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a b s t r a c t 

In this work, we present a computational fluid-structure interaction (FSI) study for a healthy patient- 

specific pulmonary arterial tree using the unified continuum and variational multiscale (VMS) formulation 

we previously developed. The unified framework is particularly well-suited for FSI, as the fluid and solid 

sub-problems are addressed in essentially the same manner and can thus be uniformly integrated in time 

with the generalized- α method. In addition, the VMS formulation provides a mechanism for large-eddy 

simulation in the fluid sub-problem and pressure stabilization in the solid sub-problem. The FSI problem 

is solved in a quasi-direct approach, in which the pressure and velocity in the unified continuum body 

are first solved, and the solid displacement is then obtained via a segregated algorithm and prescribed as 

a boundary condition for the mesh motion. Results of the pulmonary arterial FSI simulation are presented 

and compared against those of a rigid wall simulation. 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

We recently derived a unified continuum formulation based on

the Gibbs free energy in order to construct a well-behaved con-

tinuum model in both compressible and incompressible regimes

[1] . This modeling approach naturally recovers important contin-

uum models, including viscous fluids and hyperelastic solids. Im-

portantly, it bridges previously diverging approaches in compu-

tational fluid dynamics (CFD) and computational solid dynamics

(CSD). The residual-based VMS formulation can be applied to the

unified continuum body. It yields a large-eddy simulation proce-

dure for the incompressible Navier-Stokes equations [2] , which per-

forms equally well for laminar, transitional, and fully turbulent

flows [3,4] . On the other hand, when applied to the hyperelas-

tic model, it leads to a numerical formulation for finite elasticity

that allows equal-order interpolation of all fields. This is particu-

larly beneficial for problems with complex geometries and bears

similarity to some recent works [5–8] . In our opinion, the uni-

fied concept gives rise to promising opportunities for designing

new numerical methodologies. Recent advances include the devel-
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pment of a provably energy-stable scheme for incompressible fi-

ite elasticity [9] and preconditioning techniques for both solids

10] and fluids [4] . The benefit of the unified modeling framework

s further evident in the realm of multiphysics coupled problems.

ince the CFD and CSD implementations only differ in constitu-

ive routines, monolithic FSI coupling is dramatically simplified.

urthermore, in comparison with conventional FSI modeling ap-

roaches [11–14] , the new framework allows one to simulate struc-

ural dynamics with a Poisson’s ratio up to 0.5, using either the

ultiscale/stabilized formulation or inf-sup stable methods. Since

oft tissues typically exhibit nearly incompressible behavior under

hysiologic loading [15] , the proposed FSI modeling framework is

xtremely favorable for computational biomechanics and cardio-

ascular hemodynamics. 

In this work, we present a suite of FSI modeling techniques for

ardiovascular applications. In addition to the unified FSI model-

ng framework, we discuss mesh generation from medical image

ata as well as a modular approach for implicit coupling of lumped

arameter network (LPN) models with the three-dimensional (3D)

omain [16] . The efficacy of the proposed methodology is demon-

trated through a numerical study in the pulmonary arteries of a

ediatric patient. The FSI results are directly compared to those of
 rigid wall simulation. 

https://doi.org/10.1016/j.mechrescom.2020.103556
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. The unified continuum formulation for fluid-structure 

nteraction 

In this section, we present the governing equations for the

SI problem using the arbitrary Lagrangian-Eulerian (ALE) method

11,17] . Here, and in what follows, we use superscripts f, s , and m

o indicate quantities related to the fluid, solid, and ALE mesh mo-

ion in the fluid sub-domain. 

.1. Kinematics on moving domains 

We first consider the domain occupied by the continuum body

n the referential frame �χ ⊂ R 
3 , an open and bounded set. For

SI problems, �χ admits a non-overlapping subdivision, �χ =
f 
χ ∪ �s 

χ, ∅ = � f 
χ ∩ �s 

χ, in which � f 
χ and �s 

χ represent the sub-

omains occupied by the fluid and solid, respectively. Following

he notation used in [1] , the referential-to-Eulerian map at time

 is denoted ˆ ϕ t (·) = ˆ ϕ (·, t) and maps �χ to �x (t) = ˆ ϕ 

(
�χ, t 

)
. We

ish to think of �x ( t ) as the current ‘spatial’ domain where the

uid mechanics problem can be conveniently formulated. Corre-

pondingly, the current configuration admits a subdivision, �x (t) =
f 
x (t) ∪ �s 

x (t) , ∅ = � f 
x (t) ∩ �s 

x (t) . Conceptually, �χ is fixed in time

nd is associated with a computational mesh. Therefore, ˆ ϕ de-

cribes the motion of the mesh, and we can correspondingly define

he mesh displacement and velocity as 

ˆ 
 

m 

:= ˆ ϕ ( χ, t) − ˆ ϕ ( χ, 0) = ˆ ϕ ( χ, t) − χ, (2.1)

ˆ 
 

m 

:= 

∂ ̂  ϕ 

∂t 

∣∣∣∣
χ

= 

∂ ̂  U 

m 

∂t 

∣∣∣∣
χ

. (2.2) 

ne may conveniently push them forward to the current configu-

ation as ˆ u 
m 

:= ˆ U 

m ◦ ˆ ϕ 

−1 
t and ˆ v m 

:= ˆ V 
m ◦ ˆ ϕ 

−1 
t . 

