
A. Formisano, Y.A Liu, et al. (Eds.): International Conference on
Logic Programming (Technical Communications) 2021 (ICLP 2021)
EPTCS 345, 2021, pp. 99–112, doi:10.4204/EPTCS.345.24

© Poom Pianpak and Tran Cao Son
This work is licensed under the
Creative Commons Attribution License.

DMAPF: A Decentralized and Distributed Solver for
Multi-Agent Path Finding Problem with Obstacles

Poom Pianpak Tran Cao Son
New Mexico State University

Las Cruces, New Mexico, USA
{ppianpak,tson}@cs.nmsu.edu

Multi-Agent Path Finding (MAPF) is a problem of finding a sequence of movements for agents to
reach their assigned location without collision. Centralized algorithms usually give optimal solu-
tions, but have difficulties to scale without employing various techniques – usually with a sacrifice of
optimality; but solving MAPF problems with the number of agents greater than a thousand remains
a challenge nevertheless. To tackle the scalability issue, we present DMAPF – a decentralized and
distributed MAPF solver, which is a continuation of our recently published work, ros-dmapf [10].
We address the issues of ros-dmapf where it (i) only works in maps without obstacles; and (ii) has
a low success rate with dense maps. Given a MAPF problem, both ros-dmapf and DMAPF divide
the map spatially into subproblems, but the latter further divides each subproblem into disconnected
regions called areas. Each subproblem is assigned to a distributed solver, which then individually
creates an abstract plan – a sequence of areas that an agent needs to visit – for each agent in it, and
interleaves agent migration with movement planning. Answer Set Programming, which is known for
its performance in small but complex problems, is used in many parts including problem division,
abstract planning, border assignment for the migration, and movement planning. Robot Operating
System is used to facilitate communication between the solvers and to enable the opportunity to inte-
grate with robotic systems. DMAPF introduces a new interaction protocol between the solvers, and
mechanisms that together result in a higher success rate and better solution quality without sacrificing
much of the performance. We implement and experimentally validate DMAPF by comparing it with
other state-of-the-art MAPF solvers and the results show that our system achieves better scalability.

1 Introduction

Robots have been making their way into human life. From household robots to self-driving cars and
industrial robots, it is expected that the number of robots will keep increasing in the future. To cope
with such growth, robot controlling systems need to be designed with scalability in mind. We took
an inspiration from autonomous warehouse systems1,2 where the retrieval and storage tasks are done
autonomously by mobile robots. When the system receives an order, it assigns a set of robots to retrieve
shelves containing the products to a human operator for fulfillment of the order, then store the shelves
back in their appropriate place.

In this paper, we only consider the problem of finding a plan for agents to reach their assigned loca-
tion (i.e., goal) without collision. The problem is called Multi-Agent Path Finding (MAPF) and will be
formally introduced in Section 2.1. Most existing MAPF algorithms are centralized (i.e., having a cen-
tral unit overseeing the entire solving process) such as WHCA* [13], asprilo [6], and CBS [12]. While
there are attempts to improve the scalability of centralized algorithms using various techniques, such as

1https://amazonrobotics.com
2https://locusrobotics.com

http://dx.doi.org/10.4204/EPTCS.345.24
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://amazonrobotics.com
https://locusrobotics.com

100 DMAPF: A Decentralized and Distributed Solver for MAPF Problem with Obstacles

abstraction (e.g., planning for each agent independently then combine the partial plans to obtain the solu-
tion – while resolving any conflict), dealing with MAPF problems with a large number of agents (greater
than a thousand) still remains a challenge. We have designed a decentralized and distributed MAPF
algorithm, named DMAPF – Distributed Multi-Agent Pathfinder – with scalability in mind. DMAPF is
able to take advantage of distributed computing to cope with the possibility of having an ever-increasing
problem size. An input problem to DMAPF is encoded in answer set program as generated by the AS-
PRILO project [6] and solved using mainly the answer set programming, which will be introduced in
Section 2.2. The communication between distributed components in DMAPF is facilitated by the Robot
Operating System (ROS), which will be introduced in Section 2.3.

