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Abstract

We propose a novel approach to generate samples from the conditional distribution of patient-specific cardiovascular models
given a clinically acquired image volume. A convolutional neural network architecture with dropout layers is first trained for
vessel lumen segmentation using a regression approach, to enable Bayesian estimation of vessel lumen surfaces. This network
is then integrated into a path-planning patient-specific modeling pipeline to generate families of cardiovascular models. We
demonstrate our approach by quantifying the effect of geometric uncertainty on the hemodynamics for three patient-specific
anatomies, an aorto-iliac bifurcation, an abdominal aortic aneurysm and a sub-model of the left coronary arteries. A key
innovation introduced in the proposed approach is the ability to learn geometric uncertainty directly from training data.
The results show how geometric uncertainty produces coefficients of variation comparable to or larger than other sources
of uncertainty for wall shear stress and velocity magnitude, but has limited impact on pressure. Specifically, this is true for
anatomies characterized by small vessel sizes, and for local vessel lesions seen infrequently during network training.
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1. Introduction

Results from cardiovascular models are affected by a number of uncertainty sources, including material
properties, image-data resolution, and boundary condition selection to match clinical target data. A rigorous
determination of simulation uncertainty and the development of numerical approaches to efficiently quantify its
effects on patient-specific models are necessary to increase clinical adoption of simulation tools and improve their
effectiveness for early treatment planning and non-invasive diagnostics.

Prior studies have investigated a range of methods for characterizing the influence of specific sources of
uncertainty in cardiovascular modeling [1,2]. To reduce the computational burden with respect to Monte Carlo
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sampling, a stochastic collocation approach was proposed in [3], while a multi-fidelity approach was proposed
by [4] in the context of mechanical stress analysis of abdominal aortic aneurysms. Additionally, a generalized
polynomial chaos expansion is presented in [5] and applied to two pathological anatomies, i.e., an abdominal aortic
aneurysm and an arteriovenous fistula. A generalized multiresolution expansion for uncertainty quantification was
developed in [6] to better handle uncertainty in the presence of non-smooth stochastic responses, while mitigating the
exponential complexity of multi-dimensional multi-wavelet refinement. Combined uncertainty in vessel wall material
properties and hemodynamics are investigated in [7] for several patient-specific models of coronary artery bypass
grafting, leveraging a novel submodeling approach to focus the analysis only on venous and arterial bypass grafts.
This and other studies focusing on the coronary circulation, (see, e.g., [8]) contributed to show a loose coupling
between hemodynamics and wall mechanics for such anatomies. One dimensional models have been used to better
understand main pulmonary artery pressure uncertainty in mice due to material property and image segmentation
uncertainty [9,10]. Generalized polynomial chaos simulations involving inlet waveform uncertainty were shown to
induce significant wall shear stress variability in an aortic aneurysm model [11]. Multifidelity simulations based on
approximate control variate variance reduction in Monte Carlo sampling, were thoroughly analyzed in the context
of deformable cardiovascular models in [12]. Finally, uncertainty in combined cardiac—cardiovascular simulation
due to input and model parameter variability has also been the subject of recent research [13—15].

While the above contributions focus on the propagation of uncertainty from model inputs to outputs, an end-to-
end (or clinical data to simulation results) uncertainty analysis pipeline is proposed in [16] in the context of virtual
stage II single ventricle palliation surgery. Additionally, the solution of inverse problems is discussed in [17], where
automated Bayesian estimation is applied to tune close-loop boundary condition parameters for patient-specific
multi-scale models of the coronary circulation, in order to match a number of non-invasive clinical measurements.
The question of flow uncertainty due to mathematical modeling and noise approximation error was investigated
using a mouse pulmonary model in [18], where a Bayesian inference approach was developed to reduce bias.

The vast majority of studies in the literature focus on uncertainty in the boundary conditions and mechanical
properties of the vascular walls. A third major source is geometric uncertainty which results from errors and
operator subjectivity in vessel segmentation from image data, which constitutes a fundamental step in the generation
of cardiovascular models. Acquisition of medical image volumes is inherently noisy, has limitations related to
the achievable resolution as well as artifact, motion, and aliasing errors. Construction of patient-specific model
geometries from image volumes is therefore affected by image uncertainty. In the literature, analysis of the effects
of geometrical uncertainty on the results of high-fidelity cardiovascular models has remained elusive due to the
complexity of assembling end-to-end pipelines for automatic model generation and analysis. As discretization
approaches invariably require the geometry to be represented through a discrete surface mesh, a popular technique
within the biomechanics community is mesh morphing [19]. Other methods have focused on modeling the variation
of geometry via segmentation approaches. For example, for a given input image the STAPLE algorithm generates a
distribution of possible segmentations, but requires a set of ground-truth segmentations as input. Gaussian processes
have also been used to model pre-existing segmentation variation in [20]. Segmentation priors and multivariate
sensitivity analysis proved useful for segmentation variability estimation in [21], however it is unclear how to extend
the method to multiple simultaneous images.

Only a few studies consider the effect of geometrical uncertainty for cardiovascular models. Sensitivity of
hemodynamics to geometry variation in patient-specific cerebral aneurysms was investigated in [22], which
considered two model samples generated using heuristic smoothing techniques. Manual segmentation uncertainty
was shown to have varying influence on FFR-CT calculations in [23], where uncertainty depended on the mean FFR-
CT value. In an aortic flow simulation, geometric uncertainty was shown to be a dominant factor when compared
to computational fluid dynamics (CFD) model parameter uncertainty and boundary condition uncertainty [24].
Geometric uncertainty was also investigated in [25] for coronary artery simulations, and obtained through local
perturbations of an idealized stenosis model. Effects on entire cardiovascular models were investigated in [26-28]
by perturbing the area and surface points of selected vessel segments using a spatial Gaussian function with uniform
parameterization. The variation in geometry was found to produce sensitivities of up to 10% in simulated FFR-CT
measurements. We would like to point out that geometric uncertainty is assumed a-priori in the above studies,
instead of being directly learned from the image data.

More recently, Bayesian Neural Networks, neural networks that are able to learn uncertainty from data, have
been increasingly adopted in applications where it is crucial to quantify confidence in predictions [29,30]. In
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Fig. 1. Proposed model building pipeline. (a) Image data and vessel pathline are supplied by the user. (b) Path information is used to
extract local 2D cross-sectional images in the plane orthogonal to the vessel path. (c) Two-dimensional images are extracted along vessel
pathlines and fed to the CNN as inputs. (d) and (e) The proposed CNN processes the cross-sectional images and directly outputs an array
of point coordinates, characterizing a two-dimensional lumen segmentation. (f) The collection of two-dimensional points is transformed back
to three-dimensional coordinates on the image volume. (g) The cross-sectional segmentations are lofted along the pathline to form the final
lumen surface.

particular, [29] showed that augmenting neural networks with dropout layers enables them to learn uncertainty
from the training dataset. In the medical imaging field dropout networks have been used to model segmentation
uncertainty for MRI volumes [31]. In particular, the network’s prediction uncertainty was found to be a useful
marker for detecting human expert prediction error.

In this work, we use Bayesian deep learning to develop a cardiovascular model generation technique that learns
the geometry distribution from a dataset of existing geometries and images. We then use this network along with
Monte Carlo sampling and numerical blood flow simulation to characterize the change in model outputs due to
geometric uncertainty.

In Section 2 we discuss our dropout network architecture and path-planning cardiovascular model generation
process. Sections 3 and 4 provide an overview of the anatomical benchmarks we selected and the results we obtained.
Finally, Section 5 contains a discussion and 6 presents our conclusions.

