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Leveraging Hydraulic Cyber-Monitoring Data to Support
Primitive Condition Assessment of Water Mains

Ahmad Momeni, S.M.ASCE'; and Kalyan R. Piratla, A.M.ASCE?

Abstract: Buried water pipelines deteriorate in response to several variables such as pressure transients, corrosion, and pipeline material
degradation, among others, that are dynamic processes, and it is therefore difficult to predict the pipeline condition without employing
expensive sophisticated technologies. Such technologies are ad hoc in nature and may be worthwhile only for those pipelines that are known
to be deteriorated and critical for the reliability of the water distribution network (WDN). Adopting cyber-monitoring methods for pipeline
condition assessment, this paper presents and demonstrates a data-driven condition assessment platform that can serve as a primitive indicator
of water pipeline conditions. Flow, pressure, and water consumption data collected in a synchronous manner are employed to predict pipeline
roughness coefficients and effective internal diameters through a combination of hydraulic modeling, evolutionary algorithms, and neural
networks utilizing two popular benchmark WDNs. The accuracy of pipeline condition prediction, measured using mean absolute percentage
error (MAPE), ranged between 4.12% and 17.6% based on numerous scenarios in this study. Effective internal diameters were found to
be more accurately predictable than pipeline roughness coefficients, and it was also found that pressure monitoring alone can suffice the
requirements of the proposed framework in order to produce accurate pipeline condition prediction. It is recommended that future research be
conducted over the robustness of this platform for other dynamic parameters such as leakages. DOI: 10.1061/(ASCE)PS.1949-

1204.0000596. © 2021 American Society of Civil Engineers.

Author keywords: Condition assessment; Hydraulic monitoring; Optimization.

Introduction and Background

Water distribution networks (WDNs) are crucial to the functionality
of societies, yet are inevitably complex in behavior (Luciani et al.
2019; Momeni et al. 2018; Zhang et al. 2018). In order to ascertain
a proper operational and financial maintenance of the WDNs, a
paradigm shift is now required more than ever such that robust
data-driven measures for condition assessment, rehabilitation,
and replacement of deteriorating pipelines be taken into consider-
ation in lieu of the conventional asset management. Conventional
methods of water pipeline condition assessment primarily rely on
onsite inspections that are not only ad hoc in nature but also prone
to human errors (Moglia et al. 2006; Newton and Christian 2015;
Wau et al. 2009). They cause geological and environmental disturb-
ance to the water pipeline environment and are also expensive to
carry out in large scale (Alegre et al. 2013; Bedjou et al. 2019;
Grigg and Butler 2019). Condition assessment technologies includ-
ing pit depth measurement, visual inspection, or ultrasonic testing
are found to be either environmentally concerning, cost-ineffective,
or inapplicable to all pipe types (Liu and Kleiner 2013). Although
statistical inferences based on historical pipeline break records are
often employed in preliminary condition assessment planning
(Kaminski et al. 2017; Poulakis et al. 2003; Qi et al. 2018;
Soldevila et al. 2019), their accuracy is not guaranteed, and
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availability of historical break data at sufficient granularity is also
rare (Chen et al. 2017).

Also, recent sensor-based monitoring techniques include acous-
tic signal emissions as well as vibration analysis, electromagnetic
inspection, transient signal analysis of pressure waves, infrared
thermography, and radar frequency identification (Amoatey et al.
2018; Cody et al. 2020; El-Zahab and Zayed 2017; Ferrandez-
Gamot et al. 2015; Gertler et al. 2010; Karney et al. 2009; Lin
2017; Perez et al. 2014; Soldevila et al. 2017b, 2018, 2019). Em-
ploying these approaches are also either confined to leakage detec-
tion in water pipelines (Fuentes and Pedrasa 2020; Kapelan et al.
2004; Poulakis et al. 2003; Shukla and Piratla 2020; Soldevila
et al. 2017a; Yazdekhasti et al. 2020; Zhang et al. 2018) or laborious
and often costly. Hybrid models where data-driven approaches that
are dependent upon historical data are conjoined with expert recom-
mendations are also recent, although somewhat unreliable (Kaminski
et al. 2017; Park et al. 2016). These methods are often coupled with
pattern recognizers or classification algorithms where machine learn-
ing methods are leveraged for the condition assessment of water
pipelines (Abdulla et al. 2013; Ferrandez-Gamot et al. 2015; Kayaalp
et al. 2017; Meseguer et al. 2015; Montans et al. 2019). Other novel
data-driven Internet-of-Things (IoT)-based methods entail merely
monitoring purposes, albeit carried out remotely through water flow
meters and wireless data collectors; nevertheless, some limitations
include security issues, human interventions, or unaffordable cost
and maintenance measures (Abdelhafidh et al. 2018).

With the increasing adoption of cyber monitoring tools for
situational awareness of infrastructures (Giudicianni et al. 2020;
Montans et al. 2019; Soldevila et al. 2018; de Winter et al. 2019),
it is possible to leverage hydraulic monitoring data from WDN5 to
infer the condition of the pipelines. For example, it is feasible to
install pressure sensors at a few critical locations for near-real-time
monitoring at a reasonable cost (Abdulshaheed et al. 2017; Raei
et al. 2019; Soldevila et al. 2019). It may also be feasible to install
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flowmeters, albeit at some inconvenience and greater cost (Pacheco
et al. 2020). Furthermore, water consumption data can also be ob-
tained using smart water meters on a near-real-time basis (Luciani
etal. 2019; Zhang et al. 2021). It is hypothesized that water demand
data in conjunction with the corresponding hydraulic data from the
distribution pipeline network can be leveraged to predict the pipe-
line conditions (Shinozuka et al. 2005; Soldevila et al. 2016). In
conventional computational models, the pipeline geometric and
condition parameters are accurately defined and used to ensure ap-
propriate pipe flows and network pressures for a given set of nodal
demands because the pipelines are brand new. The research ap-
proach explored in this study is to reverse this conventional mod-
eling approach such that the pipeline condition parameters can be
predicted using measured pipe flow and network pressure data in
conjunction with corresponding nodal demand data.