DMAPF is an improvement over our original system, ros-dmapf [10]. We address the issues in ros-
dmapf where it (i) only works in maps without obstacles; and (ii) has a low success rate with dense
maps. DMAPF shares the same idea with ros-dmapf in that, given a MAPF problem, it divides the
problem spatially and assigns each divided subproblem to a distributed solver, which is a ROS node.
The difference is that DMAPF also further divides each subproblem into disconnected regions called
areas. This, together with a few other changes, allow DMAPF to deal with having obstacles. The
details of problem division will be explained in Secion 3.1. After the subproblems have been distributed,
each solver individually creates an abstract plan – a sequence of areas that an agent needs to visit to
reach the area that contains its goal – for each agent in the given subproblem. The details of abstract
plan creation will be explained in Section 3.2.1. After the plans have been made for every agent, the
solvers interleave communicating with neighboring solvers to send/receive migrating agents (details in
Sections 3.2.2, 3.2.3, and 3.2.5) with movement planning (details in Section 3.2.4) along each round.
This differs from ros-dmapf where it does the communication from beginning to end first, then finds a
movement plan for each round in a single attempt. If ros-dmapf is unable to make a plan during the
movement planning phase, it would be difficult to adjust the border assignment since assignments for
the next rounds have already been agreed upon, whereas DMAPF can easily adjust the assignment and
retry. This, together with changes in migration protocol, allow DMAPF to achieve a higher success rate
and better solution quality than ros-dmapf. DMAPF has been implemented and compared with other
state-of-the-art solvers. Section 4 shows results of the comparison. Section 5 concludes with discussion
on the results, advantages, limitations, and future work.

2 Background

2.1 Multi-Agent Path Finding Problem

A Multi-Agent Path Finding (MAPF) problem can be defined as a quadruple P = (G,A,S,T), where G =
(V,E) is a graph such that V is a set of vertices corresponding to locations in the graph, and E ⊆ V ×V
denotes edges between two locations; A is a set of agents; and S⊆ A×V and T ⊆ A×V denote start and
goal locations of the agents, respectively.

Agents can move from v1 to v2 where v1,v2 ∈ V if (v1,v2) ∈ E, under the restrictions: (a) two
agents cannot swap locations in a single time step; and (b) each location can be occupied by at most
one agent at a time. A path for an agent a is a sequence of vertices αa = 〈v1, . . . ,vn〉 if (i) agent a
starts at v1 (i.e., (a,v1) ∈ S); and (ii) there is an edge between any two subsequent vertices vi and vi+1
(i.e., (vi,vi+1) ∈ E), or they are the same vertex (i.e., vi+1 = vi). An agent a completes its order Ta =
{v | (a,v) ∈ T} via a path αa = 〈v1, . . . ,vn〉 if Ta ⊆ {v1, . . . ,vn}. A solution of a MAPF problem P is a
collection of paths Sol = {αa | a ∈ A} such that all orders in T are completed.

In our work, we assume that (i) each agent has a different start location (i.e., ∀a∃v((a ∈ A→ (a,v) ∈

Poom Pianpak and Tran Cao Son 101

S)∧¬∃v̂6=v((a, v̂) ∈ S))∧¬∃â6=a((â,v) ∈ S))); (ii) each agent either has no goal or has a distinct goal
location (i.e., ∀a1,a2,v((a1,v),(a2,v) ∈ T → a1 = a2)); (iii) each agent is at its goal at the last time step
(i.e., ∀a,v(((a,v)∈ T ∧αa = 〈v1, . . . ,vn〉)→ v = vn)); and (iv) the graph is grid-based. These assumptions
are common among most multi-agent path finding solvers.

2.2 Answer Set Programming

Let us provide some general background on Answer Set Programming (ASP). Consider a logic language
L = 〈C,P,V 〉, where C,P,V are sets of constants, predicate symbols, and variables, respectively, and the
notions of terms, atoms, and literals are traditional.

An answer set program Π is a set of rules of the form

c← a1, . . . ,am,not b1, . . . ,not bn (1)

Each ai and bi is a literal from L, and each not bi is called a negation-as-failure literal (or naf-literal). c
can be a literal or omitted. A program is a positive program if it does not contain naf-literals. A non-
ground rule is a rule that contains variables; otherwise, it is called a ground rule. A rule with variables
is simply used as a shorthand for the set of its ground instances from the language L. If n = m = 0, then
the rule is called a fact. If c is omitted, then the rule is called an ASP constraint.