2. Methods

Given a medical image volume X and a set of vessel pathlines V, our method produces samples from the
distribution of patient-specific cardiovascular models, Y ~ P(Y|X, V, z), compatible with both the image data,
pathline and a collection of latent random variables z. To better explain how this is accomplished, we summarize
in Fig. 1 a typical two-dimensional segmentation or path-planning approach, i.e., a widely used method to generate
anatomical surfaces developed in a prior work [32] and based on the cardiovascular model format developed for
SimVascular [33] and the Vascular Model Repository (VMR) [34]. This requires to first define a vessel pathline
(we will use the term centerline interchangeably) by connecting user-specified point locations inside the lumen
of the vessel of interest (e.g., the aortic arch in Fig. 1). The tangent vector to this centerline is then used to
generate a continuous collection of local 2D images slices. Two-dimensional vessel lumen segmentation on this
slice is accomplished through a parametric estimator, trained using a large collection of 2D cross-sectional images
and corresponding ground truth lumen boundary. The resulting two-dimensional segmentation, representing the
intersection between the lumen wall surface and the cross-section plane, are then lofted into a three-dimensional
lumen surface and the final model generated by boolean union of multiple vessels.

Note how our vessel lumen estimator also depends on a collection of latent variables z, where two different
realizations zV, z® ~ p(z) will produce two distinct anatomical surfaces. This way, we can naturally generate
families of cardiovascular models ) := {Y(V, ..., Y™}, where Y/ ~ P(Y|X,V,z), i = 1,...,n. Given this ability
to sample from distributions of cardiovascular anatomies, we adopt Monte Carlo sampling and a computational
fluid dynamics (CFD) solver to estimate the changes in hemodynamics induced by geometrical uncertainty in
the segmented anatomy. Specifically, each sample {YV, ..., Y™} provides a computational domain where we
numerically solve the Navier—Stokes equations using the finite element method, as further discussed in Section 2.3.
This Monte Carlo process is described in Algorithm 1 and outlined in Fig. 2.
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Algorithm 1 Monte Carlo Sampling of Geometrically Uncertain Hemodynamic Solutions

medical image volume X
vessel pathlines V
element size h
parametric estimator mg
X = {Xq, ..., X} < extract(X,V)
Uu:={
fori=1,...,K do
z;, ~ P(z)
Vi={J1, 0 Yu} < {mo(X15 2), ..., my(Xy: 7;)}
Y; < model(Y,V)
Y!" < mesh(Y;, h)
Uf.’ <« simulate(Yf‘)
U<«—~Uu Uf.‘
end for
return U

extract(X, V) creates a collection of cross-section images by slicing the image X orthogonal to the vessel pathlines V.

model() generates a cardiovascular model by lofting the two-dimensional lumen segments along the vessel pathline, and merging multiple
vessels together by boolean union.

mesh(Y;, h) generates a tetrahedral mesh of the domain Y;, using an element size i (see details in [33,35]).

simulate(Y") computes the solution of the Navier—Stokes equations on Y”, with appropriately chosen initial and boundary conditions.

2D Image
Extraction

Fig. 2. Generation of geometrically uncertain cardiovascular model solutions following Algorithm 1.

2.1. Cardiovascular model construction using path-planning

In this section we provide a more formal description of the path-planning process (Fig. 3). The first input
consists of a gray-scale medical image volume with H, W and D voxels in the axial, sagittal and coronal direction,
respectively, i.e. X € R#*W>D_ The second input is a single pathline which consists of a collection of spline
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(b)
Fig. 3. Cardiovascular model construction workflow used in SimVascular [33]. Starting from (a) Image data, (b) pathlines are manually
generated by the users, (c) two-dimensional lumen segmentations are generated at each cross section x;, i = 1, ..., N, (d) the entire vessel

lumen surface is reconstructed by lofting, (e) a Boolean union of multiple vessels is meshed to generate a 3D cardiovascular model.

segments V := {v(s), ..., vy,(s)}. Each segment, v;(s) : [0, 1] — R3 i =1,...,N, is a function that maps an
arc length parameter to three-dimensional locations within the image volume, obtained through spline interpolation
from a collection of user-specified points locations [33].

Our approach is flexible with respect to the method selected to generate the points along the pathline. These
can be manually specified by users as in the SimVascular workflow [33] or determined through libraries such as
VMTK [36] or other pathline extraction algorithms (see, e.g., [37]). Manual pathline extraction may introduce user
bias, whereas automated extraction algorithms are susceptible to approximation error. It is therefore likely that
adoption of different pathline extraction methods will affect the resulting lumen segmentation. It is likely however,
that automated pathline extraction methods could significantly accelerate the model construction workflow and could
be used to analyze different Qol such as the maximum inscribed sphere radius, but the quantification of such effects
is considered beyond the scope of this study. In this work, we use manually extracted pathlines from the Vascular
Model Repository (VMR) [34].

A collection of Ny local two-dimensional cross-sectional images of the vessel lumen is then extracted for each
pathline at the discrete image space locations S := {v; (s1), ..., V; N (sn,)} and the local tangent and normal vectors
to the pathline at point v;, (s¢) are used to construct a planar grid where the voxel intensities from X are interpolated,
to create a gray-scale cross-sectional image of the vessel lumen x;, i = 1, ..., N,. Repeating this process for all
selected N locations along the pathline produces a set of two-dimensional images X := {Xj, ..., Xy, }.

Realizations from a Bernoulli random vector z and the images x;, i = 1,..., N, constitute the inputs to an
artificial neural network designed to produce two-dimensional segmentations of the form

Y=y .. yn ) = {me(Xi32), ... me(Xn,: 2)}, (1

at all the N, locations along the pathline. It is important to note how the same realization from the Bernoulli vector
z is used to set the dropout layer in the network across all the N, segmentation instances for each anatomical surface
realization. In contrast to generating the segmentations with independent dropout vectors, our process ensures that
the same network weights are used to segment all the x;, i = 1, ..., Ny images, leading to a consistent bias across
the whole cardiovascular model geometry. Finally, the normal and tangent vectors to the pathline are used to re-orient
the 2D lumen segments back to image space (Fig. 3c), where they are interpolated and joined together [35] to form
a triangular surface mesh of the full cardiovascular model [33]. An unstructured tetrahedral mesh is then generated
using TetGen [38] for finite element analysis.

2.2. Convolutional dropout networks for lumen segmentation

For the parametric vessel lumen estimator, mg(X; z), we use a convolutional neural network. In particular, mg
maps the input 2D gray-scale image slice, x € R”*H to a vector of K normalized radii y e [0, 11X c RX. The
radii correspond to the distance of the vessel lumen from the center of the image along rays oriented according to
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angular intervals ¢ := {¢, ..., ¢x}. This allows the radius yl.j ey,i=1,...,N;, j=1,..., K to be converted
to a single location in the cross-sectional slice X; using the expression

p/ = (o] H cosgy. 5/ Hsing;). i=1,... . Ny, j=1,....K, )
and the full lumen segmentation from image slice x; in the set of points p; := {p/, ..., pX}. Even though the

literature has witnessed an explosion in new layouts and arrangements in recent years [39,40], a CNN generally
consists of a collection of layers, each applying a mathematical operation, such as a linear transformation or
convolution, followed by an elementwise nonlinear activation. In our case, the transformation in layer / is expressed
as

0® = mO@I=D; @), al = ¢V, 3)

where m®)(.) is the specific mathematical transformation occurring through layer /, a represents the generic input
vector from the previous layer and output to the next one, and g”’() the selected non linear activation. The learnable
parameters for the /th layer are denoted by ©@® C 0. In this study, we employ a CNN combining dense and
convolutional layers. Dense layers operate on vector inputs and outputs through the linear transformation

o = @0 =V L 0, )

where @ and b® are a weight matrix and bias term, respectively. The convolutional layers instead transform a
third order tensor input using

) _ ) ((G)] )
Oijk = Z Z Z @omk A0 j+pag +b, ®)
o p q

where @ is a fourth order tensor of trainable weights. Note how the outputs from convolutional layers are flattened
into one-dimensional vectors before being fed to dense layers.

