
Neural Topic Models for
Hierarchical Topic Detection and Visualization

Dang Pham [�] and Tuan M. V. Le [�]

Department of Computer Science
New Mexico State University, USA

{dangpnh,tuanle}@nmsu.edu

Abstract. Given a corpus of documents, hierarchical topic detection
aims to learn a topic hierarchy where the topics are more general at
high levels of the hierarchy and they become more specific toward the
low levels. In this paper, we consider the joint problem of hierarchical
topic detection and document visualization. We propose a joint neural
topic model that can not only detect topic hierarchies but also generate
a visualization of documents and their topic structure. By being able to
view the topic hierarchy and see how documents are visually distributed
across the hierarchy, we can quickly identify documents and topics of
interest with desirable granularity. We conduct both quantitative and
qualitative experiments on real-world large datasets. The results show
that our method produces a better hierarchical visualization of topics
and documents while achieving competitive performance in hierarchical
topic detection, as compared to state-of-the-art baselines.

1 Introduction

Given a corpus of documents, hierarchical topic detection aims to learn a topic
hierarchy where the topics are more general at high levels of the hierarchy and
they become more specific toward the low levels. Flat topic models such as LDA
[5] are not designed to detect topic hierarchies. Therefore, several hierarchical
topic models including the nested Chinese restaurant process (nCRP) [4, 3], the
nested hierarchical Dirichlet process (nHDP) [24] have been proposed to overcome
this limitation. These models can learn the latent hierarchical structure of topics
and they have a wide variety of applications such as language modeling [10],
entity disambiguation [14], and sentiment analysis [1, 17]. More recently, there
has been an increasing interest in neural approaches for topic modeling. Several
flat neural topic models have been proposed for document modeling [7, 28], and
supervised topic modeling [29]. For detecting topic hierarchies, we have neural
methods such as TSNTM [11]. While traditional hierarchical topic models often
use inference algorithms like collapsed Gibbs sampling or stochastic variational
inference, TSNTM is trained using the autoencoding variational Bayes (AEVB)
[18], which scales to large datasets.

Besides topic modeling, visualization is also an important tool for the analysis
of text corpora. Topic modeling with visualization can provide users with an
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effective overview of the text corpus which could help users discover useful
insights without going through each document. Therefore, in this work, we
investigate neural approaches for the joint problem of hierarchical topic detection
and visualization. We propose a joint neural topic model that can not only detect
topic hierarchies but also generate a visualization of documents and their topic
structure. By being able to view the topic hierarchy as well as how documents are
distributed across the hierarchy, users can quickly identify documents and topics
of interest with desirable granularity. There are several types of visualization for
visualizing topic hierarchies and documents including scatter plots [8], Sankey
diagram [15], Sunburst diagram [26], and tag cloud [30]. In this work, we are
interested in scatter plot visualization where documents, topics, and the topic
hierarchy are embedded in a 2-d or 3-d visualization space. The joint problem of
hierarchical topic detection and visualization can be formally stated as follows.

Problem. Let D = {wn}Nn=1 denote a finite set of N documents and let V be a
finite vocabulary from these documents. A document n is represented as a vector
of word counts wn ∈ R|V|. Given visualization dimension d: 1) For hierarchical
topic modeling, we want to find a hierarchy structure of latent topics where
each node in the hierarchy is a topic z and βz is its word distribution. The
hierarchy can have an infinite number of branches and nodes (topics). The most
general topic is at the root node and more specific topics are at the leaf nodes.
We also find topic distributions of documents that are collectively denoted as
Θ = {θn}Nn=1; 2) For visualization, we want to find d-dimensional visualization
coordinates for N documents X = {xn}Nn=1, and all Z topics Φ = {φz}Zz=1 such
that the distances between documents, topics in the visualization space reflect
the topic-document distributions Θ as well as properties of the topic hierarchy.