The underlying premise of this paper is to study and predict
those dynamic parameters in WDNs whose nature is complicated
due to their uncertain behavior and volatility over time including
but not limited to pipeline roughness, effective hydraulic diameter,
pipe wall thickness, and leakages (Braun et al. 2020; Jensen and
Jerez 2018). Specific to this study, pipe roughness increases over
time, causing hydraulic energy loss (Gao 2017) and internal pipe
diameters are greatly reduced over time due to corrosion-related
scaling (Mazumder et al. 2019). The prediction model in the pre-
sented study accounts particularly for these two dynamic parame-
ters because the remaining useful service life of the pipeline is
dependent on such dynamic parameters, and therefore it is imper-
ative to be able to predict them with reasonable accuracy and least
cost. Although availability of pipe flow, pressure, and nodal de-
mand data in a synchronous manner through cyber monitoring
is not currently ubiquitous, it is expected to be so in the coming
years with increasing awareness of the benefits associated with
cyber monitoring of critical infrastructures including time effi-
ciency, considerable accuracy and cost effectiveness for the purpose
of pipe rehabilitation, prioritization, or replacement, and it is in
such context that this study is critical, novel, and highly relevant.

Objectives

Building upon the preliminary previous studies on this topic
(Momeni et al. 2019; Momeni and Piratla 2020; Piratla and
Momeni 2019), the objectives of this paper are to (1) present a com-
putational model that takes water consumption data along with the
corresponding pressure and pipe flow data from the distribution
system as inputs to predict effective hydraulic diameters and pipe
roughness coefficients as outputs; (2) incorporate genetic algo-
rithms and cascade-forward neural networks in MATLAB 2019
into the model to both minimize the mean square error of the actual
(harvested from smart meters) and predicted (generated from the
prediction model) pressure and flow values and bypass hydraulic
simulations respectively for higher temporal efficiency; and (3) con-
duct a comprehensive sensitivity analysis of placements and num-
ber of flow monitoring stations (FMS) and pressure monitoring
stations (PMS) as well as the number of demand scenarios utilized
in the optimization platform.

Methodology

Mathematical Formulation

The formulation of the computational model in this study consists
of (1) equations for the functions of the optimization framework
(Hamdia et al. 2021; Momeni et al. 2019; Momeni and Piratla
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2020), and (2) the equations used to measure the accuracy of
the results (Prayudani et al. 2019).

Optimization Framework

This section discusses the fundamental equations in the objective
and constraint functions for the proposed genetic algorithm optimi-
zation platform where roughness coefficients and effective hy-
draulic diameters are predicted by minimizing the mean square
error (Mirzal et al. 2012) of the predicted and actual pressure/flow
values at the smart monitoring stations.

Decision Variables

Pipeline roughness (C) and effective internal diameters (D) are fo-
cused upon in the proposed prediction model. These sets C and D,
which are characterized as follows, constitute the decision variables
of the optimization framework:

C={cp,ca ..., } (1)
D={d\.d,, ....d} (2)

where ¢ = roughness coefficient for each pipe; d = effective internal
diameter of each pipe; and x = number of pipelines in the WDN.

Objective Function

Pressure (P;) and flow (F,) measured at various monitoring sta-
tions in the WDN for a given set (k) of nodal demands (Q;) are
characterized as follows:

Or = {16 92> -+ Gy} (3)
Py ={Pix: Poks -+ Pk} (4)
Fre={fuSor oo fur} (5)

where ¢ = nodal demand; y = number of nodes in the WDN; p =
pressure measured at monitoring stations located in the WDN; m =
number of PMS placed in the WDN; f = pipeline flow measure at
monitoring stations located in the WDN; and n = number of FMS
placed in the WDN.

A genetic algorithm optimization framework is employed to de-
termine the sets C and D using j sets of Qy, P, and F. In other
words, a number () of sets of demands (Q;) at all the nodes and the
corresponding pressure (P ) and flow (F;) values at the monitoring
stations are required. For candidate (i) solution sets of C and D in
the optimization process, pressures and pipe flows at the monitor-
ing stations can be estimated as follows assuming all the dynamic
condition parameters are known except for roughness and effective
internal diameters:

9(Qx. Ci, D;) = Py (6)
h(Qy.Ci.D;) = Fy; (7)

where ¢() and &() are representative of the hydraulic simulations
that could be carried out using software such as EPANET 2.0; C; =
candidate solution set of pipeline roughness values; D; = candidate
solution set of effective internal diameter values; i = candidate sol-
ution reference in the optimization algorithm; P ; = estimated set
of pressure values at all the monitoring stations for corresponding
candidate solution sets C; and D;; and F ; = estimated set of flow
values at all the monitoring stations for corresponding candidate
solution sets C; and D;.

The objective function in the optimization algorithm is to min-
imize Z in Eq. (8) where
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Z= Minimumk:ltoj{z (Paki— pa.k)z}
a=1

n

+ Minimum,_, toj{ (fori— fb,)z} (8)

b=1

where a = index for the pressure monitoring station; b = index for the
flow monitoring station; p, ; ; = estimated pressure at PMS a for set
of nodal demands k for candidate solution i; p, ; = actual measured
pressure at PMS a for set of nodal demands & (obtained from set P;);
fbx.i = estimated pipeline flow at FMS b for set of nodal demands &
for candidate solution i; and f, ; = actual measured pipeline flow at
FMS b for set of nodal demands k (obtained from set F;).

Constraints

Three different constraints are considered in the optimization

framework:

1. The minimum pressure head at all the nodes has to be greater
than 10 m for any candidate solution to be considered viable.

2. A reasonable set of upper and lower boundaries are set for ef-
fective hydraulic diameter decision variables (D) as a percentage
of the original values (i.e., when the pipelines were newly
installed).

3. A reasonable set of upper and lower boundaries are set for pipe-
line roughness decision variables (C) as a percentage of the
original values.

Specific details on the last two constraints are discussed in a
subsequent section.