The activation functions g’(-) allow the neural network to learn nonlinear relationships in the data [41] and
determine the types of output it can produce. Since the output in our case is a vector of radii in [0, 1] we use the
elementwise sigmoid activation function

g([)(x) = m- (6)

For the intermediate layers we instead use Leaky Rectified Linear Units (Leaky-RELU) because they avoid the
problem with vanishing gradients when optimizing the network weights using gradient-descent [42]

0
Day=1" 7 ™)
§ a-x, x<0.
We augment our convolutional network to sample from the distribution of vessel lumens for a given image by adding
dropout layers to the network, which sets the outputs of the previous layer to zero through Hadamard (elementwise)
products by a vector of Bernoulli random variables z). In practice, this is implemented as

a® = mP(0!-) ®)
o =a® 020, 20 ~ B — p) ©)
a ) = ("), (10)

where [ denotes the layer number after which a dropout layer is applied, B is a multivariate distribution with
independent Bernoulli components, and p the selected dropout probability. The inclusion of dropout layers induces
stochasticity to the vessel lumen segmentation process, resulting in random collections of points y obtained as

y =me(x;2), 2~ B(l — p), (1)

where z is a vector containing all Bernoulli dropout variables throughout the network. As discussed above, these

variables are kept the same for every two-dimensional segmentation in a single cardiovascular model instance.
For the network architecture, we build on our previous work [32] and use the GoogleNet architecture [43]

appropriately modified for vessel lumen regression, which consists of a CNN encoder followed by fully-connected
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Fig. 4. CNN based vessel lumen regression with dropout sampling.

layers to transform the encoded vector into the vessel lumen space. A dropout layer is applied to the output
of the penultimate layer in the network in order to inject stochasticity (see Fig. 4). A GoogleNet architecture
was selected for computational efficiency, as the proposed algorithm is distributed as a SimVascular plug-in,
targeting users without specialized hardware. The GoogleNet architecture is computationally efficient due to the
use of convolutional and pooling layers with different dimensions to compress the input image while still retaining
necessary input information. For more details the reader is referred to [43]. While more recent networks have been
developed, earlier studies we conducted [32] showed that the GoogleNet network achieved accuracy comparable to
human experts on a 2D vessel lumen segmentation task and so is sufficient for the purposes of this work.

2.2.1. Dropout lumen segmentation sampling

Dropout layers (or simply “dropout”) were first proposed as a regularization method for neural network
training [44] and consist of augmenting a chosen layer in the network by randomly “dropping” its output
components, that is, each output component is set to zero with probability p. This is achieved through elementwise
multiplication with a vector of realizations from independent Bernoulli random variables, but use of independent
N (1, 0?) Gaussian variables has also shown similar performance [44]. Using dropout reduces the weight correlation
in the augmented layer due to the possibility of every weight to be switched off during training, and thus promotes
the importance of each individual output as an input to the downstream layers. Another key property is that dropout
networks have non-deterministic outputs and have shown the ability to learn the conditional distribution of the
training data [29]. Thus, neural networks trained with dropouts can be used to generate realistic samples from a
given dataset.

While dropout can be added to each layer of the network, augmenting only a single layer with dropout is
sufficient, in many cases, to learn the data distribution [29]. In our network, we selected to apply a dropout to
the penultimate layer of the network (see Fig. 4). Thus, our network can be seen as a convolutional encoder that
maps the input image to a linear combination of basis vectors learned by the final layer. Application of a dropout
to the penultimate layer is thus equivalent to selectively including subsets of these basis functions to produce the
output segmentation.

More concretely, an input sample X is processed by each layer of the network up to layer L — 1 to produce the
hidden feature vector a’“~. The dropout layer then randomly sets to zero a subset of the elements of a’“~! before
sending it to the next layer. The output of the final layer is

1
@ = ;0P a" w02 + b, (12)

aP(x) = g0V (x)). (13)

To highlight the effect of dropout we reformulate o™ as

1
1 —— (0WalD(x)). + b ifz; =1
OEL)(X) = . (@(L)(a(L—l)(X) ©1), + bz(‘L) B ( )l i (14)

i 0 itz =0,
which shows that dropout has the effect of generating an output from a random set of basis functions from the final

layer. Training the network with samples (x, y) calibrates the network weights @ such that the output of the network is
approximately distributed according to the conditional output distribution of the training data, i.e., a“’(x) ~ P(y|x).
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2.2.2. Network training
During training, the network’s weights are initialized according to the variance-scaling approach discussed in [45]
and optimized using stochastic gradient-descent ADAM algorithm [46]. We apply the angular distance transform to

each ground-truth lumen surface pl.l, ..., pX to transform it to a ground-truth vector y; and create a training dataset
of size N, consisting of the following collection of image-radii pairs
D ={(x1,y1), ..., Xn, Yn,)}- (15)

Additionally, we employ a /; loss of the form

K Np Np
—~ P 1 - 1
i, 5D = | DO =32 Lxy: 0,2, Ny) = N > Uiy = N > i, mo(xi: 2)], (16)
= i=1 i=1

where y; andy; = mg(x;; z) represent the ith ground-truth collection of normalized lumen radii and neural network
prediction, respectively, while L(x,y; 0, z, N;,) represents the expected loss over a given batch of training examples.
We also pre-process each input gray-scale image x; € R”*% by computing a normalized image X; having zero
mean and unit variance pixel intensities expressed as

H W
~jk -xl' 4 . 1 ik
xi]:—X,le,...,H,kzl,...,W, sz_zg E xi],

12 17

H W
ZZ -]
j=1 k=1

where p, and o, are the mean and standard deviation pixel intensities, respectively. Finally, the training dataset D
is augmented by randomly rotating and cropping each pair of image slice and 2D vessel lumen segmentation.

2.2.3. Dataset

Our dataset consists of 50 CT and 54 MR contrast-enhanced 3D medical image volumes, all publicly available
from the Vascular Model Repository (VMR)' [34]. For each image volume, the VMR contains vessel pathlines,
segmentations, 3D patient-specific models and hemodynamic simulation results (see Fig. 3) created in SimVascular
by expert users, in many cases with supervision from a radiologist. To avoid anisotropic voxel spacing, all image
volumes were re-sampled keeping an isotropic voxel spacing of 0.029 cm, which ensures the largest vessel diameter
to be around 100 pixels, a relatively small window size which reduces the network computation and memory
requirements. Specifically, we used a window size H x W of 160 x 160 pixels to allow the full range of vessel
sizes to be represented with sufficient resolution by each two-dimensional slice. Finally, we split the data into
training, validation and testing sets, of 86, 4 and 14 volumes, respectively. This resulted in 16 004, 239 and 6317
cross-sectional images and vessel lumen surface point labels for the training, validation and testing sets, respectively.

