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Abstract: This paper considers the self-localization of a tethered drone without using a cable-tension
force sensor in GPS-denied environments. The original problem is converted to a state-estimation
problem, where the cable-tension force and the three-dimensional position of the drone with respect
to a ground platform are estimated using an extended Kalman filter (EKF). The proposed approach
uses the data reported by the onboard electric motors (i.e., the pulse width modulation (PWM)
signals), accelerometers, gyroscopes, and altimeter, embedded in the commercial-of-the-shelf (COTS)
inertial measurement units (IMU). A system-identification experiment was conducted to determine
the model that computes the drone thrust force using the PWM signals. The proposed approach
was compared with an existing work that assumes known cable-tension force. Simulation results
show that the proposed approach produces estimates with less than 0.3-m errors when the actual
cable-tension force is greater than 1 N.

Keywords: tethered drone; kalman filtering; self-localization; GPS-denied navigation

1. Introduction

Tethered drones have been witnessed in various applications, such as surveillance [1-4],
high-rise building cleaning [5,6], infrastructure monitoring [7], wind turbine cleaning and
de-icing [8,9], and firefighting [10]. Although the tether would limit the reachable space
of the drone compared to a free-flying drone, it offers unique persistent and secured data
transmission link and electricity power to the drone [1]. The potential combination of
the tether with a hose also provides capabilities of delivering fluid to a targeting area,
such as, spraying pesticides on a crop field [11]. The effective use of tethered drones
in these applications requires accurate self-localization information. For example, for
surveillance/monitoring applications, the meter-level self-localization accuracy would
be acceptable, while for applications such as agricultural chemical spraying and wind-
turbine and high-rise-building cleaning, the decimeter/centimeter-level accuracy for self-
localization would be preferred.

Small drones notably rely on accurate self-location information for guidance, navi-
gation, and control. Drone self-localization typically counts on IMUs [12-14], the Global
Positioning System (GPS) [15] (differential GPS [16]), infrared (IR) sensors [17], laser
rangefinders [18,19], and optical and vision systems [20-22]. While these sensing systems
have successfully supported outdoor applications, extensive investment has been made to
enhance the capability of self-localization for drone by improving the GPS infrastructure,
utilizing cellular network infrastructure [23], or integrating both technologies for a wider
range of applications. However, the self-localization of small drones in GPS-degraded/-
denied environments (e.g., indoors and street canyons) is still challenging due to their
limited size, payload, power, and flight endurance that have prevented them from carrying
high-end sensors for self-localization. This poses critical concerns to the safe operation of
drones in GPS-degraded /-denied environments.
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In previous studies for the self-localization and control of tethered drones, Lupashin
and D’Andrea [24] presented an approach to estimating the two-dimensional (2D) location
of the drone with respect to a ground station. Tognon and Franchi [25] presented an
observer-based control technique to regulate a tethered drone attached to a moving ground
platform. Lima and Pereira [26] presented an EKF-based self-localization approach by
assuming a catenary-shape cable for a static drone in hovering and assuming that the
cable-tension force is known. Companies have also commercialized tethered drones on
the market [27,28]. In our previous work [29,30], we presented both a low pass filter (LPF)
and an extended Kalman filter (EKF) to estimate the three-dimensional (3D) location of the
drone with respect to a ground platform (see Figure 1) while assuming known cable-tension
force. In this paper, we assume the cable-tension force is unknown and we extend our
previous work by enabling simultaneously estimation of both the 3D drone location and
the cable-tension force, using only the measurements of onboard IMUs and altimeter.

kY (into the Earth)
winch

K¢ (into the Earth)

Figure 1. A drone is tethered to a ground robot [29].

To the best of our knowledge, existing literature [24-30] for the self-localization and
control of tethered drones has assumed known cable-tension force and accurate drone
thrust forces, which, however, are nontrivial to measure directly. The cable-tension force is
usually assumed to be measured by a force sensor that is connected in series with the tether.
Connecting a COTS cable-tension force sensor underneath the drone will significantly
increase the payload of the drone. Connecting the force sensor on the ground platform
would be extremely challenging when the tether length varies with the drone movement.
The drone thrust force is usually computed using the pulse width modulation (PWM)
signals, but such a computational formula is not usually provided by a drone manufacturer,
and it is usually unique for each particular drone. Existing work for computing the
motor thrust using a PWM signal has focused on identifying the coefficients of a high-
order polynomial of the PWM signal using a load cell to measure the thrust force [31-34].
However, setting up such experiments by attaching load cells to the drone motors requires
considerable efforts of disassembling drone components. To the best of our knowledge,
this paper presents one of the first works that apply the system-identification technique to
model the relationship between the motor thrust and PWM signals without disassembling
the drone, but only using real flight-test data.



