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It is estimated that about 20% of treated drinking water is lost through distribution

pipeline leakages in the United States. Pipeline leakage detection is a top priority for

water utilities across the globe as leaks increase operational energy consumption and

could also develop into potentially catastrophic water main breaks, if left unaddressed.

Leakage detection is a laborious task often limited by the financial and human resources

that utilities can afford. Many conventional leak detection techniques also only offer a

snapshot indication of leakage presence. Furthermore, the reliability of many leakage

detection techniques on plastic pipelines that are increasingly preferred for drinking

water applications is questionable. As part of a smart water utility framework, this paper

proposes and validates a hydraulic model-based technique for detecting and assessing

the severity of leakages in buried water pipelines through monitoring of pressure from

across the water distribution system (WDS). The envisioned smart water utility framework

entails the capabilities to collect water consumption data from a limited number of

WDS nodes and pressure data from a limited number of pressure monitoring stations

placed across the WDS. A popular benchmark WDS is initially modified by inducing

leakages through addition of orifice nodes. The leakage severity is controlled using

emitter coefficients of the orifice nodes. WDS pressure data for various sets of demands

is subsequently gathered from locations where pressure monitoring stations are to be

placed in that modified distribution network. An evolutionary optimization algorithm is

subsequently used to predict the emitter coefficients so as to determine the leakage

severities based on the hydraulic dependency of the monitored pressure data on various

sets of nodal demands. Artificial neural networks (ANNs) are employed to mimic the

popular hydraulic solver EPANET 2.2 for high computational efficiency. The goals of

this study are to: (1) validate the proof of concept of the proposed modeling approach

for detecting and assessing the severity of leakages and (2) evaluate the sensitivity

of the prediction accuracy to number of pressure monitoring stations and number of

demand nodes at which consumption data is gathered and used. This study offers

new value to prioritize pipes for rehabilitation by predicting leakages through a hydraulic

model-based approach.

Keywords: pipeline condition assessment, pipeline leak detection, smart utilities, pipeline monitoring system,

evolutionary optimization
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INTRODUCTION

As the increasing paucity of water resources and the fast-growing
water demands (Gupta and Kulat, 2018) in water distribution
systems (WDSs) as a critical infrastructure in societies loom
ahead, sustainable maintenance of WDSs operationally and
financially is of an utmost essence (Gupta and Kulat, 2018;
Momeni et al., 2018; Zhang K. et al., 2019; Al Qahtani et al.,
2020; Shukla and Piratla, 2020). Specifically, leakage in WDSs
reportedly makes up between 5 and 50 percent of the total
freshwater losses depending on the conditions of the pipelines in
developed countries (Gupta and Kulat, 2018; Sophocleous et al.,
2019; Shukla and Piratla, 2020; Yazdekhasti et al., 2020). It is also
estimated that a significant portion of catastrophic pipe breaks
stems from undetected and thus unaddressed minor or moderate
leaks as well as poor fittings (Grigg, 2017; Gupta and Kulat, 2018;
Xie et al., 2019). Besides, detecting and addressing leakages in
metallic and plastic pipelines through conventional techniques
are found to be disputable, for instance, due respectively to
difficulty in localizing welded joint failures (Zhang W. et al.,
2018) and inaccuracies of low-frequency detection of plastic
materials acting as low-pass filters (Gao et al., 2017). However,
conventional leakage detection techniques are per se inclusive of
cumbersome tasks which incur massive operational costs and are
often labor-intensive (Liu et al., 2019; Ma et al., 2019). Hence,
a systematic data-driven background leakage detection offering
high accuracy and cost-effectiveness in WDSs plays an integral
part in pinpointing and addressing the leak sources to both
optimize energy consumption and prevent major future pipe
breaks across a network (Gupta and Kulat, 2018; De Marchis
andMilici, 2019). Recently, data-driven schemes of detecting and
measuring the severity of leaks have been proposed to offer a
paradigm shift. For instance, an estimation of life-cycle cost and
energy consumption of a sensor-based, network-wide leakage
monitoring detection system has been conducted (Yazdekhasti
et al., 2020). Also, multiscale neural networks as well as various
multi-objective optimization methods have been leveraged to
employ consumption data for localization of leaks in a WDS
(Creaco and Haidar, 2019; Zhang K. et al., 2019; Shukla and
Piratla, 2020; Hu et al., 2021). However, what these methods seem
to share is (i) relying partly on either human intervention or
expensive tools and (ii) focusing mostly on detecting rather than
measuring the severity of leaks with high accuracies. A hydraulic-
model-based scheme for leakage detection and most importantly
severity assessment could offer promise given the growing
adoption of smart water meters and continuous hydraulic
monitoring of WDSs. As a result, building upon previous studies
(Momeni et al., 2018, 2020; Piratla and Momeni, 2019; Momeni
and Piratla, 2021), this paper (i) offers a preliminary proof-
of-concept study of a fully data-driven hydraulic model-based
prediction paradigm leveraging pressure monitoring data where
not only are leak sources detected, but also their severities
captured with a reasonable accuracy and (ii) conducts a series of
sensitivity analyses of the very prediction model to the number
and placement of smart meters and pressure monitoring stations.
This preliminary study proves novel by shedding light on a wider
scope of how consumption data can be leveraged to minimize

the risk of major pipe breaks due to difficult-to-detect leaks
without entirely relying on manual inspection techniques and
consequently imposing less maintenance costs on municipalities.