The initial position of point x ∈ �x ( t ) is denoted as X ∈ �X ( t ),

here �X ( t ) is the Lagrangian domain. The smooth Lagrangian-to-

ulerian map at time t is denoted ϕ t (·) = ϕ (·, t) and maps �X ( t )

o �x ( t ). Then the displacement, velocity, deformation gradient, the

acobian determinant, and the right Cauchy-Green tensor of the

aterial particle initially located at X are defined as 

 := ϕ ( X , t) − ϕ ( X , 0) = ϕ ( X , t) − X , 

 := 

∂ ϕ 

∂t 

∣∣∣∣
X 

= 

∂ U 

∂t 

∣∣∣∣
X 

= 

d U 

dt 
, 

 := 

∂ ϕ 

∂ X 

, J := det ( F ) , C := F T F . 

he displacement and velocity can be similarly pushed forward to

he current configuration as u := U ◦ ϕ 
−1 
t and v := V ◦ ϕ 

−1 
t . We also

ntroduce the distortional parts of F and C as 

˜ 
 := J −

1 
3 F , ˜ C := J −

2 
3 C . 

.2. Balance and mesh motion equations 

We invoke Stokes’ hypothesis and further consider the isother-

al condition on the continuum body, allowing the energy equa-

ion to be decoupled from the mechanical system. The FSI system

an thus be viewed as a two-component continuum body governed

y the following momentum and mass balance equations, 

 = ρ(p) 
∂ v 
∂t 

∣∣∣∣
χ

+ ρ(p) 
(
v − ˆ v m 

)
· ∇ x v − ∇ x · σde v + ∇ x p − ρ(p) b , 

 = βθ (p) 
∂ p 

∂t 

∣∣∣∣
χ

+ βθ (p) 
(
v − ˆ v m 

)
· ∇ x p + ∇ x · v , 
n

hich are posed in �x ( t ). In the above equations, ρ is the density,

 is the pressure, σdev is the deviatoric part of the Cauchy stress,

 is the body force per unit mass, and βθ is the isothermal com-

ressibility factor. The constitutive laws of the material are dictated

y the Gibbs free energy G ( ̃ C , p) , which was previously shown to

dopt a decoupled structure [1, p. 559] , 

 ( ̃  C , p) = G ich ( ̃  C ) + G v ol (p) , 

here G ich and G vol represent the isochoric and volumetric parts of

he free energy, respectively. Given the free energy, the constitutive

elations can be written as 

(p) := 

(
dG v ol 
dp 

)−1 

, βθ (p) := 

1 

ρ

dρ

dp 
= −d 2 G v ol 

dp 2 
/ 
dG v ol 
dp 

, 

de v := J −1 ˜ F 
(
P : ˜ S 

)
˜ F 
T + 2 ̄μdev [ d ] , 

 := I − 1 

3 
C −1 

�C , ˜ S := 2 
∂ ( ρ0 G ) 

∂ ̃  C 
, 

 := 

1 

2 

(∇ x v + ∇ x v T 
)
, 

here I is the fourth-order identity tensor, and ρ0 is the density

n the Lagrangian domain. 

In the solid sub-domain, we consider a purely elastic mate-

ial and choose the referential configuration to be identical to the

agrangian configuration. Consequently, the balance equations in
s 
x (t) can be stated as 

 = ρs (p s ) 
∂ v s 

∂t 

∣∣∣∣
χ= X 

− ∇ x · σs 
de v + ∇ x p 

s − ρs (p s ) b , 

 = βs 
θ (p 

s ) 
∂ p s 

∂t 

∣∣∣∣
χ= X 

+ ∇ x · v s . 

n the fluid sub-domain, the free energy contains no mechani-

al contribution, so σ f 

de v = 2 ̄μdev [ d ] . We further assume incom-

ressible flow, which implies ρ f (p f ) = ρ f and β f 

θ
= 0 . The balance

quations in � f 
x (t) are then 

 = ρ f ∂ v f 

∂t 

∣∣∣∣
χ

+ ρ f 
(
v f − ˆ v m 

)
· ∇ x v f − ∇ x · σ f 

de v + ∇ x p 
f − ρ f b , 

 = ∇ x · v f . 

