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In this work, we present a computational fluid-structure interaction (FSI) study for a healthy patient-
specific pulmonary arterial tree using the unified continuum and variational multiscale (VMS) formulation
we previously developed. The unified framework is particularly well-suited for FSI, as the fluid and solid
sub-problems are addressed in essentially the same manner and can thus be uniformly integrated in time
with the generalized-o method. In addition, the VMS formulation provides a mechanism for large-eddy
simulation in the fluid sub-problem and pressure stabilization in the solid sub-problem. The FSI problem
is solved in a quasi-direct approach, in which the pressure and velocity in the unified continuum body
are first solved, and the solid displacement is then obtained via a segregated algorithm and prescribed as
a boundary condition for the mesh motion. Results of the pulmonary arterial FSI simulation are presented
and compared against those of a rigid wall simulation.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

We recently derived a unified continuum formulation based on
the Gibbs free energy in order to construct a well-behaved con-
tinuum model in both compressible and incompressible regimes
[1]. This modeling approach naturally recovers important contin-
uum models, including viscous fluids and hyperelastic solids. Im-
portantly, it bridges previously diverging approaches in compu-
tational fluid dynamics (CFD) and computational solid dynamics
(CSD). The residual-based VMS formulation can be applied to the
unified continuum body. It yields a large-eddy simulation proce-
dure for the incompressible Navier-Stokes equations [2], which per-
forms equally well for laminar, transitional, and fully turbulent
flows [3,4]. On the other hand, when applied to the hyperelas-
tic model, it leads to a numerical formulation for finite elasticity
that allows equal-order interpolation of all fields. This is particu-
larly beneficial for problems with complex geometries and bears
similarity to some recent works [5-8]. In our opinion, the uni-
fied concept gives rise to promising opportunities for designing
new numerical methodologies. Recent advances include the devel-

* Corresponding author.
E-mail addresses: liuju@stanford.edu (J. Liu), wgyang@stanford.edu (W. Yang),
ingridl@stanford.edu (LS. Lan), amarsden@stanford.edu (A.L. Marsden).

https://doi.org/10.1016/j.mechrescom.2020.103556
0093-6413/© 2020 Elsevier Ltd. All rights reserved.

opment of a provably energy-stable scheme for incompressible fi-
nite elasticity [9] and preconditioning techniques for both solids
[10] and fluids [4]. The benefit of the unified modeling framework
is further evident in the realm of multiphysics coupled problems.
Since the CFD and CSD implementations only differ in constitu-
tive routines, monolithic FSI coupling is dramatically simplified.
Furthermore, in comparison with conventional FSI modeling ap-
proaches [11-14], the new framework allows one to simulate struc-
tural dynamics with a Poisson’s ratio up to 0.5, using either the
multiscale/stabilized formulation or inf-sup stable methods. Since
soft tissues typically exhibit nearly incompressible behavior under
physiologic loading [15], the proposed FSI modeling framework is
extremely favorable for computational biomechanics and cardio-
vascular hemodynamics.

In this work, we present a suite of FSI modeling techniques for
cardiovascular applications. In addition to the unified FSI model-
ing framework, we discuss mesh generation from medical image
data as well as a modular approach for implicit coupling of lumped
parameter network (LPN) models with the three-dimensional (3D)
domain [16]. The efficacy of the proposed methodology is demon-
strated through a numerical study in the pulmonary arteries of a
pediatric patient. The FSI results are directly compared to those of
a rigid wall simulation.
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2. The unified continuum formulation for fluid-structure
interaction

In this section, we present the governing equations for the
FSI problem using the arbitrary Lagrangian-Eulerian (ALE) method
[11,17]. Here, and in what follows, we use superscripts f, s, and m
to indicate quantities related to the fluid, solid, and ALE mesh mo-
tion in the fluid sub-domain.