There are three aspects considered in the stated problem. In the first aspect,
we want to infer the latent topics in the text corpus. In the second aspect, we
also want to organize these topics into a hierarchy. Finally, we want to visualize
documents and their topics in the same visualization space for visual analysis.
Most of the joint approaches so far only focus on one or two aspects. LDA [5] can
learn topics but not their structure. nCRP [4], TSNTM [11] or other hierarchical
topic models can both learn topics and organize them into a hierarchy. However,
these topic models do not generate a visualization of documents and their topics.
Therefore, recent topic models such as PLSV [12] and its variants [22, 21] are
proposed to jointly infer topics and visualization using a single objective function.
However, since they are flat topic models, they cannot learn or visualize the topic
hierarchy.

In this paper, we aim to propose a neural hierarchical topic model, namely
HTV, that jointly addresses all three aspects of the problem. In our approach,
documents and topics are embedded in the same 2-d or 3-d visualization space. We
introduce the path and level distributions over an infinite tree, and parameterize
them by document and topic coordinates. To possibly create an unbounded topic
tree, we use a doubly-recurrent neural network (DRNN) [2] to generate topic
embeddings. Our contributions are as follows:
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– We propose HTV, a novel visual hierarchical neural topic model for hierar-
chical topic detection and visualization.

– We develop an AEVB inference for our model that involves using a doubly-
recurrent neural network (DRNN) over an infiniate tree and parameterizing
the path and level distributions by document and topic coordinates. We also
introduce the use of graph layout objective function of the Kamada-Kawai
(KK) algorithm for visualizing the topic tree in our model.

– We conduct extensive experiments on several real-world datasets. The exper-
imental results show that our method produces a better hierarchical visual-
ization of topics and documents while achieving competitive performance in
hierarchical topic detection, as compared to state-of-the-art baselines.

2 Visual and Hierarchical Neural Topic Model

2.1 Generative Model

In this section, we present the generative process of our proposed model. As
shown in Figure 1, the topic hierarchy can be considered as a tree where each
node is a topic. The tree could have an infinite number of branches and levels.
The topic at the root is the most general and topics at the leaf nodes are more
specific. To sample a topic for each word wnm in a document n, a path cnm from
the root to a leaf node and a level lnm are drawn. Let βcnm[lnm] be the topic
distribution of the topic in the path cnm and at level lnm. The word wnm is then
drawn from the multinomial distribution Mult

(
βcnm[lnm]

)
. The full generative

process of HTV is as follows:

1. For each document n = 1, · · · ,N :

(a) Draw a document coordinate: xn ∼ Normal (0, γI)

(b) Obtain a path distribution: πn = fπ(xn,Φ)

(c) Obtain a level distribution: δn = fδ(xn,Φ)

(d) For each word wnm in document n:

i. Draw a path: cnm ∼ Mult (πn)
ii. Draw a level: lnm ∼ Mult (δn)

iii. Draw a word: wnm ∼ Mult
(
βcnm[lnm]

)
Here Φ = {φz}Zz=1 are coordinates of all topics in the tree, xn is the coordinate
of a document n. As in [11] [4], for each document n, besides topic distribution
θn, we associate it with a path distribution πn over all the paths from the root to
the leaf nodes, and a level distribution δn over all tree levels. To possibly model
the topic tree with an infinite number of branches and levels, nCRP [4] assumes
that the level distribution is drawn from a stick-breaking construction:

ηl ∼ Beta(1, α), δl = ηl

l−1∏
i=1

(1− ηi), (1)
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and the path distribution is drawn from a nested stick-breaking construction as
follows:

υz ∼ Beta(1, ϕ), πz = πpar(z)υz
∏

z′,z′∈ls(z)

(1− υz′) (2)

here l is one of the levels, z is one of the topics in the topic tree, par(z) is the
parent topic of z, and ls(z) represents the set of z’s left siblings. ηl and υz are
stick proportions of level l and topic z respectively. In our model, since we also
want to visualize the topic tree, we need to formulate a way to encode these stick
breaking constructions into the visualization space to make sure that the tree can
grow unbounded. We introduce two functions fπ(xn,Φ) and fδ(xn,Φ) that are
parameterized by document and topic visualization coordinates for computing
the path distribution and the level distribution respectively.



