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Abstract

Nonvolatile random-access memories (NVRAMSs) are envi-
sioned as a new tier of memory in future server systems. They
enable a promising persistent memory (PM) technique, with
comparable performance of DRAM and the persistence prop-
erty of storage. However, programming PM imposes non-
trivial labor effort on writing code to adopt new PM-aware
libraries and APIs. In addition, non-expert PM code can be
error-prone. In order to ease the burden of PM programmers,
we propose Ayudante', a deep reinforcement learning (RL)-
based PM programming assistant framework consisting of
two key components: a deep RL-based PM code generator
and a code refining pipeline. Given a piece of C, C++, or
Java source code developed for conventional volatile mem-
ory systems, our code generator automatically generates the
corresponding PM code and checks its data persistence. The
code refining pipeline parses the generated code to provide a
report for further program testing and performance optimiza-
tion. Our evaluation on an Intel server equipped with Optane
DC PM demonstrates that both microbenchmark programs
and a key-value store application generated by Ayudante pass
PMDK checkers. Performance evaluation on the microbench-
marks shows that the generated code achieves comparable
speedup and memory access performance as PMDK code
examples.

1 Introduction

Enabled by nonvolatile random-access memory (NVRAM)
technologies, such as Intel Optane DIMM [33], persistent
memory (PM) offers storage-like data persistence through a
fast load/store memory interface [5, 63]. PM is envisioned
to be a new tier of memory in future servers with promising
benefits, such as fast persistent data access and large capacity.

However, the PM technique also introduces substantial chal-
lenges on programming. First, currently the burden of PM
programming is placed on system and application program-
mers: they need to implement new PM programs or rewrite

lAyudante source code: [1]

legacy code using PM programming libraries with a variety
of programming interfaces and APIs [10,16,17,22,27,31,73].
Despite the promising development of libraries, implementing
PM programs requires non-trivial labor efforts on adopting
new libraries, debugging, and performance tuning. Second,
the storage-inherited crash consistency property demands rig-
orous data consistency of the stand-alone memory system [44,
54] to recover data across system crashes; fully exploiting
NVRAM’s raw memory performance [15,34,76,77,80] re-
quires programs to minimize the performance overhead of
crash consistency mechanisms. As such, programmers need
to understand the durability specifications and ordering guar-
antees of each PM library in order to provide sufficient persis-
tence guarantee, while avoiding the performance overhead of
adding unnecessary persistence mechanisms. Third, because
various PM libraries provide different programming seman-
tics, programmers need to manually transform the semantics,
when switching from one PM library to another. As a result,
PM programming is a tedious and time-consuming task even
for the expert PM programmers, while imposing a painful
learning period for non-experts. Moreover, the challenges sig-
nificantly prolong the software development process and hold
back the wide adoption of the PM technique.

In order to address these challenges, we propose Ayu-
dante, a deep reinforcement learning (RL)-based PM pro-
gramming framework to assist PM programming by trans-
forming volatile memory-based code into corresponding PM
code with minimal programmer interference. Ayudante con-
sists of two key components as illustrated in Figure 1. First,
Ayudante employs a deep RL-based code generator to auto-
matically translate volatile memory-based C, C++, or Java
code into corresponding PM code, by inserting PM library
functions and instructions. Second, we design a code refining
pipeline to parse the generated code to provide a report for
programmers to further test, debug, and tune the performance
of the code after the inference of our RL model. Ayudante
intends to save the time and energy of programmers on im-
plementing PM code from scratch. As such, Ayudante allows
programmers to focus on leveraging or implementing volatile
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Figure 1: Ayudante framework overview. The framework takes conventional C, C++, or Java source code for volatile memory as
an input and generates the corresponding PM code. Ayudante leverages a RL-based method to automatically translate the volatile
version of source code to a nonvolatile version by inserting proper PM library annotations. In addition, Ayudante generates a
code refining report to help reduce bugs and improve run-time performance.

memory-based code on traditional programming semantics

that they are familiar with.

Due to the similarity to neural machine translation (NMT)
problems in natural language processing (NLP), program
translation is recently demonstrated to have promising results
by adapting NMT techniques, such as sequence-to-sequence
models [35,79], word embedding [9, 12, 56], and tree-to-tree
LSTM encoder-decoder on abstract syntax tree (AST) [11,14].
However, the existing machine learning (ML)-based program
translation methods focused on simple programs and data
structures; the models fall short of handling sophisticated
program syntax, data structures, and consistency reasoning,
which yield large and complex search spaces [11, 14]. To
this challenge, we integrate our RL model with Monte-Carlo
tree search and carefully design our neural network architec-
tures to improve generation efficiency. Furthermore, we adopt
transfer learning to train the model for Java code generation
based on the model trained for C and C++ languages to reduce
training time. In summary, this paper makes the following
contributions:

o We propose Ayudante, the first deep RL-based PM program-
ming assistant framework, which automatically transforms
volatile memory code to PM code. Our RL model mimics
the behavior of expert PM programmers navigating through
the input source code to add proper PM functions and in-
structions. We augment the RL model with Monte-Carlo
tree search strategy to achieve efficient generation.

o We leverage a novel transfer learning model to transfer the
PM programming semantics from the existing libraries of
one programming language to another. In particular, this
paper shows an example of transferring the knowledge
of PM programming semantics from C/C++ to Java, sav-
ing training time for Java-based PM code generator. This
approach sheds light on adapting PM code generation in
various languages at low extra effort.

e We evaluate Ayudante with microbenchmarks incorporat-
ing various data structures and a key-value store applica-
tion. Our results show that all the generated PM code passes
PMDK checkers, with comparable performance on an Intel

Optane DC PM server as code handwritten by experts.

e Ayudante assists novice PM programmers by reducing their
time and energy spent on learning new PM libraries, au-
tomating the modifications on legacy code, and facilitating
bug detection and performance tuning.

2 Background and Motivation

We motivate our Ayudante framework by PM programming
challenges and opportunities in deep RL.

2.1 PM Programming Common Practice

PM systems introduce a new set of programming semantics
that diverges from the conventional storage systems program-
ming. Instead of extensively relying on slow system calls to
access the persistent data, programmers now directly commu-
nicate with the byte-addressable nonvolatile main memory
(NVMM) using load and store instructions. As PM combines
the traits of both memory and storage, PM system requires
crash consistency without hurting the memory-like access
performance. One common practice of PM programming
is to first use a PM-aware filesystem [20, 78] to manage a
large memory region in NVMM. An application can then
use a direct access (DAX) mmap () system call provided by
the filesystem to map a nonvolatile memory region into its
address space. From there, the application can directly ac-
cess the NVMM. This programming model is portable and
achieves high performance by reducing costly system calls
that are on the critical paths [34,80].