MATERIALS AND METHODS

The fundamental methodology in this paper is to predict the
leakage presence and its severity using a reverse-engineering
data-driven condition assessment scheme by employing artificial
neural networks (ANNs) and genetic algorithms (GA) for a
modified version of Hanoi (Fujiwara and Khang, 1990; Piratla
and Momeni, 2019) benchmark WDS. Consumption data (nodal
demands from smart meters) and pressure monitoring data
from the WDS are fed into neural networks in MATLAB
2020a to circumvent the time-consuming EPANET 2.2 hydraulic
simulator toolkit. Then, the trained networks will be leveraged in
genetic algorithms to predict the induced leakage by mimicking
it through emitter nodes.

Hanoi Water Distribution Network
Demonstration
Hanoi benchmark WDS, a metallic three-looped network, is
modified by including emitter nodes in the middle of pipes to
characterize the leakage at each pipe. Since this paper studies
leakages at some of the pipes in Hanoi, emitter nodes are
randomly placed on six and 12 pipes to establish two cases of
actual leakage induction. Figure 1 shows the placement of such
emitters for the two cases in Hanoi WDS. Table 1 represents the
original Hanoi network geometric and hydraulic specifications.

Leakage Induction Model
Emitters in EPANET 2.2 function as nodes which characterize
the outflow through a nozzle or orifice discharging to the
atmosphere (Muranho et al., 2014; Sebbagh et al., 2018). Such
emitter nodes are associated with emitter coefficients that can
be leveraged to model the severity of abovementioned outflows
to the atmosphere (i.e., leakage). It is hypothesized that leakage
has a direct correlation with pressure which can be characterized
as the summation of background and bursts leakage (Muranho
et al., 2014; Soldevila et al., 2016; Adedeji et al., 2017b; Zhou et al.,
2019). The popular pressure-leakage relationship for a given pipe
j can be shown as follows (Georgescu et al., 2017):

qleakj =

{

β jlj(Pj)
αj + Cj(Pj)

γj Pj > 0

0 Pj ≤ 0
(1)

Where qleakj is the total discharge along pipe j in cubic meters

per hour (cmh); lj is the length of pipe j in meters; αj and βj are
parameters associated with background leakage model; Cj and γj
are parameters of the bursts leakage model (EPANET 2.2 orifice
formula); and Pj accounts for average pressure in pipe j in meters
which equals the pressure at the emitter node k placed in the
middle of pipe j. The background leakage term is considered zero
in this paper, so the simplified EPANET-based leakage equation
is as follows (Adedeji et al., 2017a):

qleakj =

{

Cj(Pj)
γ j Pj > 0

0 Pj ≤ 0
(2)
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FIGURE 1 | (A) Case #1: Modified hanoi network including six emitter nodes; (B) Case #2: Modified hanoi network including 12 emitter nodes.

TABLE 1 | Hanoi geometric and hydraulic specifications.

Pipe # Pipe diameter

(mm)

Pipe roughness

coefficient

Pipe length (m) Node # Nodal demands

(CMH)

Elevation (m)

1 1,371.6 130 100 1 890 0

2 1,524 130 1,350 2 850 0

3 1,219.2 130 900 3 130 0

4 1,371.6 130 1,150 4 725 0

5 1,219.2 130 1,450 5 1,005 0

6 914.4 130 450 6 1,350 0

7 762 130 850 7 550 0

8 914.4 130 850 8 525 0

9 762 130 800 9 525 0

10 1,371.6 130 950 10 500 0

11 914.4 130 1,200 11 560 0

12 762 130 3,500 12 940 0

13 609.6 130 800 13 615 0

14 1,066.8 130 500 14 280 0

15 914.4 130 550 15 310 0

16 1066.8 130 2,730 16 865 0

17 1,066.8 130 1,750 17 1,345 0

18 1,371.6 130 800 18 60 0

19 1,066.8 130 400 19 1,275 0

20 1,371.6 130 2,200 20 930 0

21 914.4 130 1,500 21 485 0

22 762 130 500 22 1,045 0

23 1,219.2 130 2,650 23 820 0

24 914.4 130 1,230 24 170 0

25 762 130 1,300 25 900 0

26 609.6 130 850 26 370 0

27 1,066.8 130 300 27 290 0

28 762 130 750 28 360 0

29 762 130 1500 29 360 0

30 609.6 130 2000 30 105 0

31 914.4 130 1600 31 805 0

32 508 130 150 Reservoir N/A 100

33 914.4 130 860

34 609.6 130 950
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Where qleakj is the total discharge along pipe j in cmh; Cj and γj

are parameters of the bursts leakage model (i.e., Cj accounts for
emitter coefficient at the emitter node placed in the middle of
pipe j and γj is the emitter exponent that equals 0.5 by default
in EPANET 2.2); and Pj accounts for average pressure in pipe j in
meters which equals the pressure at the emitter node k placed in
the middle of pipe j.