n this work, we use the pseudo-linear-elasticity algorithm to

odel the ALE mesh motion [18,19] . Consider a time instant
˜  < t, which is often chosen to be the previous time step in

umerical computations. Given the identity ˆ ϕ ( χ, t) = ˆ ϕ ( χ, ̃  t ) +
ˆ  ( χ, t) − ˆ U ( χ, ̃  t ) , we introduce ˜ u m 

(
ˆ ϕ ( χ, ̃  t ) , t 

)
:= ˆ U ( χ, t) − ˆ U ( χ, ̃  t ) .

he mesh velocity ˆ v m 

is then completely determined by ˜ u m ( ̃ x , t)

nd the relation in (2.2) . The mesh motion is solved via the fol-

owing linear elastostatic problem posed in � f 
x ( ̃ t ) , 

 ̃ x ·
(
μm 

(
∇ ̃ x ̃  u 

m + 

(∇ ̃ x ̃  u 

m 
)T ) + λm ∇ ̃ x · ˜ u 

m 

I 

)
= 0 . 

he boundary of the fluid sub-domain can be decomposed into

he luminal, inlet, and outlet surfaces. On the luminal surface, the

esh motion follows the motion of the solid body and is therefore

ubject to a Dirichlet boundary condition; on the inlet and out-

et surfaces, we prescribe homogeneous Dirichlet boundary condi-

ions to fix the mesh. Furthermore, to enhance the robustness of

he mesh moving algorithm, the Lamé parameters μm and λm are

hosen to be proportional to the inverse of the Jacobian determi-

ant of the element mapping [11,19] . 
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3. Numerical formulation 

3.1. Solid sub-problem 

Let S s u , S s v , and S s p denote the finite dimensional trial so-

lution spaces for the solid displacement, velocity, and pressure

in the current solid sub-domain, respectively; let V s v , and V s p
represent the test function spaces; let 	s 

x ,h 
(t) denote the Neu-

mann part of the solid boundary with traction h s prescribed. The

spatial discretization for the solid body is based on the varia-

tional multiscale formulation [1] , which is stated as follows: Find{
u s 
h 
(t) , p s 

h 
(t) , v s 

h 
(t) 

}
∈ S s u × S s p × S s v such that for ∀ { w 

s , w 
s } ∈ V s v ×

V s p , 

0 = 

d u s 
h 

dt 
− v s h , 

0 = 

∫ 
�s 

x (t) 
w 

s · ρs (p s h ) 
d v s 

h 

dt 
d�x + 

∫ 
�s 

x (t) 
∇ x w 

s : σs 
de v ( u 

s 
h ) d�x 

−
∫ 
�s 

x (t) 
∇ x · w 

s p s h d�x −
∫ 
�s 

x (t) 
w 

s · ρs (p s h ) b d�x −
∫ 
	s 

x ,h 
(t) 

w 
s · h s d	x , 

0 = 

∫ 
�s 

x (t) 
w 

s 

(
βs 

θ (p 
s 
h ) 

dp s 
h 

dt 
+ ∇ x · v s h 

)
d �x −

∫ 
�′ s 

x (t) 
∇ x w 

s · v s ′ d �x , 

v s ′ := −τs 
M 

(
ρs (p s h ) 

d v s 
h 

dt 
− ∇ x · σs 

de v ( u 
s 
h ) + ∇ x p 

s 
h − ρs (p s h ) b 

)
. 

In the above formulation, the parameter τs 
M 

is associated with the

subgrid-scale models and is defined as 

τs 
M 

= τ s 
M 
I , τ s 

M 
= c m 

�x 

cρs 
, 

where �x is the diameter of the circumscribing sphere of the

tetrahedral element, c is the maximum wave speed in the solid

material, and c m is a non-dimensional scalar [5] . This formulation

with a single stabilization parameter is also known as the Pressure-

Stabilizing/Petrov-Galerkin (PSPG) formulation, which has been ex-

tensively studied and applied in CFD [11,20] . The formula of c is

estimated based on a small-strain isotropic linear elastic material.

For compressible materials, c is given by the bulk wave speed, i.e.,

c := 

√ 

λs + 2 μs /ρs 
0 
; for incompressible materials, c is given by the

shear wave speed, i.e., c := 

√ 

μs /ρs 
0 
[1,6] . In the above definitions,

λs and μs are the Lamé parameters. 