Drones 2021, 5, 135

30f22

The contribution of this paper includes the development of an EKF that enables the
estimation of both the 3D position of a moving drone with respect to a ground platform and
the cable-tension force, and the development of a system-identification method to compute
the motor thrust force using the PWM signal. The measurements used for the proposed
EKF are assumed to be measured by the onboard inertial sensors (e.g., accelerometers
and gyroscopes), along with the altimeter (e.g., an ultrasound sensor). We evaluate the
proposed EKF in simulations in comparison to the 3-state EKF in [29]. The result shows that
when the actual cable-tension force is greater than 1 N, the proposed 4-state EKF produces
estimates with less than 0.3-N estimation errors, which are equivalent to the performance
of the technique, assuming a known cable-tension force [29].

The remainder of this paper is structured as follows. System dynamics and acelerome-
ter principles are introduced in Section 2. The problem statement and state-space model
are introduced in Section 3. The EKF development and system identification for motor co-
efficients are presented in Sections 4 and 5, respectively. Section 6 shows and discusses the
simulation results, and Section 7 concludes the paper. Section 8 presents our future work.

2. System Dynamics and Accelerometer Principles
2.1. Coordinate Frames

We first introduce several key coordinate frames associated with the system dynamics
of a drone, i.e., the inertial frame, the vehicle frame, and the body frame [35], as shown in
Figure 1.

2.1.1. The Inertial Frame F'

The inertial coordinate frame is an earth-fixed coordinate system with its origin at a
pre-defined location. In this paper, this coordinate system is referred to in the North-East-
Down (NED) reference frame. It is common for North to be referred to as the inertial x
direction, East to the y direction, and Down to the z direction.

2.1.2. The Vehicle Frame F?

The origin of the vehicle frame is at the center of mass of a drone. However, the axes
of F? are aligned with the axes of the inertial frame F'. In other words, the unit vector i’
points toward North, j° toward East, and k” toward the center of the earth.

2.1.3. The Body Frame F?°

The body frame is obtained by rotating the vehicle frame in a right-handed rotation
about i’ by the roll angle, ¢, about the j% axis by the pitch angle, 6, and about the k” axis
by the yaw angle, 1. The transformation of the drone 3D position from p? in F? to p? in
Fbis given by

P’ = Ry(¢,0,9)p", M)

where the transformation matrix, R (¢, 6, ), is given by
CoCy CoSy —Sg

Ri’,(¢, 0,9) = | spSecy — CpSy  SpSpSy +CeCyp  SgCo |, ()
CpSeCy + SpSyp  CpSeSy — SpCy  CpCoh

where c, = cos, and s, = sin,.

2.2. Tethered Drone Dynamics

The equations of motion of a drone tethered to a stationary ground station are ex-
pressed by a six-degree-of-freedom model consisting of 12 states [35]
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where (py, pe, pd)T € R? is defined as the drone position in the NED inertial frame, (u, v, w)
is the drone linear velocity vector in the body frame, m is the drone mass, (p,q,r) is the
rotational velocity vector in the body frame, (fy, fy, f2) and (1, T, Tn) are the total external
forces and torques applied to the drone in the body frame, respectively, and Jy, J, and J;
are moments of inertia of the drone in x, y, and z directions, respectively.

2.3. Accelerometer Principle

The output of COTS accelerometers for drones contains several specific terms that
are derived from the drone acceleration and are important for drone controller design and
analysis. In this subsection, the normalized kinematic accelerations and specific forces [36]
are introduced, which are used in the proposed self-localization methodology.

Kinematic Accelerations and Specific Forces

Let 7 = (u,v,w)" be the linear velocity vector, 2 = (p,q,7)" be the rotational velocity
vector of the drone in the body frame, and o = ( fxr fys fz) T be the total external force

T
vector in the body frame. Define the kinematic acceleration vector a,’z = (a,lé o aZ v a,lé Z) in

£ 5 1/9
b LT U
N g T g g<at+nxv) 7

the body frame as

of which the components are

1
a,lé,x—g(quqw—rv):m—g, 8)
1.
a,lz’y—g(v—i-ru—pw):njzg, ©)
bo_ 1. o = L2
Az = g(w‘H’v qu) = mg’ (10)

where g is the gravitational acceleration constant on Earth. Note that az is in units of g. The
accelerometer is assumed to be mounted at the center of gravity of a drone.

The output of accelerometers used by drone autopilots is generated in the form of the
specific force, a%, also called g-force or mass-specific force (measured in meters/second?),
which is actually an acceleration ratio given by

fb _ fb fb
alp=—3=a - % (11)
mg mg

whose components are given by
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al = al_ +sind (12)
SFx — k,x ’
al Fy = a,lé,y —cosfsing, (13)
al Fz = a,’z,z — cos 6 cos ¢. (14)

2.4. External Forces of Tethered Drone
The total external force vector for a tethered drone in the body frame is given by

fb = f?hrust + fz + fgable/ (15)
where ffhm s is the thrust force, ffg’, is the gravity force, and fﬁ’ bl 18 the cable-tension force,
all in the body frame. The gravity force vector of the drone in the vehicle frame, fz,, is
given by