Accuracy Measurement

For the purpose of measuring the prediction accuracy of the optimi-
zation algorithm, a performance metric namely mean absolute per-
centage error (MAPE) is employed as shown in Eq. (9) to estimate
the error between the predicted and actual values of the condition
parameters (i.e., roughness coefficients or effective hydraulic diam-
eters). MAPE is calculated as follows (de Myttenaere et al. 2016):

x  abs(pr;—act;)

MAPE — ( i=1 act;
X

) x 100 9)
where pr; = predicted value of either roughness coefficient or
effective hydraulic diameter for pipeline i; act; = actual value of ei-
ther roughness coefficient or effective hydraulic diameter for pipeline
i; and x = number of pipelines in the WDN.

} u\-Reservoir

(a)

Demonstration Scheme

The modified benchmark WDNs of Hanoi (Fujiwara and Khang
1990; Monsef et al. 2019) and GoYang (Kim et al. 1994; Poojitha
et al. 2020) (Fig. 1) are used for demonstration purposes. The origi-
nal hydraulic and geometric specifications of Hanoi and GoYang
networks are presented in Tables 1 and 2, respectively. These net-
works were assumed to be made of metallic pipelines like many
of our current WDNs. Expectedly, metallic pipelines would get
rougher with age and could have corrosion-related scaling that would
diminish their internal effective diameters. The original Hanoi and
GoYang networks are modified in this study by randomly reducing
pipe roughness (C) coefficients as well as their internal pipe diam-
eters within certain ranges to make them representatives of real-
world deteriorated WDNSs.

The PMS and FMS are assumed to be placed at certain locations
in the modified benchmark networks, and the corresponding de-
mands are monitored at all nodes. The initial placement of PMS
and FMS is carried out randomly on both the networks, and this
placement scenario is referred to as the baseline scenario in this
study. Eight PMS and nine FMS are placed at random locations in
Hanoi WDN, whereas five PMS and seven FMS are randomly
placed in GoYang WDN in the baseline scenario. Several other
scenarios are subsequently explored to evaluate the sensitivity
of the model results to the number and placement of PMS
and FMS.

Model Calibration: Conventional versus Neural
Network-Based Hydraulic Simulations

Initially, the popular hydraulic solver EPANET 2.0 is coupled with
a genetic algorithm in the MATLAB programming interface for
making the proposed prediction of the pipeline condition parame-
ters. EPANET 2.0 is used in the place of g() and /() functions in the
mathematical formulation presented in a previous section. Sub-
sequently, artificial neural networks (ANNs) were trained and used
to mimic EPANET 2.0 solver for rapid computation in the optimi-
zation algorithm given the high number of hydraulic computations
required in the proposed prediction model. Nodal demands, pipe-
line roughness coefficients and pipeline diameters are inputs, and
flows and pressures are outputs (targets) in the ANNs. In total,
250,000 sets of input and target data are used to train the ANN
model in this study.

There are two essential hyperparameters that account for and
tune the topological scheme of the neural network: (1) the number

Reservoir

Pump

(b)

Fig. 1. Schematic layout of: (a) Hanoi WDN; and (b) GoYang WDN.
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Table 1. Hanoi hydraulic and geometric specifications

Table 2. GoYang hydraulic and geometric specifications

Nodal Nodal

Pipe Pipe Pipe demands Pipe Pipe Pipe  demands Pump
Pipe/ diameter  roughness length  (cubic meters  Elevation Pipe/node/ diameter roughness length (liters per Elevation power
node ID (mm) coefficient (m) per hour) (m) pump ID (mm)  coefficient (m) second) (m) (kW)
1 1,371.6 130 100 890 0 1 200 100 165 0 71.00 4.52
2 1,524 130 1,350 850 0 2 200 100 124 1.77 56.40 —
3 1,219.2 130 900 130 0 3 150 100 118 0.82 53.80 —
4 1,371.6 130 1,150 725 0 4 150 100 81 0.68 54.90 —
5 1,219.2 130 1,450 1,005 0 5 150 100 134 0.87 56.00 —
6 914.4 130 450 1,350 0 6 100 100 135 0.78 57.00 —
7 762 130 850 550 0 7 80 100 202 0.73 53.90 —
8 914.4 130 850 525 0 8 100 100 135 0.56 54.50 —
9 762 130 800 525 0 9 80 100 170 0.49 57.90 —
10 1,371.6 130 950 500 0 10 80 100 113 0.35 62.10 —
11 914.4 130 1,200 560 0 11 80 100 335 0.49 62.80 —
12 762 130 3,500 940 0 12 80 100 115 0.43 58.60 —
13 609.6 130 800 615 0 13 80 100 345 0.43 59.30 —
14 1,066.8 130 500 280 0 14 80 100 114 0.73 59.80 —
15 914.4 130 550 310 0 15 100 100 103 5.16 59.20 —
16 1,066.8 130 2,730 865 0 16 80 100 261 1.25 53.60 —
17 1,066.8 130 1,750 1,345 0 17 80 100 72 0.92 54.80 —
18 1,371.6 130 800 60 0 18 80 100 373 0.64 55.10 —
19 1,066.8 130 400 1,275 0 19 80 100 98 1.37 54.20 —
20 1,371.6 130 2,200 930 0 20 80 100 110 1.44 54.50 —
21 914.4 130 1,500 485 0 21 80 100 98 0.37 62.90 —
22 762 130 500 1,045 0 22 80 100 246 9.25 61.80 —
23 1,219.2 130 2,650 820 0 23% 80 100 174 N/A 71.00 —
24 914.4 130 1,230 170 0 24 80 100 102 — — —
25 762 130 1,300 900 0 25 80 100 92 — — —
26 609.6 130 850 370 0 26 80 100 100 — — —
27 1,066.8 130 300 290 0 27 80 100 130 — — —
28 762 130 750 360 0 28 80 100 90 — — —
29 762 130 1,500 360 0 29 80 100 185 — — —
30 609.6 130 2,000 105 0 30 80 100 90 — — —
g;ﬂ 2(1);4 38 1?28 1322 1 08 *Nodal characteristics for this ID are associated with the reservoir.
33 914.4 130 860 — —
34 609.6 130 950 — —

“Nodal characteristics for this ID are associated with the reservoir.