A set of ground literals X is consistent if there is no atom a such that {a,¬a} ⊆ X . A literal l is true
(resp. false) in a set of literals X if l ∈ X (resp. l 6∈ X). A set of ground literals X satisfies a ground rule
of the form (1) if either of the following is true: (i) c ∈ X ; (ii) some ai is false in X ; or (iii) some bi is true
in X . A solution of a program, called an answer set [7], is a consistent set of ground literals satisfying
the following conditions:

• If Π is a ground program (i.e., a program whose rules are all ground), then its answer set S is
defined by the following:

◦ If Π does not contain any naf-literals, then S is an answer set of Π if it is a consistent and
subset-minimal set of ground literals satisfying all rules in Π.
◦ If Π contains some naf-literals, then S is an answer set of Π if it is an answer set of the

program reduct ΠS. ΠS is obtained from Π by deleting (i) each rule that has a naf-literal not
b in its body with b ∈ S; and (ii) all naf-literals in the bodies of the remaining rules.

• If Π is a non-ground program (i.e., a program whose rules include non-ground rules), then S is an
answer set of Π if it is an answer set of the program consisting of all ground instantiations of the
rules in Π.

The ASP language includes also language-level extensions to facilitate the encoding of aggregates
(min, max, sum, etc.), range specification of variables, and allowing choice of literals. In ASP, one solves
a problem by encoding it as an ASP program whose answer sets correspond one-to-one to the solutions
of the problem [8, 9]. Answer sets of ASP programs can be computed using ASP solvers like CLASP [5]
and DLV [3].

Early ASP rests upon a single-shot approach to problem solving – an ASP solver takes a logic pro-
gram, computes its answer sets, and exits. Unlike this, recently developed multi-shot ASP solvers provide
operative solving processes for dealing with continuously changing logic programs. For controlling such
solving processes, the declarative approach of ASP is combined with imperative means. In clingo [4],
this is done by augmenting an ASP encoding with C or Python procedures. The instrumentation includes
methods for adding/grounding rules, setting truth values of (external) atoms, computing the answer sets
of current program, etc.

102 DMAPF: A Decentralized and Distributed Solver for MAPF Problem with Obstacles

2.3 Robot Operating System

The Robot Operating System (ROS) is an open-source framework designed for building robotics sys-
tems which is distributed in nature [11]. We adopt ROS because of its scalability and support for the
development of heterogeneous clusters of software. ROS provides client libraries3 for software written
in different languages (e.g., C++, Python, Lisp) to communicate.

A ROS system must consist of a roscore at a bare minimum, and may consist of multiple ROS nodes.
A roscore is a set of prerequisites to run a ROS-based system, and it consists of a ROS master among a
few other things. A ROS node is an individual process that does some computation. ROS nodes working
together for a particular task may be organized as a package, and they can be on different networks. For a
node n1 to communicate with another node n2, n1 first needs to locate n2 via the ROS master, then n1 can
communicate directly with n2 as a peer-to-peer network. There are mainly two forms of communication
between ROS nodes:

1. Publish-Subscribe – nodes are connected via a topic, which is a named bus. A node sending (resp.
listening to) messages on a topic is called a publisher (resp. subscriber). One node can both
be a publisher and a subscriber on the same or multiple topics. A topic may have zero or more
publishers and/or subscribers.

2. Request-Response – two nodes follow an RPC interaction through a service. A node that provides
(resp. calls) a service is called a service server (resp. service client). There can only be one service
server, but possibly multiple service clients for a single service. Calls from the service clients will
be put into a queue and processed one-by-one.

3 Methodology

Algorithm 1 shows an overview of DMAPF. The algorithm takes a MAPF problem P and the dimension
dx×dy of desired subproblems as inputs, and produces the solution if it could find one. Line 1 divides the
given problem P into smaller subproblems: P1, . . . ,Pn, and provides the Links information telling which
pairs of areas within the subproblems are connected (i.e., there exists some border between them). This
step will be explained in Section 3.1. The problem can also be divided by hand as DMAPF does not
put restrictions on how the subproblems have to be divided, i.e., they do not have to be rectangles of
dimension dx× dy. Lines 2-4 create solvers s1, . . . ,sn as ROS nodes with the divided subproblem Pi

as their input. How the solvers work together, which is the core of the algorithm, will be explained
in Section 3.2. Solver s1 has an extra responsibility, besides solving its own subproblem, to aggregate
partial plans from all the solvers and create the solution as an output. Therefore, line 5 waits for s1 to
finish its own task of solving P1, combine partial plans from all the solvers, and produce the solution at
line 6.