As the atmospheric discharge is deduced from Equation 2 at
the emitter node (qleakj ), the emitter actual demand in EPANET

2.2 equals the induced leakage discharge to the atmosphere,
which signifies:

Dk = qleakj (3)

Where Dk accounts for the actual demand at emitter node k in
cmh; and qleakj is the atmospheric discharge in cmh.

In order to characterize the amount of acceptable leakage at
a given pipe, the absolute value of the proportion of atmospheric
discharge at the emitter to the flow rate in the pipe comprising the
emitter yields the amount of leakage percentage at the associated
pipe. Equation 4 shows the leakage severity in percentage at
pipe j:

Llocj = 100 ∗ |
Dk

F
inflow
j

| (4)

Where Llocj is the leakage severity in percentage locally at pipe

j; Dk accounts for actual demand at emitter node k in cmh; and

F
inflow
j denotes pipe-j inflow to emitter node k in cmh.

It is hereby postulated that the actual local leakage percentage
at a given pipe is not meant to exceed a maximum value of 20% to
only ensure the existence of major leaks rather than pipe breaks
in Hanoi WDS.

Ultimately, in order to demonstrate the total leakage in the
network, the following equation shows the network-wide leakage
proportional to the total supply:

Lnetj = 100 ∗ |
qleakj

Qsup
| (5)

Where qleakj denotes the amount of leakage discharge in cmh

(derived from Equations 2 and 3) to the atmosphere at emitter
node j; j is the index for the emitter nodes; Qsup is the total
supply of water to the WDS in cmh; and Lnetj accounts for the

network-wide leakage in percentage at emitter node j.
While inducing leakages in the two cases illustrated in

Figure 1, it is hypothesized that the total amount of network-
wide leakage (

∑

j
Lnetj ) must not exceed a maximum of 10% to

characterize a real-world scenario.

Prediction Model Formulation
In order to implement an optimization procedure for prediction
purposes, genetic algorithms (GA) have been selected for (i) their
robustness in meta-heuristically triangulating on a set of rather
than a single solution point, (ii) high capability of being fine-
tuned thanks to a decent number of algorithmic parameters,

and (iii) a built-in constraint function that stands out compared
structurally to Harmony Search or Particle Swarm algorithms.
The prediction model is established upon the prediction of
emitter coefficients (E) at the given places in two cases of
actual leakage induction presented in Figure 1 by minimizing
the objective function in the GA optimization framework. The
objective function is composed of the mean squared error (MSE)
of pressure values at the pressure monitoring locations.

Decision Variables
Emitter Coefficients (E) constitute the decision variables of the
optimization framework and the set for E is as follows:

Ec = {e1, e2, . . . , ex} (6)

Where, e is the emitter coefficient for each of the given emitter
nodes, and x is the number of considered emitter nodes in
the WDS.

Objective Function
Pressure (Pk) measured at various pressure monitoring stations
in the Hanoi water distribution network for a given set (k) of
nodal demands (Qk) are characterized as follows:

Qk = {q1k, q2k, . . . . , qyk} (7)

Pk = {p1k, p2k, . . . ., pmk} (8)

Where, q is the nodal demand, y is the number of nodes in the
WDS, p is the pressure measured at monitoring stations located
in theWDS, andm is the number of pressure monitoring stations
(PMSs) placed in the WDS.

The genetic algorithm optimization framework is utilized
to predict the set E using j sets of Qk and Pk. For candidate
(i) solution sets of E in the optimization process, pressures at
the monitoring stations can be estimated as follows assuming
all the dynamic condition parameters are known except for
emitter coefficients:

g(Qk,Ei) = Pk,i (9)

Where, g() denotes the hydraulic simulations that could usually
be conducted through software applications such as EPANET
2.2, Ei is a candidate solution set of emitter coefficients, i is the
candidate solution reference in the optimization algorithm, and
Pk,i is the estimated set of pressure values at all the monitoring
stations for the corresponding candidate solution set Ei.

The objective function in the optimization algorithm is to
minimize Z whereby,

Z = Minimum
j
k=1

{

m
∑

a=1

(

pa,k,i − pa,k
)2

}

(10)

Where a is the index for the pressure monitoring station, pa,k,i is
the estimated pressure at PMS a for set of nodal demands k for
candidate solution i, and pa,k is the actual measured pressure at
PMS a for set of nodal demands k (obtained from set Pk).
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Constraints
Three different constraints are employed in the proposed
optimization model: (1) The minimum pressure head at all
the nodes has to be >30m for any candidate solution to be
considered feasible; (2) Ensuring that none of the leakage flows at
any of the emitter nodes would exceed a maximum value of 600
m3/h (cmh) based on Equations 2 and 3 (so as to avoid solutions
with excessively high leakage flows); and (3) Constraining the
maximum value of the local leakage (Llocj fromEquation 4) at each

of the emitter nodes to a value of 20% (so as to avoid ridiculously
large leaks).