0
v _
fg =1 0 |. (16)
mg
Then, we have
—mgsin@
fg = Rgfg = | mgcosfsing |. (17)
mg cos 6 sin 6
The thrust force vector in the body frame is given by
) f thrust,x 0
fthrust = fthrust,y = 0 ’ (18)
fthrust,z _(fF+fR+fB+fL)

where subscripts F, R, B, and L denote the thrust forces provided by the front, right, back,
and left motors, respectively. The individual thrust forces have been calculated using the
PWM signals commanded to the motors, such as,

f* = kmotor - pwm,, (19)

where * € {F,R, B, L} and kyotor is the electric motor coefficient and pwm, is the PWM
motor control signal. However, the mapping between the drone motor thrust force and the
PWM signals is much more complicated than the linear relationship shown in (19). We will
discuss this more in Section 5.

Since the output of the accelerometer is the total acceleration (see Equation (11)) minus
the gravity terms [35]

b _ b b b b
b _ f fg _ b fig _ fthrust + fcable 20
mg mg mg
assuming a taut cable, f’c’ ble 18 given by
L
b b
feable = vaczjzbleZ' (21)

where L = (pn, pe, pa)’, € = 1/ p% + p? + p3, and f2,,, is the magnitude of the cable-tension
force. We can then obtain

Rb fv 0 Pn
LA — | 0 - Pe . (22)

cable
\ PE+ P2+ p] 0 P

Then, Equation (20) can be written as
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b
A5k ¢ 0 b fv Pn
, 1 R
b b 0 _ vJ cable Pe . (23)

ar = | gy | = —
aép,z "8 —(fr+fr+fB+fr) phi+p2+ri\ pa

3. Self-Localization of Tethered Drone
3.1. Problem Statement

Consider a scenario where a drone tethered to a ground robot (see Figure 1). In
this paper, the ground robot is assumed to be stationary and the tether is assumed to be
controlled by a retractable winch that provides a constant cable-tension force. The problem
is to estimate the 3D position of the tethered drone with respect to the ground station (i.e.,
the origin of the vehicle coordinate frame), using the measurements of the accelerometer,
gyroscopes, altimeter, and PWM signals onboard the drone.

3.2. State-Space Model for Self-Localization

In our previous work [29], we presented a 3-state state-space model for self-localization
by assuming that the cable-tension force is known. In this paper, we develop a 4-state
state-space model to estimate the drone 3D location, as well as the cable-tension force.

Define the state vector as

Xas = (P, Pes P, o) € R (24)

and the system dynamics are given by

)'(43 = f(x4SI ll), (25)

where u is the system input vector. Since we do not know the actual motion plan and the
cable-tension force evolution, we will use the following system dynamics to derive the EKF

Xgs = f(xXgs,u) = Og1. (26)

Assuming that the measurements of the 3-axis accelerometers and the altimeter (i.e.,
the ultrasound sensor) are available and according to Equation (23), the output function is
given by

b

aSl—",x
a
y = h(xas) = EF'y
Asr;
—Pd
1 8 Rg cvable Z"
_ | me T Tapa2| P : 27
~(frtfrR+fB+fL) CALCALCRNE" P @7)
—Pd

4. Extended Kalman Filter

In this section, we present the application of the EKF (Algorithm 1) [35] technique
to estimate the location of the drone and the cable-tension force. The system dynamics
and output equations are described in Section 3. We assume that the available sensor
measurements include the 3-axis orientations and accelerations that are distorted by white
Gaussian noise. Selecting the system state vector at time k is X, = (P ks Pe s pd,k)T € R3

and the system measurement vector at time step k as \ (ag Fxks ag Eyk’ ag ok —pd,k) T,
the state transition and observation models are given by
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f(k-‘rl = f()’zk/ Uy, Wk)r Wi ~ N(O/ Q)r (28)
$rr1 = h(Re1, Vir1), Vi1 ~ N(O,R), (29)

where X; 11 and y;1 denote the approximated a posteriori state and observation, respec-
tively, and %; the a priori estimate of the previous step. The process is characterized by
random noise variables wy and vy that represent respectively the process noise and mea-
surement noise, both of which follow the Gaussian distribution with covariance matrices
Q and R, respectively. The diagram in Figure 2 summarizes the EKF process loop [37] with
associated equations.

’::;-: Ho _ | Gain computation 2
0-= Zo Ky :Pkfk—1H=([HkPkfk—1HL +Rk] : \ [
Prediction .

Xe,yy = DXy Update estimate

P,y = ®P. D +Q Xk = Xy +Kk[zk_ Hkxm—1]
1k = PP @y +Qy

L Update covariance J l

Pk = [' - Kka] Pkt Xk

Figure 2. The recursive process of EKF [37].

