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Abstract—Graph signal processing (GSP) is an emerging field 
developed for analyzing signals defined on irregular spatial 
structures modeled as graphs. Given the considerable literature 
regarding the resilience of infrastructure networks using graph 
theory, it is not surprising that a number of applications of GSP 
can be found in the resilience domain. GSP techniques assume 
that the choice of graphical Fourier transform (GFT) imparts a 
particular spectral structure on the signal of interest. We assess 
a number of power distribution systems with respect to metrics 
of signal structure and identify several correlates to system 
properties and further demonstrate how these metrics relate 
to performance of some GSP techniques. We also discuss the 
feasibility of a data-driven approach that improves these metrics 
and apply it to a water distribution scenario. Overall, we find that 
many of the candidate systems analyzed are properly structured 
in the chosen GFT basis and amenable to GSP techniques, but 
identify considerable variability and nuance that merits future 
investigation. 

Index Terms—resilience, graph signal processing, graph 
Fourier transform 

I. INTRODUCTION 

Critical infrastructure systems such as power systems and 
water distribution are vital components in the safety and 
security of a nation. These systems are subject to a wide range 
of failures and disturbances, including component failures, nat-

 

ural phenomena such as severe storm events and earthquakes, 
and in the increasingly “wired” age of information technology, 
cyber-events including both malicious attacks and “benign” 
events caused by unexpected interactions or upgrades [1]–[5]. 
Considerable research and investment have been executed to 
analyze systems in response to these vulnerabilities, and to 
develop novel strategies to manage, mitigate, and recover any 
degradation in performance due to them. Collectively, these 
efforts have led to the multidisciplinary field of resilience 
engineering [6]–[8] that seeks to formalize these concepts and 
apply them to real world situations. 

Many of the systems of interest in critical infrastructure 
have a network structure, including lines and buses in a power 
system, pipes and junctions in water distribution, or roads 
and intersections in a transportation system. This commonality 
in network structure has led to extensive investigation of the 
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resilience of these networks using the language of mathemat-
ical graph theory. Graph theory models networks as abstract 
edges and vertices, and numerous studies have been performed 
to show how graph theoretic properties and metrics relate to 
resilience in critical infrastructure problems, e.g., [9]–[12]. 

Motivated by spectral graph theory [13] and algebraic 
approaches to signal processing [14], the field of graph signal 
processing (GSP) has developed over the past decade to 
analyze signals defined on irregular spatial structures modeled 
as graphs [15], [16]. In the context of infrastructure systems, 
example “graph signals” include complex phasors on buses 
in power systems and hydraulic pressure in water distribution 
systems. Several applications of GSP to infrastructure systems 
have appeared in the literature, including sensor placement 
problems [17]–[19], false data injection (FDI) [20], [21], and 
general monitoring problems [22], [23]. More broadly, GSP 
generalizes techniques from signal processing that could find 
wide utility in analysis and estimation problems of graph 
signals in infrastructure applications, see e.g., [24]–[26]. 

Enthusiasm for this potentially powerful set of tools must 
be tempered by the fact that there exists a number of potential 
approaches to generalizing Fourier-based techniques to graph 
signals (i.e., there are numerous “natural” ways to define a 
graphical Fourier transform (GFT)), and each GSP technique 
ultimately relies upon some assumption or constraint imposed 
on the graph signals by this GFT. Furthermore, most of 
the GSP power systems literature consider at best a few 
different networks, typically of small ( 100 buses), and 
no broad analysis across many systems of different scales 
has been performed. To this end, in this paper we analyze 
particular choices of GFT in the context of a number of 
different infrastructure systems to assess how strongly they 
meet implied GSP assumptions, and then assess the efficacy 
of some GSP techniques to understand the impact of these 
assumptions. This analytical case-study of GSP techniques 
mirror what must be performed in any practical, real-world 
application of these techniques to critical infrastructure. 

In the following sections, we first review some graph 
theoretic and GSP preliminaries and discuss some applications 
of techniques from the field of GSP to signals defined on 
infrastructure networks. We then move to a more in-depth 
analysis of the suitability of these techniques for power 
systems, by considering power-flow analyses of a large set of 
diverse power networks and relate some relevant GSP signal 
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metrics to the efficacy of proposed GSP techniques. Next, we 
discuss how the physics of water distribution potentially limits 
the usage of GSP in that domain and offer an attempt to find 
a usable GFT. We conclude with additional discussion and 
future directions for GSP in critical infrastructure. 