Trained with this dataset, our CNN produced 2D cross-sectional vessel lumen segmentations with accuracy
comparable to expert SimVacular users across a range of anatomies [32]. An additional increase in accuracy is
expected for larger training datasets.

2.3. Patient-specific hemodynamics simulations

The cardiovascular model generation process discussed above results in three-dimensional tetrahedral meshes
which provide a domain 2 C R?® where the incompressible Navier—Stokes equations are solved. These are the
equations describing the evolution in time of a Newtonian fluid of constant density p, in a domain {2 with boundary
92 = I'pU Ty, partitioned according to the application of Dirichlet and Neumann boundary conditions, respectively

1 http://www.vascularmodel.com.
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0
V-u=0 in 2 x [0, T]
u=g on I'p x [0, T] (18)
t-nn=nh on I'y x [0, T]
u(0) = u in {2 x {0},

in which u is fluid velocity, p is the fluid pressure, f is a given forcing term, 7 is the outward directed unit normal
vector to 'y, and T the viscous stress tensor defined as 0 = —p I + 2 ue(u). Let o be the dynamic viscosity of
the fluid, I the second order identity tensor and €(u) the strain-rate tensor defined as e(u) = %(Vu + VuT). The
functions g and h are given Dirichlet and Neumann boundary data, while u is the initial condition.

We numerically solve the system (18) using a Streamline Upwind Petrov—Galerkin (SUPG) finite element method
implemented in the SimVascular flow solver (svSolver) [47], which contains specialized routines for cardiovascular
CFD such as backflow stabilization [48], algebraic system solvers and preconditioners [49] and a large collection of
physiologic boundary conditions (see, e.g., [48-51]). The numerical solution is integrated in time using a second-
order generalized-o method [52]. We also apply RCR boundary conditions for generic outlets and a coronary lumped
parameter boundary condition for coronary artery outlets, respectively (see, e.g., [50,53,54]). Finally, we restrict our
attention to simulations with rigid walls.

2.4. Monte Carlo sampling of cardiovascular flow solutions

Our model generation procedure generates a set of discrete meshes Y/ := {Y’l’, ceey Y’;Vy} (here the superscript h
is used to indicate the size of the discrete mesh). Numerical solution of the Navier—Stokes equations on each mesh
subsequently produces a set of velocity fields U" := {U" ..., U/]\,‘_} and pressure fields P* := (P" ..., Pi}\,y} with
U':Y; x[0,T] > R>and P! : Y; x [0, T] - R. '

Our objective is to calculate relevant Monte Carlo (i.e., sample) statistics using the ensembles U”" and P".
However, the mesh geometry and hence the solution domain {2 is not constant for different realizations of the
flow and pressure fields. This precludes us from considering quantities of interest defined at specific point locations
in 2, and we focus instead on output quantities that do hold meaning in the context of varying geometry. Consider
a generic model result r;(®, ¢) for the ith geometry realization, and the cross-sectional area A; corresponding to
the jth slice location. We define the quantity

. 1 )

J : J
q; (1) =—— | ri(w,1)dI’, or the quantity g; (1) = .
|A7) Jal |0A]|

f rilw,1)dI’, (19)
dA;(s)

for situations where model outputs are only defined on the lumen surface 8A{ (e.g., wall shear stress). The second
type of quantities are time-average versions of the ¢/ (r), such as,

j 1 £

4 = q; ()dt. (20)

Y (L-T) J,
In this study, we focus on quantities r;(@, t) such as the pressure as well as the wall shear stress and velocity
magnitudes. Finally, for our Monte Carlo trials we choose to report a relative measure of variability, i.e., the
coefficient of variation, defined as

o
CoV = —, 2D
7

where o and p are the sample mean and the standard deviation of the quantities of interest qij (t) or qij , respectively.
We further report confidence intervals for our Monte Carlo estimates. By the Central Limit Theorem the sample
mean tends to a Gaussian random variable with standard deviation

o
5= -2 22
o NG (22)
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where N is the sample size. In many cases the absolute value of the sample mean is small, therefore, for the sake
of clarity, we report the confidence interval as a percentage of the sample mean, that is

cI=+aZ, (23)

w
where o is a constant depending on the confidence level (e.g. « = 2 for 95% confidence). The CoV is thus an
estimate of the variability of a particular QOI and C/ is a measure of the accuracy of our sample mean estimates.

2.5. Shape variability assessment through principal component analysis

To better understand the shape variation in our cardiovascular model samples we use Principal Component
Analysis (PCA) to compute a low rank factorization of the matrix ¥ € RM*N constructed from the collection
of generated cardiovascular models. In particular we compute

Y -V =Uxg 5k V[, 24)

where Y is the mean of the model sample, Y is a diagonal matrix containing the singular values on its diagonal
and the columns of U € RM*K represent a reduced-order basis for the deviation of the cardiovascular models from
the mean model. We use U to study the modes of variation of the generated cardiovascular models in our Monte
Carlo samples.

By the properties of the PCA factorization, the columns of Uk are ordered starting with the modes that capture the
most variance of Y. The first column thus represents the most significant mode, the second column the second most
significant mode etc. revealing the dominant modes in which segmentation uncertainty is causing the cardiovascular
model geometry to vary.

Furthermore the modes U also encode the correlation amongst the generated vessel lumen, since

1 - - 1
Cy = 5V =¥ = 1)1 = - Uk Zg Vi Vg Zx Uy = Uk Bj Uy, (25)

where Cy is the covariance matrix of Y. The singular values quantify how much each PCA mode contributes to
explain the variance in the data. Modes associated with smaller singular values represent local perturbations that
are present in a limited number of model geometry realizations. As such, the number of modes can be truncated
once a sufficient fraction of the total variance is explained. In this work, we report the number of modes required
to capture 99% of the variance.

3. Demonstration in selected cardiovascular anatomies

3.1. Aorto-iliac bifurcation model

The first anatomy we consider consists of the bifurcation of the abdominal aorta into the two iliac arteries,
a model with one inlet and two outlets (see Fig. 5b). The inlet boundary condition is chosen to be a typical
physiological waveform, corresponding to an average inflow of 6 L/min (see Fig. 5c¢), while outflow RCR boundary
conditions are applied, where the resistance and compliance parameters were preliminarily tuned to produce a
realistic outlet pressure range of 80-120 mmHg (see Table 5a). Initially, we conducted a mesh convergence study
with meshes comprising 100,000, 250,000 and 1,500,000 tetrahedral elements and boundary layer mesh with 5
layers, and compared these to a reference mesh with 3,500,000 elements. Mesh convergence was assessed by first
time-averaging the QOI and then using the mean absolute error

1 _ _
= L / 7'E) — )] d0, 26)
121 Jo

where f" and f* are the time-averaged QOI on the investigated and reference mesh respectively. The 1,500,000
element mesh showed a less than 0.2%, 6% and 1.7% error for the pressure, WSS magnitude and velocity magnitude
respectively (see Figs. 5d, 5e and 5f) and is employed in all additional experiments. The size of the Monte Carlo
ensemble is finally selected equal to 150 for this anatomy.

10
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Fig. 5. Aorto-iliac bifurcation model with boundary conditions (a, c), lumen surface (b) and mesh convergence analysis (d, e, f).