 

 











for each word 
in document ,  

draw a level 

for each word  in document , draw a path 

level 1

level 2

level 3

path  path  path 

path 

Fig. 1: Steps to sample a topic for each word wnm in a document n. For each word
wnm, a path cnm (from the root to a leaf node) and a level lnm are sampled. The
topic assigned to wnm is βcnm[lnm]. In this example, for the word wn3, assume
that the path c1 and the level 2 are drawn. Topic β11 is then assigned to the
word wn3

2.2 Parameterizing Path Distribution and Level Distribution

In this section, we explain how path distribution and level distribution are
parameterized by document and topic visualization coordinates. From Eq. 2,
generally for all topics that are children of a parent node p, this will hold:∑

z,z∈child(p)

πz = πp ⇐⇒
∑

z,z∈child(p)

πz
πp

= 1 (3)

here child(p) represents the set of all children of the parent node p. Let τz = πz

πp
=

πz

πpar(z)
. To encode the nested stick breaking construction of the path distribution

into the visualization, we parameterize τz of each document n as a function of
the distance between xn and φz as follows:

τzn =
ρ(‖xn − φz‖)∑

z′,z′∈child(par(z)) ρ(‖xn − φz′‖)
(4)



Neural Topic Models for Hierarchical Topic Detection and Visualization 5

here child(par(z)) represents the set of all children of parent of z, the denominator
is for normalization so that (3) still holds, and ρ is a radial basis function (RBF)
which can have different forms such as Gaussian: exp(− 1

2r
2), or Inverse quadratic:

1
1+r2 where r = ‖x− φz‖ is the distance from xn to topic coordinate φz

1. Eq.
4 with Gaussian ρ is also used in PLSV to encode the topic distribution in the
visualization space [12]. As shown in [25], Inverse quadratic consistently produces
good performance and in some cases it gives better results. Therefore, we choose
to use Inverse quadratic in our experiments. Eq. 4 becomes:

τzn =

1
1+‖xn−φz‖2∑

z′,z′∈child(par(z))
1

1+‖xn−φz′‖2
(5)

As we can see from the above formula, when the document n is close to the
topic z in the visualization space, the numerator will be high and thus τzn and
πzn = τznπpar(z)n will be high. Therefore, in step (1)(d)(i) of the generative
process, the words in document n tend to be assigned to the paths that going
through topic z.

Note that πn is the path distribution of a document n. It is easy to see
that the number of paths is equal to the number of leaf nodes in the topic tree.
Therefore, πin of the leaf node i is the path proportion of the path that goes to
the leaf node i and it is computed as follows:

πin = τinπpar(i)n =
∏

z,z∈path(i)

τzn (6)

here note that πroot = 1 and path(i) represents all the nodes that lie on the path
from the root to the leaf node i. From (6), πn is then a function of xn,Φ, i.e.,
πn = fπ(xn,Φ), which is used in step (1)(b) of the generative process.

Similarly, we also parameterize the level distribution of a document n as a
function of xn and topic coordinates Φ:

δln =

1
1+min{‖xn−φz‖2,∀z in level l}∑L

l′=1
1

1+min{‖xn−φz′‖2,∀z′ in level l′}

(7)

where min{‖xn − φz‖2 , ∀z in level l} is the minimum distance between a doc-
ument n and all topics in the l-th level. From (7), δn is a function of xn,Φ,
i.e., δn = fδ(xn,Φ), which is used in step (1)(c) of the generative process.
Based on πn and δn, the topic distribution θn can be derived as: θzn = (1 −∑L
l=1,l 6=lz δln)(

∑
c:cl=z

πcn), where lz is the level of topic z.