Algorithmic Parameters
Efforts were made to tune the GA parameters according to
the number of decision variables, complexity of the prediction
model, constraint features, and time-efficiency. Table 2 shows
these GA parameters specified for the proposed model in
this study.

Characterization of Artificial Neural
Networks (ANNs)
According to Figure 1, since there exist two cases of actual
leakage induction, thus two separate but identical series
of neural networks are trained to predict pressures at all
the PMS locations for given sets of nodal demands and
emitter coefficients so as to bypass the time-consuming
application of EPANET 2.2 simulator toolkit in MATLAB.
Table 3 displays the properties of ANNs used in MATLAB
to train the simulated data by employing resilient
backpropagation function (Riedmiller and Braun, 1993) for
optimization framework.

TABLE 2 | Genetic algorithm parameters for both cases of actual leakage

induction.

Parametric item Number of

generations

Population

size

Mutation

rate

Crossover

fraction

Parametric value 1,200 120 0.08 0.75

Formulation for Accuracy Measurement
This section offers accuracy metrics to analyze the performance
of both trained neural networks and the prediction
model numerically.

Neural Networks Accuracy Metric
The accuracy of trained neural networks (ANNs) is measured
using a metric known as mean absolute percentage error (MAPE)
(deMyttenaere et al., 2016; Khair et al., 2017) and is characterized
as (Momeni and Piratla, 2021):

MAPE =

∑l
i=1





(

∑y
j=1

|pri,j−simi,j|
simi,j

)

y



 ∗ 100

l
(11)

Where pri,j is the predicted value of pressure using the trained
ANN model for node j in validation scenario i, simi,j is the
simulated value of pressure calculated using EPANET 2.2 for
node j in validation scenario i, y is the number of nodes in the
WDS, and l is the number of the validation scenarios.

Prediction Model Accuracy Metric
The prediction model accuracy is also calculated both by
employing Pearson’s correlation coefficient formula (PCC)
(Kumar and Jena, 2020) and MAPE similar to previous section,
both characterized as follows:

CORREL
(

act, pr
)

=

∑x
i=1(acti−act)(pri−pr)

√

[

∑x
i=1 (acti−act)

2
] [

∑x
i=1 (pri−pr)2

]

(12)

Where, pri is the predicted value of either emitter coefficient for
emitter i or the leakage severity (see Equations 2 and 3) for the
associated pipe in the middle of which emitter i is placed, acti
is the actual value of either the emitter coefficient for emitter i
or the leakage severity (see Equations 2 and 3) for the associated
pipe in the middle of which emitter i is placed, i denotes the index
for emitter node, act accounts for the average of either all actual
emitter coefficients or all actual leakage severities across all the
considered leakage-induced pipes, pr accounts for the average of
either all predicted emitter coefficients or all predicted leakage

TABLE 3 | Artificial neural networks parameters for both cases of actual leakage induction.

Parametric item Parametric value Parametric item Parametric value

Training datasets 50,000 counts; one hidden layer Maximum fail parameter 2

Validation datasets 10,000 Learning rate 0.01

Training function “Trainrp,” cascade forward net Initial weight change (10) 0.1

Transfer Function “Purelin” Increment to weight change

(1inc)

1.2

Performance Mean squared error Decrement to weight change

(1dec)

0.5

Data division Interleaved Maximum weight change

(1max)

50.0
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TABLE 4 | Baseline scenario specifics of input and output data for the leakage model.

Case # Number of

Leakage-Induced

Emitters

I/O Proportion

(% of Nodal Demands, #

of Pressure Stations)

ANN input data ANN output data

for objective

function

ANN output data for constraint function

Node IDs for

partial nodal

demand

Orifice node IDs

for emitter

coefficients

Nodes IDs for

PMSs

Orifice node IDs

for actual

demands

Pipe IDs for

emitter inflow

rates

1 6 (70%, 8) 1, 3, 4, 7, 8, 9, 10,

12, 13, 15, 16, 17,

18, 20, 22, 23, 25,

26, 27, 28, 29, 30

32, 34, 40, 51, 58,

61

1, 4, 7, 11, 17, 19,

23, 27

32, 34, 40, 51, 58,

61

1, 5, 17, 39, 54, 59

2 12 (70%, 8) 1, 4, 5, 6, 7, 8, 12,

13, 14, 17, 19, 20,

21, 22, 24, 25, 26,

27, 28, 29, 30, 31

32, 34, 40, 42, 46,

48, 51, 52, 56, 58,

61, 65

4, 5, 6, 9, 10, 22,

27, 28

32, 34, 40, 42, 46,

48, 51, 52, 56, 58,

61, 65

1, 5, 17, 21, 30, 34,

39, 41, 49, 54, 59,

68

severities across all the considered leakage-induced pipes, and x is
either the number of the considered emitter nodes or the number
of considered leakage-induced pipes in the WDS.