II. BACKGROUND 

A. Graph Theory Preliminaries 

Mathematically, a (undirected) graph = (V, E) is defined 
as a collection of a set of vertices (sometimes called nodes) 
V = {v1 ,. . ., vN} and a set of edges E = {{u, v} : u, v  
V}. is said to have N vertices and |E(G)| = M edges. If 
{u, v}  E, then u and v are said to be adjacent. Given a 
vertex v  V , the degree of v is d(v) = |{u : {u, v}  E }|, or 
the number of nodes adjacent to v. A directed graph is a graph 
where the edges are ordered pairs of vertices rather than sets. 
In other words, E = {(u, v) : u, v  V}. The head of edge 
(u, v) is v and the tail is u. Graphs can also have vertex and/or 
edge attributes associated with them. In the context of this 
paper, we are interested in edge weighted graphs, where each 
edge ek in E has an associated weight wk , or vertex weighted 
graphs, where each vertex vk has an associated weight wk . 

The adjacency matrix, A, is one convenient way of repre-
senting the structure of a graph where element Ak` = 1 (or 
the edge weight for edge weighted graphs) if vk is adjacent 
to v̀ and Ak` = 0 otherwise. Note that A is symmetric if 
is undirected, but A need not be symmetric if is directed. 
The incidence matrix, B, is another way of storing structural 
information. For an undirected graph, it is an N × M matrix 
where element Bk` = 1 if vertex vk is an element of edge 
è and Bk` = 0 otherwise. For a directed graph, element 
Bk`= 1 if vk is the head of è , and Bk` is -1 if it is the tail. 
For edge weighted graphs, the ±1 entries of B are replaced 
with ±ẁ . For undirected graphs, the Laplacian matrix, L, 
can be calculated from the adjacency matrix. Specifically, it is 
defined as L = D−A where D is a diagonal matrix such that 
Dkk = d(vk ) for vertex k and A is the adjacency matrix. It is 
common to consider the spectrum, or the set of eigenvalues λk 
of L, to understand certain properties of the graph such as clus-
tering, and for positive weighted, undirected graphs, λk ≥ 0 
[13]. For directed graphs or graphs with negative or complex-
valued weights, we will use the underlying positive, undirected 
adjacency matrix A(|u|) where A(|u|)

k` = max{|Ak |̀, |À k |} 
[27], [28] to derive a corresponding underlying L(|u|). Other 
generalizations of graph Laplacians exist in the literature, as 
well [29]. 

B. Graph Signal Processing 

GSP is a field that has emerged over the past decade and 
aims to generalize signal processing techniques to signals 
defined over graphs [15], [16]. In classical signal processing, 
signals live in a Euclidean space, as for example signals 
defined over time, images, and video. In GSP, the nodes of a 
graph define the domain of the so-called graph signal Formally, 
given a graph = (V, E), a graph signal f : V → V is 
a function defined on the vertices of that takes values in  

some vector space V, typically R
N

, although C
N

 is a natural 
domain for power applications. For notational convenience we 
will denote graph functions f (vk ) by fk emphasizing that 
the function can indeed be viewed as a vector “attached” 
to a graph. Several analysis techniques and transforms from 
classical signal processing have been adapted to signals de-
fined over a graph. Key to these ideas is the notion of an 
N × N (possibly complex) GFT matrix U that defines the 
GFT f

˜
 = U † f , where † denotes conjugate-transposition. 

When U is unitary, its columns Uk are orthonormal and 
there is a natural inverse GFT defined by f = U f

˜
. This 

orthogonality captures much of the original intuition behind 
the discrete time Fourier transform and is exploited throughout 
GSP applications. Figure 1 shows some example graph signals 
and their representations in the GFT domain. 

Fig. 1. Example graph signals (left column) and their representations in the 
GFT domain (right column). White noise signals are random on the graph 
and are uniform in the GFT domain. Low-pass graph signals vary smoothly 
with respect to the graph topology, and are concentrated in the low-frequency 
graph harmonics. Sparse signals can have high-frequency graph components 
and appear seemingly random in the graph domain, but are highly structured 
in the GFT domain. 