of hidden layers, and (2) the number of nodes in each hidden layer
(Wuetal. 2019). Specifying these two values along with functions
including transfer and training functions plays a pivotal role in
how the accuracy of training the network will turn out to be
(Zhang and Duh 2020). Because the complexity of the model
in this optimization procedure is substantially high, in order to
capture the highest possible accuracy of the trained ANN model,
a reliable method known as systematic experimentation has been
used to adjust ANN parameters (Packianather et al. 2000). Spe-
cifically, parameters like transfer function, data division, and
training function have been adjusted initially in a small-scale por-
tion of the original 250,000 input data sets (up to only 200 data
sets) based on the built-in outcome of the mean square error
(MSE) in the MATLAB interface. Then, after reaching a mini-
mum of MSE when fine-tuning the parameters, the number of data
sets is increased up to an optimized point where there is no over-
fitting of data. A model that is not overfitted but is taking as much
data as possible will yield an acceptable error range (Szegedy
et al. 2014). Table 3 presents the detailed parametric values used
for training the ANN model.

Similar to Eq. (9), to measure the prediction accuracy of the
trained model, a prediction performance metric, i.e., MAPE, is uti-
lized as shown in Eq. (10) to measure the accuracy of the trained
ANN in percentage and is characterized as follows (de Myttenaere
et al. 2016):
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Table 3. Parametric identification for training ANN model

Parametric item Parametric value

Training data sets 30,000 counts; one hidden layer
Validation data sets 10,000
Training function “Trainrp,” cascade forward net

Transfer function “Purelin”
Performance Mean squared error
Data division Interleaved
Maximum fail parameter 5
Learning rate 0.01
Initial weight change 0.1
Increment to weight change 1.2
Decrement to weight change 0.5
Maximum weight change 50.0
y  abs(prij—sim;;)
L (EEEY o
MAPE = (10)

l

where pr;; = predicted value of either pressure (or flow rate) using
the trained ANN model for node (or pipe) j in validation scenario i;
sim;; = simulated value of either pressure (or flow rate) calculated
using EPANET 2.0 for node (or pipe) j in validation scenario i; y =
number of nodes (or links) in the WDN; and / = number of vali-

dation scenarios.
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Results and Discussion

This section discusses (1) the accuracy of the trained ANN model to
be used in the prediction model is measured using MAPE metric for
a set of validation scenarios; (2) sensitivity of the model as measured
to the number of demand sets during optimization; (3) a baseline
scenario established for each of the presented WDN benchmark net-
works to analyze the prediction model performance; and (4) a series
of sensitivity analyses conducted to measure the model sensitivity to
the number and locations of pressure and flow monitoring stations.

Neural Network Model Accuracy

According to Eq. (9), MAPE based on 10,000 validation scenarios
for pressure at nodes and flow rates in links for Hanoi and GoYang
networks are listed in Table 4.

Furthermore, conventional hydraulic simulations using EPA-
NET 2.0 as well as ANN-based mimicking of hydraulic simulations
are compared while separately predicting roughness and effective
diameters for both Hanoi and GoYang networks. Tables 5 and 6
summarize this comparison in terms of the computation time as well
as the prediction accuracy based on optimization runs completed on
Clemson University’s Palmetto Cluster (a supercomputing machine).
It can be observed from Tables 5 and 6 that the ANN-based method
either performed comparably to the conventional EPANET-based
method or better in terms of MAPE while offering a significant ad-
vantage in terms of shorter computational time. Also, the training
procedure and performance analysis of the cascade-forward neural
networks for both Hanoi and GoYang WDNSs are separately shown
in Figs. 2 and 3. Consequently, the ANN-based method has been
used for hydraulic simulations for rest of the analyses presented
in this paper.

Choosing Optimal Number of Demand Sets

A certain number (j) of demand sets are used in the optimization
algorithm for evaluating the prediction errors. A demand set is one

Table 4. Validation results of trained ANN model

Network Node pressure MAPE (%) Link flow rate MAPE (%)
Hanoi 3.36 4.70
GoYang 32 0.24

set of nodal demands along with pipe flows and nodal pressures
measured through smart monitoring devices placed throughout
the distribution system. In order to choose the optimal number
of demand sets to use, various sizes of demand sets are investigated
for the resulting prediction accuracy as well as the computational
time. The nodal demands are randomized within £20% of the base
nodal demands of the original benchmark networks to generate
various demand sets of monitoring data from the deteriorated net-
works. As can be seen from the results presented in Table 7, the
number of demand sets were varied from 5 through 5,000 in rea-
sonably scaled increments. The monitoring locations associated
with all the scenarios generated hereby are same as those in the
baseline scenario of each of the networks.

The accuracy of prediction, measured using MAPE when
roughness (Rcomp) and effective diameters (Do) are predicted
together, is used to compare different sizes of demand sets. ANN-
based hydraulic simulations are used. Table 7 demonstrates that
MAPE values for Rcomp, OF Dcomp, do not necessarily increase with
the size of the demand sets, whereas the computational time expect-
edly increases. Although it seems tempting to go with the smallest
size of five, we have chosen to work with size of 200 (j) for rest of
the analyses presented in this paper just to include more demand
sets for better convergence at a reasonable computational time.

Prediction Model: Baseline Scenarios

Two benchmark WDNs are used to demonstrate and evaluate the
primitive water pipeline condition prediction procedure proposed in
this study.