2.1. Kinematics on moving domains

We first consider the domain occupied by the continuum body
in the referential frame Qy C R3, an open and bounded set. For
FSI problems, €2, admits a non-overlapping subdivision, §X=

Q{( Uy, = Qf( N5, in which Q{( and Q} represent the sub-
domains occupied by the fluid and solid, respectively. Following
the notation used in [1], the referential-to-Eulerian map at time
t is denoted @, (-) = @(-.t) and maps Qy to Qu(t) = §(2y. t). We
wish to think of Q(t) as the current ‘spatial’ domain where the
fluid mechanics problem can be conveniently formulated. Corre-
spondingly, the current configuration admits a subdivision, Qx(t) =
QL) U(t), ¥ = QL (t) N 25(t). Conceptually, 2 is fixed in time
and is associated with a computational mesh. Therefore, @ de-
scribes the motion of the mesh, and we can correspondingly define
the mesh displacement and velocity as

0" = 9(x.t) - 9(x.0) = p(X.1) — X, (2.1)

N 9G 0"

V= SE| = e (2.2)
X X

One may conveniently push them forward to the current configu-
ration as ™ :=0" 0 §; " and " :=V" 0 §; .

The initial position of point x e Qx(t) is denoted as Xe Qy(t),
where Qy(t) is the Lagrangian domain. The smooth Lagrangian-to-
Eulerian map at time ¢ is denoted @,(-) = @(-,t) and maps Q(t)
to Qx(t). Then the displacement, velocity, deformation gradient, the
Jacobian determinant, and the right Cauchy-Green tensor of the
material particle initially located at X are defined as

U:=9X.t)-@(X.0) =oX.1) - X,

y._ o] _ou| _du
ot X ot X dt’

.0 o T

Fi=5g. J:=det(F). C:=F'F.

The displacement and velocity can be similarly pushed forward to
the current configuration as u :=U o @; ! and v :=V o ;1. We also
introduce the distortional parts of F and C as

F:=J3F, C:=JiC
2.2. Balance and mesh motion equations

We invoke Stokes’ hypothesis and further consider the isother-
mal condition on the continuum body, allowing the energy equa-
tion to be decoupled from the mechanical system. The FSI system
can thus be viewed as a two-component continuum body governed
by the following momentum and mass balance equations,

ov
0=p(p)§

+o(P)(V—") Vav = Vi ey + Vap — p(P)b,
X

0= B L] + B0 (v~ ") - Vab+ Vi1,
X
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which are posed in Q4(t). In the above equations, p is the density,
p is the pressure, o4, is the deviatoric part of the Cauchy stress,
b is the body force per unit mass, and S, is the isothermal com-
pressibility factor. The constitutive laws of the material are dictated
by the Gibbs free energy G(C, p), which was previously shown to
adopt a decoupled structure [1, p. 559],

G(C. p) = Giy (€) + Gy (P).

where G, and G, represent the isochoric and volumetric parts of
the free energy, respectively. Given the free energy, the constitutive
relations can be written as

-1

. dGuoI . 1 d,O _ _dZGvol dGuol
P(p) -—( dp . Bo(p) == pdp - dp / dp ’
Oiew i=J'E(B: §)F +2f1devid],

1 = G
Piol-tctec, §:=220 0
3 aC
1 T
d:= 5(V,,v+ Vv )
where T is the fourth-order identity tensor, and pg is the density
in the Lagrangian domain.

In the solid sub-domain, we consider a purely elastic mate-
rial and choose the referential configuration to be identical to the
Lagrangian configuration. Consequently, the balance equations in
Q5 (t) can be stated as

v
0=p°(p°) ra — Vi 03, + VD’ — 0*(p)b,

x=X

+ Vi 15,
x=X

0= g0

In the fluid sub-domain, the free energy contains no mechani-
cal contribution, so ageu = 2jidev[d]. We further assume incom-

pressible flow, which implies pf (p/) = pf and ,Bg = 0. The balance
equations in Q,{(t) are then

ovf .
OzhW +pl (v ") - V! — Vi 0], + Vap” — p'b,
X
0=V, 1.