Algorithm 1 Extended Kalman Filter [35].
: Initialize: £
: At each sample time Ty,
: fori=1to N do {Prediction}
2 =2+ () f(2,u)

—_

P =P+ (Lu)(@P+ POT + Q)
Calculate A, P, and C
: end for
: if measurement has been received from sensor i then {Correction:Measurement Update}
10: H; = %i(2,u)
11:  K; = PH/(R+ H;PH]')™!
122 P=(I—K;H;)P
13: % =%+ K;(yi[n] — h(%, uln])
14: end if

O 0 NI O Ul b= WiN
(S
I
o.)‘q;
=R~
—
Ra
=
S—

The EKEF starts by calculating the Jacobian of the f(x, u) and h(x) functions that were
derived in Section 3.2. The prediction step before acquiring the measurements is given by

Kiv1k = Piekesi (30)
Peyik = OO +Q, (31)

while the update step after acquiring the measurements is given by

Ky = Pk/k—lHE[HkPk/k—lle + Rk}il, (32)
Xi/k = Xi/k—1 + Kie(zk — HiXieyx—1), (33)
Prjk = (I — KiHy) P ji—1, (34)
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where K is the Kalman gain matrix, and P is the covariance matrix for the state estimate,
containing information about the accuracy of the estimate [38]. Figure 3 shows the localiza-
tion/EKF algorithm flowchart and diagram that is implemented and coded. The Jacobian
of h(x) with respect to & is given by

Pn ]

—REfD bl 2 2 _Rb | Pn

oh — e | —puPe Put Pz  —PePd g | SRR

— = 3 % g 2 nTPeTPg )

x (V) | pupy —peps PR+ PR s S (35)
NiRe A

[0 0 _1]1><3 0 i

1

oq

IMU
Thrust
[Acceleration Ultrasound
and Forces
Euler angles)

Figure 3. EKF flowchart for tethered drone self-localization [29].

5. System Identification for Motor Coefficients

In order to compute accurate motor thrust forces using the PWM signals, we present a
system-identification strategy in this section to obtain function f. in Equation (19) [39]. The
system identification process has to go through a few steps to generate f, that maps the
input PWM signals to the total motor thrust [13,14,40-42]. The first step is to design flight
experiments to collect the data with sufficient accuracy and duration. A good experimental
design should ensure that the system is excited adequately by the input commands. The
collected measurement data are usually processed by noise filtration and bias removal
before being used for deriving high-fidelity models. A model structure is usually selected
based on a prior knowledge of the input-output relation for model estimation. After
that, the collected data are used to generate and update the selected parameters in the
model, such that the model output is matched with the output in the data set. The dataset is
usually divided into two subsets, which are used for estimation and validation, respectively.
Validating the model and analyzing the uncertainty of the estimated model are the final
steps before using the model for the application (e.g., control and state estimation). The
estimation-validation process may take several iterations before finding the optimal model
with the highest fitting percentage that is used to represent the model accuracy [43]. In this
paper, the applied system-identification process [44] is summarized in Figure 4, and was
implemented using the System Identification Toolbox in MATLAB®.
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OK

No|

Figure 4. System identification process.

5.1. Experiment Design and Data Acquisition

The input commands to the drone system are the PWM signals of the four motors, and
the sensor measurements include the three Euler attitude angles, the 3-axis accelerations,
and the altitude. The output of the system-identification model is the total thrust force
generated by all four motors, f}’hmst (see Equation (18)), which is computed using the
accelerometer measurement in the z-axis

0
fthrust,z =mg - RZ(% 6, ¢) 0 . (36)

az

The input-command sequences for the proposed tethered drone are designed, such
that the individual inputs are sufficiently “exciting” system motion and guarantee meaning-
ful identification results [45]. For this reason, indoor flights (see Figure 5) were conducted
by first commanding the drone at a steady hovering flight. Then, the roll, pitch, and yaw
angles were excited individually, while varying the altitude by changing the collective
thrust input commands. Figure 6 shows a collected data set that consists of the computed
thrust force (in Newton), the acceleration measurements (+1 g), and the Euler angles
(£180 degrees) in response to the PWM commands (from 0 to 255).

5.2. Data Processing

The flight test data were collected using the “rosbags” in the robot operating system
(ROS) and imported by MATLAB® for data processing. The data collected from the flight
test were re-sampled at 100 Hz, and only the airborne data were selected. The plots between
10 and 140 s in Figure 6 indicate that the drone was in flight. The data are then filtered by
a fifth-order Butter-worth low pass filter with a cut-off frequency of 10 Hz. The resulting
data are then divided into two subsets for estimation and validation, respectively, as shown
in Figure 6e.

| I==m

1

Motion Capture Software

Figure 5. System Identification flight test for thrust modeling.
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(e)

Figure 6. Data collected during a flight test for system identification. (a) Computed thrust. (b) Accel-
erations measurement. (c) Euler Angles (Attitudes). (d) PWM input-commands during the flight test.
(e) The estimation-validation (filtered) data set from the flight test.