Hanoi Network
According to the layout of the Hanoi network, there exist 34 links,
in which case 34 decision variables are associated with roughness
coefficient and 34 decision variables account for effective hydraulic
diameters, totaling 68 decision variables in this section. In the base-
line scenario, eight PMS and nine FMS are placed at random
locations in Hanoi WDN. The Hanoi WDN is first modified by
randomly reducing both pipeline roughness and effective internal
diameter values to make it representative of a deteriorated WDN.
Table 8 presents the range of reduction for both roughness and ef-
fective internal diameters for Hanoi WDN along with the search
span across which the algorithm looks for the optimal solutions.
Fig. 4 represents the baseline scenario prediction results for
Hanoi network. As can be seen in Fig. 4, condition parameters

Table 5. Computation time versus prediction MAPE for Hanoi using ANN and non-ANN methods

Parameter Method Computational time/run® (min) MAPE (%)
Roughness Conventional (EPANET 2.0) ~800 10.09 (Piratla and Momeni 2019)
ANN-based ~20 10.84
Effective diameter Conventional (EPANET 2.0) ~800 6.47 (Piratla and Momeni 2019)
ANN-based ~20 4.56
#One run entails optimization for a population size of 500 and 1,000 generations.
Table 6. Computation time versus prediction MAPE for GoYang using ANN and non-ANN methods
Parameter Method Computational time/run® (min) MAPE (%)
Roughness Conventional (EPANET 2.0) ~700 11.01 (Momeni et al. 2019)
ANN-based ~18 11.83
Effective diameter Conventional (EPANET 2.0) ~700 9.95 (Momeni et al. 2019)
ANN-based ~18 6.19

“One run entails optimization for a population size of 500 and 1,000 generations.
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Fig. 2. Neural networks training procedure for Hanoi: (a) MAPE for 10,000 pressure validation scenarios; (b) MAPE for 10,000 flow validation
scenarios; (c) mean squared error for ANN training performance; and (d) training gradient.

are predicted in the baseline scenario for the combination of both
effective hydraulic diameters and roughness coefficients. Particu-
larly, the MAPE values for diameter prediction equals 6.12%,
and for roughness prediction, it equals 12.98% when both these
parameters are predicted together using 68 decision variables in
the optimization algorithm. It means that the mean error in predic-
tion for effective diameter values is 6.12%, which is much lower
than the 18.1% average reduction rate for effective diameters as per
Table 8. Similarly, the mean error in prediction for roughness co-
efficients is 12.98%, which is much lower than the 41.7% average
reduction rate of roughness values as per Table 8. Furthermore, it
can be inferred from the MAPE values and Fig. 4 that the effective
diameter values can be predicted more accurately than roughness
values, which is likely due to the better influence of pipeline diam-
eters than roughness values on the hydraulic features (i.e., nodal
pressures and pipe flows) of WDNSs.

Fig. 5 indicates the comparison between actual and predicted
roughness coefficients when roughness alone is predicted assuming
effective pipeline diameters are known. The corresponding MAPE
value for roughness-only prediction of Hanoi network equals
10.84%. Similarly, Fig. 5 also indicates the comparison between
actual and predicted effective diameter values when they are pre-
dicted individually, assuming roughness coefficients are known.
The corresponding MAPE value for effective diameter-only predic-
tion of Hanoi network equals 4.56%. The MAPE values for indi-
vidual predictions are less than those in the combined prediction
discussed previously, and this is likely due to the fewer unknowns
in the optimization algorithm combined with more accurate char-
acterization of the WDN condition.
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GoYang Network

One of the main differences between GoYang and Hanoi networks
is that GoYang has a pump linked up to the reservoir. GoYang
consists of 30 pipes that make up the variables required for the pre-
diction model in this scheme. Accordingly, this section embraces
60 decision variables, 30 of which establish the set of decision var-
iables for roughness coefficients, and the other 30 are associated with
effective hydraulic diameters. In the baseline scenario, five PMS and
seven FMS are randomly placed in GoYang WDN. Like Hanoi,
GoYang WDN was also first modified by randomly reducing rough-
ness coefficients and internal diameters to make it representative of a
deteriorated WDN. Table 9 presents the range of reduction for both
roughness and effective internal diameters for GoYang WDN along
with the search span across which the algorithm looks for the optimal
solutions.

Fig. 6 illustrates the baseline scenario results through compari-
son of effective diameter and roughness predictions for GoYang in
the combined prediction. Similar to the observation in Hanoi, diam-
eter prediction is more accurate, with a MAPE value of 5.46%, than
the roughness MAPE value of 14.66% when both these are pre-
dicted together in the optimization model using 60 decision vari-
ables. The diameter prediction MAPE of 5.46% is much lower than
the 16.4% average reduction rate of effective diameters as per
Table 9. Similarly, the roughness prediction MAPE of 14.66%
is much lower than the 33.5% average reduction rate of roughness
values as per Table 9.

Furthermore, Fig. 7 illustrates the comparison of actual and
predicted values of roughness coefficients when they are sepa-
rately predicted assuming the effective diameter values are known.
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Fig. 3. Neural networks training procedure for GoYang: (a) MAPE for 10,000 pressure validation scenarios; (b) MAPE for 10,000 flow validation
scenarios; (c) mean squared error for ANN training performance; and (d) training gradient.

Table 7. MAPE values for different demand scenarios

Number of  Computational
Network demand data sets time (min)  Rcomp (%) Dcomp (%)
Hanoi WDN 5 23.33 9.34 6.78
50 25.63 11.56 6.97
100 28.72 10.21 6.22
200 32.42 12.98 6.12
400 39.60 12.09 6.75
800 53.87 11.81 6.08
1,000 60.93 10.23 7.53
3,000 132.73 11.61 6.78
5,000 206.6 11.08 6.82
GoYang WDN 5 18.16 17.74 4.95
50 19.01 12.51 5.76
100 20.16 14.76 5.25
200 20.54 14.66 5.46
400 24.04 14.76 5.68
800 31.13 14.27 6.27
1,000 33.34 12.69 4.96
3,000 41.68 13.35 6.16
5,000 150.1 16.27 5.77

Note: This applies to one run of optimization with a population size of 500
and 1,000 generations.

The corresponding MAPE value for this roughness-only predic-
tion is 11.83%. Similarly, Fig. 7 also depicts the comparison of
actual and predicted effective diameter values when they are
separately predicted. The corresponding MAPE value for this
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effective diameter-only prediction is 5.19%. Similar to the case
in Hanoi, the individual predictions resulted in better accuracies
than in the combined predictions, which is likely due to lesser
number of unknowns in the optimization model combined with
more accurate characterization of the WDN condition.