There are many ways to define a GFT from a given graph 
, some of which do not necessarily produce a unitary trans-

form. Some approaches more motivated by algebraic signal 
processing use A directly, while others exploit spectral graph 
theoretic motivation of Laplacians [15], [16], [27], [28]. Here, 
we will restrict ourselves to Laplacian-derived unitary GFTs. 
For undirected graphs with positive edges, the Laplacian L 
admits the eigendecomposition L = UΛU

T
 , where U is the 

matrix with its eigenvectors Uk along its columns and Λ is a 
diagonal matrix of the eigenvalues, 0 = λ1 < ·· · < λN. For 
general graphs, L(|u|) can be used to define similar transforms 
[27], [28]. The eigenvalues λk of L are used to define a notion 
of frequency for the graph harmonics defined by eigenvectors 
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Uk. Unlike standard Fourier analysis, these “frequencies” are 
not uniformly spaced, but they can be ordered. In particular, 
the harmonics corresponding to λk = 0 correspond to the 
average value for that connected component. In the GSP 
context, the GFT provides an illustration of alignment or 
smoothness between the graph signals and their adjacent graph 
edges in much the same way that frequency content of a 
signal in standard Fourier analysis does. An important measure 
is the total variation (TV) of a graph signal, defined as 
TV( f ) = f † Lf = 

> N

k,`=1,`>k Ak`|fk − f` |
2
. In the context 

of the eigendecomposition of L, TV is the average frequency 
weighted by the GFT power spectrum of f . 

Another important concept in GSP is that of a graph filter, 
where a graph signal f is modified in the GFT domain and 
transformed back into the graph signal domain, which can 
be expressed as f

ˆ
 = Udiag(h)U † f where the vector h re-

scales (and/or phase-shifts) the signal energy in each GFT 
harmonic, in analogy with window methods in classical signal 
processing. For example h = [1, 1,·· ·, 1, 0, 0, ··· 0] defines 
a low-pass graph filter, since all the harmonics above some 
graph frequency cutoff are set to zero. 

III. APPLICATIONS IN RESILIENCE 

Despite its relative nascence, the field of GSP has rapidly 
generalized a number of techniques from “standard” signal 
processing to functions defined on the nodes of a graph, many 
of which appear to be suitable for infrastructure applications. 
These include signal denoising [25] and more generally filter-
ing of noisy signal f

˘
 = f + n , where n is some noise graph 

process. Much like classical signal processing, the idea is to 
apply some graph filter h that removes as much of n while 
preserving f , or otherwise extracting spectral components of 
f
˘
. Similarly, when there is both noise and an external FDI 

signal e (so f
˘

 = f + n + e), a graph filter h that extracts 
the expected spectral content of f and n can be used to 
identify potential attacks e [20], [21]. When f is expected 
to be sparse (i.e., f

˜
 is concentrated in a few harmonics), this 

signal structure can be exploited to estimate f using only the 
values at a few vertices [24], [25]. 

A. GSP as a signal model 

The efficacy of any of the aforementioned GSP techniques 
is dependent upon the choice of the GFT used. It is assumed 
that the class of expected or typical signals will have some 
general structure with respect to the chosen GFT, typically 
“low-pass” or spectrally sparse in the chosen GFT domain 
(see Figure 1). If, for example, the typical graph signals are 
uniformly spread (i.e., “white” noise) with respect to a given 
GFT, then these GSP techniques will not be as effective. For 
example, FDI detection would basically devolve into detection 
based on individual nodes, rather than the entire signal. Such 
a test would be less sensitive than under the low-pass model, 
which compares signal energy at the high frequency harmonics 
in the GFT domain with expected values based on typical 
signal smoothness. This improves the detection rate of the test 
by exploiting the overall assumption of signal smoothness. In  

this sense, the assumption of a particular signal model in a 
specific GFT domain needs to be evaluated for the specific 
network and “typical” signals defined on it. 

Many of these problems have been addressed under alter-
native approaches and signal models, for example using com-
pressive sensing (CS) and sparse optimization approaches [30] 
or data-driven approaches based on e.g., principal component 
analysis (PCA) [31]. Sparsity inducing bases for CS models 
and the principal component vectors can both be viewed as 
unitary matrices that define transforms that induce a signal 
structure, much like a GFT. Comparison to these two classes 
of approaches elucidates what the GSP framework is actually 
assuming, namely, that the network structure and some un-
derlying physical model induces a particular signal structure 
that can be inferred using only the network structure. This is 
a stronger assumption than the PCA approach, which exploits 
the existence of signal structure determined empirically, and 
on par with many CS approaches where the sparse basis is 
known a priori. This is not meant to be taken as a criticism 
of GSP approaches, as it might initially seem that we are 
advocating for more direct data-driven approaches that more 
rigidly (at least empirically) induce the signal structure as-
sumptions exploited in the various techniques above. Instead, 
these GSP motivated approaches attempt to capture something 
“universal” and physically motivated about a particular class 
of infrastructure systems. 