2.3 Parameterizing Word Distribution

Let tz ∈ RH be the embedding of topic z and U ∈ RV xH be the embeddings

of words. The word distribution of topic z is computed as: βz = softmax(
U ·tTz
κ

1
lz

),

1
r is Euclidean distance in our experiments
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where κ
1
lz is the temperature value that controls the sparsity of βz. When the

level lz is deeper, the probability distribution over words βz is sparser [11]. To
possibly create an unbounded topic tree, as in [11] we use a doubly-recurrent
neural network (DRNN) [2] to generate topic embeddings. A DRNN consists of
two RNNs that respectively model the ancestral (parent-to-children) and fraternal
(sibling-to-sibling) flows of information in the topic tree. More specifically, the
hidden state hz of the topic z is given by:

hz = tanh(Wh(tanh(Wphpar(z) + bp) + tanh(Wshz−1 + bs)) + bh) (8)

where tanh(Wphpar(z) + bp) and tanh(Wshz−1 + bs) can be considered as the
ancestral and fraternal hidden states. The output topic embedding tz is computed
based on hz as: tz = Whz + b. To increase the diversity of topics in the tree
while allowing parent-children correlations, as in [11] we apply the following
tree-specific diversity regularizer to the final objective function (Section 2.6):

Ltd =
∑

z/∈Leaf

∑
i,j∈Child(z);i6=j

(
t
>
zi · tzj∥∥tzi∥∥ ∥∥tzj∥∥ − 1

)2

(9)

where tzi = ti − tz, Leaf and Child(z) denote the set of the topics with no
children and the children of the z topic, respectively.

2.4 Visualizing the Topic Tree

Our model also aims to visualize the topic tree. While the model can learn the topic
visualization coordinates, it does not guarantee that the edges connecting topics
do not cross each other. Therefore, to ensure that we have a visually appealing
layout of the topic tree (e.g., the number of crossing edges is minimized), we
employ the graph layout objective function of the Kamada-Kawai (KK) algorithm
[13] and use it to regularize the topic coordinates in our final objective function
(Section 2.6). The layout objective function of the KK algorithm is specified as:

Lkk =
∑
i6=j

1
2 (
di,j
si,j
− 1)2, where, in our case, di,j = ||φi − φj || is the Euclidean

distance between topics i,j in the visualization space, si,j is the graph-theoretic
distance of the shortest-path between topics i, j in the tree. The weight of the
edge connecting topics i, j is computed based on the cosine distance between
topic embeddings ti, tj , i.e., weight(i, j) = 1 + cosine dist(ti, tj). Intuitively, two
connected topics that are not similar will result in a longer edge.

2.5 Dynamically Growing the Topic Tree

We explain how the model dynamically updates the tree using heuristics. For
each topic z, we estimate the proportion of the words in the corpus belonging

to topic z: pz =
∑N

n=1Mnθ̂zn∑N
n=1Mn

, where Mn is the number of words in document

n. We compare pz with the level-dependent pruning and adding thresholds to
determine whether z should be removed or a new child topic should be added to
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z for refining it. We use the adding threshold defined as max(a, 1
min child∗2l−1 )

and the pruning threshold defined as max(b, 1
max child∗2l−1 ). Here, min child and

max child can be interpreted as the expected minimum and maximum numbers
of children. The max function is to ensure that the thresholds are not too small
when the number of levels is increasing 2. For a topic z that has pz greater than
the adding threshold: 1) If z is a non-leaf node, one child is added to z; (2) If z is
a leaf node, two children are added. This is the case where the model grows the
tree by increasing the number of levels. Finally, if the sum of the proportions of
all descendants of topic z, i.e.,

∑
j∈Des(z) pj is smaller than the pruning threshold

then z and its descendants are removed.