The PM programming model avoids directly using filesys-
tem system calls for data accesses, making it difficult to use
the conventional storage system’s crash consistency and fail-
ure recovery mechanisms that extensively use system calls.
As a result, PM programs need to maintain crash consistency
and develop recovery mechanisms by themselves, rather than
simply relying on the underlying filesystems. It is the pro-
grammers’ responsibility to provide the crash consistency
along with a proper recovery mechanism. Because PM pro-
grams rely on load and store instructions to access PM, a
single mis-ordered store instruction or a missing cacheline
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flush and write-back may make it impossible to recover to a
consistent state after a system crash. As such, PM programs
need to adopt (i) cacheline flush or write back instructions
to ensure that data arrives at NVMM [20] and (ii) proper
memory fence instructions to maintain the correct memory
ordering [20]. To simplify the crash consistency guarantee
in programming, many PM libraries [17,22,74] support fine-
grained logging of the data structure updates, checkpoint-
ing [78], shadow paging [32], or checksum [40, 62] as the
most common approaches to enforce failure atomicity to guar-
antee the recovery of data.

2.2 Challenges of PM Programming

Despite the promising performance and portability, the
PM programming model imposes substantial challenges to
software programmers on ensuring crash consistency and
failure recovery, debugging, and performance optimization.

Labor Efforts of Adopting PM Libraries. Each PM library,
such as PMDK [17], Atlas [10], go-pmem [22], and Corun-
dum [31], typically defines its own failure model and provides
a set of new programming semantics to hide the instruction
level details. Although the high-level programming semantics
ease the programming burden, it is still laborsome and error-
prone to use those libraries as shown in Figure 3. In order for
programmers to correctly use those libraries, they must learn
the APIs and integrate them into the legacy code after fully
understanding their own programming models.

We investigate code modification efforts of various PM
programs as shown in Figure 2. It requires the change of
1547 lines of code (LOC) in order to transfer a volatile ver-
sion of Memcached [28] into PM version [48] using PMDK
library [17], which is 14% of the Memcached source code.
Figure 2 also shows that other widely used data structures
supported by PMDK require at least 15% LOC changes. It
is invasive to perform such intensive modifications to a code
base that is already complex and highly optimized for volatile
memory operations.

Examples of programming overhead

Memcached [N
btree NG
queue [
array [N
string [N

0% 20% 40% 60% 80% 100%
® #lines in source code #lines of changed code

Figure 2: Proportion of lines of changed code to adopt a
PM library, with PMDK microbenchmarks and a Memcached
application.

Error-prone Non-expert Code and Debugging. Despite the
high-level programming semantics provided by PM libraries,

writing a PM code can be error prone as shown by previous
studies [44,45,54]. It is typically programmer’s responsibil-
ity to test and debug PM programs. Many crash consistency
related bugs in PM code are hard to identify, as they may not
interfere with program execution until the recovery stage after
a system crash. Figure 3 shows such an example, where a
programmer forgets to add a snapshot API offered by a PM
library. The example executes normally but the program re-
covers to an undefined, non-consistent state undetected. Such
bugs are not intuitive, and therefore extremely difficult to
debug. Recent development of PM debugging tools leads to
promising results [44,45, 54]. However, the tools still rely on
programmer’s experience and knowledge on PM to annotate
or navigate through the programs find bugs, making it hard to
use by non-expert programmers.

1 int Queue::enqueue(...) {

2 000

3 TX_BEGIN(pop) {

4 TX_ADD_DIRECT (&queue->back);

5 queue->back += 1;

6 TOID(struct entry) entry =
TX_ALLOC(struct entry, sizeof(struct entry) + len);

7 D_RW(entry)->len = len;

8 memcpy (D_RW(entry)->data, data, len);

9 // the following snapshot code is missing:

10 // TX_ADD_DIRECT(&queue->entries[pos]);

11 queue->entries[pos] = entry;

12} TX_ONABORT {

13 ret = -1;

14} TX_END
15 500
16 }

Figure 3: A buggy example of enqueue implementation using
PMDK. The programmer forgets to add a snapshot function,
and therefore violates the crash consistency requirement.

Performance Tuning. PM programming requires the cache-
line flushes and fences to ensure that data updates arrive at
NVMM in a consistent manner [13,85]. These instructions in-
troduce performance degradation by defeating the processor’s
hardware performance optimization mechanisms, including
caching and out-of-order execution. Although it is generally
acceptable to sacrifice certain levels of run-time performance
to maintain data persistence, unnecessary cacheline flushes
and fences will significantly hurt system performance, render-
ing undesirable deployment performance of PM in production
environments. Therefore, it is essential to avoid using unnec-
essary cacheline flushes and fences. Furthermore, various PM
libraries relax the crash consistency guarantee at different
degrees for performance optimization. It is the programmers’
responsibility to cherry-pick the optimal library for their ap-
plication which in turn requires a vast amount of experience
and prior knowledge.

2.3 Deep RL for PM Programming
We identify deep RL as a promising technique to perform

automatic PM code generation, due to its powerful learning
capability in tasks with a limited amount of available training
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data [21,29]. RL [69, 70] is a category of ML techniques
that tackles the decision making problems. Deep RL [21,29,
50, 51] augments deep neural networks with RL to enable
automatic feature engineering and end-to-end learning [21].
We observed that deep RL is a better solution than RL for
problems with higher dimensional complexity as it does not
rely on domain knowledge. Due to these promising features,
deep RL is widely used in games [51, 53, 68], robotics [36, 38,
60], and natural language processing [65,75].

No end-to-end frameworks currently exist to automatically
translate a piece of volatile memory code into PM code and
perform crash consistency checking. State-of-the-art PM li-
braries [17,22,27,31,42,47] and debugging tools [44,45,54]
require programmers to annotate the code. Jaaru [24] does
not require programmer’s annotation but it relies on the pro-
gram crash to detect bugs. It is also impractical to enumerate
all the possible changes of each line of the code, while pass-
ing the checks of compilers and debugging tools. To address
these issues, it is critical to automate PM code transforma-
tion, while achieving a high PM checker passing rate at a low
transformation cost.