IV. POWER SYSTEMS 

A number of GSP applications can be found in the domain 
of power systems, at least partially due to the rich set of 
potential graph models to use for exploitable signal structure. 
Modeling the graph as unweighted uses only connectivity and 
ignores all information about the lines themselves, and due 
to this, appears to be unused in this domain. In [23] the 
inverse of the length of each line in the power system is 
used to weight the edges. The decoupled (DC) power flow 
assumptions imply a graph weighted by the inverse of the 
reactance (and a graph signal of phases). The above discussion 
highlights a combinatorial issue that needs to be resolved in 
order to effectively apply GSP techniques, as one must find 
both a (weighted) graphical structure and a corresponding GFT 
operator that effectively induces the desired exploitable signal 
structure. Just because one combination of network weights 
and GFT does not appear to induce the required structure does 
not rule out the existence of a useful model. 

Here, we consider weights motivated by (idealized) alter-
nating current (AC) power flow by defining the admittance 
yk,` = (rk,` + jxk,`)− 1 of a line in terms of the resistance 
rk,` and reactance xk,`. The current flow i k,l  through a line 
is related to the admittance and the bus voltages Vk and V̀ 
via i k,` = yk,`(Vk − V̀ ). By assigning a fixed (yet arbitrary) 
direction to each line, this set of equations can be used to 
define a directed incidence matrix BAC that relates the vector 
of currents on each edge i to the vector of voltages V by 
i = B

†

AC
V . 
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In what follows, we restrict ourselves to analyzing the 
complex vector of bus voltages, V , using the AC power flow 
network structure under the GFT defined by L(|u|) for BAC. 
Using this as the basis for our GSP analysis, we consider AC 
power-flow simulations computed by MATPOWER [32] using 
the example networks provided by that package. We restrict 
our analyses to networks with bus counts less than 4096 to 
produce a set of default bus voltages to serve as graph signals. 
This set of 43 networks spans 4–3374 buses, and includes both 
IEEE test cases (14, 24, 30, 57, 118, 145, 300 bus cases) and 
systems modeling complex, real world networks from Texas, 
France, and Poland, see [32] source code. 

A. Suitability of GSP Approaches 

As discussed in Sec. III-A, a common assumption about 
the signal structure for GSP applications is that the signal 
is in some sense compressible, which means that the signal 
is well approximated by a few GFT harmonics. Let us first 
define three metrics to illustrate when GSP approaches may 
be suitable for our analysis problem of choice. The first metric 
we consider is low-pass compressibility, which is defined 
by the number of consecutive low-frequency graph Fourier 
harmonics required to capture some fraction of the overall 
signal power, here 90% and 99.9%. Low-pass compressible 
graph signals would be ideal candidates for denoising via a 
low-pass graph filter. Additionally, low-pass compressibility is 
exploited in FDI detection approaches; for example the 99.9% 
threshold was used in [23] as a cutoff for high-pass graph 
filter to detect FDI. The second metric we consider is general 
compressibility, which is defined by the minimum number of 
harmonics required to capture the desired fraction of energy, 
without the low-pass constraint. Thus, general compressibility 
is a metric of signal sparsity in the GFT domain. Graph signals 
that are sparse can be reconstructed from fewer measurements, 
and this can be exploited to reduce the number of sensors 
required to monitor the system. The difference between low-
pass compressibility and compressibility (i.e., sparsity) can be 
seen in Figure 1. The third metric we use is total variation 
TV(V ), an alternative notion of signal smoothness that is 
commonly encountered in the GSP literature as a regularizer 
in optimization problems. To normalize the above metrics, we 
divide the notions of compressibility by the number of buses 
to compute compressibility ratios, and we normalize TV(V ) 
by dividing by ||V ||

2
 for each graph signal. 