In this work, we use the pseudo-linear-elasticity algorithm to
model the ALE mesh motion [18,19]. Consider a time instant
t <t, which is often chosen to be the previous time step in
numerical computations. Given the identity @(x.t) = @(x.f) +
U(x.t) - 0(x. ). we introduce @™ (@(x.).t) :=0(x.t) —=U(x.D).
The mesh velocity 9™ is then completely determined by " (%, t)
and the relation in (2.2). The mesh motion is solved via the fol-
lowing linear elastostatic problem posed in Q,’:(E),

v, - (Mm (vf,ﬁm + (V,?ﬁ’")T) +AMY. ﬁ"’l) 0.

The boundary of the fluid sub-domain can be decomposed into
the luminal, inlet, and outlet surfaces. On the luminal surface, the
mesh motion follows the motion of the solid body and is therefore
subject to a Dirichlet boundary condition; on the inlet and out-
let surfaces, we prescribe homogeneous Dirichlet boundary condi-
tions to fix the mesh. Furthermore, to enhance the robustness of
the mesh moving algorithm, the Lamé parameters ©™ and A™ are
chosen to be proportional to the inverse of the Jacobian determi-
nant of the element mapping [11,19].
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3. Numerical formulation
3.1. Solid sub-problem

Let S, S5, and S; denote the finite dimensional trial so-
lution spaces for the solid displacement, velocity, and pressure
in the current solid sub-domain, respectively; let V;, and Vj
represent the test function spaces; let F;_h(t) denote the Neu-
mann part of the solid boundary with traction h® prescribed. The
spatial discretization for the solid body is based on the varia-
tional multiscale formulation [1], which is stated as follows: Find
l{)151§l(t), Py(6), U5 (1) } € S§ x S x S such that for V{ws, ws} e V§ x

b

du;,

0= ~ "

0= p(ph)—thx / VoW © 05, (1) d<y
Q3 (t) Q(6)

W hdTy,

- wwmm/'memm .
[

Q0

0= (/39 (ph vfl)dgx — / VW’ - 1% d 2y,
10 H0)

dvy
Vo= —Tm<p (Ph - Vi Gdev(u )+prh PS(Pi)b)

In the above formulation, the parameter tj, is associated with the
subgrid-scale models and is defined as

AX
Tma
where Ax is the diameter of the circumscribing sphere of the
tetrahedral element, c is the maximum wave speed in the solid
material, and ¢, is a non-dimensional scalar [5]. This formulation
with a single stabilization parameter is also known as the Pressure-
Stabilizing/Petrov-Galerkin (PSPG) formulation, which has been ex-
tensively studied and applied in CFD [11,20]. The formula of c is
estimated based on a small-strain isotropic linear elastic material.
For compressible materials, ¢ is given by the bulk wave speed, i.e.,
= /AS +2us/pg; for incompressible materials, ¢ is given by the
shear wave speed, i.e., c:=,/u%/p; [1,6]. In the above definitions,
A% and u® are the Lamé parameters.

S _ +S s __
Ty=Tyl. Ty=Cn

3.2. Mesh motion of the fluid sub-domain

Let Si' denote the trial solution space of the mesh displace-

ment i defined on the domain Q,{(E), and let V' denote the cor-
responding test function space. The variational formulation of the
problem is stated as follows. Find iy’ € SI' such that for V" e
Vo,

u

VW™ : (2u™ Vil ) + Vi - WA Vg - il dS2 = 0.