Fortunately, translating a volatile memory code into PM
code can be formulated as a decision problem for sequential
code editing, which is considered as solvable by deep RL.
Moreover, augmented with Monte-Carlo tree search [8, 18] —
a type of look-ahead search for decision making — deep RL
is able to search the decision results more efficiently and ef-
fectively. Previous automatic code generation and translation
studies focus on translation between different programming
languages [41] and addressing debugging syntax errors [26].
To our knowledge, this paper is the first to formulate a ML-
based PM program translation problem.

3 Ayudante Design

To embrace the opportunities and address the challenges de-
scribed above, we propose Ayudante, a deep RL-based pro-
gramming assistant framework as illustrated in Figure 1.

3.1 Ayudante Framework Overview

Ayudante consists of two key components: a deep RL-
based code generator and a code refining pipeline. Our
code generator takes conventional source code developed for
volatile memory systems as the input and generates a vanilla
PM code through a RL model. We design our RL model to
mimic programmer’s behavior on inserting PMDK library
annotations into the volatile version of code. In order to re-
duce the training time and effort, we first train our model
for C/C++ code by RL, and then employ transfer learning to
adapt our model to Java programs. We show that our model
is generalizable to various PM programs in our test set on
the open source Leetcode solution programs (Section 5). Our
code refining pipeline integrates multiple PM checking and
debugging tools to generate a report of syntax bugs (if any)
and suggestions on run-time performance optimization. The
report allows programmers to further improve and test the

code.

Ayudante offers the following promising automated char-
acteristics in assisting PM programming:

o Efficient PM code generation through a deep RL model
augmented with Monte-Carlo tree search, which efficiently
searches the correct code edits with significantly smaller
search space.

e Reduced bugs through a deep RL model pre-trained to
avoid bugs detected by checkers in the training environ-
ment.

e Code refining reports and improved performance
through a code refining pipeline for programmers to fur-
ther inspect the possible improvements to the generated
programs if necessary.

3.2 Deep RL-based Code Generator

\ (2) Observe State \
L] (Encoding)

[ ]
o (3) Action
o (Generate Code)

Environment
Compilers Sanity Checkers | Validation Tools
° - eg. PVEMCHECK e.g, PMTest
(4) Reward

| (Persistence and Consistency) |

Figure 4: Ayudante’s deep RL model consists of an agent and
an environment. During model training, the agent repeatedly
generates and sends actions to the environment based on the
rewards and states it receives.

We design a deep RL network that generates the PM code.
The trained network mimics the programmer’s behavior; it
navigates through the input source programs and adds proper
code in the corresponding locations. Figure 4 shows Ayu-
dante’s deep RL model, which consists of (a) an agent with
a policy and value network and (b) an environment. The pol-
icy and value network responds to a state (the encoded input
source code) and outputs an action (which navigates through
source code and inserts PM library functions). The environ-
ment applies the action to the last code state to generate a
new code state, and tests it by a set of PM code checkers to
return a reward to the agent. Details of integrating various
PM checkers in the environment are discussed in Section 4.4.

The model is trained on a volatile version of PMDK exam-
ple code [17] (by removing PM annotations). During training,
the policy and value network is updated for a better action
policy according to the reward function. After training offline,
the RL generator performs online inference to generate the
best actions and output a PM code according to the pre-trained
policy and value network. We test on the data structures from
open-source Leetcode solution code [6,61,83]. In the follow-
ing, we describe the details of our RL and transfer learning
models. Section 4 will discuss detailed implementation of
training and inference of our models and the datasets used for
training and testing.
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3.2.1 Agent, State, Action, and Reward

As shown in Figure 4, our RL model consists of four major
components: agent, state, action, and reward.

Agent. An agent is an executor of actions on a state. In our
model, a state is a representation of source code, while an
action is navigating through source code or inserting one PM
library API function to source code. The agent repeatedly
obtains a new state from the environment, executes actions
on the state, and re-compiles the modified code if necessary,
until the model outputs a complete PM code that passes the
checkers in the environment.

State. A state is a pair of string and position. A string is
a source code in plain text, while a position represents the
current position in the code to take an action at. To preprocess
the input and make the source code recognizable by the RL
model, we perform an encoding operation, which transforms
the source code into a sequence of tokens to feed into the RL
model. The encoding using an Encoder-Decoder long short-
term memory (LSTM) autoencoder [30] to fit sequence data.
Once the autoencoder fits, the encoder in the model is used to
encode or compress sequence data as a feature vector input
to the RL model. Each encoded token represents either the
program text or a program location for an API insertion. The
string is initialized in a tokenized form of the input source
code. The program location token is initialized to the first
token in the program. We encode the program text, augmented
with the program location using an LSTM network [30] and
feed the state into the policy and value network. When taking
an action, the modification is executed on the original program
by the environment before compilation and testing.

Action. Our RL model has two types of actions: (1) naviga-
tion, which jumps to a new program location and (2) edit,
which modifies the string (i.e. modifies the source code). The
two actions are non-overlapping: navigation action does not
update the code, while edit action only adds a PM library API
function to the current program location without changing the
location. We define two navigation actions, move-down and
move-out. Move-down sets the program location to the next
token. Move-out moves the program location to the current
curly braces. A combination of these two navigation actions
allows the model to enumerate all possible insertion locations
of PM library APIs.

The edit action utilizes the possible library API annotations,
which we manually select from PMDK [17]. The edit action
either annotates one line of code or wraps a block of source
code into a pair of annotations (e.g., wrapping with TX_BEGIN
and TX_END). We do not consider deletion of previous API
annotations, because it is identical to do nothing in the deleted
locations. The invalid edit action that causes syntax errors or
bugs will be rejected by the environment and punished by the
reward function.

Reward. In a typical RL model, a reward is used to measure
the consequences of the actions and feedback to the agent

to generate better actions. In our training process, the agent
performs a set of navigation and edit actions to the program,
and receives either the maximum reward if the generated
code passed all the PM checkers in the environment, or a
small reward formulated as follows, which consists of three
penalties — step, modification, and code error reported by
checkers, respectively:

r=01-InS+0,-InM+ Y p;i-E; (1)

i=1

The step penalty is defined by a penalty factor ¢; and a
step number S. A step refers to an iteration of taking a new
action and feedback the corresponding reward. In each step,
the agent is penalized with a very small step penalty (with a
small ¢;) to motivate the agent to take fewer steps.

The modification penalty is defined by a factor ¢, and a
modification number M. ¢, penalizes unnecessary edits and
encourages the RL generator to complete the PM code with
fewer modifications.