For each network in our MATPOWER test set, we used the 
default AC power-flow result to assess its low-pass and general 
compressibility. Figure 2 (top) shows the compressibility ratios 
for each graph signal. This indicates that many of these 
signals are reasonably compressible (especially at the 90% 
threshold) and are generally inversely correlated with network 
size (r8  = −0.99, p = 3.9 × 10

−38
 for 90% and r8  = −0.53, 

p = 2.3 × 10
−4

for 99.9% using Spearman’s rank correlation 
coefficient r8  [33]). The general compressibility notions are 
similarly correlated. It turns out, however, that these bus 
voltages are dominated by the average voltage across the entire 
bus (c.f., the DC approximation) which is captured by the  

λ= 0 graph harmonic. When we look at the compressibility of 
only the remaining harmonics, i.e., the perturbations from the 
signal mean, we see that the signals are far less compressible, 
see Figure 2 (bottom). The discrepancy between these two 
panels indicates that sparse reconstruction (equivalently, sparse 
sensor placement) problems that care only about perturbations 
from the mean will require more measurements to reconstruct 
to the same level of error, as the compressibility ratio of 
a signal essentially determines the number of measurements 
required to reconstruct the signal at a given error threshold. 

Network Size (Bus Count) 

Fig. 2. Low-pass (LP) and general compressibility ratios of bus voltages 
at 90% and 99.9% thresholds. Top: Compressibility ratios of the complete 
signal. Bottom: Compressibility ratios with the signal average removed. 

Figure 3 shows the normalized TV for each of the MAT-
POWER test cases. Unlike the low-pass and general compress-
ibility which was inversely correlated with network size, here 
we see that TV is not particularly correlated with network 
size (r8  = 0.19, p = 0.22). The largest outlier in Figure 3 
corresponds to the IEEE 145 bus, 50 generator dynamic test 
case, in which over a third of the buses have active generation 
capability. Motivated by this observation, we performed a 
correlation analysis that related percentage of buses with active 
generation to normalized TV and we found a moderately 
strong correlation (r8  = 0.44, p = 2.9 × 10

−3
). Since dis-

tributed power generation capability injects extra “degrees of 
freedom” in the power flow computations, it is not surprising 
that this produces signals that are in some sense less smooth. 
Performing a similar analysis indicate that compressibility at 
the 99.9% threshold is not statistically significantly correlated 
(r8  = −0.17, p = 0.25, for low-pass, r8  = −0.28, p = 0.07 
for general), but that 90% compressibility is (both r8  = −0.83, 
p = 3.38 × 10

−12
), albeit less strongly correlated than they 

are to network size. 

B. Impact on GSP Techniques 

The previous section focused on how well the set of can-
didate systems and signals met some common GSP-motivated 
signal models. In this section, we analyze some GSP tech-
niques applied to the same set of systems and signals to assess 
the impacts of the metrics from the previous section on these 
approaches. Applications related to sparse reconstruction and 
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Fig. 3. Total Variation of AC power flow-computed bus voltages compared 
to network size. 

approximation, such as the optimal sensor placement problem 
have already been discussed at a notional level in the context 
of Figure 2, so we will instead focus on estimating the true 
bus voltages from those corrupted by noise (the denoising 
problem) and FDIs. 

Two approaches to the denoising problem are considered 
here. The first is to use the 99.9% low-pass compression 
threshold for a graph low-pass filter hLP , where hLPk = 1 
for harmonics below the threshold and hLPk = 0 for those 
above it. The second denoising approach uses a graph filter 
hα  determined by TV regularization approach parameterized 
by , where hαk = (1 + 2 λk )

−1
 for the eigenvalues 

λk of each network’s L(|u|) [26]. To assess the efficacy of 
these filters, for each of the power systems and default bus 
voltages V , we performed a series of Monte Carlo simulations 
on these two forms of denoising. For each default voltage 
signal V , we added a white noise signal n so that the 
expected signal-to-noise ratio (SNR) was 20 dB, and then 
performed the denoising procedure for hLP and hα  for 50 
logarithmically spaced  [.01, 10]. This procedure was 
repeated for 25 independent noise perturbations per network, 
and the improvement (possibly negative) in output SNR was 
computed. Figure 4 (top) shows the average improvement in 
SNR across these random samples for the best (over ) hα 
with the bottom panel showing the best for that network. 
We see that TV correlates with these two quantities quite well 
(SNR gain: r8  = −0.57, p = 6.7 × 10

−5
, best : r8  = −0.75, 

p = 1.0× 10
−8

) indicates a strong inverse correlation between 
the TV of the noiseless signal and improvement in SNR by 
the denoising procedure. Furthermore, we find that the best 
hα  improved the SNR by about 1.3 dB more on average than 
hLP , although other compression ratios may perform better. 