5.3. Model Structure Selection, Estimation, and Validation

In this work, we examined a variety of parametric model structures. Parametric
models describe systems using differential equations and transfer functions as black-box
models. The general linear-model structure can be represented by

y(t) = G(&,mu(t) + H(Z, m)e(t), (37)

where u(t) and y(t) are the input and output of the system, respectively, e(t) is the system
disturbance, G(¢,7) and H(¢,#) are the transfer functions of the deterministic and the
stochastic parts of the system, respectively, ¢ is the backward shift operator, and 7 is the
parameter vector [39]. A subset of the general linear model structure, can be represented as

A@y(H) = %um + %ea). 39)
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By setting one or more of the A, B,C, or D polynomials equal to 1, we can create
simpler models, such as autoregressive (AR), autoregressive with exogenous variables
(ARX), autoregressive moving average with exogenous input (ARMAX), Box-Jenkins (B]),
and output-error structures [40,41,46]. These methods have their own advantages and
disadvantages and are selected based on the dynamics, and the noise characteristics of
the system.

A model with more parameters does not necessarily generate more accurate results, as
it may capture nonexistent dynamics and noise characteristics. This is where the physical
insight into a system is helpful. The model structures that we have tested include the
transfer function, process model, black- box ARX, state space, and Box—Jenkins. Black-box
modeling is usually a trial-and-error process, where the parameters of various structures
are estimated and compared. We started with the simple linear model structure and
progressed to more complex ones [46]. ARX is the simplest and the most efficient method
that solves linear regression equations in an analytic form with the global minimum of the
loss function. The ARX model, therefore, is preferable in this work, as the model order is
high. The disadvantage of the ARX model is its weak capability of eliminating disturbances
from the system dynamics. The Box-Jenkins structure provides a complete formulation by
separating disturbances from the system dynamics.

Transfer function models are commonly used to represent single-input-single-output
(SISO) or multiple-input-multiple-output (MIMO) systems [47]. In the MATLAB® System
Identification Toolbox, the process model structure describes the system dynamics, in terms
of one or more of these elements, such as static gain, time constants, process zero, time
delay, and integration [47].

The models generated were designed for prediction and the results demonstrated are
for the five-step-ahead prediction [40,41,46,47]. Equations (A1)—-(A8) in the Appendix A
represent the two highest best fits models: the ARX and state-space models. Table 1
summarizes the quality of the identified models on the basis of fit percentage (Fit%),
Akaike’s final prediction error (FPE) [48], and the mean-squared error (MSE) [49]. As can
be seen from Table 1, the fit percentages for the ARX, Box-Jenkins, and state space models
are all above 94%, among which the state-space model has the best fit percentage, whereas
the process models and the transfer functions are below 50%.

Table 1. Identification results for 5-step prediction.

Structure Fit% FPE MSE
Transfer Function (mtf) 46% 0.002388 0.002343
Process Model (midproc0) 41.41% 0.002796 0.002778
Black-Box model-ARX Model (marx) 96.77% 8.478 x 107° 8.438 x 10~°
State-Space Models Using (mn4sid) 99.56% 1.589 x 10~7 1.562 x 10~7
Box-Jenkins Model (bj) 94.64% 2.339 x 107° 2.326 x 107°

6. Simulation Results and Discussion

In order to evaluate the feasibility and performance of the proposed 4-state EKF
for the tethered drone self-localization, numerical simulations were performed under
MATLAB®/Simulink®.

The initial position of the drone is selected as py = (0, O,O)Tm and the drone is
controlled to follow a circular orbit of 2.5-m radius with a constant velocity of 1m/s and a
varying altitude. The IMUs and ultrasound sensors are assumed to provide measurements
with a frequency of 200 Hz [50]. The measurements of the 3-axis accelerometers and
the ultrasound sensor are used to generate the outputs of the EKF in Equation (27). We
assume that these measurements are corrupted by the Gaussian noise N(0,02..) (for
each axis of the accelerometers) and N (0, 0'51 1), respectively, where 02, = 0.01 m/s?
and (731 s = 01m [31]. Thus, the sensor noise covariance matrix, R, is selected as R =
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diag(02.c, Oaes Oaees 02y;s) = diag(0.01,0.01,0.01,0.1). The 3-axis gyros measurements are
used to compute the transformation matrix, R}, in Equation (2). We assume that the 3-axis
gyros measurements are corrupted by the Gaussian noise N (0, Ugyms) (for each axis of the
gyros), where ngms = 0.01". Figure 7 shows the noisy sensor measurements and the ones
filtered by LPFs. The noisy measurements were directly used by the EKF and the values
obtained by an LPF are used in the self-localization approach presented in [30]. The process
noise covariance matrix of the EKF was tuned and selected as Q = diag(5 x 1073,5 x 1073,
5 x 1073). The initial state estimate was chosen to be Xy = (1.5,2.5, 1.5)Tm, while the initial
error covariance matrix was chosen to be Py = I5. As for the LPF, it is based on a cutoff
frequency set to 2 rad/s.