The code error penalty is defined as a summation of penal-
ties given by multiple testing tools. For tool 7, p; represents the
impact factor of the tool (i.e. how important the tool is), while
E; is the number of errors reported by the tool. The code error
penalty penalizes those actions that introduce bugs and en-
courages the RL model to learn to avoid the bugs detectable
by the checkers in the environment. The p; can be tuned
to give more attention to testing tool i, so as to reduce the
corresponding bugs detectable by this tool in the ultimately
generated code. In our model, the number of errors E; is a
few magnitudes lower than the number of steps S. Therefore,
we use /nS in the reward instead of S to balance the penalties.
The same reason applies to [nM.

3.2.2 An Example of RL-based Code Generation

Figure 5 shows an example PM code generated by our RL
model. To generate such code in inference, our trained model
takes an input of a pure C code (in black color in Figure 5)
that is never seen during training. Our model encodes the code
into tokens, then performs actions on the tokens as marked by
arrows in Figure 5. At each step ¢, the agent of the model (i)
retrieves a state s; € S from the environment and (ii) selects an
action a; from all candidate actions with the maximum con-
ditional probability value generated by the policy and value
network. In Figure 5, the agent first chooses navigation ac-
tions for step @ and @, then an edit action for step e At
this point, as the agent changes the state (the source code),
the environment executes the edit action to generate a new
state 5,11 and a corresponding scalar reward r;. Similarly, the
agent performs edit actions at steps @ and @ and there-
fore generates a complete PM code. The generated code is
further verified by the environment using a pipeline of multi-
ple PM testing tools shown in Figure 4. In this example, the
generated code passes all the tests. The code refining pipeline
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(Section 3.3) will automatically generate code refining sug-
gestions if it identifies bugs or performance degradation that
requires programmer’s attention.

1 int64_t Queue::pop(){

2 int64_t ret = 0; %g
3 auto pool = pmem::obj::pool_by vptr(this); =0
4 obj::transaction::run(pool, [this, &ret] {

5 if (head == nullptr) (4]
6 throw std::runtime_error(”Empty queue"); =

7 ret = head->value; oY)
8 auto n = head->next; -0
9 obj::delete_persistent<Node>(head); (7]
10 head = n; -0
11 if (head == nullptr) tail = nullptr; -0
12 3}); ®
13 return ret; “w
14 } D@

~— LG

Figure 5: An example of a sequence of actions taken by the
trained agent to generate PM code based on its volatile mem-
ory version.

3.2.3 Policy and Value Network

The policy and value network (Figure 4) determines which
action to take based on an action-value function. In Ayudante,
we use deep Q-learning [50,72], a representative and widely
adopted policy and value network. Q-learning is model-free
and generalized not to depend on any specific RL models.
In Q-learning, the function Q calculates an expected reward
given a set of states and actions, which includes the reward
of future subsequent actions. In Ayudante, we use deep Q-
learning to combine Q-learning with a deep neural network to
form a better end-to-end generator. The function Q is defined
as:

O(sr,ar) = (1 =) Q(s1,ar) + au(ry +Y-m0£c1xQ(st+1,a)) )

where ¢ represents a time step that requires an action to
be taken; s; is a sequence of actions; a; is the action; r; is
the reward. The decay rate is 0 < o < 1. The discount fac-
tor is 0 <1y < 1. We apply such a Q function to our Deep Q
Network, working as an iterative decision making algorithm
outlined in Algorithm 1. The objective of deep Q-learning
is to minimize (Y — Q(¢,a;0))> based on sequences of ac-
tions and observations s, = x1,a;,x2,a2,...,a,—1,X;. Here, Y
represents the expected reward, while Q(0;a;0) is the reward
calculated from the Q function, with trainable weight parame-
ters 6. The Q function works on fixed-length representation
of code modification histories collected by function ¢. M is
the maximum number of epochs and 7 is the number of itera-
tion to modify the code used to simulate the descent process,
which are user-defined parameters. This process will also gen-
erate the training datasets of Q-learning, stored in a replay
memory D, with a maximum capacity N. When D is inquired
for a minibatch of transitions, it will return ¥; and Q(¢,a;;9).

Algorithm 1 The policy and value network function.

1: Initialize replay memory D to capacity N and random
initialize 6
2: for epoch from 1 to M do
3 Initialize sequence s; = {x; } and 01 = ¢(sy)
4 for t from 1 to 7 do
5: With probability < € select a random action a,
6: Otherwise select @, = max, Q*(¢(s;),a;0)
7 Execute action a,: navigate or insert an API
8 Get reward r,, and next state x;; 1
9 Set ;11 = 5¢,a;, %41 and ¢; 1 = O(s141)
10: Store transition (¢, ay,r,¢ry1) in D
11: Sample a minibatch of transitions (&;,a;, 7, ®+1)
from D
12: Set ¥; = rj+ ymax, Q(¢;41,4’;0) for a non-
terminal ¢;;1 or ¥; = r; for a terminal ¢
13: Minimize Loss (Y; — Q(¢;,a;:0))?
14: end for
15: end for

LSTM 5 = ~ "
[} > et T b
= Embedded || ¥ o o
3| [x < > > > %
o Lstv P2 13| state = B =l B a2
! o0 = = I=! J
=3 = = = = = =
=y G ] = 15 5] < =)
= [=) U (%} %} [72)
= S i= =) £
~ 3 5 |3
h ~ T Reward r
from Env

Figure 6: Neural architecture of the policy and value network.

Figure 6 shows the neural network architecture of our pol-
icy and value network. We first embed the input source code
with LSTM and a pooling layer. Then, we pass the embedded
state to three fully-connected layers. The Softmax function
will output the Q value; the action will be selected either by
maximizing the reward or with a small probability to play
a random action. Finally, we calculate the loss function by
the real reward r and the Q value, and update the trainable
parameters 0 in the Q function. Here we adopt two sets of
parameters (6 and 9/) in the same shape. One is for selecting
an action and another one is for evaluating an action. They
are updated alternatively.

3.2.4 Monte-Carlo Tree Search

Searching for correct edits is non-trivial due to two key chal-
lenges — exponentially large search space and unnecessary
decision search. First, with the increase of lines of code in
programs and the number of actions, the search space grows
exponentially. This leads to exponential search time using un-
informed search algorithms such as enumerative search [3,4].
Second, a correct decision search requires both localize and
make precise edits to generate a PM code as illustrated in
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Figure 5. An invalid edit that introduces bugs leads to unnec-
essary decision search, if the model is unaware of such bugs
and proceeds to search for new actions. To tackle the first
challenge, we adopt an efficient search strategy Monte-Carlo
Tree Search (MCTS) [67], which is highly efficient and effec-
tive in searching exponentially increased states. To address
the second challenge, we combine the policy and value net-
work (Section 3.2.3) with MCTS to guide selection towards
potentially good states and efficiently evaluate the playout.