3.2. Mesh motion of the fluid sub-domain 

Let S m 

˜ u 
denote the trial solution space of the mesh displace-

ment ˜ u m 

h defined on the domain � f 
x ( ̃ t ) , and let V m 

˜ u 
denote the cor-

responding test function space. The variational formulation of the

problem is stated as follows. Find ˜ u m 

h ∈ S m 

˜ u 
such that for ∀ ̃  w 

m ∈
V m 

˜ u 
, ∫ 

� f 
x ( ̃ t ) 

∇ 
s 
˜ x ̃  w 

m 

: 
(
2 μm ∇ 

s 
˜ x ̃  u 

m 

h 

)
+ ∇ ̃ x · ˜ w 

m λm ∇ ̃ x · ˜ u 

m 

h d�x = 0 . 

3.3. Fluid sub-problem 

Let S f v and S 
f 
p denote the trial solution space of the fluid ve-

locity and pressure; let V f p and V 
f 
v be the test function spaces; let

	 f 

x ,h 
(t) denote the Neumann part of the fluid boundary with trac-

tion h f prescribed. The VMS formulation for the fluid sub-problem

can be stated as follows. Find 

{ 

p 
f 

h 
(t) , v f 

h 
(t) 

} 

∈ S f p × S f v such that
or ∀ 

{
w 

f , w 
f 
}

∈ V f v × V f p , 

 = 

∫ 
� f 

x (t) 
w 

f ·

⎛ 

⎝ ρ f 
∂ v f 

h 

∂t 

∣∣∣∣∣
χ

+ ρ f 
(
v f 
h 

− ˆ v m 

h 

)
· ∇ x v f h 

⎞ 

⎠ d�x 

−
∫ 
� f 

x (t) 
∇ x · w 

f p f 
h 
d�x + 

∫ 
� f 

x (t) 
∇ x w 

f : σ f 

de v ( v 
f 

h 
) d�x 

−
∫ 
� f 

x (t) 
w 

f · ρ f b d�x −
∫ 
	 f 

x ,h 
(t) 

w 
f · h f d	x 

−
∫ 
�′ f 

x (t) 
∇ x w 

f : 
(
ρ f v f ′ �

(
v f 
h 

− ˆ v m 

h 

))
d�x 

+ 

∫ 
�′ f 

x (t) 
∇ x v f h : 

(
ρ f w 

f 
� v f ′ 

)
− ∇ x w 

f : 
(
ρ f v f ′ � v f ′ 

)
d�x 

−
∫ 
�′ f 

x (t) 
∇ x · w 

f p f ′ d�x , 

 = 

∫ 
� f 

x (t) 
w 

f ∇ x · v f h d�x −
∫ 
�′ f 

x (t) 
∇ x w 

f · v f ′ d�x , 

 
f ′ := −τ f 

M 

(
ρ f 

∂ v f 
h 

∂t 

∣∣∣∣∣
χ

+ ρ f 
(∇ x v f h 

)(
v f 
h 

− ˆ v m 

h 

)
+ ∇ x p 

f 

h 

− ∇ x · σ f 

de v ( v 
f 

h 
) − ρ f b 

)
, 

p f ′ := −τ f 
C 
∇ x · v f h , 

f 
M 
:= τ f 

M 
I , 

f 
M 
:= 

1 

ρ f 

( 

C T 
�t 2 

+ 

(
v f 
h 

− ˆ v m 

h 

)
· G 

(
v f 
h 

− ˆ v m 

h 

)
+ C I 

(
μ̄

ρ f 

)2 

G : G 

) − 1 
2 

, 

f 
C 
:= 

1 

τM tr G 

, 

 i j := 

3 ∑ 

k =1 

∂ξk 
∂x i 

M kl 

∂ξl 
∂x j 

, 

 = [ M kl ] = 

3 
√ 

2 

2 

[ 

2 1 1 
1 2 1 
1 1 2 

] 

, 

 : G := 

3 ∑ 

i, j=1 

G i j G i j , 

r G := 

3 ∑ 

i =1 

G ii . 

n the above, ξ = { ξi } 3 i =1 represents the natural coordinates in the

arent domain. The values of C I and C T are chosen to be 36 and 4

n this study. M is introduced for simplex elements to give a node-

umbering-invariant definition of τ f 
M 

and τ f 
C 

[21] . 

.4. Boundary conditions 

For the solid sub-problem, we prescribe homogeneous Dirichlet

oundary conditions on the annulus surfaces at the inlet and out-

ets and zero traction on the external surface of the arterial wall. 