MAPE =







(

∑y
j=1

|actj−prj|
actj

)

y






∗ 100 (13)

Where prj is the predicted value of either emitter coefficient for

emitter j or the leakage severity (qleak) (see Equations 2 and 3)
for the associated pipe in the middle of which emitter j is placed,
actj is the actual value of either emitter coefficient for emitter

j or the leakage severity (qleak) (see Equations 2 and 3 for the
associated pipe in the middle of which emitter j is placed, y is
either the number of the considered emitter nodes or the number
of considered leakage-induced pipes in the WDS.

RESULTS AND DISCUSSION

Proof-of-Concept Demonstration
This section accounts for the demonstration of leakage prediction
through the proposed data-driven asset management scheme
by exemplifying two separate cases of actual leakage locations:
(i) leakage at six orifice nodes and (ii) leakage at 12 orifice
nodes. For each of these two cases, a single scenario of
partial consumption data and random placement of pressure
monitoring stations (PMSs) in Hanoi WDS is established for
a partial input-output (I/O) data of 70% of nodal demands
and eight pressure stations in order to analyze the accuracy,
robustness, and reliability of the proposed leakage model.
In other words, it is assumed that it would be possible
to obtain nodal demands from 70% of Hanoi WDS’s nodes
through the use of some nominal smart water meters and that
there would be eight pressure monitoring sensors placed in
the Hanoi WDS that would gather and relay pressure data
synchronously with the nodal demand data. After generating
200 (j in Equation 9) demand scenarios to represent data from
smart meters and corresponding pressure data from the eight
pressure monitoring stations, artificial neural networks (ANN)
are trained to mimic and replace the EPANET 2.2 hydraulic
simulator in MATLAB for optimization purposes by employing

TABLE 5 | ANN MAPE values for baseline scenarios of the two cases.

Case # ANN pressure

MAPE (%)

ANN actual

demand MAPE

(%)

ANN inflow

MAPE (%)

1 0.25 0.43 2.27

2 0.21 0.45 1.54

genetic algorithms. The input data for these neural networks
includes 70% of actual demand data (nodal demands) along
with emitter coefficients (representing the leakage) and output
data includes pressure values harvested from eight various
smart meters across Hanoi network to establish the objective
function (mean square error of actual and simulated pressures)
in the optimization framework. Moreover, another set of neural
networks is trained for leakage constraint as mentioned in
the methodology section. Input data for ANN in this case
includes the aforementioned partial demand sets and emitter
coefficients, and ANN target data includes actual demands at
emitter coefficients as well as inflow rates at the pipe preceding
the emitter orifices (see Equation 4). Table 4 shows the specifics
of ANN models along with the selected input and output data
for the baseline scenario according to Hanoi WDS depicted
in Figure 1.

Neural Network Accuracy and Performance Analysis
The accuracy of the trained neural networks for pressure and
leakage (composed of actual demands at emitter nodes and inflow
rates, which is consequently calculated by Equation 4) using
MAPE metric can be observed in Table 5.

Figures 2, 3 also demonstrate the performance analyses of
training the neural networks for Case #1 and Case #2 respectively.

According to the MAPE values in Table 5, these neural
networks are reasonably accurate and appropriate alternatives for
the EPANET 2.2 simulator toolkit in MATLAB, thus providing
much higher time-efficiency for the execution of the prediction
model and thus allowing the inclusion of thousands of scenarios
for sensitivity analyses of placement and number of consumption
data later in the paper.
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FIGURE 2 | Performance analysis of Case #1 for (A) Pressure data training, (B) Actual demand data training, and (C) Flow data training.

Prediction Model Accuracy
The accuracy of the prediction model is measured using both
Pearson’s correlation coefficient (see Equation 11) and MAPE
metric (see Equation 12) by considering the actual and predicted
emitter coefficients (E) as well as the actual and predicted leakage
severities (qleak). Figures 4, 5 illustrate the variation of actual
and predicted emitter coefficients as well as actual and predicted
leakage severities in cubic meters per hour (CMH) inHanoiWDS
for the two cases of leakage induction presented earlier.

The Pearson’s correlation coefficient (PCC) and MAPE
value for the variation of emitter coefficient and leakage
severities for both cases presented in Figures 4, 5 can be
observed in Table 6. As can be viewed in Table 6, the actual
and predicted values of emitter coefficients are found to be
reasonably correlated. It can be observed that as the number
of emitter coefficients increases from 6 to 12, the accuracy
of the model will be affected and thus more sensitive to
the variations of pressure in the objective function, which
emphasizes the importance of sensitivity analyses presented later
in the paper.