2.6 Autoencoding Variational Inference

In this section, we present the inference of our model based on AEVB. The
marginal likelihood of a document is given by:

p(wn|Φ,β, γ) =

∫
x

{∏
m

∑
c,l

p(wnm|βc[l])p(c|x, Φ)p(l|x,Φ)
}
p(x|γ)dx

=

∫
x

{∏
m

∑
z

p(wnm|βz)θzn
}
p(x|γ)dx

(10)

where p(c|x,Φ), p(l|x,Φ) are the path distribution πn and the level distribution δn
respectively. They are computed as in Eq. 6 and Eq. 7. θn is the topic distribution
and θzn = (1 −

∑L
l=1,l 6=lz δln)(

∑
c:cl=z

πcn). Based on the AEVB framework,
we have the following lower bound to the marginal log likelihood (ELBO) of a
document:
L (η|γ,Φ,β) = −DKL [q(x|wn, η)‖p(x|γ)] + Eq(x|wn,η)

[
log (θnβ) wT

n

]
(11)

where q(x|wn, η) = Normal (µn,Σn) is the variational distribution and µn,
diagonal Σn ∈ Rd are outputs of the encoding feed forward neural network with
variational parameters η. The whole inference network architecture including
the DRNN of HTV is shown in Figure 8. To estimate the expectation w.r.t
q(x|wn, η) in Eq. 11, we sample an x̂ from the posterior q(x|wn, η) by using

reparameterization trick, i.e., x̂ = µn +Σ1/2
n ε̂ where ε̂ ∼ Normal (0, I) [18]. For

the whole corpus, the lower bound is then approximated as:

L(Ω) =
N∑
n=1

[
− 1

2

(
tr
(
(γI)−1Σn

)
+ (−µn)

T
(γI)−1 (−µn)− d+ log

|γI|
|Σn|

)

+ log
(
θ̂nβ

)
wT
n

]
(12)

Adding the tree-specific diversity regularizer (Eq. 9) and the KK layout regularizer,
we have the final objective function:

L = L(Ω) + λtd ∗ Ltd + λkk ∗ Lkk (13)
2
In the experiments, we set a = b = 0.01
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3 Experiments

Datasets. In our experiments, we use four real-world datasets: 1) BBC3 consists
of 2225 documents from BBC News [9]. It has 5 classes: business, entertainment,
politics, sport, and tech; 2) Reuters4 contains 7674 newswire articles from
8 categories [6]; 3) 20 Newsgroups5 contains 18251 newsgroups posts from
20 categories; 4) Web of Science6 contains the abstracts and keywords of
46,985 published papers from 7 research domains: CS, Psychology, Medical, ECE,
Civil, MAE, and Biochemistry [19]. All datasets are preprocessed by stemming
and removing stopwords. The vocabulary sizes are 2000, 3000, 3000, and 5000
for BBC, Reuters, 20 Newsgroups, and Web of Science respectively.
Comparative Baselines. We compare our proposed model with the following
baselines: 1) LDA-VAE7: LDA with variational auto-encoder (VAE) inference
[27]; 2) PLSV-VAE8: PLSV using VAE inference with Inverse quadratic RBF [25];
3) nCRP9: A hierarchical topic model based on the nested Chinese restaurant
process with collapsed Gibbs sampling [3]; 4) TSNTM10: A hierarchical neural
topic model using VAE inference [11]; 5) HTV (our model): A novel joint model
for both hierarchical topic modeling and visualization with VAE inference.

LDA-VAE, nCRP, and TSNTM are methods for topic modeling but they do
not produce visualization. Therefore, for these methods, we use t-SNE [23] 11 to
embed the documents’ topic proportions for visualization. In contrast, PLSV-
VAE and HTV are joint methods for both topic modeling and visualization.
Although PLSV-VAE is a flat topic model that does not detect topic hierarchies,
for completeness we will compare our method with it. In our experiments, VAE-
based methods are trained by AdaGrad with 2000 epochs, learning rate 0.01,
batch size 512, and dropout with probability p = 0.2. For TSNTM and HTV,
we use 256-dimensional word and topic embeddings, and κ = 0.1 for computing
temperature value in βz. The adding and pruning thresholds of TSNTM are 0.01
and 0.005 respectively. In HTV, we experimentally set (min child, max child)
as (5, 10) for BBC, (5, 15) for Reuters, and (6, 15) for both 20 Newsgroups
and Web of Science. These values work well for these datasets. We set the
regularization parameters as λtd = 0.1 and λkk = 1000, which consistently
produces good performance across all datasets. Smaller λkk would result in more
crossing edges. We initialize the tree with 3 levels where each node has 3 children.
The maximum level is set to 4.