3.2. Abdominal aortic aneurysm model

The second anatomy considered in this study includes the aorta and its main branches from an abdominal CT
image of a patient with an abdominal aortic aneurysm (AAA, see Fig. 6a), subject to the same aortic inflow used
for the previous anatomy (see Fig. 5c). RCR boundary condition parameters are reported in Table 6b. For this
anatomy, a family of 110 geometries was generated through Monte Carlo sampling. The sample size was reduced
compared to the previous model as 110 models were found sufficient for statistical convergence. We conducted a
mesh convergence study, using the mean absolute error (26) and with meshes having roughly 500,000, 700,000 and
3,000,000 elements and boundary layer mesh with 5 layers and compared these to a reference mesh with 7,000,000
elements. The 3,000,000 elements mesh showed a less than 0.5%, 5% and 3% mean error for the pressure, WSS
magnitude and velocity magnitude, respectively (see Fig. 6) and was subsequently used in all numerical experiments
reported below.

3.3. Left coronary artery model

The third model we consider includes the left anterior descending (LAD) and left circumflex (LCx) coronary
arteries extracted from a CT image volume, also studied in [49]. Coronary lumped parameter boundary condition
values were selected to produce physiological pressure ranges (Fig. 7a). The coronary simulations use a pulsatile
coronary inflow waveform (Fig. 7c). A sample size of 110 models was used for the Monte Carlo trials. We conducted
a mesh convergence study, using the mean absolute error (26) and with meshes with roughly 500,000, 1,000,000
and 1,500,000 elements and boundary layers with 5 layers and compared these to a reference mesh with 3,500,000
elements. The 1,500,000 elements mesh showed a less than 0.075%, 3% and 1% mean absolute error for the pressure,
WSS magnitude and velocity magnitude respectively (Fig. 7). Subsequently, this mesh was used for all further
experiments.

11
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Fig. 6. AAA model anatomy (a) with boundary conditions (b) and mesh convergence analysis (c, d, e).

4. Results

4.1. Comparison of dropout network lumen samples to human expert segmentation

Before commenting on the model results, we first investigate the statistical properties of the segmentations
produced by our dropout network. In addition, we compare network samples and lumen segmentations produced by a
number of expert SimVascular users. To do so, we selected four representative image volumes with vessel centerlines
from the Vascular Model Repository [34], including a cerebrovascular anatomy imaged by MR, a coronary anatomy
with aneurysms caused by Kawasaki disease imaged by CT, a coronary anatomy following bypass graft surgery
imaged by CT, and a pulmonary anatomy imaged by MR. Slices were selected at discrete intervals along the vessel
centerlines, and each location was segmented by three individual SimVascular experts (see Fig. 3), resulting in a
total of 290 segmentations per expert. For the same slices, 50 neural network lumen samples were generated for
various dropout probabilities, i.e., p = 0.9, p = 0.7 and p = 0.4, and used for statistical analysis.

Segmentation radius CoV observed for SimVascular expert users is separated into two classes, i.e., large vessels
(r > 0.4 cm), where the radius CoV is typically less than 5%, and small vessels (r < 0.4 cm), where the radius CoV
is larger, with values as large as 30% (see Fig. 8a). The inverse relationship between radius CoV and lumen radius is
explained by the fact there is a minimum error produced by human segmentation, due to limits in image resolution,
acquisition noise, and expert image interpretation. Similar trends are observed for neural network samples with
varying dropout probabilities, where the radius CoV increases with the dropout probability (see Figs. 8b—8d). In
addition, the network with dropout p = 0.9 produces similar CoV to expert SimVascular users, whereas a dropout
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Fig. 8. Radius CoV against radius for SimVascular experts and GoogleNet network with different levels of dropout.

p = 0.4 produces more precise segmentations. Thus, the dropout probability can be tuned to modulate the variability
in the resulting segmentation.

For large vessels, the network with dropout p = 0.9 produces a CoV distribution compatible to that produced
by an expert SimVascular user (see Fig. 9a). However, for small vessels, the CoVs produced by the network
are significantly larger (see Fig. 9b). Conversely, dropout probabilities equal to p = 0.7 and p = 0.4 produce
significantly lower CoVs than an expert user for both large and small vessels. In particular, a dropout probability
of p = 0.4 produces the smallest CoVs, showing direct proportionality between the dropout probability and the
amount of segmentation uncertainty. The overall lumen shape is captured rather well by expert users, but their
segmentations exhibit deviations in local vessel radii (see Figs. 10a, 10e). The same happens with our approach for
a dropout probability equal to p = 0.9 (see Figs. 10b, 10f). For smaller p the variability in the segmentations is
reduced, and they all converge closely to the mean lumen profile (see Figs. 10b—10d and 10f-10h).

Our results show how the dropout probability p can be tuned to represent a desired level of uncertainty in the
network outputs. For example, choosing p = 0.9 would cause the network to generate samples with uncertainty
similar to that generated by human experts, allowing the effects of human uncertainty to be investigated. Typical
ranges for the dropout probability p from the literature are 0.5 to 0.8 for hidden layers and 0.8 for input layers [44].
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Fig. 9. Comparison of mean radius CoV for large and small vessels between SimVascular experts and the proposed network, with varying
dropout probability. The distributions of CoV shown above were obtained by collecting one CoV for each cross-section X;.

(a) SimVascular experts  (b) CNN dropout p =0.9 (c¢) CNN dropout p =0.7 (d) CNN dropout p = 0.4

(e) SimVascular experts  (f) CNN dropout p =0.9 (g) CNN dropout p =0.7 (h) CNN dropout p = 0.4

Fig. 10. Vessel lumen segmentation generated for large (top) and small (bottom) vessels by expert users and the proposed network with
varying dropout probability.

Additional intuition on the relation between the loss from an ensemble of all possible sub-networks and the dropout
loss is presented for a single linear unit in [55], where p = 0.5 is shown to be associated with maximum
regularization. Our approach is however based on the GoogleNet network [43] where p = 0.4 is shown to produce
optimal results. We choose to maintain this value, therefore focusing on the uncertainty produced by automated
rather than manual segmentation.
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Fig. 12. PCA modes overlayed on mean aorto-iliac bifurcation model geometry. 184 modes captures 99% of the variance.

4.2. Aorto-iliac bifurcation model

The lumen generated from our dropout network shows good qualitative agreement with the depicted vessel lumen
for the left iliac artery (Fig. 11a) and is able to correctly identify the relevant main branch even in the presence of
surrounding tissue noise and branching vessels.

Variation in the segmentation radii appears to be limited, with standard deviation o, between 0.005 cm and
0.01 cm (see Figs. 11b and 1lc). In addition, variability in o, appears to increase with decreasing vessel size,
likely due to the typically poorer resolution of smaller vessels. The roughly constant o, also results in a CoV that
increases with decreasing vessel size, as typically seen for segmentations performed by expert operators [32], albeit
with larger magnitude.

By considering the PCA modes in decreasing order of singular value, we can visualize the dominant ways in
which the shape of individual models in the sample vary. The first two modes appear to be associated with the radial
expansion of entire vessels, such as the right iliac or large segments of the aorta (see Figs. 12a—12d). Conversely,
higher modes involve local geometrical perturbations such as the bulbous region at the proximal end of the left iliac.
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Fig. 13. PCA modes overlayed on mean aorto-iliac bifurcation model geometry, when generating segmentations using independent dropout
Bernoulli vectors for each vessel lumen.
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Fig. 14. Monte Carlo moment traces for aorto-iliac bifurcation model Qols.