Accelerometers noisy measurements Vs the LPF

st san . e ? 7
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Time(s)
Ultrasound sensor measurement (Altitude) Vs the LPF
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Figure 7. Sensors measurements and its low pass filter (LPF) output [29].

To compare the estimation results obtained from the proposed 4-state EKF and the 3-
state EKF in [30], we assume that the 3-state model uses the actual cable-tension force from
an onboard force sensor, but the 4-state EKF does not have access to the actual cable-tension
force in the estimation process.

Figure 8 shows the ground-truth drone trajectory (“Truth” in the figure) overlaid
with the estimated trajectories generated by the 3-state and 4-state EKFs (“EKF3S” and
“EKF4S” in the figure, respectively) in the 3D, top-down, and side views with different
magnitudes of the cable-tension force (0.5 N, 1N, 2N, 4N, 6 N, and 10 N). Figure 9 shows
the estimated North, East, and Down coordinates generated by the 3-state and 4-state EKFs
versus the ground truth under different cable-force magnitudes, respectively. Figure 10
shows the estimation errors corresponding to Figure 9. It can be seen that the magnitude of
the cable-tension force affects the accuracy of the position estimates obtained from both
EKFs. When the cable-tension force is less than 2 N (see Figures 8a,b and 10a,b), both EKFs
are unable to generate accurate estimates. Both EKFs generated very close estimates in
the first 15 s, but diverged from each other after that. It seems the 3-state-EKF was able to
follow the trend of the ground truth waves with smaller magnitude and slower pace, while
the 4-state-EKF estimates become relatively flat after 15 s. When the cable-tension force
is greater than 1 N, both EKF estimates start to follow the ground truth with increasing
accuracy, but become increasingly noisy (see Figures 8—10b—f, respectively).
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Figure 8. Different views of the ground-truth drone trajectory with a time-varying altitude and the
state estimates generated by the 3-state and 4-state EKFs with different cable-tension force magnitudes
(f): @) fe =05N,(b) fe = 1N, (0) f =2N, (d) fe =4N, (e) f = 6N, and () f- = 10N.

Figure 11 shows the ground-truth cable force (in blue) and its estimates (in red)
using the 4-state EKF under different cable forces. Figure 11a shows that the cable-force
estimation started to diverge from the beginning and generated impractical negative values
and came back towards the ground truth after 20 s and diverged again after 25 s. This
observation matches the position estimates in Figures 8-10. The cable-force estimates for
other cases are consistently accurate within a 0.3 N range.



Drones 2021, 5, 135

14 of 22

EKF Estimated Pos (Orbit Traj)
Parameters: F =05 N, V=1.0 m/s, h =2.5, r=5.0

EKF Estimated Pos (Orbit Traj)
Parameters: F_=1.0 N, V=1.0 m/s, h =2.5, r=5.0

£5 €5
£0 £ O / \
25 2 -5
35
ES E°L
% 0 7 0 ]
© ©
w5 i .5
35
T4 : : : : : : T4 : : : : : :
€3r 1 E8f ]
g2, ol
8 i I I I 8 i I I I
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time(s) Time(s)
Truth - - - ‘EKF3S ==~ EKF4S Truth - - - ‘EKF3S ===~ EKF4S

—~
o
Nl

EKF Estimated Pos (Orbit Traj)
Parameters: F =2.0 N, V=1.0 m/s, h =2.5, r=5.0

(b)

EKF Estimated Pos (Orbit Traj)

E 5 Parameters: F .=4.0 N, V=1.0 m/s, h ;=2.5, r=5.0
-‘E: ; \ E 5
S \ £o
=% 3 2 5|
=5
£ =5
0 1E
C w0
w ,5 8
355
’é‘ 4 T T T T T T =4
E G T T T T r T
5 s €3
Bol~ S e I - s
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time(s) Time(s)
\ Truth - - = “EKF3S =-=-=~EKF4S I Truth - - - -EKF3S - EKF4S
© (d)
EKF Estimated Pos (Orbit Traj) EKF Estimated Pos (Orbit Traj)
Parameters: F =6.0 N, V=1.0 m/s, h =2.5, r=5.0 Parameters: FC=10.0 N, V=1.0 m/s, hd=2.5, r=5.0
T 57 g 5F T T T o T 3
E = 0 4
€0 / \ t -\
2 _5 \ § 5L T | | L | ~
35 0 5 10 15 20 25 30 35
E ] g :\/— : ‘ ! ]
E: | §qi~—r" . . 7 ]
35 0 5 10 15 20 25 30 35
E 4 T T T T T T E 4
§51 1 g
g2l ‘ ! ! ! g
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time(s) Time(s)
\ Truth - - - ‘EKF3S --—--~EKF4S)| Truth - - - *EKF3S_--—--~ EKF4S

(e)

()

Figure 9. Position estimates using the 3-state and 4-state EKFs under different cable-tension force

magnitudes (f): (@) fe =0.5N, (b) fc =1N,

© fe=2N,(d) f. =4N, (e) fo =6 N, and (f) fo = 10N.