(4) Back
Propagation

|

OO

ol o

(2) Expansion

&

(1) Selection (3) Playout

MCTS
Border

Figure 7: Overview of a simulation of Monte-Carlo tree
search.

As shown in Figure 7, one round (or “simulation”) of
MCTS consists of four phases. (1) Selection starts from the
root node and selects the successive child nodes until reaching
a leaf node. Here, the root node represents the current state,
while a leaf node is a potential child node with at least one
unexplored child (i.e., not covered by previous search). We
employ a widely-used Upper Confidence Trees (UCT)-based
strategy [37] to select the node with the maximum value V

ll’lN,'

i

V=gi+c

3

where ¢; is the current action-value estimate after the i-th
move; n; is the number of simulations for the node considered
after the i-th move; N; is the total number of simulations after
the i-th move run by the parent node of the one considered.
c is the exploration parameter that is theoretically equal to
V/2; in practice, it is typically chosen empirically. The first
term is high for a move that gets a high successful edits rate.
The second term is high for a move with few simulations.
Therefore, a large V value will lead the search to a better
final solution. (2) Expansion unless reaches a goal state, cre-
ate one or more valid child nodes. (3) Playout instead of
evaluating the position after running a full simulation and
sampling the moves until reaching a goal state in the vanilla
MCTS, we approximate the value of the position by the deep
Q-learning network. (4) Back-propagation utilizes the result
from playout to update node information in reverse order.

3.2.5 Transfer Generating Knowledge of C/C++ to Java

To fully leverage the code translation knowledge learned from
the RL generators for C and C++, we train a Java generator
model by employing transfer learning [64]. Transfer learn-
ing is an effective technique to take features learned from
one domain and leverage them in a new domain with certain
similarity, to save training time and achieve higher inference
accuracy on the new domain. The most commonly used trans-
fer learning technique is fine-tuning [82], which freezes (sets
as un-trainable) some layers of a pre-trained model and train
the other trainable layers on a new dataset to turn the old
features into predictions on the new dataset. However, the
fine-tuning is a destructive process, because the new training
will directly discard the previously learned function and lose
the pre-trained knowledge on generating C/C++ code.

To address this issue, we employ a progressive network
technique [64]. Progressive network also leverages the pre-
trained models, whereas utilizing the output rather than the
pre-trained parameters. Doing so overcomes the problem of
discarding the prior knowledge in further training. Given a pre-
trained RL generator G;, with hidden activations Wi e R
from layer i, where n; is the number of units at layer i, the
progressive network utilizes a single hidden layer multi-layer
perception G to adjust different scales of various hidden layer
inputs and adapt the hidden input to the new model by

k= ow®

1

i+ U o (vl =Ph D)) @)

where the hgk) is the hidden activations for layer i in task &,
Wl.(k) is the weight parameters for layer i in task , Ui(k:" ) are

the lateral connections (a n; x m; matrix) from layer i — 1

of task j to layer i of task k, Vi(k:] ) is the projection matrix
to be trained, and o is a learned scalar initialized to a small
random value. The progressive network fully exploits the
hidden knowledge represented by the hidden activation in
multiple similar tasks in sequence.
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Figure 8: The workflow of the progressive network to transfer
from generating C and C++ code to generating Java code,
where a refers to the adaptor function shown by Equation 4.

By adopting fine-tuning and progressive networking, we
take advantage of the generators for C and C++ which are
well-pretrained on a sufficient training dataset and show the
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potential of assisting writing PM code for other programming
languages.

3.3 Code Refining Pipeline

Previous ML-based code generators pay much attention
to improving the inference accuracy. Yet, even on well-
investigated translation tasks (e.g., CoffeeScript-JavaScript
Task [14] and FOR/LAMBDA translation task [19]) on popu-
lar programming language (e.g., C/C++/JAVA/Python), state-
of-the-art deep learning models only achieve up to 70% ~
90% inference accuracy [14, 19]. Due to the inherent fuzzy
and approximate nature of deep learning, it is impossible to
achieve 100% accuracy for all generated programs only by
an ML model, let alone many complicated bugs that require
programmer’s domain knowledge to detect and fix.

To address the limitations of ML-based method, we design
a code refining pipeline to search for bugs that may remain
in the code generated by the RL model. As shown in Fig-
ure 4, we incorporate a set of code refining tools in three
levels: (1) compilers check on the syntax and library API us-
age bugs; (2) sanity checkers, including PMEMCHECK and
PM-Reorder [17], check on the consistency and reordering
bugs; (3) validation tools, including PMTest [45], XFDetec-
tor [44], and AGAMOTTO [54], perform a deep bug search
in terms of crash consistency and failure recovery. We orga-
nize these tools as a pipeline to ensure that high-level bugs
(e.g., syntax bugs) are identified as early as possible before
starting the time-consuming deep bug search. The output of
the code refining pipeline is a code refining suggestion report
for programmers to further manually inspect the code.

Figure 9 shows an example output of our code refin-
ing pipeline. In this example, the vanilla generated code is
called node_construct followed by a pmemobj_persist.
Our code refining pipeline identifies that node_construct
already persists the tree node data. Therefore, there is no need
to persist it again. This optimization suggestion is reported
to the programmer, who decides to remove the redundant
persistence API call, leading to the improved code.

Vanilla generated code

void btree_insert() {
Cayy

brﬁémobj,persist (pop, node,
a->size);

int node_construct() {

|5(')|'3J7ALL0C( ..., hode_construct);
pmemobj_persist(pop, dst, args.size);

3 3

Improved code

int node_construct() { void btree_insert() {

bhémobj,persist (pop, node,

a->size); POBJ_ALLOC(..., node_construct);

}

Figure 9: A piece of B-Tree code improved by the code refin-
ing pipeline.

4 Implementation

4.1 Training and Testing Dataset

We are the first to develop both training and testing datasets
for ML-based PM code translation problems. We preprocess
the datasets by including header files, creating the pool file
(memory-mapped file) and initializing the root object for fur-
ther read and write operations.

Training Set. We use the dataset from the PMDK library [17]
with 18 C code examples, 14 C++ programs, and two Java pro-
grams. Because the PMDK example code is the nonvolatile
version expert code, we obtain a volatile version of each pro-
gram by manually discard the PMDK APIs in the code.