Figure 1 depicts an overview of a DMAPF system. In there, the problem has been divided into sub-
problems P1,P2, . . . ,Pn and each of them is an input to solvers s1,s2, . . . ,sn, respectively. All solvers have
Links information telling which pairs of them are connected. They use this information as an abstract
map to find abstract plans (details in Section 3.2.1). All solvers connect to Track topic to synchronize
and exchange information to determine whether they have finished their work, or if not, which of them
still have work to do. Each of them also provides a Migrate service for connected solvers to call if there
is any robot that needs to move between them. Solver s1 provides Aggregate service for the other solvers

3Visit http://wiki.ros.org/Client%20Libraries for a full list of ROS client libraries

http://wiki.ros.org/Client%20Libraries

Poom Pianpak and Tran Cao Son 103

Algorithm 1 DMAPF
Input: P, dx, dy
Output: A solution or none

1: (P = {P1, . . . ,Pn},Links)← Divide(P,dx,dy)
2: for each Pi ∈ P do
3: Create solver si for solving Pi {in parallel}
4: end for
5: Wait for s1
6: return s1.solution

Figure 1: An overview of a DMAPF system.

to submit their plan, which constitutes a part of the solution, then it will combine them to produce the
final solution.

3.1 Problem Division

Figure 2 shows a set of programs used in problem division. The uses of these programs are controlled
by a C++ implementation. First, given a MAPF problem P, as generated by the ASPRILO project [6],
and the dimension dx× dy of desired subproblems, program base is called to determine the following
atoms:

• d(D,(X ,Y)) – direction (X ,Y) that a robot can move in each time step. D is a number representing
the direction, which will be later used in movement planning (Section 3.2.4). In our setting, the
robots can move one node at a time to either left, right, up, or down, which correspond to (−1,0),
(1,0), (0,−1), or (0,1), respectively.

• goal(R,N) – robot R has its goal at node N. To restrict each robot to have at most one distinct goal,
we assume that there is at most one order per robot, where the order is to pick a distinct product P
on a distinct shelf S, which is at node N at coordinate C.

Subproblems are determined in an iterative manner. Suppose xmin, xmax, ymin, and ymax are the
left, right, top, and bottom-most points of a given problem P, there would be a total of d xmax−xmin+1

dx e ·
d ymax−ymin+1

dy e subproblems (if the map is rectangular). The map of the top-left subproblem would be
bounded within the range of x = [xmin, xmin + dx) and y = [ymin, ymin + dy). The boundaries of the
other subproblems can be determined by adjusting xmin, xmax (resp. ymin, ymax) by dx (resp. dy). Program

104 DMAPF: A Decentralized and Distributed Solver for MAPF Problem with Obstacles

#program base.
d(0,(-1,0)). d(1,(1,0)). d(2,(0,-1)). d(3,(0,1)).
goal(R,N) :- init(object(order,R),value(line,(P,_))),

init(object(product,P),value(on,(S,_))),
init(object(shelf,S),value(at,C)),
init(object(node,N),value(at,C)).

#program divide(s, x_min, x_max, y_min, y_max).
node(s,N,(X,Y)) :- init(object(node,N),value(at,(X,Y))),

X >= x_min, X < x_max, Y >= y_min, Y < y_max.
robot(s,R,N) :- init(object(robot,R),value(at,C)), node(s,N,C).
edge(s,N1,N2) :- node(s,N1,(X,Y)), node(s,N2,(X+DX,Y+DY)), d(_,(DX,DY)).
edge(s,N,N) :- node(s,N,_).
border(s,N) :- node(s,N,(x_min,Y)). border(s,N) :- node(s,N,(x_max-1,Y)).
border(s,N) :- node(s,N,(X,y_min)). border(s,N) :- node(s,N,(X,y_max-1)).

#program link.
link(S1,S2,N1,N2) :- border(S1,N1), border(S2,N2), node(S1,N1,(X,Y)),

node(S2,N2,(X+DX,Y+DY)), S1 != S2, d(_,(DX,DY)).

