both results
can contribute to a high-quality phrase vocabulary. In fact, even
human annotators cannot achieve perfect agreement in their in-
dependent annotations. Dynamically adjusting the granularity of
tagged phrases according to different end tasks remains a valuable
research problem for further studies.

5 RELATED WORK
Phrase mining is a long studied task [6, 8, 11, 25, 34]. Due to the
broad applicability of phrases to text-associated tasks, supervision
signals would be expensive to obtain for vast domains. Unsuper-
vised approaches have been proposed to extract phrases from many
different angles, most importantly, language grammar [17, 27, 31]
and text statistics [8]. Our work utilizes contextualized features
from Transformer-based language models [7, 26], therefore, lifts
the unnecessary requirement of frequency in statistics-based meth-
ods and alleviates requirements of expert-crafted grammar rules.

Table 7: Examples from silver training labels with extremely high
and low quality scores 𝑓 ( · : 𝜃 ) estimated by UCPhrase. The results
show that UCPhrase is robust to noises in training labels.

KP20k
𝑓 ( · : 𝜃 ) > 99% 𝑓 ( · : 𝜃 ) < 1%

model identification, data structures,
release dates, VLSI design, product de-
velopment, network flow, finite preci-
sion, watermark detection, model se-
lection, path planning, network secu-
rity, data centers, source code, . . .

times fewer, prescriptions implies, al-
gorithms require estimating, signifi-
cantly improves performance, includ-
ing discontinuities, significantly re-
duce power consumption, factors in-
clude, considered byTitterington . . .

KPTimes
𝑓 ( · : 𝜃 ) > 99% 𝑓 ( · : 𝜃 ) < 1%

Davis Cup, Ivy League, no-fly zone,
Tour Championship, tax returns, City
Hall, home runs, detention center, op-
erating system, Ryder Cup, space sta-
tions, ice packs, White House, Jersey
City, board games, tax cuts, . . .

PThe percentage, 11th title, depart-
ments began telling officers, category
includes workers, attacks including,
74th career win, including political,
countries including Spain, including
banking, including mobile, . . .

Through experiments of three different tasks (i.e., corpus-level
phrase ranking, document-level keyphrase extraction, and sentence-
level phrase tagging), our method shows great performance im-
provement over previous methods.

Another line of research studies on distant supervision signals,
such as existing knowledge bases [34, 36]. They typically use knowl-
edge base entries (e.g., Wiki Entities from [34]) to string-match a
corpus to obtain supervision signals in their first step. Such match-
ing does not take into account how n-grams exist in the corpus,
and as we show, could lead to partial matching of phrases, thus
bringing bias to the phrase mining tool trained (e.g., “heat island
effect” is usually matched into “island effect”). Our core phrase min-
ing method, while being unsupervised, looks into the context of
each n-gram to find max patterns and is able to find more com-
plete phrases that serve as a better supervision signal to UCPhrase
contextualized feature based classifier.

We use attention maps from pre-trained Transformer-based lan-
guage models to identify phrases since they carry inter-relation
information of tokens [4, 19]. Clark et al. [4] showed that a suffi-
cient amount of linguistic knowledge, such as noun determiners
and objects of verbs and prepositions, are captured by attention
maps of BERT. Moreover, using only attention maps, one can train
a model to perform dependency parsing [4] and constituency tree
construction [19] relatively well. Our work utilizes this powerful
nature of attention maps and treats them as the only feature to
identify quality phrases. Furthermore, through comparing with the
output states of RoBERTa, we show that using attention is less
likely to overfit and has a more robust generalization.



6 CONCLUSIONS
We explore phrase tagging in an unsupervised and context-aware
manner. Our proposed method, UCPhrase, shows clear improve-
ment on performance for three quality-measuring tasks on two
datasets in different domains. Further experimental studies reveal
the strength of our two major components: our unsupervised core
phrase mining finds more diverse, complete phrases in context than
string-matching from some knowledge bases; our use of attention
features unleashes the rich linguistic knowledge contained in pre-
trained neural language models. By leveraging surface-agnostic
context features, our model removes the frequency requirement
in statistics-based models and alleviates the overfitting issue in
embedding-based models.

We plan to explore the following directions in future studies.
First, our study shows that the combination of silver labels and
attention is robust and contains sufficient linguistic knowledge.
This idea of unsupervised learning is worth exploring in other
text mining tasks, such as coreference resolution [28], dependency
parsing [21], and named entity recognition [30]. Second, the im-
perfection of distant supervision calls for a more effective way to
incorporate large-scale unlabeled corpus with existing knowledge
bases for more accurate prediction and more intelligent reasoning.
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