Testing Set. To show the generalization ability of our model,
we test it with code never seen by the model and measure how
well the model generates for such new code in the inference
process. Our testing dataset consists of volatile code of 48 C
programs, 42 C++ programs, and 13 Java programs obtained
from the open-source Leetcode solution [6, 61, 83]. These
programs perform similar functionality as PMDK example
programs on various data structures widely used in persistent
memory applications, including array, string, list, queue, btree,
rbtree, hashmap, and combinations of multiple data structures.

4.2 Training Configuration

Deep RL Implementation. We implement the RL generator
in PyTorch [58]. We identify the suitable hyper-parameters
of the RL generators and update the weight parameters in
the policy and value network in the training process. In par-
ticular, the LSTM encoder in our model has two recurrent
layers, each with 128 cells. The string has on average 112
tokens, which are embedded into 48-dimensional vectors. The
LSTM encoder for state embedding and the policy network
are trained together in an end-to-end manner. We set the de-
cay rate 00 = KLJFT to achieve the temporal decay, with K = 10
and T as the epoch number. We set the discount rate 7y as
0.95. For the reward function, when using different checkers,
the relative relationship between step, modification, and code
error penalties can be different. In our model, we set step
penalty factor ¢; as —0.01 and modification penalty factor ¢
as —0.005. For the impact factor of each tool in the code error
penalty, we set p; = —0.1 and p, = —0.06 and p3 = —0.065
for PMEMCHECK, PM-Reorder and PMTest respectively.
We set the maximum reward as 1. We train the RL genera-
tor on two Nvidia GeForce GTX 2080 Ti GPUs with 11 GB
Memory for 60 epochs.

Transfer Learning Implementation. The progressive net-
work is also implemented in PyTorch [58], and trained on two
NVIDIA GeForce GTX 2080 Ti GPUs with 11GB Memory
for 30 epochs. We use a dynamic learning rate scheduler in
PyTorch with an initialization of 0.001 for progressive net-
works.
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4.3 PMDK APIs

PMDK [17] is a collection of libraries developed for PM
programming. These libraries build on the DAX feature
that allows applications to directly load and store to PM by
memory-mapping files on a PM-aware file system. We em-
ploy the libpmemobj library, which provides a transactional
object store, memory allocation, and transactions with atom-
icity, consistency, isolation, and durability for PM systems.
We pick 21 library functions (such as pmemobj_persist,
pmemobj_create, pmemobj_open) and 78 macros (such as
TOID, POBJ_ALLOC, D_RW, D_RO, POBJ_ROOT). For C++
code, we employ libpmemobj-cpp, a C++ binding for libp-
memobj, which is more approachable than the low-level C
bindings. For Java code, we use persistent collections for Java
based on the libpmemobj library.

4.4 Checkers

We use checkers in both the environment of our RL model
and the code refining pipeline. As illustrated in Figure 4, the
checkers are organized into three levels. First, we use compil-
ers (such as gcc) to detect syntax errors. Second, we use sanity
checkers, such as PMEMCHECK and PM-Reorder, to detect
consistency and reordering bugs. Finally, we use high-level
validation tools, such as PMTest [45], XFDetector [44], and
AGAMOTTO [54], to further capture durability and order-
ing violations in PM operations, cross-failure bugs [44], and
redundant cache line flushes and fences [54].

As demonstrated in Section 5.1, the more checkers used,
the higher the PM checker passing rate and robustness. How-
ever, increasing the number and complexity of checkers also
leads to a much longer training time. Therefore, we only use
PMTest [45] in the environment in RL model training. The
code refining pipeline adopts all three aforementioned high-
level validation tools one after another to validate a program
generated by our RL model. As these are independent of each
other, the order of running the tools does not matter. In the fol-
lowing, we discuss the implementation details of integrating
various checkers in Ayudante.

Compilers. We adopt gcc version 7.5.0. as the compiler in
this paper.

PMEMCHECK. PMEMCHECK is a persistent memory
analysis tool that employs the dynamic memory analysis tool
Valgrind [55], to track all stores made to persistent mem-
ory and inform programmers of possible memory violations.
Other than checking and reporting the non-persistent stores,
PMEMCHECK also provides other options to look out for
memory overwrites, redundant flushes, and provides transac-
tion checking such as check stores that are made outside of
transactions or regions that overlapped by different transac-
tions. Here we mainly feedback the error number from the
error summary reported by PMEMCHECK to the reward in
the model.

PM-Reorder. PM-Reorder is another tool for persistence cor-
rectness checking. It will traverse the sequences of stores

between flush-fence barriers made by the application, and re-
plays these memory operations many times in different com-
binations, to simulate the various possible ways the stores
to the NVDIMM could be ordered by the system. Given an
exhaustive consistency checking function, this process will
uncover potential application bugs that otherwise could have
been encountered only under specific system failures. It pro-
vides various optional checking orders, such as ReorderFull
to check all possible store permutations, ReorderPartial to
check 3 random order sequences, ReorderAccumulative to
check a growing subset of the original sequence. Here we
mainly use ReorderPartial to achieve consistency checking
while keeping training efficiency. PM-Reorder requires users
to provide a user-defined consistency checker, which is a func-
tion that defines conditions necessary to fulfill the consistency
assumptions in source code and returns a binary value (0 rep-
resents consistent and 1 represents inconsistent). With each
value in a data structure, Ayudante provides a default consis-
tency checker, which determines whether each value field is
properly assigned compared to the number that we store in
the value field [59]. For example, if the main function sets
nodes 0, 1, and 2 of a list as 100, 200, and 300, Ayudante will
provide a consistency checker that traverses these three nodes
to evaluate whether their corresponding values are correctly
assigned or not. Here we mainly leverage the inconsistency
number reported by PM-Reorder.

PMTest. PMTest is a fast and flexible crash consistency de-
tecting tool, which reports violations in durability and order-
ing of PM operations, such as whether a persistent object has
been persisted, ordering between persistent updates, and un-
necessary writebacks or duplicated logs. With C/C++ source
code, Ayudante automatically generates annotations using the
C/C++-compatible software interface offered by PMTest, in-
cluding (i) wrapping the entire code with PMTest_START and
PMTest_END functions and (ii) using TX_CHECKER_START
and TX_CHECKER_END to define the boundary of each trans-
action as required by the PMTest high-level checkers. These
annotations will be removed after testing the generated code.
We use the high-level checkers to validate three items: (1)
the completion of a transaction, (2) the updates of persistent
objects in the transaction are recorded in the undo log before
modification, and (3) the code is free of unnecessary write-
backs or redundant logs that constitute performance bugs. An
issue with (1) or (2) will be reported as a FAIL, while issues
with (3) are identified as WARNINGs. During the training pro-
cess, we use the number of FAILs from PMTest as feedback
to the neural network. In the refining pipeline, we use the
WARNING information to suggest code refining on removing
the redundant writebacks and logs.