Sensitivity Analyses

In this section, the sensitivity of the results to variations in the num-
ber and locations of pressure and flow monitoring stations across
the two benchmark WDNSs is presented. For this purpose, 26 sce-
narios have been created in addition to the baseline scenario that are
categorized into three tiers (Tiers A through C). Table 10 presents
the three tiers and the scenarios they comprise. Three specific re-
search questions are answered through the sensitivity analyses:
*  What is the sensitivity of the prediction accuracy to variation in
the locations of FMS and PMS?
*  What is the sensitivity of the prediction accuracy to the number
of FMS?
* What is the sensitivity of the prediction accuracy to number
of PMS?
These three questions
subsections.

are addressed in the following

Sensitivity to Variation in Locations of Flow and Pressure
Monitoring Stations

Tier A, consisting of eight scenarios, is meant to analyze the sen-
sitivity of MAPE values to variation in locations of PMS and FMS
in both networks. As can be seen from Table 10, the locations of
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Table 8. Hanoi original versus reduced values of condition parameters

Diameter original

Diameter reduced

Diameter

Roughness

Roughness

Roughness

Pipe ID values (mm) values (mm) reduction rate (%) original values reduced values reduction rate (%)
1 1,371.6 1,166.6 14.9 130 82 36.92
2 1,524 1,250.0 18.0 130 90 30.76
3 1,219.2 1,064.2 12.7 130 89 31.53
4 1,371.6 1,183.6 13.7 130 85 34.61
5 1,219.2 1,018.2 16.5 130 69 46.92
6 914.4 780.4 14.7 130 66 49.23
7 762 591.0 22.4 130 88 32.30
8 914.4 660.4 27.8 130 70 46.15
9 762 604.0 20.7 130 63 51.53
10 1,371.6 1,152.6 16.0 130 68 47.69
11 914.4 755.4 17.4 130 81 37.69
12 762 662.0 13.1 130 80 38.46
13 609.6 504.6 17.2 130 72 44.61
14 1,066.8 821.8 23.0 130 87 33.07
15 914.4 708.4 22.5 130 70 46.15
16 1,066.8 915.8 14.2 130 69 46.92
17 1,066.8 840.8 21.2 130 65 50
18 1,371.6 1,212.6 11.6 130 75 42.30
19 1,066.8 954.8 10.5 130 80 38.46
20 1,371.6 1,179.6 14.0 130 65 50
21 914.4 716.4 21.7 130 76 41.53
22 762 616.0 19.2 130 88 32.30
23 1,219.2 1,027.2 15.7 130 80 38.46
24 914.4 7234 20.9 130 73 43.84
25 762 598.0 21.5 130 64 50.76
26 609.6 446.6 26.7 130 77 40.76
27 1,066.8 841.8 21.1 130 64 50.57
28 762 603.0 20.9 130 88 32.30
29 762 644.0 15.5 130 85 34.61
30 609.6 505.6 17.1 130 82 36.92
31 914.4 528.6 13.3 130 74 43.07
32 508 876.8 17.8 130 67 48.46
33 914.4 600.0 21.3 130 68 47.69
34 609.6 736.4 19.5 130 75 42.30
Note: Regarding search span, values range within 50% below original and 50% above original values.
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Fig. 4. Comparison of actual versus predicted pipeline conditions in
the combined scenario for Hanoi WDN.

PMS and FMS are randomly varied in each of the eight scenarios in
Tier A keeping the numbers of PMS and FMS same as in the base-
line scenario. The resulting MAPE values in each scenario for the
combined prediction of effective diameter (D¢,p,) and roughness
(Rcompb) are also presented in Table 10.

As can be seen from Table 10, diameter prediction was found to
be more accurate than roughness for all the Tier-A scenarios, which
is consistent with the observations made for the baseline scenario.
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Fig. 5. Comparison of actual versus predicted pipeline conditions in
the individual prediction scenario for Hanoi WDN.

Furthermore, MAPE values did change when monitoring locations
were varied in different Tier-A scenarios. It can be observed that the
maximum variation in MAPE values among the nine scenarios (in-
cluding baseline) for GoYang network are 2.61% and 4.83% for
Dcomp and Rconp, respectively. Similarly, the maximum variation
in MAPE values among the nine scenarios for Hanoi network are
3.44% and 2.63% for Dcomp, and Reomp, respectively. From these
results, it can be inferred that the variation in MAPE values in
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Table 9. GoYang original versus reduced values of condition parameters

Diameter original Diameter reduced Diameter Roughness Roughness Roughness
Pipe ID values (mm) values (mm) reduction rate (%) original values reduced values reduction rate (%)
1 200 182 9 100 80 20
2 200 187 6.5 100 56 44
3 150 133 11.34 100 62 38
4 150 136 9.34 100 56 44
5 150 130 13.34 100 73 27
6 100 89 11 100 79 21
7 80 68 15 100 71 29
8 100 90 10 100 46 54
9 80 65 18.75 100 59 41
10 80 61 23.75 100 67 33
11 80 65 18.75 100 43 57
12 80 64 20 100 73 27
13 80 65 18.75 100 79 21
14 80 61 23.75 100 74 26
15 100 84 16 100 51 49
16 80 66 17.5 100 75 25
17 80 64 20 100 63 37
18 80 70 12.5 100 78 22
19 80 70 12.5 100 66 34
20 80 61 23.75 100 60 40
21 80 68 15 100 54 46
22 80 64 20 100 76 24
23 80 69 13.75 100 80 20
24 80 68 15 100 46 54
25 80 60 25 100 55 45
26 80 68 15 100 75 25
27 80 62 22.5 100 69 31
28 80 61 23.75 100 74 26
29 80 67 16.25 100 76 24
30 80 68 15 100 78 22

Note: Regarding search span, values range within 50% below original and 50% above original values.
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Fig. 6. Comparison of actual versus predicted pipeline conditions in
the combined scenario for GoYang WDN.

Tier-A scenarios is not highly significant, but those corresponding to
diameter prediction were considerable compared with the least
MAPE values for both networks. Clearly, optimizing the locations
for placing FMS and PMS would yield best prediction accuracies for
both the parameters.