Qh®
3.3. Fluid sub-problem

Let S,f and S{; denote the trial solution space of the fluid ve-
locity and pressure; let Vlf and VJ be the test function spaces; let
Fi »(t) denote the Neumann part of the fluid boundary with trac-
tion I prescribed. The VMS formulation for the fluid sub-problem
can be stated as follows. Find [pﬁ(t),vﬁ(t)] € SI{ X S,{ such that
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for V{w/ w/} e Vi x Vi,

v
_ f 9% fof — ™. vl 1do
0 Q,f((t)w Prae| TP (vh vh) S
X
_ f f - f
Vy-wp dQX+/ Viw dev(v )d2%
Q)

_/ w! - pTbdS — / w! k' dT,
() T,
_ F o (ofpf & (v — 3m

/ﬂ;f(t) \VRTE (,o e (vh vy ))de

+/ Vvl (pPw @) - Vaw! : (oTv" @ v7)dey
el

x

- /m(t) Ve wipldsd,

0= wfV,pvﬁdef/ Veaw!  v/'de,
ol® ol ©

f
W im (G| 0! (Ter]) 0] - 0F) + V]

at

X
—Vx-adey(vf)—,ofb>

p/ = —rCV vh,

T{,,:—IMI
1(c o\
fo_ (4 o ™. G(vf — @ M
rM._pf(Atz-q—( vh) G(vh vh)+C,<p>G G) ,
1
f._
= tMtrG’
. 35k 9§
Gij =Z ax; ktaxj,
3 2 1 1
M:[Mk,]zgl 2 1,
1 1 2

3
G:G:=) GG

i,j=1
3
trG = Z G,‘i.
i=1

In the above, & = {Ei}?zl represents the natural coordinates in the
parent domain. The values of C; and Cr are chosen to be 36 and 4
in this study. M is introduced for simplex elements to give a node-
numbering-invariant definition of 11& and rcf [21].

3.4. Boundary conditions

For the solid sub-problem, we prescribe homogeneous Dirichlet
boundary conditions on the annulus surfaces at the inlet and out-
lets and zero traction on the external surface of the arterial wall.

For the fluid sub-problem, we prescribe the no-slip boundary
condition on the luminal surface. On the inlet surface, we prescribe
a Poiseuille velocity profile scaled by a periodic volumetric flow
waveform. A special mapping technique introduced in [22] is uti-
lized to generate the inflow profile. To achieve physiological flows
and pressures, we couple LPN models to the outlet surfaces as trac-
tion boundary conditions mimicking the effect of the downstream

circulation. For each outlet surface I, with unit outward normal
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Fig. 1. The mesh for the pulmonary arterial wall (blue) and lumen (red), with de-
tailed views at the inlet and a representative outlet. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of
this article.)

vector n¥, where k is the outlet surface index, we prescribe
b = P @)k + Bp!{(v] - B) - n*} v], (31)

where PX(t) is the spatially averaged normal component of the sur-
face traction on F’gut, B is a positive coefficient between 0.0 and
1.0, and

Am . m
o) ) [ 1) o
otherwise .

Backflow divergence is a well-known issue in cardiovascular flow
simulations and can arise from either bulk flow reversal in both
healthy and diseased states, or local flow reversal as local velocity
fluctuations are convected out of the computational domain. The
second term in (3.1) introduces energy dissipation in the case of
backflow and is critical for maintaining the overall numerical sta-
bility. It can be shown that taking 8 = 1.0 guarantees energy sta-
bility for the numerical scheme. While this backflow stabilization
term adds a convective traction to the outlet surface and is there-
fore intrusive to the flow field, its impact on the flow field can
be minimized by choosing 8 to be smaller than 1.0. Furthermore,
adding only a fraction of this convective traction allows for im-
proved stability at larger time steps. In this work, § is fixed to be
0.2 [23]. We also note that there exist several approaches for pre-
venting backflow divergence. For a survey on this topic, interested
readers are referred to [24].