For the fluid sub-problem, we prescribe the no-slip boundary

ondition on the luminal surface. On the inlet surface, we prescribe

 Poiseuille velocity profile scaled by a periodic volumetric flow

aveform. A special mapping technique introduced in [22] is uti-

ized to generate the inflow profile. To achieve physiological flows

nd pressures, we couple LPN models to the outlet surfaces as trac-

ion boundary conditions mimicking the effect of the downstream

irculation. For each outlet surface 	k with unit outward normal
out 
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Fig. 1. The mesh for the pulmonary arterial wall (blue) and lumen (red), with de- 

tailed views at the inlet and a representative outlet. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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T  
ector n k , where k is the outlet surface index, we prescribe 

 

f = −P k (t) n 
k + βρ f 

{(
v f 
h 

− ˆ v m 

h 

)
· n 

k 
}

−v f 
h 
, (3.1) 

here P k ( t ) is the spatially averaged normal component of the sur-

ace traction on 	k 
out , β is a positive coefficient between 0.0 and

.0, and (
v f 
h 

− ˆ v m 

h 

)
· n 

k 
}

− := 

{(
v f 
h 

− ˆ v m 

h 

)
· n 

k if 
(
v f 
h 

− ˆ v m 

h 

)
· n 

k < 0 , 

0 otherwise . 

ackflow divergence is a well-known issue in cardiovascular flow

imulations and can arise from either bulk flow reversal in both

ealthy and diseased states, or local flow reversal as local velocity

uctuations are convected out of the computational domain. The

econd term in (3.1) introduces energy dissipation in the case of

ackflow and is critical for maintaining the overall numerical sta-

ility. It can be shown that taking β = 1 . 0 guarantees energy sta-

ility for the numerical scheme. While this backflow stabilization

erm adds a convective traction to the outlet surface and is there-

ore intrusive to the flow field, its impact on the flow field can

e minimized by choosing β to be smaller than 1.0. Furthermore,

dding only a fraction of this convective traction allows for im-

roved stability at larger time steps. In this work, β is fixed to be

.2 [23] . We also note that there exist several approaches for pre-

enting backflow divergence. For a survey on this topic, interested

eaders are referred to [24] . 

Given a LPN model, P k ( t ) can be implicitly determined from the

ow rate Q 
k (t) := 

∫ 
	k 
out 

v f · n k d	. In this study, we consider the

hree-element Windkessel model, 

d
k (t) 

dt 
= −
k (t) 

R k 
d 
C k 

+ 

Q 
k (t) 

C k 
, (3.2) 

 
k (t) = R k p Q 

k (t) + 
k (t) + P k d (t) . (3.3)

n (3.2) –(3.3) , R k p , C 
k , and R k 

d 
respectively represent the proximal

esistance, compliance, and distal resistance of the downstream

asculature; 
k represents the pressure drop across the distal re-

istance; P k 
d 

denotes the distal reference pressure. Although one

ay obtain an analytical representation of P k in terms of Q 
k for

his model, we solve the ordinary differential Eqs. (3.2) –(3.3) for

 
k ( t ) via the fourth-order Runge-Kutta method [16] . This approach

nables the solution of more complex LPN models with satisfactory

umerical robustness. 

.5. Solution strategies for the coupled problem 

The semi-discrete problem stated in Sections 3.1 –3.3 is dis-

retized in time by the generalized- α method [25,26] . We advocate
ollocating the pressure at the intermediate time step to achieve

econd-order temporal accuracy [1] . This is in contrast to the con-

entional approach, which we have recently found to be only first-

rder accurate for pressure [27] . 

For the fully discrete problem in the solid sub-domain, block

actorization can be performed on the resulting tangent matrix

1,6] , allowing the consistent Newton-Raphson procedure to be

erformed in a segregated manner. In this approach, the velocity

nd pressure are first solved implicitly. The solid displacement is

hen explicitly updated using the velocity. This segregated solution

rocedure naturally leads to a coupling algorithm for the FSI sys-

em. In each Newton-Raphson iteration, the velocity, pressure, and

olid displacement are solved in the segregated manner just de-

cribed; the solid displacement is prescribed as the Dirichlet data

n the luminal surface for the ALE mesh motion; the mesh veloc-

ty is then computed for use in the fluid sub-problem in the next

ewton-Raphson iteration. This coupling strategy should still be

onsidered a monolithic approach, as we seek solutions that min-

mize the residual of the whole FSI system. It is, however, closely

elated to the ‘quasi-direct’ coupling approach [11,28] . 

The Newton-Raphson procedure involves solving a matrix prob-

em with a two-by-two block structure. In particular, the outflow

oundary condition (3.1) contributes a weighted sum of rank-one

atrices to the tangent matrix [4] . These rank-one matrices are

ense and necessitate a non-trivial assembly procedure in the fi-

ite element code. Although a “matrix-free” technique was previ-

usly suggested to handle the rank-one modifications [29, p. 3547] ,

t may not offer the most efficient or scalable performance due to

he absence of a preconditioner. In this work, we assembled the

ank-one matrices into the tangent matrix to enable precondition-

ng. The system is preconditioned by our nested block precondi-

ioner, which has been demonstrated to be robust, efficient, and

calable for both hyperelasticity [10] and viscous fluids [4] . 