Different from hierarchical methods, PLSV-VAE and LDA-VAE need the
number of topics to be specified before training. For a fair comparison, we set the

3
http://mlg.ucd.ie/datasets/bbc.html

4
http://ana.cachopo.org/datasets-for-single-label-text-categorization

5
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html

6
https://data.mendeley.com/datasets/9rw3vkcfy4/6

7
Its implementation is at https://github.com/akashgit/autoencoding_vi_for_topic_models

8
We use the implementation at https://github.com/dangpnh2/plsv_vae

9
We use the implementation at https://github.com/blei-lab/hlda

10
We use the implementation at https://github.com/misonuma/tsntm

11
https://github.com/DmitryUlyanov/Multicore-TSNE
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number of topics in PLSV-VAE and LDA-VAE to be equal to the number of topics
generated by HTV for each run. Regarding nCRP, we set its hyperparameters
as follows: γ = 0.01, the Dirichlet parameter η = 5, and the GEM parameters
are set as π = 10 and m = 0.5. All the experiment results are averaged across
10 runs on a system with 64GB memory, an Intel(R) Xeon(R) CPU E5-2623v3,
16 cores at 3.00GHz. The GPU in use on this system is NVIDIA Quadro P2000
GPU with 1024 CUDA cores and 5 GB GDDR5.

3.1 Tree-Structure and Visualization Quantitative Evaluation

We evaluate the quality of the tree structure using document specialization in the
visualization space and two other metrics: node specialization and hierarchical
affinity that are also used in [11][16].
Document Specialization in the Visualization Space. In this task, we
measure the quality of hierarchical visualization of documents and topics. A good
hierarchical visualization should put general documents close to general topics
and the farther the documents are from the root, the more specific they are. We
quantify this aspect by finding the top 5%, 10%, . . . of all documents that are the
closest to the root topic in the visualization space. For each such set of documents,
we compute the average cosine similarity between each document and the vector
of the entire corpus. As in [11][16], the vector of the entire corpus is computed
based on the frequencies of the words and is considered as the most general topic.
We would expect that the average cosine similarity will be high for documents
near the root and it will be decreasing when farther away. Since PLSV-VAE,
LDA-VAE, nCRP, and TSNTM do not visualize topics, we use the average of all
documents coordinates as the root. Figure 2 shows the average cosine similarity
(i.e., doc specialization as in the figure) by the methods for different top k% of
documents. The high steepness of the curve by our model HTV indicates that the
documents are organized better into hierarchies in the visualization where the
most general documents are near the root and they become increasingly specific
when farther away.
Classification in Visualization Space. We show that while producing better
hierarchical visualization, our method still generates a high quality scatterplot
visualization in terms of k-NN accuracy in the visualization space. k-NN accuracy
is widely used to evaluate the quality of the visualization [23][25]. In this evaluation
approach, a k-NN classifier is used to classify documents using their visualization
coordinates. A good visualization should group documents with the same label
together and hence yield a high classification accuracy in the visualization space.
Figure 3 shows k-NN accuracy of all models across datasets. This figure shows
that visualization by HTV is as good as other methods. This will be further
confirmed when we look at the example visualizations in Section 3.3.
Node Specialization. A good tree structure should have the general topics
near the root and topics become more specific toward the low levels. To quantify
this aspect, we rely on node specialization that measures the specialization score
as the cosine distance between the word distribution of each topic and the vector
of the entire corpus [11]. Since the entire corpus vector is regarded as the most
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general topic, more specific topics should have higher cosine distances. Table 1
shows the average cosine distance of all topics at each level. We only compare
our model with hierarchical methods in this task. Except for TSNTM in BBC,
the specialization scores for each model increase as the level increases.
Hierarchical Affinity. Another characteristic of a good tree structure is that
a parent topic should be more similar to its children than the topics descended
from the other parents. As in [11], we compute the average cosine similarity
between a node to its children and non-children nodes. Table 2 shows the average
cosine similarity over the topics of all models. The higher score over child nodes
indicates that a parent is more similar to its child nodes. We only show the
results of hierarchical methods in this task. All three models infer child topics
similar to their parents.