Given a LPN model, P¥(t) can be implicitly determined from the
flow rate QX(t) := [ tvf.n"df‘. In this study, we consider the

three-element Windkggsel model,

dITk(t) k@) Q)
dt 7 RkC ck (3.2)
Pk(t) = REQ¥(t) + TT* (1) + P{ (). (3.3)

In (3.2)-(3.3), Rk, C¥, and RK respectively represent the proximal
resistance, compliance, and distal resistance of the downstream
vasculature; TT¥ represents the pressure drop across the distal re-
sistance; Pé‘ denotes the distal reference pressure. Although one
may obtain an analytical representation of P* in terms of Q% for
this model, we solve the ordinary differential Eqs. (3.2)-(3.3) for
PX(t) via the fourth-order Runge-Kutta method [16]. This approach
enables the solution of more complex LPN models with satisfactory
numerical robustness.

3.5. Solution strategies for the coupled problem

The semi-discrete problem stated in Sections 3.1-3.3 is dis-
cretized in time by the generalized-o method [25,26]. We advocate
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collocating the pressure at the intermediate time step to achieve
second-order temporal accuracy [1]. This is in contrast to the con-
ventional approach, which we have recently found to be only first-
order accurate for pressure [27].

For the fully discrete problem in the solid sub-domain, block
factorization can be performed on the resulting tangent matrix
[1,6], allowing the consistent Newton-Raphson procedure to be
performed in a segregated manner. In this approach, the velocity
and pressure are first solved implicitly. The solid displacement is
then explicitly updated using the velocity. This segregated solution
procedure naturally leads to a coupling algorithm for the FSI sys-
tem. In each Newton-Raphson iteration, the velocity, pressure, and
solid displacement are solved in the segregated manner just de-
scribed; the solid displacement is prescribed as the Dirichlet data
on the luminal surface for the ALE mesh motion; the mesh veloc-
ity is then computed for use in the fluid sub-problem in the next
Newton-Raphson iteration. This coupling strategy should still be
considered a monolithic approach, as we seek solutions that min-
imize the residual of the whole FSI system. It is, however, closely
related to the ‘quasi-direct’ coupling approach [11,28].

The Newton-Raphson procedure involves solving a matrix prob-
lem with a two-by-two block structure. In particular, the outflow
boundary condition (3.1) contributes a weighted sum of rank-one
matrices to the tangent matrix [4]. These rank-one matrices are
dense and necessitate a non-trivial assembly procedure in the fi-
nite element code. Although a “matrix-free” technique was previ-
ously suggested to handle the rank-one modifications [29, p. 3547],
it may not offer the most efficient or scalable performance due to
the absence of a preconditioner. In this work, we assembled the
rank-one matrices into the tangent matrix to enable precondition-
ing. The system is preconditioned by our nested block precondi-
tioner, which has been demonstrated to be robust, efficient, and
scalable for both hyperelasticity [10] and viscous fluids [4].

4. Model construction and mesh generation from
patient-specific medical image data

Using the open source software package SimVascular (SV)
[30,31], we generated a healthy patient-specific pulmonary arterial
model from clinically available magnetic resonance imaging (MRI)
data of a nine-year-old subject with congenital heart defects in the
systemic circulation. All retrospective clinical data collection was
approved by the Institutional Review Board for modeling purposes.
Our steps constitute a complete pipeline for robust vascular wall
(the solid sub-domain) and luminal (the fluid sub-domain) mesh
generation from medical image data for FSI modeling of blood
flow.