XFDetector. XFDetector detects cross-failure bugs by au-
tomatically injecting failures into a pre-failure execution;
it also checks cross-failure races and semantic bugs in
the post-failure continuation. With C/C++ source code,
Ayudante generates the annotations by wrapping the
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Table 1: Intel server system configuration.

Intel Cascade Lake engineering sample
CPU 24 Cores per socket, 2.2 GHz
2 sockets, HyperThreading off
L1 Cache | 32KB 8-way I$, 32KB 8-way D$, private
L2 Cache | IMB, 16-way, private
L3 Cache | 33MB, 11-way, shared
TLB L1D 4-way 64 entries, L11 8-way 128 entries
STLB 12-way 1536 entries
DDR4, 32GB, 2666MHz,
DRAM 2 sockets, 6 channels per socket
NVRAM Intel Optane DIMM, 256 GB, 2666 MHz
2 sockets, 6 channels per socket
Kernel Linux 5.1
Software | GCC 7.1, PMDK 1.7

code with RoIBegin(l, PRE_FAILURE|POST_FAILURE)
and RoIEnd (1, PRE_FAILURE|POST_FAILURE) functions
offered by XFDetector’s C/C++-compatible interface to de-
fine the region-of-interest (Rol); such annotations will be
removed after code testing.

AGAMOTTO. AGAMOTTO detects persistency bugs using
two universal persistency bug oracles based on the common
patterns of PM misuse of C++ code: it identifies (i) modi-
fications to PM cache lines that are not flushed or fenced;
(ii) duplicated flushes of the same cache line or unnecessary
fences. AGAMOTTO symbolically executes PM workloads
to identify bugs without requiring annotations.

5 Evaluation

Experimental Setup. Table | shows configuration of the
Intel server adopted in our experiments. We configure the
Optane DIMMs in App Direct interleaved mode [33] and
employ ext4 filesystem in DAX mode. We disable hyper
threading and boost the CPUs to a fixed frequency to maintain
a stable performance. We run each program 10 times and
report the geometric mean.

5.1 PM Checker Passing Rate in Inference

We employ PM checker passing rate (CPR) defined in
Equation 5 — the percentage of generated code that passes all
the PM checkers — to measure the generalization ability of
the trained model.

#PassCheckers

CPR= #Generated )

In our experiments, we use PMEMCHECK as the checker
to verify the PM CPR in inference. We train three ver-
sions of RL generators with various checker combinations in
the environment, including (1) PMEMCHECK; (2) PMEM-
CHECK and PM-Reorder; (3) PMEMCHECK, PM-Reorder,
and PMTest. separately and Table 2 shows the CPR in infer-
ence tested on microbenchmarks, a key-value store applica-
tion, and Leetcode solution set. Our results show that all the

generated code of RL generator with checker combinations
(2) and (3) passes the checkers with the key-value store work-
load testing and microbenchmarks incorporating array, string,
list, queue, btree, rbtree, and hashmap data structures. Our
experiments also show that Ayudante can handle programs
with multiple data structures. For example, the Leetcode so-
lution for merging k-sorted lists [7] adopts both 1ist and
queue data structures; the generated code makes both data
structures persistent and passes the PMEMCHECK checker.
Moreover, we observe that the more checkers used to feed-
back the reward, the higher CPR is achieved in inference. This
is because checkers will complement each other to penalize
different types of bugs and encourage more precise edits on
the source code to avoid the bugs. Note that none of the exist-
ing ML-based models can achieve 100% inference accuracy
due to the inherent approximate nature of ML. However, our
method improves the CPR in inference by effectively taking
advantage of different checkers in the training process and
the refining pipeline to further report the testing and show
improvement suggestions.

Table 2: The PM CPR in inference and the average percentage
lines of code (LOC) changes, compared among using various
checkers in the environment during training process of deep
RL-based code generator.

Testing Set Checkers in Environment CPR LOC
Microbenchmarks PMEMCHECK 87.5% | 12.3%
and PMEM%I;/[}E:\}[(C?{ ll;é\:/[IéReorder 100% | 13.4%
KV store application & PM-Reorder & PMTest 100% | 13.8%
PMEMCHECK 60.2% | 12.5%
Leetcode solution PMEMCHECK & PM-Reorder | 62.1% | 13.1%
PMEMCHECK 787% | 13.4%

& PM-Reorder& PMTest ’ ’

5.2 Execution Performance

We also evaluate the execution performance of the gener-
ated code under various input sizes by running the programs
on an Intel Optane DIMM server configured as Table 1. We
show the memory bandwidth performance in Figure 10a and
Figure 10 on lists, array, queue, and bt ree microbench-
marks. As shown in Figure 10a, the generated code achieves
a similar bandwidth compared with expert code provided by
PMDK code examples. We also employ perf [25] to pro-
file the last level cache load, store, and data TLB (dTLB)
load events. As shown in Figure 10, the generated code has a
cache and TLB performance comparable to PMDK. Although
lists has a higher number of (30%) LLC store events due
to unnecessary persistence API calls, it does not significantly
affect the overall program execution performance.

We further evaluate the scalability of generated code by
investigating the performance with different input sizes. Fig-
ure | 1 shows that the bandwidth of the generated code is com-
parable to PMDK examples. Therefore, our code generator
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Figure 10: Performance evaluation of code generated by Ayudante, on bandwidth, LLC load, LLC store, and dTLB load on Intel
server with Optane DC PM. The bandwidth is calculated based on the modified data structure size. Numbers are normalized to

corresponding PMDK microbenchmark performance.

is highly stable and reliable in generating high-performance
PM code.