Next, we consider how the GSP model assumptions relate to 
FDI detection. The approach of [23] is based on the high-pass 
filtering of a signal f perturbed by noise n and an injected 
graph signal e. Thresholding on the norm of the filtered signal 
is used to determine the presence of an FDI attack. To assess 
how this approach might work with respect to the systems 
here, we define a high-pass filter hHP = 1 − hLP , using 
the low-pass filters derived from the 99.9% compressibility 

Fig. 4. Top: SNR Gain of denoising vs. TV, using best hα  for each network 
Bottom: Best α for each network vs. TV.Dashed lines show log-linear and 
log-log regression fits indicating overall inverse correlation. 

thresholds above. We then apply this filter to graph signals δk 
where δk = 1 on k

th
vertex and 0 elsewhere. This measures 

how much injected signal will contribute to the detection 
threshold (i.e., the closer the filtered norm is to 1, the more 
detectable an FDI on that vertex will be). Figure 5 shows the 
median norm of the filtered δk for each network (sorted by 
99.9% low-pass compressibility ratio), along with notions of 
the spread of the resulting distributions of the norms. There is 
a strong correlation between the median and compressibility 
(r8  = −0.99, p = 1.7 × 10

−34
), but it is worth noting that 

there is substantial variability for many of the networks. This 
indicates that certain buses are more susceptible to FDI attacks 
than others. 

99.9% Low-pass Compressibility Ratio 

Fig. 5. Top: Norm of δk filtered using hHP . Line is the median for each 
network, darker shaded region is the inner 50% quantile, lighter shaded region 
is the full range. Bottom: Zoomed-in view of dashed rectangle from top panel. 

V. WATER DISTRIBUTION SYSTEMS 

Unlike power systems, water systems do not appear to have 
the variety of GSP-motivated analysis in the literature. The 
exception appears to be the work in [19], [34] which focuses 
on the spread of pollutants in water distribution systems. 
The authors note that the graph Fourier structure of the 
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pollutant “signal” is not sparse or compressible with respect 
to the Laplacian of the unweighted network model. This 
lack of signal structure in the graphical Fourier domain led 
to the development of so-called “data-driven” approaches to 
designing GFTs that induce the desired compressibility based 
on a collection of observed data [19], [34]. However, these 
techniques more closely resemble the PCA-based analysis 
discussed in Sec. III-A than GSP, and do account for the 
structure of the underlying network. 

We conjecture that part of the reason for a lack of GSP 
analysis in this domain is the absence of canonical relations 
between signals on the graph vertices and flows on the graph 
edges, unlike the power systems case. There is, however, an 
analogy between hydraulic and electric circuits that associates 
flow-volume through pipes with current through branches, 
and pressure differences between junctions with voltage dif-
ferences between buses. Unlike Ohm’s law between voltage 
and current, the hydraulic circuit equation for pressure loss 
is generally modeled as nonlinear and include a number of 
additional physical considerations that make the equations less 
tractable than in power systems. Water distribution systems 
can be modeled as an undirected graph G = (V, E) , where the 
vertices are junctions with head pressure, Hk , and the edges 
are pipes with water flow rate, qk, ,̀ representing fluid flow 
from junction k to ̀ . Analogous to Kirchhoff’s current law, the 
net flow rate of fluids into and out of a junction can be assumed 
to be zero barring any exogenous demand Dk (analogous to 
a current source), so for each junction k, 

X  qk,` = Dk (1) 
(k,`) E 

which is essentially identical to Kirchhoff’s current law. Hy-
draulic systems also satisfy an analogue to Kirchhoff’s voltage 
law, where the net pressure change over any closed loop is zero 
(with pumps replacing voltage sources). However, as noted 
above, the relation between head loss and water flow is not 
generally modeled well by a linear relation like Ohm’s law. 
A common approximation of the head pressure loss (in m) 
between junctions (and the one used in simulations here [35]) 
is the Hazen-Williams headloss formula [36]: 

H̀ − Hk = sgn(qk ,` )10.667C
−1.852

 k,` d−4.871 
k,` Lk, |̀qk, |̀

1.852
 , 

(2) 
where Ck, ,̀ dk, ,̀ Lk, ,̀ qk,` are the roughness coefficient 
(unitless), diameter (in m), length (in m), and flow rate (in 
m

3
/s) of the pipe connecting junctions k and `, respectively, 

and sgn is the signum function. There is also a linear version 
of the pressure loss equation, called the Hagen-Poiseuille 
equation which relates the head loss to the flow rate and pipe 
length and diameter via 

Lk,`  H̀ − Hk  
d

4 qk,` (3) 
k,` 

where we have ignored a number of constants that will apply 
to all pipes identically, and thus act as a global scaling. 