Path points along the centerlines of all arteries of interest were
first manually identified. Two-dimensional (2D) image segmenta-
tions were generated along the vessel centerlines and subsequently
lofted into a 3D model of the arterial lumen. To generate a model
of the arterial wall, we adopted the common assumption that the
arterial wall thickness is approximately ten percent of the effective
lumen diameter [15]. Therefore, we scaled each of the 2D segmen-
tations such that the distance between every segmentation point
and the centroid was increased by twenty percent. An ‘enlarged’
model encompassing both the arterial wall and lumen was thereby
generated by lofting these scaled segmentations. Finally, the model
of the arterial wall itself was obtained via a boolean operation
provided by Parasolid (Siemens PLM Software, Plano, TX, USA), in
which the previously generated lumen model was subtracted from
the enlarged model. Our approach led to a physiologically accurate
geometric model with variable wall thickness. With the arterial
wall and lumen models constructed, we meshed the solid and fluid
domains using MeshSim (Simmetrix Inc., Clifton Park, NY, USA) and
TetGen [32], respectively, with linear tetrahedral elements, ensur-
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Fig. 2. (a) The volumetric flow rates over time in one cardiac cycle on surfaces A
(red), B (green), and C (blue), where the waveform for A was used to prescribe the
velocity on the inlet surface. The flow rates on outlet surfaces B and C are calcu-
lated from simulation results and plotted in solid and dashed lines for FSI and rigid
wall simulations, respectively. The locations of the surfaces are indicated in Fig. 1.
(b) Detailed view of the flow rates on surfaces B and C. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

ing that the luminal surface mesh remained identical in both do-
mains. In particular, we chose the isotropic mesh size to ensure
at least two layers of elements along the radial direction. The re-
sulting mesh (Fig. 1) consisted of 7.0 x 10° elements in the fluid
sub-domain and 7.4 x 10° elements in the solid sub-domain.

5. Computational results

Unless otherwise specified, all parameters and results are pre-
sented in the centimeter-gram-second units.

The fluid density and viscosity were set to be 1.06 and 0.04, re-
spectively. The arterial wall was modeled as a fully incompressible
Neo-Hookean material with the following form for the Gibbs free
energy,

S

G(€.p) = leé(trf—B)—kp%.

The density p§ and shear modulus p° of the arterial wall were
chosen to be 1.0 and 6.7 x 10°. The material parameters are

J. Liu, W. Yang and LS. Lan et al./ Mechanics Research Communications 107 (2020) 103556
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Fig. 3. The pressure over time in one cardiac cycle on the surfaces A (red), B
(green), and C (blue). Results from the FSI and rigid wall simulations are plotted
in solid and dashed lines, respectively. The locations of the three surfaces are indi-
cated in Fig. 1. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

adopted from [33] and are representative for pediatric patients.
The flow rate on the inlet surface (Fig. 2) was measured by phase-
contrast MRI (PC-MRI). Resistance and capacitance values used in
the three-element Windkessel models were taken from our previ-
ous study [33], in which the total resistance and capacitance values
for the right and left pulmonary arteries were first determined by a
simplified LPN model of the pulmonary circulation to match target
clinical pressures. These total values were then distributed to each
outlet with an assumption of parallel circuits and an area rule [33].
The resistance and capacitance values are documented for all out-
lets in Appendix A. In addition to the FSI simulation, we simulated
the same problem under the rigid wall assumption with identical
inlet and outlet boundary conditions.

The spatially averaged pressure on the inlet surface and two
representative outlet surfaces are plotted over time in Fig. 3. The
rigid wall assumption clearly overestimates the pressure on all
three surfaces. The pressure difference between the FSI and rigid
wall simulations is most pronounced on the inlet surface at peak
systole, at approximately 13 mm Hg. The pressure overestimation
of the rigid wall assumption is consistent with our prior experi-
ences and can be even larger for diseased pulmonary arteries. In
Fig. 4, the wall mesh at early diastole and peak systole are su-
perposed and colored by the wall displacement at peak systole.
The cross-sectional area of a slice in the main pulmonary artery
increased by 18% from diastole to peak systole, which agrees fa-
vorably with our PC-MRI measurement. Fig. 5 depicts the volume
rendering of the velocity magnitude at peak systole. Comparing the
FSI and rigid wall simulations reveals the largest deviation in the
distal branches, where the rigid wall assumption yields a higher
velocity magnitude prediction. The flow rates over time in two out-
let surfaces are plotted in Fig. 2. It reveals that the rigid wall as-
sumption leads to 25% and 17% overpredictions of the flow rates
on the two outlet surfaces, respectively. In addition, the FSI sim-
ulation yields phase shifts of 0.035 s and 0.045 s from the inlet
to the outlet surfaces B and C, respectively. This is in contrast to
the in-phase behavior of the rigid wall simulation, reflecting the
finite wave speed in deformable vessels. Fig. 6, which depicts the
instantaneous wall shear stress (WSS) on the luminal surface at
peak systole, also suggests that the rigid wall assumption over-
predicts the WSS, especially in the distal branches. For example,
near the outlet surface B (refer to Fig. 1 for its location), the spa-
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Fig. 4. The relative wall displacement between peak systole and early diastole.
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Fig. 5. Volume rendering of the velocity magnitude at peak systole.