3.2 Topic Coherence and Running Time Comparison

We evaluate the quality of topic models produced by all methods in terms of topic
coherence. The objective is to show that while generating better hierarchical
visualization quality, HTV also achieves competitive performance on topic coher-
ence. For topic coherence, we use the Normalized Pointwise Mutual Information
(NPMI) [20] estimated based on a large external corpus. We use Wikipedia
7-gram dataset created from the Wikipedia dump data as of June 2008 version
12. Table 3 shows the average Normalized Pointwise Mutual Information (NPMI
[20]) over all topics for all models. The NPMI scores of HTV over all datasets
are comparable to all baselines. Comparing to hierarchical methods nCRP and
TSNTM, HTV can find slightly better topics. For running time, since HTV uses
VAE inference, it scales well to large datasets. As shown in Table 4, it runs much
faster than nCRP and has comparable running time to TSNTM.

3.3 Visualization Qualitative Evaluation

Figures 4, 5, and 6 show visualization examples by HTV, PLSV-VAE, and
TSNTM on Reuters, 20 Newsgroups, and Web of Science respectively.
Each colored point represents a document, and the larger points with black

12
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Table 1: Topic specialization scores. Except TSNTM method in BBC from level
3 to level 4, the scores increase as the level increases for all models

Dataset Model Level 1 Level 2 Level 3 Level 4

nCRP 0.188 < 0.529 < 0.792 < 0.845
BBC TSNTM 0.321 < 0.528 < 0.557 > 0.516

HTV 0.339 < 0.579 < 0.722 < 0.831

nCRP 0.097 < 0.612 < 0.815 < 0.882
Reuters TSNTM 0.315 < 0.535 < 0.563 < 0.566

HTV 0.450 < 0.561 < 0.739 < 0.877

nCRP 0.097 < 0.612 < 0.847 < 0.894
20 Newsgroups TSNTM 0.247 < 0.456 < 0.538 < 0.561

HTV 0.447 < 0.452 < 0.672 < 0.802

nCRP 0.148 < 0.606 < 0.814 < 0.870
Web of Science TSNTM 0.306 < 0.439 < 0.511 < 0.518

HTV 0.411 < 0.431 < 0.671 < 0.754

Table 2: Hierarchical Affinity. Except TSNTM method in BBC from level 3 to
level 4, the scores increase as the level increases for all models

Dataset Model Child Non-Child

nCRP 0.146 0.063
BBC TSNTM 0.201 0.171

HTV 0.127 0.060

nCRP 0.139 0.095
Reuters TSNTM 0.254 0.188

HTV 0.151 0.070

nCRP 0.138 0.095
20 Newsgroups TSNTM 0.238 0.194

HTV 0.146 0.081

nCRP 0.140 0.089
Web of Science TSNTM 0.275 0.205

HTV 0.143 0.081

Table 3: Average NPMI of all topics over 10 runs
model BBC Reuters 20 Newsgroups Web of Science

LDA 0.091 0.051 0.95 0.094

PLSV-VAE 0.095 0.054 0.095 0.099

nCRP 0.043 0.039 0.031 0.053

TSNTM 0.090 0.053 0.092 0.094

HTV(Our model) 0.091 0.052 0.094 0.099

Table 4: Running time (in seconds) of three models: nCRP, TSNTM, and HTV
Dataset nCRP TSNTM HTV