Drones 2021, 5, 135

15 of 22

Estimated position error (Orbit Traj) bounded with 3 & covariance

Estimated position error (Orbit Traj) bounded with 3 o covariance

Parameters: Fc=1 .ON,V=1.0m/s, h

4=2:5, r=5.0

Parameters: Fc=°'5 N, V=1.0 m/s, hd=2.5, r=5.0

g T T i _ T T T T
g - B S
~ ot - - 4 ~ ok [N S il
] . e ] /\\‘,a\_/—" S e e e
A2 e - < A2
LY It I I I I Ny "S- I I I I I I
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
T T T T T T T T T T T T
72 — ~ 2f
P SN g e Pt -
: or " "’ ~~\~~ Pl : 0T, /,\/ ‘—\—\‘\\\ P gl
&, ’ WM L7 &k \ / —— e e
Rl " L L S L7 \ L L L L L L
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
05 I I I I I I 05 I I I I I I
g g
=~ 0 =0
£ £
-0.5 T T T T T T -0.5 T T T T T T
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time (s) Time (s)
- = =8 — - 4s 3a - - =8 4s 3a

@)

Estimated position error (Orbit Traj) bounded with 3 o covariance
Parameters: Fc=2'0 N, V=1.0 m/s, hd=2.5, r=5.0

(b)

Estimated position error (Orbit Traj) bounded with 3 o covariance
Parameters: Fc=4'° N, V=1.0 m/s, hd=2.5, r=5.0

T T T T T - 2r 4
oM £
= AR 1 5 O [ e AN A ANT A A s e ]
Z 0 fmne o PNEWY e e ae i SIS S— £
& o -2
. ; y y y y 0 5 10 15 20 25 30 35
0 5 10 15 20 25 30 35
- ok T T T T T T = 20 -
~ 0 R s e S M o 0 3 P NPT I st |
o VNS - a
"
i ; ; ; : ; ; 2O
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
05 - - - - - - __05F i i ; L L L 3
B E Lk b vt bapepind
o O = PR A Py
A A~
0.5 k= T T T T r r c| 0.5 k= T T T r : r -
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time (s) Time (s)
== =35 == 4s 3a == =35 === 4s 30
(c) (d)
Estimated position error (Orbit Traj) bounded with 3 & covariance Estimated position error (Orbit Traj) bounded with 3 o covariance

Parameters: Fc=6.0 N, V=1.0 m/s, h d=2.5, r=5.0

Parameters: Fc=1°'° N, V=1.0 m/s, hu=2'5’ r=5.0

~ 2l i —~ ol i
B - B —————
2 O AN A e T ”‘MWMWNM'W’
B . ] Y . | . 1
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
—~ 2 = —~ 2" -
g 1L i g 4L ]
21 il PPPTIRT TPV R STy ST i
o 0 e W of et QO e Vgl
BN ! ] N —— ! ]
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
__05F T T T T T T =R
0 - - 0
T o~ " o
A~ A
05 T T T T -0.
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time (s) Time (s)
- - =8~ 4s 3 - - =8 4s 3a

(e) ()

Figure 10. Position estimation errors generated by the 3-state EKF (3s), and 4-state EKF (4s) with
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Figure 11. Cable-tension force estimates vs. the ground truth for different cable-tension force magnitudes
(f): @) fo = 05N, (b) f- = 1N, (¢) fo =2 N, (d) fo =4N, (€) fc = 6N, and (f) f = 10N.

Table 2 summarizes the estimation results under different cable-force magnitudes
using the root mean square error (RMSE) metric. We can see that for small cable-tension
force values (i.e., <1 N), the 3-states model produces more accurate position estimates in
the north and east directions.
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Table 2. Root-Mean-Square-Error (RMSE) comparison of the 3-state (3S) and the 4-state (4S) EKFs.

fe=05N fe=2N fe=4N fe=10N
Position 3s 48 3s 48 3s 48 3s 48
North (m) 2022 5075 0275 0276 0159 0156 0236 0243
East (1m) 2146 3613 0294 029 0106 0105 0206  0.209
Down (1) 0010 0010 0014 0013 0033 0020 0120  0.067
fe (N) - 0.495 - 0.066 - 0.071 - 0.109

To study the impact of various drone altitudes and velocities on the estimation accu-
racy, we conducted the simulation with drone altitudes ranging from 1 m to 10 m, and
velocities ranging from 0.5 to 3 m/s. Figures 12-14 summarizes the RMSE results using
different altitudes, velocities, and cable-tension forces. It can be seen from Figure 12 that
the 3-states and 4-states EKFs have no significant difference, however, it can seen that at
lower altitude of 1 m the error is around [0.7, 0.9] m in North and East position respectively.
The error decreases as the altitude increases and it reaches its lowest value at around 5-m
altitude. The error increases again as the altitude increases. It can be seen from Figure 13
that the lower the velocity, the lower the postion estimation error in all directions.