tially averaged WSS in the rigid wall calculation gives a 52.6% over-
estimation in comparison with the FSI result. The overestimation
of WSS from rigid wall simulations was also previously reported
in cerebral aneurysm simulations [13,34]. Furthermore, we deter-
mined the volume change of the tissue over time in the FSI simula-
tion. The maximum volume difference relative to the initial tissue
volume in one cardiac cycle is 0.52%, indicating that the incom-
pressibility constraint was well satisfied.
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Fig. 6. Wall shear stress (WSS) at peak systole.

6. Conclusion

We have presented a general framework for patient-specific
FSI simulations of blood flow. This involves mesh generation
from medical image data, a VMS formulation for low-order fi-
nite elements and both compressible and incompressible materials,
boundary conditions involving coupled LPN models of the down-
stream circulation, and a time integration scheme offering second-
order accuracy for the entire system.

More specifically, the numerical formulation is constructed from
the unified continuum model, which uses the Gibbs free energy
as the thermodynamic potential and is thus well-behaved in the
incompressible limit [1]. It further makes use of the VMS tech-
nique to provide a simple, stable FSI formulation using low-order
elements. Together, these two attributes of our numerical formu-
lation allow us to model the arterial wall as a fully incompress-
ible material without resorting to mixed elements; the formulation
is particularly well-suited to complex geometries such as those
found in the arterial system. The treatment of our fluid and solid
sub-domains as a single continuum body governed by the same
first-order balance equations facilitates time integration of both
domains in a uniform way. Importantly, while the generalized-«
method has been established as an accurate and robust temporal
scheme for structural dynamics, fluid dynamics, and FSI, the con-
ventional approach has been to collocate pressure at the time step
tn.1. We have fine-tuned the temporal treatment of pressure such
that pressure is evaluated at the intermediate time step no dif-
ferently from velocity. This fine-tuned temporal scheme has been
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demonstrated to yield second-order accuracy for the entire system
[4]. Interestingly, when used in conjunction with first-order struc-
tural dynamics, the generalized-o method has been found to en-
joy better dissipation and dispersion accuracy and avoid the ‘over-
shoot’ phenomenon [26]. These attributes together yield a stable
numerical FSI scheme that not only exhibits higher accuracy, but
also is more convenient in implementation.

In our study, we performed an FSI simulation of a nine-year-
old subject’s healthy pulmonary arterial tree and compared re-
sults against those of a rigid wall simulation. The rigid wall as-
sumption was found to consistently overestimate hemodynamic
quantities, including velocity, pressure, and WSS, compared to FSI.
The differences are sufficiently large to necessitate the use of FSI
for blood flow simulations. Limitations of our current study must
be addressed. First, we followed the procedure introduced in [35,
p. 209] to initialize the FSI simulation. In the diastolic configu-
ration acquired from medical images, there are internal stresses,
commonly known as the prestress, that balance the external blood
pressure and viscous traction. Our initialization procedure does not
account for the zero stress-state of the arterial wall and thus yields
a slightly inflated arterial configuration. In order to obtain more
physiological predictions of biomechanical quantities in our future
FSI work, we plan to incorporate prestress modeling by estimat-
ing the zero-stress state of the arterial wall [36-38]. Additionally,
our simulations have thus far only been performed on an isotropic
mesh. We are currently working on an anisotropic meshing pro-
cedure to enable more wall elements in the radial direction and
boundary layer meshing in the fluid sub-domain without drasti-
cally increasing the number of elements. This improved meshing
capability will also allow us to perform mesh convergence stud-
ies on the vascular FSI problem. Finally, we plan to further im-
prove the arterial wall model by incorporating anisotropy and vis-
coelasticity [15]. To evaluate its predictive capacity in the context
of clinically significant hemodynamic quantities, validation of this
FSI methodology will also be performed using a combination of
clinical and experimental data.
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Appendix A. Outflow boundary conditions