Sensitivity Analyses
The sensitivity of the proposed leakage model to the placement
and number of selected consumption nodes and pressure
monitoring stations (PMSs) is measured by including 4,000
scenarios where various numbers of partial nodal demand
datasets (i.e., ANN input data) and pressure monitoring stations
(PMSs) (i.e. ANN output data) are randomly generated. Four
categories of scenarios are developed for the sensitivity analyses,
as identified in Table 7: (a) consumption data from 70% of
demand nodes and pressure monitoring stations placed at eight
locations, characterized as (70%, 8)—which is consistent with the
baseline scenario discussed in the previous section; (b) (70%, 5),
(c) (50%, 8), and (d) (50%, 5). 1,000 scenarios were randomly
generated for each of these four categories out of which 100
scenarios were selected for sensitivity analyses based on the best
ANNMAPE prediction for WDS pressure output data.

Neural Networks Performance Analysis
As mentioned before, four separate categories of partial
consumption data are studied to render the presented model
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FIGURE 3 | Performance analysis of Case #2 for (A) Pressure data training, (B) Actual demand data training, and (C) Flow data training.

more representative of the real-world data which can be
harvested for modeling purposes. Table 7 depicts the specifics of
generated scenarios for four different sets of input and output
data associated with the previously discussed two different actual
leakage cases in Hanoi WDS. As can be observed in Table 7, the
MAPE values of trained neural networks for pressures as target
data and leakage as data for constraint function averaged across
the 4,000 scenarios of each of the two presented cases are found
to be reasonably accurate in order to be fed into the optimization
framework. According to Table 7, the average pressure MAPE as
the ANN output tends to decrease as the number of consumption
nodes is increasing from 50% of nodal demands and five pressure
meters to 70% of nodal demands and eight pressure meters. This
still holds true for the average inflow rate MAPE as it drops from
3.32 to 2.09% in Case #1 and 2.99 to 2.07% in Case #2. However,
the average actual demand MAPE at emitter nodes is found to
insignificantly increase for both cases. By comparing the average
of all three averages for each combination of consumption data, it
can be found that Case #2 demonstrates a slightly better accuracy
than Case #1.

Prediction Model Accuracy Analysis
As mentioned before, the prediction model is applied to the
best 100 scenarios (according to the best ANN MAPEs for
pressure output) out of the 1,000 trained scenarios for each
of the four categories described in the previous section for
both of the cases. The accuracy of the prediction model in the
sensitivity analyses section is also measured using MAPE metric
and Pearson’s Correlation Coefficient (PCC) (see Equations 11
and 12). Figures 6, 7 represent the emitter coefficient and leakage
severity MAPE and PCC variations for the baseline scenarios
along with each of the four sensitivity analyses categories (see
Table 7). According to Figures 6, 7, it is noteworthy that the PCC
and MAPE values in each of the cases are almost similar for
emitter coefficients and leakage severity, since they are directly
correlated according to Equation 2. Two types of comparisons
are made according to Figures 6, 7: case-wise and pairwise.

Case Wise Comparison
This section compares the accuracy metrics in Case #1 to those in
Case #2, as the number of emitter nodes increases.
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FIGURE 4 | (A) Actual and predicted values of emitter coefficients of the baseline scenario for Case #1; (B) Actual and predicted values of leakage severity of the

baseline scenario for Case #1.

Firstly, according to Figures 6, 7, it can be inferred that
Case #2 displays a lower average prediction accuracy than Case
#1 (average MAPE of ∼12% in Case #1 compared to that of
∼37% in Case #2 in all combinations) as the number of emitter
nodes increases. This observation is consistent with the baseline
scenario analysis in the proof-of-concept demonstration as well.
It can also be concluded that the overall variations of both
accuracy metrics range from 0.5306 to 0.9985 for PCC and from
1.98 to 30.94% for MAPE in Case #1 as well as from 0.1561 to

0.9666 for PCC and 12.72 to 63.47% for MAPE in Case #2. These
relatively large ranges are indicative of the high sensitivity of the
model to the number and locations of the selected smart meters
for pressure and nodal demands across the network.

Pairwise Comparison
In this section, comparisons are made within each of the two
cases in terms of the four categories (combinations) of partial
nodal demands and pressure monitoring stations (Combinations
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FIGURE 5 | (A) Actual and predicted values of emitter coefficients for Case #2; (B) Actual and predicted values of leakage severity for Case #2.

#1 through #4 according to Table 7) for both emitter coefficient
and leakage severity predictions.

Regarding Case-#1 emitter coefficient predictions, according
to Figures 6A,B, the average PCC and average MAPE values
for all the combinations range within 0.0099% and 0.22%
respectively, which suggests that increasing the number of smart
meters for wider consumption data combined with increased
number of pressure monitoring stations does not necessarily
contribute to greater average accuracy of the model for Case
#1 with six leak sources across the network. Furthermore,
comparing the prediction accuracy of Combinations #1 and
#2 for Case #1 in Figure 6, the following observations can be