5.3 Bug Avoidance and Reduction

Ayudante employs two mechanisms to avoid and reduce
both syntax and performance bugs.
Avoidance. During the training process, we utilize the check-
ers to penalize our model from buggy edits to avoid bugs
in the generated code. We use PMEMCHECK to penalize
non-persistent stores and misused transactions. We adopt PM-
Reorder to penalize in-consistency stores. We employ PMTest
to penalize non-persistent objects, wrong ordering, and redun-
dant logs. As an example in practice, we observe 17 non-
persistent errors in an intermediate code state during the train-
ing process; after training, all the bugs are eliminated after
step-by-step searches and edits. This also demonstrates that
the RL generator is able to help to debug.
Reduction. Beyond the sanity checks using PMEMCHECK
and PMReorder, we also design a code refining pipeline to
further perform deep bug search and code refining suggestions
generation. An example is shown in Section 3.3 to demon-
strate the results of the code refining pipeline.

5.4 Labor Effort Reduction

We evaluate the reduction of programming labor effort with
average lines of code (LOC) changed as shown in Table 2.
In our experiments, the percentage of LOC changes is typi-
cally 12% ~ 15%, which significantly reduces the labor effort
on developing PM applications. We test the LOC of three
different versions of models by adopting different numbers
of checkers. Intuitively, more checkers leads to more robust
generated code, hence more APIs inserted to guarantee con-
sistency; this results in more LOC changes. However, the
difference of the total LOC is small among different versions
of models, while our models bring significant CPR improve-
ment as demonstrated in Table 2.

6 Discussion

Limitations of ML-based Approaches. Due to limitations
of ML as discussed in Section 3.3, it is impossible for an ML
model to achieve 100% inference accuracy with all programs
due to the inherent fuzzy nature of ML [11, 14, 19]. In fact,
inference accuracy improvement remains a critical challenge
in ML community [23,49]. To address the accuracy limitation,

Ayudante’s code refining pipeline effectively reduces user
efforts on debugging and optimizing the generated programs.
Limitations of PM Checkers. Ayudante relies on PM check-
ers during model training to provide rewards and in the code
refining pipeline to provide code optimization suggestions.
Therefore, the capability of PM checkers is critical to the qual-
ity of code generated by Ayudante. So far, none of the existing
PM checkers detects all PM bugs or programming issues. Ayu-
dante addresses the issue by adopting a three-level checking
process, which incorporates multiple PM checkers, to gen-
erate the rewards during RL model training (Section 4.4);
different checkers complement each other during training. As
demonstrated in Table 2, the more checkers used, the higher
the PM checker passing rate and robustness. Furthermore, our
code refining pipeline adopts multiple high-level validation
tools, such as XFDetector [44], and AGAMOTTO [54], to
further detect bugs that are not captured in training. Once
more comprehensive PM checkers are developed by the com-
munity, we can retrain our model by replacing the current
PM checkers to further improve PM code generation and
refinement.

7 Related Work

To our knowledge, this is the first paper to design an ML-
based automatic PM program assistant. This section discusses
related works.

PM Programming Tools. Prior works focused on develop-
ing PM debugging and testing tools [44,45,54], programming
libraries and APIs [10,17,22,31,74]. The tools are helpful for
PM programming. However, these tools require users to man-
ually write PM code from the scratch, which is challenging
for non-expert programmers and tedious and time-consuming
work for expert programmers as discussed in Section 2. Re-
cent works also explored user-friendly libraries and high-level
programming semantics for converting the data structures de-
veloped for volatile memory into PM programs [27,42,47].
Concurrent work TIPS [39] goes further and provides a sys-
tematic framework to convert DRAM-based indexes for the
NVMM with plug-in APIs to plug-in a volatile index and
facade APIs to access the plugged-in index. However, Ayu-
dante focuses on automatically generate PM code by inserting
library API functions in the source code. As such, Ayudante
is orthogonal to these libraries and programming semantics;
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Figure 11: Bandwidth comparison between Ayudante generated code and PMDK microbenchmarks on the Intel server.

the model can also be trained based on such libraries as a
substitute or complementary of PMDK.

Conventional Code Translation. Code translation prob-
lem on popular and familiar programming language, e.g.,
C/C++/Java/C#/Python/Go, has been well investigated [2,43,
46,57,71]. Previous tasks focus on adding annotation and
source-to-source code translation can be categorized as 3
main folds: (1) Adding specific annotations to achieve certain
constraints. An example is parallelization annotation, anno-
tating to a program with proper statements that are required
by parallel computing libraries and make the source program
can run on parallel hardware, e.g., OpenCL [71], CUDA [57]
and OpenMP [43]. (2) translate between different types of
source code. Such as source-to-source compilers LLVM [46]
to translate between C and C++ by first compiling source
code to LLVM bitcode then decompiling the bitcode to the
target language. (3) translate code between different versions
of one programming language. For example, python’s 2to3
tool [2] translates from python version 2 to version 3 by
parsing the program to abstract syntax tree then translate it.
Though transcompilers are preferred among the software de-
velopers for its definite transformation process, it suffers from
tremendous developing labor efforts and is error-prone.

ML-based Program Generation. To model the edits to
transform code into a target code, one needs to learn the
conditional probability distribution of the target code version
given the source code. A good probabilistic model will assign
higher probabilities to plausible target versions and lower
probabilities to less plausible ones. Neural Machine Transla-
tion models (NMT) are a promising approach to realize such
code edit models and use distributed vector representations of
words as the basic unit to compose representations for more
complex language elements, such as sentences and paragraphs,
e.g., the sequence-to-sequence (Seq2Seq) models [35,79] and
word embedding [9, 12,56]. However, code edits also contain
structural changes, which requires the model is syntax-aware.
To overcome the rigid syntax constraints in programming
language, recent studies leverage tree-to-tree LSTM encoder-
decoder on abstract syntax tree for program statements trans-
lation [11, 14]. However, these work are either rule-based that
requires additional knowledge of the programming languages,
such as grammar [11,52,66, 81, 84], or applying a model to
implicitly learn the translation policies [14, 81] that require
enough training dataset to achieve the high inference perfor-
mance, which is challenging to apply to a new task without

training dataset.

8 Conclusions

We propose Ayudante, a deep reinforcement learning based
framework to assist persistent memory programming. Ayu-
dante provides a deep RL-based PM code generator that mim-
ics programmers behavior to add proper PM library APIs to
the volatile memory-based code. Ayudante also provides a
code refining pipeline that reports code improvement sugges-
tions to the programmers, to help reduce bugs and improve
run-time performance. Ayudante utilize a novel transfer learn-
ing to transfer PM programming semantics from C/C++ to
other languages like Java. We evaluate Ayudante with micro-
benchmarks of various data structures which pass all code
refining pipeline checkers and achieve comparable perfor-
mance to expert-handwritten code. Ayudante significantly
reduce the burden of PM programming, and shed light on
machine auto programming for PM and other domains.
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