Here we report details of the outflow boundary conditions used
in the simulations. The outlet surfaces are numbered in Fig. A.7.
The values of RE, C, and RY are listed in Table A.1, and the dis-
tal reference pressure Pg(t) is fixed at 9.33 x 103 over time for all
outlets.
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Fig. A.7. The outlet surfaces are identified by the index k.

Table A1
The values of Rf, Ck, and R% used for the outflow
boundary conditions.

RK ck RK
0 8.76 x 10! 7.99 x 10-° 9.18 x 10?
1 7.78 x 10! 8.99 x 10-° 8.16 x 102
2 1.04 x 102 6.71 x 10-° 1.09 x 103
3 2.63 x 102 2.66 x 1073 2.76 x 103
4 2.16 x 102 3.25 x 10% 2.26 x 10°
5 2.36 x 102 2.96 x 10—° 2.48 x 10°
6 3.36 x 102 2.08 x 10-° 3.53 x10°
7 2.51 x 102 2.78 x 10% 2.63 x10°
8 4.72 x 102 1.48 x 10-° 4.95x 103
9 1.91 x 102 3.66 x 1075 2.00 x 10°
10 2.10 x 102 3.33 x 10 2.20 x 10°
11 4.81 x 102 1.45 x 10-° 5.04 x 103
12 4.37 x 102 1.60 x 10-° 4.58 x 103
13 3.71 x 102 1.89 x 102 3.89 x 10°
14 4.16 x 10? 1.68 x 10~ 436 x10°
15 1.54 x 102 4.54 x 1075 1.62 x 103
16 3.60 x 102 1.95 x 10-° 3.77 x 10°
17 2.90 x 10? 2.41 x10°° 3.04x 10°
18 3.03 x 102 2.31 x10°° 3.18 x 10°
19 1.57 x 102 4.45 x 1075 1.65 x 103
20 2.72 x 102 2.57 x 10 2.85x 103
21 1.89 x 102 3.71 x 10-° 1.98 x 103
22 3.44 x 102 2.03 x 10-° 3.61x10°
23 4.23 x 102 1.65x 10> 4.43 x 103
24 3.31 x 10? 2.11 x 10° 3.47 x 10°
25 2.81 x 102 2.49 x 1075 2.94 x10°
26 3.71 x 102 1.88 x 10-° 3.89 x 10°
27 3.19 x 102 2.19 x 10-° 3.35x10°
28 5.20 x 102 1.35 x 10-° 5.45 x 103
29 6.86 x 102 1.02 x 10-° 7.19 x 103
30 3.08 x 102 2.27 x 1073 3.23x10°
31 2.90 x 102 2.41 x 10-° 3.04 x 103
32 2.25 x 102 3.10 x 105 2.36x10°
33 3.47 x 102 2.02 x 10-° 3.63 x 10°
34 3.52 x 10? 1.99 x 10-° 3.69 x 10°
35 5.54 x 102 1.26 x 10-° 5.81 x 103
36 5.49 x 102 1.27 x 1075 5.76 x 10°
37 4.67 x 102 1.50 x 10-° 4.90 x 103
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