Sensitivity to Variation in Number of Flow Monitoring
Stations

Tier B, consisting of nine scenarios, is meant to analyze the sensi-
tivity of MAPE values to variation in the number of FMS keeping
the number and locations of PMS same as in the baseline scenario.
Table 10 presents the number of FMS considered in different sce-
narios of Tier B for both the networks along with the resulting
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Fig. 7. Comparison of actual versus predicted pipeline conditions in
the individual prediction scenario for GoYang WDN.

MAPE values. The number of FMS considered are 0, 4, 9, and
12 for Hanoi and 0, 4, 7, and 10 for GoYang. Fig. 8 presents
the change in MAPE values for both condition parameters when
the number of FMS are increased. The results from Tier-A scenar-
ios are appropriately added to Fig. 8 to represent the MAPE var-
iations for the baseline scenario. It can be observed from Fig. 8 that
there is no consistent trend of MAPE values dropping when the
number of FMS increased, which suggests that the accuracies of
predicting roughness and diameters do not necessarily increase
by adding more flow monitoring stations.

Furthermore, in order to evaluate the importance of flow mon-
itoring on top of pressure monitoring, the scenario of zero FMS
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Table 10. Additional scenarios considered for sensitivity analyses

No. of FMS in  No. of PMS in  MAPE-Rcomy (%) in MAPE-Deonpy (%) in No. of FMS in~ No. of PMS in  MAPE-Rgopy (%) in - MAPE-Deopy (%) in

Scenario Tier Hanoi WDN Hanoi WDN Hanoi WDN Hanoi WDN GoYang WDN GoYang WDN GoYang WDN GoYang WDN
Baseline scenario N/A 9 8 12.98 6.12 7 5 14.66 5.46
1 A 9 8 10.44 6.57 7 5 17.6 4.43
2 9 8 9.34 6.79 7 5 15.7 5.2
3 9 8 11.91 8.68 7 5 13.91 5.3
4 9 8 9.98 6.37 7 5 15.56 5.69
5 9 8 9.28 7.21 7 5 15.66 5.82
6 9 8 10.65 7.85 7 5 16.29 5.8
7 9 8 10.49 7.41 7 5 12.77 7.04
8 9 8 10.4 5.24 7 5 16.22 5.73
9 B 0 8 10.67 6.05 0 5 16.15 5.88
10 4 8 12.52 8.22 4 5 16.85 5.29
11 4 8 9.24 8.11 4 5 14.97 5.85
12 4 8 12.61 7.19 4 5 13.49 5.64
13 4 8 11.51 6.15 4 5 15.92 4.12
14 12 8 10.71 7.12 10 5 15.93 5.13
15 12 8 11.58 7.85 10 5 15.55 4.31
16 12 8 9.07 7.14 10 5 14.32 4.95
17 12 8 9.32 8.26 10 5 14.72 5.44
18 C 9 0 12.44 6.58 7 0 15.81 5.9
19 9 3 13.91 8.95 7 3 13.32 5.55
20 9 3 11.69 7.27 7 3 16.37 4.54
21 9 3 10.31 6.79 7 3 16.37 4.27
22 9 3 9.47 9.28 7 3 15.42 5.01
23 9 11 11.59 6.99 7 8 15.41 5.63
24 9 11 11.47 7.59 7 8 14.44 5.29
25 9 11 9.28 7.91 7 8 15.43 5.12
26 9 11 10.47 7.32 7 8 15.2 5.36
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Fig. 8. MAPE variation with number of FMS: (a) Hanoi—diameter; (b) Hanoi—roughness; (c¢) GoYang—diameter; and (d) GoYang—roughness.

(Scenario 9 in Table 10) is separately evaluated. The ANN algo-
rithm had to be trained again by eliminating the flow monitoring
data as one of the sets of outputs in its prediction. In other words,
pressure data are the only output in the ANN algorithm, with de-
mands, roughness coefficients, and effective diameters as the in-
puts. The MAPE values for ANN validation resulting from the
pressure-only scenarios where there exists only pressure as the out-
put of the ANN model for Hanoi WDN is found to be 1% and for
GoYang, it is 0.03%. The elimination of flow values as output var-
iable in the ANNs improved their prediction accuracy.

Fig. 9 illustrates the actual and predicted values of both D¢y
and Rcoyp for Hanoi. The MAPE value for Dy, equals 5.70%,
whereas that for R,y 1s equal to 7.73%. These values are slightly
better than those obtained in the baseline scenario with nine FMS
and eight PMS for Hanoi. These results suggest that flow monitor-
ing may not add significant value on top of pressure monitoring for
the kind of condition assessment prediction proposed in this study.
It is likely that flow monitoring and pressure monitoring are redun-
dant, and fewer computations resulting from the elimination of flow
monitoring data may have resulted in slightly better accuracies, as
observed in the results presented in Fig. 9.

Fig. 10 shows the actual and predicted values of both D¢, and
Rcomp for GoYang for the zero-FMS scenario. The MAPE value for
Dcomp €quals 6.48% whereas that for Regyp is equal to 6.61%.
These accuracies are comparable to those obtained in the baseline
scenario with seven flow monitoring and five pressure monitoring
stations. This reinforces the fact that pressure monitoring alone may
suffice for predicting the condition assessment parameters investi-
gated in this study.
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Fig. 9. Comparison of actual versus predicted pipeline conditions in
the combined prediction scenario for Hanoi WDN using only pressure
monitoring data.

Sensitivity to Variation in Number of Pressure Monitoring
Stations

Contrary to Tier B, Tier C, consisting of nine scenarios, is meant to
analyze the sensitivity of MAPE values to variation in the number
of PMS while keeping the number and locations of FMS same as in
the baseline scenario. Table 10 provides the number of PMS con-
sidered in different scenarios of Tier C for both the networks. The
number of PMS considered are 0, 3, 8, and 11 for Hanoi and 0, 3, 5,
and 8 for GoYang. Fig. 11 presents the change in MAPE values for
both condition parameters when the numbers of PMS are increased
for both the networks. The results from Tier-A scenarios are
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Fig. 10. Comparison of actual versus predicted pipeline conditions in
the combined prediction scenario for GoYang WDN using only pres-
sure monitoring data.

appropriately added to Fig. 11 to represent the MAPE variations for
the baseline scenario.