. Model construction and mesh generation from 

atient-specific medical image data 

Using the open source software package SimVascular (SV)

30,31] , we generated a healthy patient-specific pulmonary arterial

odel from clinically available magnetic resonance imaging (MRI)

ata of a nine-year-old subject with congenital heart defects in the

ystemic circulation. All retrospective clinical data collection was

pproved by the Institutional Review Board for modeling purposes.

ur steps constitute a complete pipeline for robust vascular wall

the solid sub-domain) and luminal (the fluid sub-domain) mesh

eneration from medical image data for FSI modeling of blood

ow. 

Path points along the centerlines of all arteries of interest were

rst manually identified. Two-dimensional (2D) image segmenta-

ions were generated along the vessel centerlines and subsequently

ofted into a 3D model of the arterial lumen. To generate a model

f the arterial wall, we adopted the common assumption that the

rterial wall thickness is approximately ten percent of the effective

umen diameter [15] . Therefore, we scaled each of the 2D segmen-

ations such that the distance between every segmentation point

nd the centroid was increased by twenty percent. An ‘enlarged’

odel encompassing both the arterial wall and lumen was thereby

enerated by lofting these scaled segmentations. Finally, the model

f the arterial wall itself was obtained via a boolean operation

rovided by Parasolid (Siemens PLM Software, Plano, TX, USA), in

hich the previously generated lumen model was subtracted from

he enlarged model. Our approach led to a physiologically accurate

eometric model with variable wall thickness. With the arterial

all and lumen models constructed, we meshed the solid and fluid

omains using MeshSim (Simmetrix Inc., Clifton Park, NY, USA) and

etGen [32] , respectively, with linear tetrahedral elements, ensur-



103560 J. Liu, W. Yang and I.S. Lan et al. / Mechanics Research Communications 107 (2020) 103556 

Fig. 2. (a) The volumetric flow rates over time in one cardiac cycle on surfaces A 

(red), B (green), and C (blue), where the waveform for A was used to prescribe the 

velocity on the inlet surface. The flow rates on outlet surfaces B and C are calcu- 

lated from simulation results and plotted in solid and dashed lines for FSI and rigid 

wall simulations, respectively. The locations of the surfaces are indicated in Fig. 1 . 

(b) Detailed view of the flow rates on surfaces B and C. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The pressure over time in one cardiac cycle on the surfaces A (red), B 

(green), and C (blue). Results from the FSI and rigid wall simulations are plotted 

in solid and dashed lines, respectively. The locations of the three surfaces are indi- 

cated in Fig. 1 . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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ing that the luminal surface mesh remained identical in both do-

mains. In particular, we chose the isotropic mesh size to ensure

at least two layers of elements along the radial direction. The re-

sulting mesh ( Fig. 1 ) consisted of 7.0 ×10 5 elements in the fluid

sub-domain and 7.4 ×10 5 elements in the solid sub-domain. 

5. Computational results 

Unless otherwise specified, all parameters and results are pre-

sented in the centimeter-gram-second units. 

The fluid density and viscosity were set to be 1.06 and 0.04, re-

spectively. The arterial wall was modeled as a fully incompressible

Neo-Hookean material with the following form for the Gibbs free

energy, 

G 

(
˜ C , p 

)
= 

μs 

2 ρs 
0 

(
tr ̃ C − 3 

)
+ 

p 

ρs 
0 

. 

The density ρs 
0 

and shear modulus μs of the arterial wall were

chosen to be 1.0 and 6.7 ×10 5 . The material parameters are
dopted from [33] and are representative for pediatric patients.

he flow rate on the inlet surface ( Fig. 2 ) was measured by phase-

ontrast MRI (PC-MRI). Resistance and capacitance values used in

he three-element Windkessel models were taken from our previ-

us study [33] , in which the total resistance and capacitance values

or the right and left pulmonary arteries were first determined by a

implified LPN model of the pulmonary circulation to match target

linical pressures. These total values were then distributed to each

utlet with an assumption of parallel circuits and an area rule [33] .

he resistance and capacitance values are documented for all out-

ets in Appendix A . In addition to the FSI simulation, we simulated

he same problem under the rigid wall assumption with identical

nlet and outlet boundary conditions. 