These latter modes, however, contribute less, being associated with relatively small singular values. For example, the
19th and 20th modes have singular values that are a factor of approximately 5.7 smaller than the singular value for
the first mode. Our network generates models through independent 2D segmentations along the vessel pathlines, as
such correlated whole vessel variation is not guaranteed. Thus the fact that the dominant modes of the PCA result
in whole vessel perturbations shows that the geometric variability produced by the proposed dropout network is
distributed across the entire model in a correlated fashion, and increases with small vessel radii. We highlight this
fact by generating a model sample while forcing the network to resample a new Bernoulli dropout vector at each
vessel lumen location and then recompute the PCA modes (Fig. 13). The produced modes now appear to make
more random perturbations and are less localized to specific features of the vessel geometry.

Convergence of Monte Carlo statistics such as the mean, standard deviation and CoV for the pressure, TAWSS
and velocity magnitude integrated over the aorta appears to be satisfactory (Fig. 14), with 95% confidence intervals
for the mean showing faster convergence for the pressure, then velocity magnitude and finally TAWSS.
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Table 1
Monte Carlo sample mean, coefficient of variation (CoV) and 95% relative confidence interval for all Qols in the aorto-iliac bifurcation
model. n indicates the number of cross-sectional slices for the associated vessel.

Path Aorta (n = 95) Left iliac (n = 61) Path Aorta Left iliac
Radius mean [cm] 0.84 0.61 TAWSS mean [dyne/cmz] 40.24 46.55
Radius CoV 0.006 0.011 TAWSS CoV 0.027 0.030
Radius conf. 0.0012 0.0020 TAWSS conf. 0.0050 0.0056
Pressure mean [mmHg] 98.43 96.02 Velocity mean [cm/s] 42.84 41.78
Pressure CoV 0.003 0.002 Velocity CoV 0.014 0.019
Pressure conf. 0.0005 0.0004 Velocity conf. 0.0026 0.0035
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Fig. 15. Outlet Qols and +2¢ interval for aorto-iliac bifurcation model.
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Fig. 16. Time averaged Qols and +2¢ interval for aorto-iliac bifurcation model, plotted along the vessel centerline.

The larger sensitivity of TAWSS to geometric uncertainty can be observed from their time histories over the last
two cardiac cycles, as shown in Figs. 15a, 15b. Pressure variability tends to decrease towards the distal end of the
vessel, whereas TAWSS and velocity magnitude show an opposite trend. This relates to an increase in the wall shear
stress and velocity after the bifurcation which, for this model, amplifies the effect of the geometric uncertainty for
these two Qols. Pressure uncertainty instead depends on the variability of the vessel resistance which cumulates the
contributions of each uncertain segmentation along the vessel (see Figs. 16 and 17).

CoVs were found to be approximately 0.4%, 1.5% and 3% for pressure, velocity magnitude and TAWSS,
respectively. Thus, CoVs for TAWSS and velocity magnitude are roughly a factor of 10 and 5 larger compared to
the pressure CoV, highlighting the increased sensitivity of TAWSS and velocity to geometry variation (see Table 1).

We note that changes to the mesh size or an alternative triangulation of a mesh with the same element size will
slightly alter the results shown here. Our convergence study has shown these approximation errors to be small, on
the order of less than 1-6% depending on the Qol, when using a mesh with a smaller element size than that used
in our studies (e.g. 3,500,000 elements vs. 1,500,000 for the Aorto-Iliac bifurcation case). Thus, up to a relatively
small error, our results are independent of the chosen mesh.

4.3. Abdominal aortic aneurysm model

The lumen generated by the network agrees well with the vessel lumen images, even in the presence of noise
and bifurcations (see Fig. 18a). Values of o, from the dropout network are generally in the range of 0.005-0.01 cm,
with some outliers, particularly for larger vessel lumens. Segmentation of small vessels is affected by increased
uncertainty, with radius CoV of 3%, versus 1% for the largest vessels. PCA shape analysis shows the first two modes
affecting large scale model features such as the aortic aneurysm as well as the entire aorta and iliac branches (see
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Fig. 18. Lumen segmentation samples and radius CoV/standard deviation for abdominal aortic aneurysm test case, computed over
cross-sectional slices x;, i =1, ..., 581.

Fig. 19a). The 19th and 20th modes (with singular values a factor of four smaller than the first mode) are instead
associated with local features, like celiac branches or by asymmetric aneurysm perturbations (see Fig. 19c¢).

The relative confidence intervals of the Monte Carlo estimates for the mean pressure, TAWSS and velocity
magnitude were found to be within the ranges 0.07-0.8%, 0.44-0.79% and 0.28-0.65%, indicating a satisfactory
convergence, particularly compared to the observed CoV for the same vessels (see Table 2 and Fig. 20). Outlet
profiles show increased variability in branch vessels for all Qols with respect to the Aorta (see Figs. 21a-21g).
Time average flow results show increasing TAWSS and velocity magnitude variability towards the distal end of the
vessel (see Figs. 22a-22g).

As expected, radius CoV is inversely proportional to the vessel size (see Fig. 23a). Relative pressure variability
is approximately uniform along the path of each vessel, and particularly elevated in the celiac hepatic branch, due
to the fact that it branches off of the celiac splenic which itself branches off of the aorta (see Fig. 23b). The TAWSS
CoV appears to be significant for small branches (see Fig. 23c), and is equal to 0.06 in the aneurysm region and
0.02 in the proximal regions of the aorta. Similarly, the velocity magnitude CoVs is found to be 0.04 within the
aneurysm and 0.02 in the upstream aorta. This illustrates how diseased regions like aneurysms can lead to increased
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Fig. 19. PCA modes overlayed on mean abdominal aortic aneurysm model geometry. 230 modes captures 99% of the variance.

geometric uncertainty, most likely due to increased ambiguity of the vessel lumen shape and increased surrounding
noise sources in the input image volume, leading to higher neural network output variability. We note again that
this is directly learned from the image volume by the neural network.

4.4. Left coronary artery model

Even for the smallest coronary arteries and in the presence of significant surrounding heart tissue, the vessel
lumen shape was qualitatively well captured by the proposed dropout network (see Fig. 24a). A PCA quantification
of segmentation uncertainty shows dominant modes distributed along major arteries, and higher modes inducing
local changes to smaller branches (see Fig. 25a). While the relative variance is higher in the small vessel branches
when compared to the larger branches, PCA determines modes based on absolute variance. The absolute variance
is larger in the large vessels and explains their presence in the dominant PCA modes.

A satisfactory convergence is observed for the Monte Carlo statistical moments after 110 model evaluations,
with asymptotic traces for more than 50 samples (see Fig. 26). The 95% relative confidence intervals for the Monte
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Table 2
Monte Carlo sample mean, coefficient of variation (CoV) and 95% relative confidence interval for all Qols in abdominal aortic aneurysm
model. n indicates the number of cross-sectional slices for the associated vessel.

Path Aorta Celiac hepatic Celiac splenic Ext. iliac left Renal left Renal right SMA
(n = 160) (n = 30) (n =69) (n = 169) (n =51) (n =35) (n =61)

Radius mean [cm] 0.63 0.26 0.36 0.38 0.32 0.29 0.38
Radius CoV 0.007 0.018 0.016 0.019 0.018 0.021 0.015
Radius conf. 0.0012 0.0032 0.0028 0.0035 0.0033 0.0038 0.0027
Pressure mean [mmHg] 96.45 89.11 94.51 94.35 95.29 92.35 99.26
Pressure CoV 0.004 0.004 0.004 0.004 0.004 0.005 0.004
Pressure conf. 0.0007 0.0008 0.0008 0.0006 0.0007 0.0008 0.0008
TAWSS mean [dyne/cm?] 47.66 125.70 85.11 58.47 87.28 117.50 35.35
TAWSS CoV 0.024 0.040 0.034 0.035 0.036 0.043 0.034
TAWSS conf. 0.0044 0.0073 0.0062 0.0064 0.0065 0.0079 0.0061
Velocity mean [cm/s] 38.05 79.84 52.21 43.88 51.43 66.67 31.98
Velocity CoV 0.015 0.036 0.020 0.027 0.019 0.028 0.024
Velocity conf. 0.0028 0.0065 0.0036 0.0048 0.0034 0.0052 0.0043
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Fig. 22. Time averaged Qols and £20¢ interval for abdominal aortic aneurysm model, plotted along the vessel centerline.