#program result.
i(N,C) :- node(S,N,C), area(S,A,N).
o(N2,C) :- link(S1,S2,N1,N2), area(S1,A,N1), node(S2,N2,C).
x(N1,N2,D) :- area(S,A,N1), area(S,A,N2), node(S,N1,(X1,Y1)),

node(S,N2,(X2,Y2)), d(D,(X2-X1,Y2-Y1)).
x(N2,N1,D) :- link(S1,S2,N1,N2), area(S1,A,N1), node(S1,N1,(X1,Y1)),

node(S2,N2,(X2,Y2)), d(D,(X1-X2,Y1-Y2)).
l(N1,C1,N2,C2) :- link(S1,S2,N1,N2), area(S1,A1,N1), node(S1,N1,C1),

area(S2,A2,N2), node(S2,N2,C2).
l(A1,A2) :- link(S1,S2,N1,N2), area(S1,A1,N1), area(S2,A2,N2).

Figure 2: The collection of programs used for problem division.

Poom Pianpak and Tran Cao Son 105

divide is repeatedly called (with external atoms which we omit) to determine the information pertaining
to each subproblem S as follows:

• node(S,N,C) – node N is in subproblem S at coordinate C.

• robot(S,R,N) – robot R starts at node N which is in subproblem S.

• edge(S,N1,N2) – nodes N1 and N2 are next to each other in subproblem S.

• border(S,N) – node N is a border in subproblem S.

Program link is then called after all the subproblems have been created from the calls to program
divide. It determines the following atom:

• link(S1,S2,N1,N2) – node N1 in subproblem S1 is next to node N2 in subproblem S2. Solvers of S1
and S2 are considered to be neighbors if there is a link between them.

Atoms edge/3 acquired from the calls to program divide are used to determined areas within each
subproblem. An area is a region where the nodes inside are all connected. Atoms area(S,A,N) are added
to denote that node N is a part of area A which is in subproblem S. Then, program result is repeatedly
called (with external atoms which we omit) to determine a set of information pertaining to each area A
as follows:

• i(N,C) – node N at coordinate C is in area A.

• o(N,C) – node N at coordinate C is right outside of area A (only one direction away).

• x(N1,N2,D) – node N1 is next to node N2, and they are in area A. N1 can be a node in either i/2 or
o/2, but N2 can only be a node in i/2.

• l(N1,C1,N2,C2) – node N1 at coordinate C1 in area A is next to node N2 at coordinate C2 in another
area.

Each subproblem Pi consists of information about its areas, which includes the atoms acquired from
the call to program result. Besides the atoms, a subproblem also contains auxiliary information such
as the number of nodes in different areas (within the subproblem), a list of its neighboring areas (and
their solvers), and a list of nodes that are corners (i.e., a node that connects to multiple areas) and the
areas which they connect to. A set of atoms l(A1,A2), which denotes that areas A1 and A2 are connected,
is the content of Links (in figure 1) which is an input to every solver.

3.2 Problem Solving

After a MAPF problem P has been divided into subproblems P1,P2, . . . ,Pn as explained in Section 3.1,
a solver si is created for each subproblem Pi. The solvers s1,s2, . . . ,sn execute algorithm 2 in parallel to
solve their own subproblem Pi, and at the end s1 will combine their partial plans to produce the solution
of the original problem P. The algorithm requires a few explanations as follows:

1. The lines where the first word is underlined denote that they involve communication with other
solvers. Lines 9 and 30 publish a message to the Track topic. Lines 15, 17, and 20 send a migration
request to the Migrate service of the solver that contains area a, for each a ∈ Send. Lines 16, 18,
and 21 wait to receive a number of Migrate service calls according to the number of areas in Recv.

106 DMAPF: A Decentralized and Distributed Solver for MAPF Problem with Obstacles

2. The global variables: Active, Send, and Recv (defined at line 1), are determined from the commu-
nication between solvers. Active keeps track of solvers that still have work to do, i.e., there is a
movement plan to be made or there exists a robot that needs to migrate; and has the same content
across all the solvers. Send (resp. Recv) stores areas that si needs to send (resp. receive) migration
requests to (resp. from). The contents of the variables are determined at lines 9 and 30 by hav-
ing each solver publishes whether it still has any robot that has not reached its goal (determines
Active), and if so, which area they would need to leave and enter if the current area does not have
their goal (determines Send and Recv). Every solver (and area) can be uniquely identified by a
number (i.e., an ID). A solver (resp. area) with an ID i is denoted as si (resp. ai). For every pair of
solvers si and s j, if i < j, then all areas in si also have smaller IDs than those in s j. When a solver
si wants to send a service request to another solver s j, it can only do so if i < j – this does not mean
that s j cannot send information to si, as it can do so in the response message – RPC style. This
design ensures that there is only one direction of service calls between each pair of neighboring
solvers, thus reducing the overhead in communication by half.