Similar to the previous observations made on the sensitivity to
the number of FMS, it can be observed from Fig. 11 that there is no
clear trend of MAPE dropping when the numbers of PMS are in-
creased for either of the networks. Furthermore, when the MAPE
values corresponding to the scenarios with zero PMS are highest in
Fig. 11, they are not significantly higher than the MAPE values in
other scenarios. In other words, the prediction model did not suffer
greatly by not having any pressure monitoring data on top of flow
monitoring data.

To summarize the findings in this paper (1) a reliable ANN
model was presented at a rough MAPE accuracy of 2.8% on aver-
age as an alternative for the conventional hydraulic simulator,
(2) the performance of the reverse-engineering prediction model
was found to be acceptable at an average MAPE accuracy of 5.79%
and 13.79% for diameter and roughness predictions, respectively,

using two benchmarks, and (3) the sensitivity analyses of the place-
ments and numbers of pressure and flow monitoring stations indi-
cated that not only do pressure stations play more essential a role
than those of flow when it comes to the prediction of effective hy-
draulic diameters and roughness coefficients, but also a limited
number of stations would suffice to acquire an acceptable predic-
tion accuracy. In general, the study of the baseline scenarios along
with sensitivity analyses offers novel insights into how cyber-
monitoring data can be leveraged for primitive pipeline condition
assessment.

Conclusions and Recommendations

This paper presented a water pipeline condition prediction
framework that is driven by hydraulic monitoring of WDNSs in con-
junction with water consumption monitoring. Pressure and flow
measured at multiple locations in the WDN for a given set of nodal
demands are the inputs for the proposed framework. A MATLAB-
based optimization framework is then used to demonstrate the pro-
posed framework for the prediction of water pipeline roughness and
effective internal diameters. Two popular benchmark WDNs are
used for this demonstration purpose. For the first WDN, Hanoi,
which is a gravity-driven system with 34 deteriorated pipelines,
roughness and effective internal diameters are together predicted
with a MAPE of 12.98% and 6.12%, respectively, using eight pres-
sure monitoring and nine flow monitoring stations that are randomly
located in the WDN. For the second WDN, GoYang, which is a
pump driven system with 30 deteriorated pipelines, roughness coef-
ficients and effective internal diameters are together predicted with
MAPE of 14.66% and 5.46%, respectively, using five pressure mon-
itoring and seven flow monitoring stations that are randomly located
in the WDN. The MAPE values for predicting roughness and effec-
tive diameters individually assuming the other condition parameter is
known are found to be slightly lower than when they are predicted
together. These results suggest that the proposed framework could
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Fig. 11. MAPE variation with number of PMS for: (a) Hanoi—diameter; (b) Hanoi—roughness; (¢) GoYang—diameter; and (d) GoYang—

roughness.
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work as a preliminary tool in inferring the conditions of deteriorated

water pipelines.

Some key findings of this study include the following:

* The effective internal pipeline diameters were found to be more
accurately predictable than the roughness based on hydraulic
monitoring data, which is likely due to their greater influence
on the flow and pressure variations in the WDN.

e Increasing the number of pressure or flow monitoring stations
did not necessarily increase the prediction accuracies for either
of the condition parameters.

* Placement of pressure or flow monitoring stations at optimal
locations would lead to best prediction accuracies of the pipeline
condition parameters.

* Prediction accuracies of both the condition parameters using
only pressure monitoring data were comparable to those ob-
tained using both pressure and flow monitoring data, which sug-
gests that pressure monitoring alone may suffice the purpose of
leveraging hydraulic fluctuations in WDNSs for pipeline condi-
tion prediction.

Limitations of this study include (1) the assumption that all the
pipeline features except roughness and effective internal diameter
are known and can be accurately quantified, which may be optimis-
tic given the potential for leakages, wall thinning, and many other
issues; and (2) the assumption that water consumption data at all
the WDN nodes can be captured synchronously with the corre-
sponding pressure and flow monitoring data, which is less likely
in the current scheme of water utility operations; however, this
is definitely possible as more utilities adopt smart water meters
and cyber monitoring of WDNs for better situational awareness.

The contribution of this study is the representation and calibra-
tion of a data-driven prediction model for uncertain hydraulic
parameters such as effective internal diameters and roughness co-
efficients where manual in situ inspections for pipe rehabilitation or
replacement accordingly can potentially be substituted for a cyber-
monitoring framework at reasonable accuracy, cost, and time effi-
ciency compared with previous studies in the literature discussed
previously in the paper. This primitive pipeline condition assess-
ment paradigm needs to be further investigated in the future for
broadening the practical impact.

Future research in this field should focus on (1) expanding the
variety of condition parameters that can be simultaneously pre-
dicted using hydraulic monitoring data; for example, presence of
leakages may be added as an additional condition parameter;
(2) although it may be possible to capture water consumption data
using smart water meters, it may be less practical to be able to in-
stall smart water meters at all the nodes in the WDN and therefore
future research should focus on using water consumption data from
just a sample of nodes in the WDN; and (3) optimizing the loca-
tions for the placement of pressure monitoring stations and select-
ing nodes for installing smart water meters in order to achieve best
pipeline condition prediction accuracies.
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Notation

The following symbols are used in this paper:
a =index for pressure monitoring stations;
act =actual values of condition parameters;
b =index for flow monitoring stations;
C, ¢ =roughness coefficient;
D, d=pipe effective internal diameter;
Dcomp =combined predicted pipe diameter;
F, f=flow rate;
9(), h() =representations of EPANET 2.0 hydraulic simulations;
i = candidate solution reference in the optimization
procedure;
Jj=number of consumption datasets;
k=a given set of consumption data;
[ =number of validation scenarios;
P, p =pressure;
pr=predicted values of condition parameters;
0, g =nodal demands;
Rcomp =combined predicted roughness coefficient;
sim = simulated values of pressure or flow rate;
x =number of pipelines in the water distribution network;
and
Z = objective function.
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