Carlo estimates of the mean are approximately equal to 0.4%, 3% and 1.5% for pressure, TAWSS and velocity
magnitude, respectively, and are well below the CoV computed for the same Qols (see Tables 3).

The outlet time histories reflect the diastolic nature of the coronary flow (see Figs. 27a-27f), where the WSS
exhibits the largest uncertainty followed by velocity magnitude and pressure. Unlike the other two anatomies
considered in the previous sections, geometrical uncertainty significantly affects hemodynamic model outputs due
to smaller vessel sizes, as previously suggested in the literature in the context of coronary artery disease [28]. Time
averaged quantities over the vessel length show a similar pattern (see Figs. 28a and 28f). In particular, TAWSS and
velocity uncertainty appear to be very similar and correlated with the vessel radius. Specifically, smaller radii (with
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Fig. 23. Nearest neighbor interpolation of cross-sectional time-averaged CoVs for abdominal aortic aneurysm model.
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Fig. 24. Lumen segmentation samples and radius CoV/standard deviation for left coronary artery test case, computed over cross-sectional
slices x;, i = 1,...,222.

larger radius variability) produce larger TAWSS and velocity uncertainty. A different behavior is instead observed
for the LCx — OM3; branch, where large TAWSS and velocity uncertainty are associated with a larger radius.
However, this phenomenon is localized at the proximal end of the vessel and probably triggered by the bifurcation
nearby.

Pressure, TAWSS and velocity magnitude CoVs were approximately equal to 2%, 10%-20% and 6%—15%,
respectively (see Table 3). Notably, the LAD — D;, LCx — OM,, and LCx — O M3 branches showed larger
TAWSS and velocity CoVs, equal to 16%, 24.5% and 92.9%, still explained by the small range of vessel sizes
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Fig. 25. PCA modes overlayed on mean left coronary artery model geometry. 209 modes captures 99% of the variance.
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Fig. 26. Monte Carlo moment traces for left coronary artery model Qols.
Table 3

Monte Carlo sample mean, coefficient of variation (CoV) and 95% relative confidence interval for all Qols in left coronary artery model. n
indicates the number of cross-sectional slices for the associated vessel.

Path LCx LCx-OM; LCx-OM, LCx-OM3 LAD LAD-D;
(n=29) (n = 58) (n =20) (n=12) (n =48) (n =55)
Radius mean [cm] 0.14 0.12 0.09 0.10 0.13 0.11
Radius CoV 0.032 0.031 0.047 0.046 0.034 0.034
Radius conf. 0.0061 0.0059 0.0090 0.0088 0.0064 0.0064
Pressure mean [mmHg] 93.46 92.37 91.78 91.92 96.02 95.14
Pressure CoV 0.021 0.020 0.031 0.016 0.018 0.018
Pressure conf. 0.0040 0.0037 0.0059 0.0031 0.0034 0.0034
TAWSS mean [dyne/cm?] 39.27 48.43 26.37 11.91 12.78 26.17
TAWSS CoV 0.106 0.108 0.142 0.220 0.114 0.133
TAWSS conf. 0.0201 0.0206 0.0269 0.0418 0.0217 0.0252
Velocity mean [cm/s] 21.91 28.04 13.69 6.66 8.56 15.50
Velocity CoV 0.069 0.067 0.091 0.158 0.075 0.084
Velocity conf. 0.0131 0.0126 0.0172 0.0299 0.0143 0.0160

present in the coronary anatomy, which amplifies the segmentation uncertainty, particularly towards the distal end

of each vessel (see Table 3 and Fig. 29a). The pressure CoV appears to be larger in the LCx and its branches

LCx — OM, and particularly LCx — O M,. This is explained by the relatively small radius of such vessels, which
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increases resistance and amplifies geometric uncertainty and by the variations in flow split caused by the relatively

smaller LCx branching off the LAD trunk (see Fig. 29b). Finally, the largest WSS and velocity CoVs are located

near bifurcations, due to higher local flow variability and more ambiguity in the definition of the vessel lumen (see

Figs. 29c and 29d).
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5. Discussion

Our experiments in the previous sections illustrate how the proposed Bayesian dropout network generates vessel
lumen segmentations characterized by a o, between 0.005 cm and 0.01 cm. This translates into radius CoVs in the
range 1%-5%, where smaller vessel sizes are associated with larger radius variability, as expected. Furthermore,
our network generated models by producing independent 2D vessel lumen segmentations along vessel pathlines
are thus not guaranteed to result in correlated variation of the vessel lumen in the models. However, PCA modes
of the model samples showed that this resulted in correlated geometric perturbations along entire vessel for the
dominant modes. Later modes adjusted finer-scale features of the model such as aneurysms regions of specific
vessels. Thus our cardiovascular model sampling process resulted in realistic whole model variation as observed
from the PCA modes across model realizations. In particular the realistic model variation generated by our dropout
sampling process was highlighted when comparing to PCA modes of models generated without using the same
Bernoulli dropout vector for all lumens. When using independent Bernoulli dropout vectors for each vessel lumen,
the PCA modes were visibly more random in a nature and did not show localized effects to specific features of the
vessel geometry.

Amongst the output Qols considered in this study, wall shear stress was the most impacted by geometry
uncertainty, followed by velocity magnitude and then pressure. Wall shear stress CoV ranged from 3% to 20%,
whereas velocity magnitude and pressure resulted in CoV ranges equal to 1.4%—-15% and 0.2%-3%, respectively.
Larger variability is observed in the left coronary artery model, due to the prevalence of vessels with small radius.

To quantify the relative importance of geometric uncertainty with respect to other sources relevant in hemody-
namic simulations, we compare the output variability found in our study to those found in studies investigating other
sources of uncertainty. Uncertainty due to coronary pressure waveform, intramyocardial pressure, morphometry
exponent and vascular wall Young’s modulus was recently investigated in [49], in the context of coronary artery
modeling. Coronary pressure waveform uncertainty resulted in a 7% CoV for the average pressure and <7% for
TAWSS and velocity magnitude. Intramyocardial pressure uncertainty produced CoV of roughly 25% for TAWSS
and velocity magnitude. Morphometry exponent uncertainty resulted in a 2% CoV for velocity magnitude and
negligible impact on TAWSS magnitude and pressure. Finally, vascular wall Young’s modulus uncertainty had
negligible impact on the hemodynamics, as suggested in the literature [7]. The CoV of 1.4%—15% and 3%-20%
for velocity magnitude and TAWSS produced by geometric uncertainty in this work is thus comparable to the CoV
due to coronary pressure and intramyocardial pressure uncertainty, but larger than the CoV due to morphometry
exponent and vascular wall Young’s modulus. The pressure CoV of 0.2%-3% due to geometry uncertainty was
smaller than that produced by intramyocardial pressure uncertainty.