The spatially averaged pressure on the inlet surface and two

epresentative outlet surfaces are plotted over time in Fig. 3 . The

igid wall assumption clearly overestimates the pressure on all

hree surfaces. The pressure difference between the FSI and rigid

all simulations is most pronounced on the inlet surface at peak

ystole, at approximately 13 mm Hg. The pressure overestimation

f the rigid wall assumption is consistent with our prior experi-

nces and can be even larger for diseased pulmonary arteries. In

ig. 4 , the wall mesh at early diastole and peak systole are su-

erposed and colored by the wall displacement at peak systole.

he cross-sectional area of a slice in the main pulmonary artery

ncreased by 18% from diastole to peak systole, which agrees fa-

orably with our PC-MRI measurement. Fig. 5 depicts the volume

endering of the velocity magnitude at peak systole. Comparing the

SI and rigid wall simulations reveals the largest deviation in the

istal branches, where the rigid wall assumption yields a higher

elocity magnitude prediction. The flow rates over time in two out-

et surfaces are plotted in Fig. 2 . It reveals that the rigid wall as-

umption leads to 25% and 17% overpredictions of the flow rates

n the two outlet surfaces, respectively. In addition, the FSI sim-

lation yields phase shifts of 0.035 s and 0.045 s from the inlet

o the outlet surfaces B and C, respectively. This is in contrast to

he in-phase behavior of the rigid wall simulation, reflecting the

nite wave speed in deformable vessels. Fig. 6 , which depicts the

nstantaneous wall shear stress (WSS) on the luminal surface at

eak systole, also suggests that the rigid wall assumption over-

redicts the WSS, especially in the distal branches. For example,

ear the outlet surface B (refer to Fig. 1 for its location), the spa-



J. Liu, W. Yang and I.S. Lan et al. / Mechanics Research Communications 107 (2020) 103556 103561 

Fig. 4. The relative wall displacement between peak systole and early diastole. 

Fig. 5. Volume rendering of the velocity magnitude at peak systole. 
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Fig. 6. Wall shear stress (WSS) at peak systole. 
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ially averaged WSS in the rigid wall calculation gives a 52.6% over-

stimation in comparison with the FSI result. The overestimation

f WSS from rigid wall simulations was also previously reported

n cerebral aneurysm simulations [13,34] . Furthermore, we deter-

ined the volume change of the tissue over time in the FSI simula-

ion. The maximum volume difference relative to the initial tissue

olume in one cardiac cycle is 0.52%, indicating that the incom-

ressibility constraint was well satisfied. 
. Conclusion 

We have presented a general framework for patient-specific

SI simulations of blood flow. This involves mesh generation

rom medical image data, a VMS formulation for low-order fi-

ite elements and both compressible and incompressible materials,

oundary conditions involving coupled LPN models of the down-

tream circulation, and a time integration scheme offering second-

rder accuracy for the entire system. 

More specifically, the numerical formulation is constructed from

he unified continuum model, which uses the Gibbs free energy

s the thermodynamic potential and is thus well-behaved in the

ncompressible limit [1] . It further makes use of the VMS tech-

ique to provide a simple, stable FSI formulation using low-order

lements. Together, these two attributes of our numerical formu-

ation allow us to model the arterial wall as a fully incompress-

ble material without resorting to mixed elements; the formulation

s particularly well-suited to complex geometries such as those

ound in the arterial system. The treatment of our fluid and solid

ub-domains as a single continuum body governed by the same

rst-order balance equations facilitates time integration of both

omains in a uniform way. Importantly, while the generalized- α
ethod has been established as an accurate and robust temporal

cheme for structural dynamics, fluid dynamics, and FSI, the con-

entional approach has been to collocate pressure at the time step

 n +1 . We have fine-tuned the temporal treatment of pressure such

hat pressure is evaluated at the intermediate time step no dif-

erently from velocity. This fine-tuned temporal scheme has been
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Fig. A.7. The outlet surfaces are identified by the index k . 

Table A.1 

The values of R k p , C 
k , and R k 

d 
used for the outflow 

boundary conditions. 