BBC 84120 6008 7223

Reuters 31300 2132 2247

20 Newsgroups 7079 1011 882

Web of Science 5535 294 295
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(a) HTV (b) PLSV-VAE (c) TSNTM

Fig. 4: Visualization of Reuters by a) HTV b) PLSV-VAE c) TSNTM

(a) HTV (b) PLSV-VAE (c) TSNTM

Fig. 5: Visualization of 20 Newsgroups by a) HTV b) PLSV-VAE c) TSNTM

(a) HTV (b) PLSV-VAE (c) TSNTM

Fig. 6: Visualization of Web of Science by a) HTV b) PLSV-VAE c) TSNTM
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Fig. 7: Visualization and hierarchical topics found by HTV on Web of Science
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Fig. 8: The inference network architecture of HTV
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border are topics (only in PLSV-VAE and HTV). In HTV, the red point with
black border is the root topic and the green points with black border are the
level 2 topics, finally, the blue and yellow points with black border represent
level 3 and level 4 topics. It is clear that HTV can find good document clusters
as compared to PLSV-VAE and TSNTM with t-SNE. Moreover, HTV learns a
topic tree for each dataset and visualizes it in the visualization space using KK
layout objective function. This helps to minimize the crossing edges as seen in all
the visualization examples. In contrast, TSNTM does not visualize topics, and
for PLSV-VAE, it does not infer the topic hierarchy. Therefore, it is difficult to
tell the relationship between topics in the visualization. In Figure 7, we show
the visualization of documents along with the generated topics by HTV on Web
of Science. The inferred topic tree has three branches. The root topic has top
5 words: “method, studi, data, measur, img” which are very general words in
sciences domain. As we can see, topics at the lower levels are more specific. For
example, topics on levels 3, 4 in the top branch are very specific. They are topics
in Civil, MAE, Biochemistry domains such as “water, are, model, system, soil”,
“model, engin, experiment, properti, flow, fluid”, and “gene, protein, sequenc,
molecular, function”. The layout of topics and their structure show that our
model can extract the topic hierarchy and visualize it along with the documents.

4 Related Work

Hierarchical structure is an effective way to organize topics as it helps users to
understand and explore the structure of topics. Flat topic models such as LDA [5]
are not designed to detect topic hierarchies. Therefore, several hierarchical topic
models including the nested Chinese restaurant process (nCRP) [4, 3], the nested
hierarchical Dirichlet process (nHDP) [24] have been proposed to overcome this
limitation. Recently, there has been an increasing interest in neural approaches
for topic modeling [7, 28, 29]. For detecting topic hierarchies, we have neural
methods such as TSNTM [11], which is a neural extension of nCRP. TSNTM
parameterizes the topic distribution over an infinite tree by a doubly-recurrent
neural network (DRNN). TSNTM is trained using AEVB, making it scale well
to larger datasets than the nCRP-based model.

All of the above methods work well for topic modeling but they are not
designed for visualization tasks. Therefore, several works including the pioneering
model PLSV [12] and its variants [22] [21] have been proposed to jointly perform
topic modeling and visualization. PLSV is a flat topic model where a generative
model is used to generate both topics and visualization. Recently, PLSV-VAE
[25] proposes using AEVB for scalable inference in PLSV. These joint models
are not for hierarchical topic detection. To the best of our knowledge, our model
is the first joint model for detecting topic hierarchies and visualization.

5 Conclusion

In this paper, we propose HTV, a visual hierarchical neural topic model for
jointly detecting topic hierarchies and visualization. We parameterize the path
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distribution and level distribution by document and topic coordinates. To possibly
create an unbounded topic tree, we use a DRNN to generate topic embeddings.
We make use of KK layout objective function to regularize the model, ensuring
that we have a visually appealing layout of the topic tree in the visualization
space. Our extensive experiments on four real-world datasets show that HTV
generates better hierarchical visualization of documents and topics while gaining
competitive performance in hierarchical topic detection, as compared to state-of-
the-art baselines.
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