made for when the number of pressure monitoring stations
are increased from 5 to 8 keeping the percentage nodal input
consideration at 50%: (1) the average PCC value drops from
0.9127 to 0.9060, which suggests that there is slightly less
correlation among actual and predicted leakages although the
number of pressure meters has increased. On the other hand,
the average MAPE has slightly improved from 12.08% to 12.04%;
(2) the maximum PCC value increased very marginally from
0.9976 to 0.9985, which is not a considerable improvement; (3)
the least MAPE declined from 3.34% to 2.32%, which is also not
greatly significant; and (4) the range of variation in PCC has
shrunk going from Combination #1 to Combination #2 whereas
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it expanded for MAPE. Similar observations can also be made for
the comparison of Combinations #3 and #4 where the number
of pressure monitoring stations increased from 5 to 8 while
the percentage nodal input consideration is at 70%. It can be
concluded from these observations that increasing the number
of pressure monitoring stations does not necessarily result
in considerably better prediction accuracy of leakage severity
assessment. On other hand, by comparing Combination #1 with
Combination #3, it can be observed that (i) the average PCC and
MAPE values show insignificant improvements as the percentage
of nodal demands increases from 50% to 70%, while pressure
meters remain constant; (ii) the minimum values of PCC and
MAPE have improved from 0.5306 to 0.5765 and from 3.34% to
2.01% respectively; (iii) the maximum values of PCC and MAPE
remain almost unchanged. Similarly, for Combinations #2 and
#4, it can be observed that (i) the minimum and average PCC
and MAPE values remain constant while the maximum values
of MAPE show some improvement from 30.94% to 25.55%.
This suggests that the inclusion of more nodal demands while
considering 5 pressure stations does not necessarily improve
the prediction accuracy, whereas the inclusion of more nodal
demands while having 8 pressure stations slightly contribute to

TABLE 6 | Prediction accuracy values for emitter coefficients and leakage severity

both cases.

Case # MAPE metric (%) Pearson’s correlation coefficient

Emitter

coefficient

Leakage

severity

Emitter

coefficient

Leakage

severity

1 11.76 11.78 0.9606 0.9626

2 21.42 21.42 0.9062 0.9089

the sensitivity of the model. Similarly, the average values and
variation ranges of the accuracy metrics for leakage severity in
Figures 6C,D are identical to those of the emitter coefficients
across the four combinations of sensitivity analyses. Based on the
variation range of the prediction for all the categories studied
in the sensitivity analyses, it can be concluded that optimizing
the locations for placement of smart water meters and pressure
monitoring stations in the WDS would yield the best prediction
(i.e., highest PCC and lowest MAPE) of pipeline condition
assessment as envisioned through the proposed approach.

Considering Case #2, as per Figures 7A,B, the average PCC
andMAPE values with 12 emitter nodes for all four combinations
are found to be within a range of 0.1358% and 9.64% respectively,
which suggests that increasing the number of PMSs and the
percentage of consumption data shows a more significant
contribution compared to Case #1. It can thus be concluded
that as the emitter nodes increase in number, the prediction
model seems to show more sensitivity to the selected locations
and numbers of the smart meters. Also, having the smallest
MAPE variation range, Combination #2 demonstrates the lowest
sensitivity of the model as well as the highest average accuracy
(average MAPE equals 33.12%) out of all the four combinations.
Furthermore, by comparing Combinations #1 and #2 from
Figure 7, the following observations are noteworthy: (i) average
PCC value improves from 0.6884 to 0.7372 and average MAPE
value improves from 36.78% to 33.12%; (ii) the MAPE variation
range shrinks from Combination #1 to Combination #2 as the
minimum andmaximumMAPE values change significantly. This
significant change suggests increasing the number of pressure
stations contributes to the performance of the model; (iii)
although the maximum and mean PCC values show insignificant
improvements from Combination #1 to Combination #2, the
minimum PCC value improves considerably from 0.2942 to
0.4187. However, by comparing Combinations # 3 and #4,

TABLE 7 | Sensitivity analysis of trained neural networks for number and placement of consumption data meters for 4,000 scenarios.

Case # Number of actual

emitter

coefficients

Actual emitter

coefficient values

Consumption data

combinations

Average pressure

MAPE (ANN target

data) (%)

Average actual

demand MAPE for

constraint

function (%)

Average inflow

rate MAPE for

constraint

function (%)

1 6 [34, 36, 27, 38, 8, 13] Combination #1: 50% demand

locations and 5 PMSs

0.32 0.42 3.32

Combination #2: 50% demand

locations and 8 PMSs

0.32 0.42 3.19

Combination #3: 70% demand

locations and 5 PMSs

0.24 0.43 2.13

Combination #4: 70% demand

locations and 8 PMSs

0.23 0.43 2.09

2 12 [14, 19, 17, 31, 28, 30,

35, 8, 22, 5, 11, 7]

Combination #1: 50% demand

locations and 5 PMSs

0.33 0.45 2.99

Combination #2: 50% demand

locations and 8 PMSs

0.33 0.45 2.99

Combination #3: 70% demand

locations and 5 PMSs

0.23 0.45 2.07

Combination #4: 70% demand

locations and 8 PMSs

0.24 0.45 2.07
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FIGURE 6 | (A) Case-#1 Accuracy metric variations with the number and locations of smart meters: (A) Emitter coefficient PCC; (B) Emitter coefficient MAPE; (C)

Leakage severity PCC; (D) Leakage severity MAPE.