Figure 14 shows that the 4-state and 3-state EKFs provide 3D-position estimates with
the same level of accuracy (less than 0.3 m, see Table 2) when the actual cable-tension force
magnitude is greater than 1 N. The position estimation accuracy of both 4-state and 3-state
EKFs degrades when the cable magnitude is less than 2 N, even though the 3-state EKF
uses the true cable-tension force. This implies that to produce accurate position estimation
using the proposed 4-state EKF, one needs to maintain the cable-tension force to be above
2 N, which can be realized by using a retractable cable system.

RMSE Error for North, East and Down Positions for various altitude values
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Figure 12. RMSE of 3D position estimates with various drone altitudes.
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Figure 13. RMSE of 3D position estimates with various drone velocities.
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7. Conclusions

In this paper, we present a self-localization technique for a tethered drone without a
cable-force sensor in GPS-denied environments. To the best of our knowledge, this is one of
the first works that estimate both the cable-tension force and the 3D location of a tethered
drone without adding additional onboard sensors. A 4-state extended Kalman filter (EKF)
was developed for the estimation, and its performance was compared with an existing
3-state EKF that assumes known cable-tension force. We also studied the impact of various
cable-force values, altitudes, and velocities on the performance of both the proposed 4-state
and the existing 3-state EKFs. The simulation results reveal that both EKFs produce the
3D drone position estimates with less than 0.3-m RMSE (root mean square error) and the
cable-force estimates with less than 0.11 N RMSE, when the actual cable-tension force is
greater than 1 N. When the actual cable-tension force is less than 2 N, the proposed 4-state
EKF produces estimates with up to 5-m error for and the 3-state EKF with up to 2-m error.

This work facilitates the control and self-localization of a tethered drone by enabling
the estimation of the cable-tension force, which eliminates the need of equipping a ca-
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ble force sensor and reduces the complexity of the control system and data-acquisition
system for a tethered drone. This ability makes possible the use of a tethered drone in
GPS-degraded /-denied environments for real-world applications that need precise self-
localization information with the decimeter-level accuracy, such as agricultural chemical
spraying, and wind-turbine and high-rise building cleaning.

8. Future Work

In our future work, we plan to further investigate the position and cable-tension force
estimation problem by leveraging the sigma-point Kalman filtering techniques (e.g., the
unscented Kalman filter) and machine learning techniques (e.g., the decision tree method).
Our hope is that these techniques would improve the overall estimation accuracy, especially
when the cable-tension force is lower than 2 N. Moreover, we will develop a hardware
experimental platform to evaluate our proposed techniques on a real tethered drone.
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Appendix A
The discrete-time ARX model is given by

A(2)y(t) = B(z)u(t) +e(t) A(z) (A1)
where

Az) = 1 —1.914(+0.004434)z ! 40.9297(40.004426)z 2 (A2)

Bl(z) = 0.0007286(+7.391 x 10-%)z~1  —0.0007004(£7.409 x 107°)z"2  (A3)

B2(z) = 0.0006718(+£7.234 x 107°)z=1  —0.0006295(47.234 x 107°)z"2  (A4)

B3(z) = 0.001004(4+7.951 x 107°)z"1  —0.0009491(£7.963 x 107°)z"2  (A5)

B4(z) = 0.0008196(£7.596 x 107°)z~1  —0.0007239(+7.639 x 107°)z72  (A6)

The discrete-time identified state-space model is given by

x(t+ Ts) = Ax(t) + Bu(t) + Ke(t) (A7)

y(t) = Cx(t) + Du(t) +e(t) (A8)
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where

coo oo
co oo~
cor o

0
0.3136 £0.03151 —0.9517 £0.1516 0.3403 £ 0.3207

SO = OO
]

(A9)

o
_ o O O

0 0
2394 £0.371 —4.498+£0.2339 3.399 +0.0638

—0.003938 + 0.0004003  —0.002054 -+ 0.0003904
0.002901 £+ 0.0003992  0.0006675 + 0.0003899
0.0008814 £ 0.0002329  0.001305 £ 0.0001607
0.002195 + 0.0002164 0.001693 + 0.0001207
0.0006869 + 0.0001376 0.001096 + 0.00011
0.0003934 4+ 0.0001215  0.0005386 4 9.06 x 10>

—0.005297 4+ 0.0004491 —0.005127 £ 0.0004363
0.003552 +0.0004534  0.003335 £ 0.0004453
0.001033 + 0.0003003 0.001325 £ 0.000276
0.002747 £ 0.0002748  0.002982 +£ 0.0002602

0.0007627 £ 0.0001723  0.001135 £ 0.000163

0.0003074 £ 0.0001414  0.0006126 + 0.0001345

(A10)

C=[1000 0 0] (A11)
D=[0 0 0 0] (A12)

3.54 £ 0.02501
7.881 +0.07874
13.91 £0.1519
K= 20.67 £0.2448 |- (A13)
26.98 +0.3524

31.68 £ 0.4601
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