Using the package pyWNTR [35] we simulated the EPANET 

[36] example network 3 (97 junctions, 119 pipes), which  

simulated a time series of hydraulic simulations based on a 
simulated demand model (673 graph signals over 168 hours). 
Figure 6 (top) shows the GFT power spectrum of the simulated 
signals for Laplacians computed using the unweighted connec-
tivity as well as weights from (2) and (3). We see that none 
of these approaches produce signals that are especially com-
pressible or smooth on average (outside of the dominant 0th 

harmonic). An open question is the existence of a principled, 
data-driven approach that also accounts for the underlying 
connectivity of the network. To this end, we can use random 
search to find weights that improve the overall compressibility 
of the set of signals, see Figure 6 (bottom), but we leave a more 
principled approach to future research. This indicates that it 
may be possible to merge purely data-driven approaches with 
GSP-motivated approaches to create network models driven by 
the underlying physics to create GFTs where the graph signals 
strongly meet the model assumptions, producing better results 
for the GSP technique. 

Conn. Data Driven 

1 20 40 60 80 96 

Fourier Harmonic # 

Fig. 6. Total signal power of head loss at each junction in the graph 
Fourier domain (0

th
 harmonic omitted for scaling), using different weighted 

network models. Top: Conn.-unweighted network using only connectivity, 
H-W-weights set to the inverse of the Hazen-Williams coefficients, H-P-
weights set to the inverse of the Hagen-Poiseuille coefficients. None of the 
weighted networks produces especially low-pass or sparse graph signals. 
Bottom: Conn.-unweighted network using only connectivity, Data Driven-a 
data-driven approach designed to assign edge weights that produce low-pass 
characteristics. 

VI. CONCLUSION 

In conclusion, we have demonstrated the importance of 
understanding GSP model assumptions in the context of infras-
tructure resilience applications. We emphasize that this work 
should not be interpreted as a definitive approach on the chosen 
techniques, rather it should be interpreted more pedagogically, 
as a case study analysis in a particular choice of GFT and 
signal model, similar to any analysis that must be performed in 
any practical, real-world application of these techniques. We 
found that system size and distributed generation capability 
were reasonably strong correlates to relevant GSP metrics 
and ultimately performance of considered GSP techniques. 
Thus, we note that the variability introduced by distributed 
generation (e.g., renewables) in relatively small networks may 
limit GSP techniques in micro-grid applications, and in any 
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event should be analyzed carefully to make sure the graph 
signals meet the required assumptions. 

Despite the observed correlations, there does appear to be 
considerable variation in both the metrics and performance 
for infrastructure systems of similar size and scope, pointing 
to a need for further analysis. Other than system size and 
distributed generation capability, we did not identify any 
particular characteristics of the networks that generated such 
variation in the metrics and results, even among networks of 
similar size. There are many operational and graph-centric 
metrics that can be explored [9]–[12] to seek further insight, 
which we leave as future work. Similarly, given the usage of 
graph-theoretic metrics in resilience analysis of infrastructure, 
we conjecture that GSP-motivated metrics such as TV can 
provide relevant metrics that capture the state of the system 
over time, in a way that static network metrics cannot. 

Beyond the AC power-flow derived graph model and L( |u|)-
based GFT used here, additional combinations of graph models 
(such as those discussed in Sec. IV) and GFTs may be more 
effective for specific combinations of system and application. 
The results of Sec. V indicate that data-driven approaches may 
be able to leverage graphical structure to produce GFTs that 
induce desirable signal structure, and this generates additional 
options. Understanding how the choice of graph model and 
GFT impacts performance of a given GSP technique on a given 
system is an open question that should be studied to motivate 
new techniques as well as reduce future implementation and 
development efforts in real-world systems. 
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