FIGURE 7 | Case-#2 accuracy metric variations with the number and locations of smart meters: (A) Emitter coefficient PCC; (B) Emitter coefficient MAPE; (C)

Leakage severity PCC; (D) Leakage severity MAPE.
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(i) the average PCC value deteriorates from 0.7018 to 0.6014
and the MAPE value worsens from 35.17% to 42.76%; (ii) the
maximum and minimum PCC and MAPE values improve very
inconsiderably. Overall, increasing pressure meters from 5 to 8
when 50% nodal demands is included is found to improve the
model whereas the same scenario deteriorates the performance of
the model when 70% nodal demands is leveraged. By comparing
Combinations #1 and #3, it can be observed that (i) the average
MAPE value demonstrate a marginal improvement; (ii) the
minimum MAPE value is found to significantly worsen from
12.72% to 17.39%; (iii) themaximumMAPE value improves from
61.48% to 59.16%; (iv) the minimum, average, and maximum
PCC values are found to have no significant changes. Similar
comparisons between Combinations #2 and #4 suggest that
(i) average PCC and MAPE values worsen significantly; (ii)
minimum MAPE value improves from 18.57% to 14.92%,
whereas the maximum MAPE value deteriorates from 51.99%
to 63.47%; (iii) maximum PCC value remains almost constant
while the minimum PCC value considerably drops from 0.4187
to 0.1561. As a result, it can be inferred that inclusion of
more nodal demands at a constant number of pressure meters
seems to have either minor or rather worsening effects on the
accuracy of the model on average. Consistent with Case #1,
the average values and variation ranges of the accuracy metrics
for leakage severity in Figures 7C,D are identical to those of
the emitter coefficients discussed in this paragraph across the
four combinations of sensitivity analyses. Similar to Case #1,
optimizing for locations to place smart water meters and pressure
monitoring stations in the WDS would yield the best pipeline
condition assessment prediction.

CONCLUSION AND FUTURE WORK

This study aimed at proving the validity of a data-driven
water pipeline leakage prediction scheme using artificial neural
networks and genetic algorithms as demonstrated on Hanoi
WDS. By employing pressure monitoring stations for a set
of partial nodal demands, neural networks were trained and
incorporated into a genetic algorithm optimization framework
in MATLAB to predict emitter coefficients for two cases of
actual leakage induction at six and 12 pipes respectively. The
results indicate that (i) this preliminary prediction scheme
offers promise to predict leakage severities based on cyber-
monitoring data with reasonable accuracy and (ii) the prediction

model does not show improvements when both consumption at
more demand nodes and more pressure stations are considered,
while on average the increase in the number of pressure
stations at 50% nodal demands showed better accuracy and
relatively higher correlation of parameters in the model for
both cases. Some of the limitations of the study include (i) the
consideration of leakage induction at some rather than all of
the pipes, (ii) the assumption that leaking pipelines are known
(locations of leaks were predefined), (iii) the assumption of
the availability of consumption data collected synchronously
with pressure data, (iv) the assumption that all other dynamic
pipeline condition parameters (e.g., pipeline roughness, effective
pipeline diameter) are known, and (v) the consideration of
with high leakage outflows given the sizes of pipes in the
Hanoi WDS. Future work should focus on: (1) prediction of
leakages in all the pipelines without assuming that the leaking
pipelines are known; (2) co-prediction of a variety of dynamic
pipeline condition parameters including leakages, roughness
values, effective hydraulic diameters, etc.; (3) wider validation
campaign to cover WDSs of varying layouts and pipe sizes to test
the ability of the proposed model in detecting smaller leakages;
(4) optimizing the locations for placement of smart water meters
and pressure monitoring stations in the WDSs for best pipeline
condition prediction accuracy.
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NOMENCLATURE

Symbol Description

a Index for pressure monitoring stations

act Actual values of condition parameters

ANN Artificial neural networks

C Parameter of burst leakage model

cmh Cubic meters per Hour

CORREL Correlation coefficient

D Actual demand

E, e Emitter coefficient

Pipe-j inflow to emitter node

g() Denotation for hydraulic simulation

GA Genetic algorithms

i Emitter/Pipe index

I/O Input/Output

j Number of consumption datasets, pipe index

k A given set of consumption data or emitter node

l Pipe length

Llocj Local leakage severity at pipe j

Lnetj Network-wide leakage at emitter node j

m Number of pressure monitoring stations

MAPE Mean absolute percentage error

MSE Mean squared error

P, p Pressure

pr Predicted values of condition parameters

PCC Pearson’s correlation coefficient

PMS Pressure monitoring station

Q, q Nodal demands

Q sup Total supply of water

q leak
j Total discharge along pipe j

WDS Water distribution system

x Number of the considered emitter nodes or the number of

considered leakage-induced pipes

Z Objective function

α Parameter of background leakage model

γ Parameter for burst leakage model

β Parameter of background leakage model
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