A multifidelity uncertainty quantification approach was used in [12] to investigate simulation uncertainty due to
material property and boundary condition uncertainty, for both healthy and diseased aortic and coronary anatomies.
The uncertain parameters were uniformly distributed with +30% variation around their means. Resulting CoV
were ~3% for pressure, <1% for velocity magnitude and ~10%-20% for TAWSS, regardless of model and disease
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Table 4
Comparison between the hemodynamic effect geometry uncertainty and other sources of uncertainty.
Model type Coronary
Uncertainty source Pressure waveform Intramyocardial pressure Morphometry exponent Wall Young’s modulus
Input distribution Uniform Uniform Uniform Uniform
Reference [49] [49] [49] [49]
Pressure CoV 7% Negligible Negligible Negligible
TAWSS CoV <7% 25% Negligible Negligible
Velocity CoV <7% 25% 2% Negligible
Model type Aorta/Coronary Coronary bypass graft Intracranial/Coronary Aorta/AAA/Coronary
Uncertainty source Boundary conditions Multiple clinical targets Boundary conditions Full model geometry
Input distribution Uniform £30% Assimilated from clinical data Gaussian 10% std Dropout sampling
Reference [12] [17] [56] This paper
Pressure CoV ~3% - 6%—9% 0.2-3%
TAWSS CoV ~10%-20% 5%-10% 5%-20% 3-20%
Velocity CoV <1% - - 1.4%-15%

condition. Simulations in a subset of intracranial and coronary vessels, applying boundary conditions with Gaussian
uncertainty and an efficient network based uncertainty propagation algorithm found a pressure CoV of 6%—-9% and
WSS CoV ranging from 5%-20% [56]. In particular uncertainty in flow parameters was found to decrease with
further distance from the inlets and outlets of the models. These TAWSS CoV values were comparable to the CoVs
produced by geometric uncertainty as simulated in this work. However the velocity magnitude CoV was smaller than
the 1.4%—-15% CoV produced by geometric uncertainty sampled from our dropout network, whereas the pressure
CoV induced by the same geometric uncertainty was typically smaller than that produced by the aforementioned
uniform and Gaussian boundary condition variability.

The effect of variability in closed-loop boundary conditions assimilated from uncertain clinical data including
aortic pressure, cardiac output, pulmonary pressure, peak and total flow volumes is investigated in the context of
coronary artery disease in [17]. Uncertainties in a number of independent clinical measurements were assumed to be
normally distributed with standard deviation in the range 10%—40% of the corresponding (measured) mean value,
and the boundary conditions parameters learned using a Bayesian parameter tuning framework, based on adaptive
Markov chain Monte Carlo sampling. The results show CoVs for TAWSS in the range of 5% to 10%, which is
comparable or smaller than the 3%-20% CoV observed for TAWSS in this work.

The results of the three test cases discussed in the previous sections seem to suggest, on the one hand, that
geometrical uncertainty has a generally limited impact on hemodynamics compared to other sources of uncertainty,
and, in practice, could be disregarded if pressure is the sole Qol. On the other hand, the velocity magnitude and
TAWSS variability for the left coronary artery model were found to be approximately 3 to 5 times higher compared
to the other two anatomies. This suggests that geometric uncertainty might play a dominant role for anatomies
characterized by small vessel sizes (the coronary circulation is a particularly relevant case), especially for stenotic
lesions, associated with substantial radius uncertainty (see Table 4).

Even though this is the first systematic study in the literature combining machine learning and high-fidelity
cardiovascular models to study the effect of geometric uncertainty, we recognize several limitations. First,
uncertainty propagation is performed using standard Monte Carlo sampling. Even though a number of approaches in
the literature have shown promise to accelerate convergence to the true statistical moments (such as, e.g., stochastic
collocation [3], or generalized multiresolution expansions [6] in the context of cardiovascular flow), the Bernoulli
random vectors used in the dropout layer in this study have a dimension of around 10,000, which is extremely
challenging for approaches based on stochastic spectral expansion. Second, our study includes only one diseased
anatomy, and showed that geometrical uncertainty is amplified in the aneurysm region of the abdominal aorta. We
also found such amplification in a healthy left coronary artery model due to the typically smaller vessel radii. This
suggests how cases of stenosed or calcified coronary arteries and vascular lesions, that typically are a minority of
network training samples, may offer new insights on the role of geometric uncertainty.

If uncertainty related to diseased anatomy is of particular interest it is likely the proportion of network training
data containing pathological features would need to be increased. Additionally the network’s segmentation accuracy
in diseased regions would need to be compared that of human experts in those same regions.

26



G.D. Maher, C.M. Fleeter, D.E. Schiavazzi et al. Computer Methods in Applied Mechanics and Engineering 386 (2021) 114038

Third, we assume that dropout networks are able to learn output uncertainty from their training data [29], while,
in practice, they provide only an approximate representation of the true distribution of vessel lumen for a given
image. Additionally, our segmentations are generated at discrete slices along the centerline path, and thus the
training data might act as a filter on the whole geometric variability, leading the proposed algorithm to underestimate
the true underlying geometric uncertainty. Removing these limitations would require new three-dimensional vessel
segmentation paradigms, which is an active area of research. Fourth, the path planning approach intrinsically limits
the uncertainty at the bifurcations, as it requires users to adjust pathlines so they originate within the parent
vessel. This introduces user bias into the cardiovascular model samples and may constrain the underlying geometric
uncertainty. Future work will be devoted to produce improved estimates for bifurcation uncertainty.

6. Conclusions

We have developed a Bayesian dropout network to generate families of two-dimensional lumen segmentations
from slices of a clinically acquired image volume. Of particular note is the fact that our neural network learns lumen
segmentation uncertainty directly from the image training data and is thus able to generate lumen samples with a
realistic uncertainty distribution. This was combined with vessel centerlines and a path-planning model building
workflow to create realizations of high-fidelity cardiovascular models with uncertain lumen surface. Finally, we
characterized simulation output variability due to geometric uncertainty using Monte Carlo sampling.

We have also analyzed the principal components of the lumen surfaces we generated, showing how, despite
segmenting slices independently and analyzing geometries characterized by a wide range of vessel radii, dominant
modes appear to be equally distributed on the entire model, without amplifying any particular local feature.
Additionally, our network generated vessel lumens with relatively constant radius standard deviation that were found
to be independent of vessel size. This resulted in increasing relative uncertainty for smaller vessels, similar to manual
segmentations generated by expert users.

Experiments on an aortic bifurcation model, an abdominal aortic aneurysm model and a left coronary artery
model showed that geometry uncertainty primarily resulted in wall shear stress and velocity magnitude uncertainty.
This was true in particular for the coronary anatomy, characterized by smaller vessel sizes. Moreover, while TAWSS
and velocity magnitude were impacted by geometrical uncertainty, especially near the distal ends of small vessels
and near bifurcations, pressure was only marginally affected. Compared to other sources of uncertainty, for example,
the boundary conditions or material properties, the relative importance of geometry uncertainty was found to be
determined by the particular patient-specific geometry being investigated and the vessel radius.

Our method still requires one to manually create the vessel centerlines, which may be laborious, time consuming
and introduce additional uncertainty. Automated methods to predict vessel centerlines and corresponding uncertainty
could therefore be combined with the proposed dropout network to further improve performance and increase model
building efficiency. Finally, we have explored geometry uncertainty independently from other sources, disregarding
their interaction. Future work will be devoted to combine all three sources of simulation uncertainty, i.e., boundary
conditions, material properties and geometry.
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