k R k p C k R k 
d 

0 8.76 × 10 1 7 . 99 × 10 −5 9.18 × 10 2 

1 7.78 × 10 1 8 . 99 × 10 −5 8.16 × 10 2 

2 1.04 ×10 2 6 . 71 × 10 −5 1.09 ×10 3 

3 2.63 × 10 2 2 . 66 × 10 −5 2.76 × 10 3 

4 2.16 × 10 2 3 . 25 × 10 −5 2.26 × 10 3 

5 2.36 × 10 2 2 . 96 × 10 −5 2.48 × 10 3 

6 3.36 × 10 2 2 . 08 × 10 −5 3.53 × 10 3 

7 2.51 × 10 2 2 . 78 × 10 −5 2.63 × 10 3 

8 4.72 × 10 2 1 . 48 × 10 −5 4.95 × 10 3 

9 1.91 × 10 2 3 . 66 × 10 −5 2.00 × 10 3 

10 2.10 ×10 2 3 . 33 × 10 −5 2.20 ×10 3 

11 4.81 × 10 2 1 . 45 × 10 −5 5.04 ×10 3 

12 4.37 × 10 2 1 . 60 × 10 −5 4.58 × 10 3 

13 3.71 × 10 2 1 . 89 × 10 −5 3.89 × 10 3 

14 4.16 × 10 2 1 . 68 × 10 −5 4.36 × 10 3 

15 1.54 × 10 2 4 . 54 × 10 −5 1.62 × 10 3 

16 3.60 ×10 2 1 . 95 × 10 −5 3.77 × 10 3 

17 2.90 ×10 2 2 . 41 × 10 −5 3.04 ×10 3 

18 3.03 ×10 2 2 . 31 × 10 −5 3.18 × 10 3 

19 1.57 × 10 2 4 . 45 × 10 −5 1.65 × 10 3 

20 2.72 × 10 2 2 . 57 × 10 −5 2.85 × 10 3 

21 1.89 × 10 2 3 . 71 × 10 −5 1.98 × 10 3 

22 3.44 × 10 2 2 . 03 × 10 −5 3.61 × 10 3 

23 4.23 × 10 2 1 . 65 × 10 −5 4.43 × 10 3 

24 3.31 × 10 2 2 . 11 × 10 −5 3.47 × 10 3 

25 2.81 × 10 2 2 . 49 × 10 −5 2.94 × 10 3 

26 3.71 × 10 2 1 . 88 × 10 −5 3.89 × 10 3 

27 3.19 × 10 2 2 . 19 × 10 −5 3.35 × 10 3 

28 5.20 ×10 2 1 . 35 × 10 −5 5.45 × 10 3 

29 6.86 × 10 2 1 . 02 × 10 −5 7.19 × 10 3 

30 3.08 ×10 2 2 . 27 × 10 −5 3.23 × 10 3 

31 2.90 ×10 2 2 . 41 × 10 −5 3.04 ×10 3 

32 2.25 × 10 2 3 . 10 × 10 −5 2.36 × 10 3 

33 3.47 × 10 2 2 . 02 × 10 −5 3.63 × 10 3 

34 3.52 × 10 2 1 . 99 × 10 −5 3.69 × 10 3 

35 5.54 × 10 2 1 . 26 × 10 −5 5.81 × 10 3 

36 5.49 × 10 2 1 . 27 × 10 −5 5.76 × 10 3 

37 4.67 × 10 2 1 . 50 × 10 −5 4.90 ×10 3 

R

 

 

 

 

 

 

demonstrated to yield second-order accuracy for the entire system

[4] . Interestingly, when used in conjunction with first-order struc-

tural dynamics, the generalized- α method has been found to en-

joy better dissipation and dispersion accuracy and avoid the ‘over-

shoot’ phenomenon [26] . These attributes together yield a stable

numerical FSI scheme that not only exhibits higher accuracy, but

also is more convenient in implementation. 

In our study, we performed an FSI simulation of a nine-year-

old subject’s healthy pulmonary arterial tree and compared re-

sults against those of a rigid wall simulation. The rigid wall as-

sumption was found to consistently overestimate hemodynamic

quantities, including velocity, pressure, and WSS, compared to FSI.

The differences are sufficiently large to necessitate the use of FSI

for blood flow simulations. Limitations of our current study must

be addressed. First, we followed the procedure introduced in [35,

p. 209] to initialize the FSI simulation. In the diastolic configu-

ration acquired from medical images, there are internal stresses,

commonly known as the prestress, that balance the external blood

pressure and viscous traction. Our initialization procedure does not

account for the zero stress-state of the arterial wall and thus yields

a slightly inflated arterial configuration. In order to obtain more

physiological predictions of biomechanical quantities in our future

FSI work, we plan to incorporate prestress modeling by estimat-

ing the zero-stress state of the arterial wall [36–38] . Additionally,

our simulations have thus far only been performed on an isotropic

mesh. We are currently working on an anisotropic meshing pro-

cedure to enable more wall elements in the radial direction and

boundary layer meshing in the fluid sub-domain without drasti-

cally increasing the number of elements. This improved meshing

capability will also allow us to perform mesh convergence stud-

ies on the vascular FSI problem. Finally, we plan to further im-

prove the arterial wall model by incorporating anisotropy and vis-

coelasticity [15] . To evaluate its predictive capacity in the context

of clinically significant hemodynamic quantities, validation of this

FSI methodology will also be performed using a combination of

clinical and experimental data. 
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Appendix A. Outflow boundary conditions 

Here we report details of the outflow boundary conditions used

in the simulations. The outlet surfaces are numbered in Fig. A.7 .

The values of R k p , C 
k , and R k 

d 
are listed in Table A.1 , and the dis-

tal reference pressure P k 
d 
(t) is fixed at 9.33 ×10 3 over time for all

outlets. 
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