3. Function A (defined at line 2) maps a round (denoted as a number starting from 0) to a set of
area instances. An area instance (or instance, for short) consists of necessary information about
everything in the area such as nodes, corners, border assignment constraints, current robots (R),
outgoing robots (Ri), incoming robots (Ro), and a movement plan. An instance can be constructed
either from either (i) an area, as obtained after the problem division (line 4 and 10); or (ii) another
instance (lines 22 and 31). When an instance α2 is constructed from another instance α1, the
information about the robots in α2 is determined from α1 as α2.R = (α1.R \α1.Ro)∪α1.Ri. The
other information is straightforward to determine, so we omit the details. Lines 10 deals with the
case where an instance α for area a has not been constructed (because area a contains no robot),
but there are some robot in another area that wants to migrate to a – so α needs to be constructed.
Line 31 deals with the case where an instance α2 needs to be constructed based on another instance
α1 of the same area a in the most recent previous round; the problem is, α1 may not have been
constructed at all. If such case happens, α2 would be constructed from area a.

The algorithm revolves around the notions of (i) abstract planning (line 6); (ii) migration; and
(iii) movement planning (line 19). The migration process is divided into three steps: (i) negotiation
(lines 15-16); (ii) rejection (lines 17-18); and (iii) confirmation (lines 20-21). The details of each notion
will be explained sequentially – as how the algorithm works – in the following subsections.

3.2.1 Abstract Planning

An abstract plan is a sequence of connected areas that takes a robot from its initial area to reach the
area that contains its goal. The program shown in figure 3 is used to make an abstract plan for a robot
r. r(A, I) denotes that r is in area A at round I; and g(A) denotes that the goal of r is in area A. Program
abstract(i) is solved sequentially from i = 0, . . . ,ha or until an answer set if found. If no answer set is
found after i = ha, then we consider there is no way for r to reach its goal, and the algorithm terminates.
ha is set to be the total number of areas across all the subproblems, so an abstract plan has to exist if it is
possible for a robot to reach its goal (without considering the other robots).

3.2.2 Negotiation

Negotiation is the first phase of the migration process. Its purpose is to find a set of distinct border
assignments for migrating robots. The program shown in figure 4 is used to make such assignments. It

Poom Pianpak and Tran Cao Son 107

Algorithm 2 Solve
Input: Pi, Links
Output: A solution or none
Parameters: si – a number denoting this solver

1: global Active = Send = Recv = {}
2: A = {}
3: for each area a in Pi that exists a robot do
4: A = A∪{(0,α)} where an instance α is constructed from a
5: for each robot r in α do
6: Create an abstract plan for r using Links as an abstract map
7: end for
8: end for
9: Determine Active, Send, and Recv from A(0) of all the solvers

10: A = A∪{(0,α)} where an instance α is constructed from an area a (resp. b) that will be sending
(resp. receiving) a request to (resp. from) the solver of area c ∈ Send (resp. d ∈ Recv) – where such
an instance has not been created

11:

12: i = 0
13: while true do
14: if si ∈ Active then
15: Send a negotiation request to the solver of area a for each a ∈ Send
16: Wait until |Recv| negotiation requests have been received
17: Send a rejection request to the solver of area a for each a ∈ Send
18: Wait until |Recv| rejection requests have been received
19: Make a movement plan for each instance in A(i)
20: Send a confirmation request to the solver of area a for each a ∈ Send
21: Wait until |Recv| confirmation requests have been received
22: A = A∪{(i+ 1,αi+1)} where an instance αi+1 is constructed from αi ∈ A(i) if there exists a

robot in αi that still needs to move
23: else
24: Wait for active solvers to finish their work
25: end if
26:

27: if Active = /0 then
28: return solution← aggregated partial plans from all the solvers
29: else
30: Determine Active, Send, and Recv from A(i+1) of all the solvers
31: A = A∪{(i+ 1,αi+1)} where an instance αi+1 is constructed from an instance α j of area a

(resp. β j of area b) for the most recent round j where α j (resp. β j) ∈ A(j), and a (resp. b)
will be sending (resp. receiving) a request to (resp. from) the solver of area c ∈ Send (resp.
d ∈ Recv) – where such an instance (i.e., αi+1) has not been created; if such j does not exist,
then αi+1 is constructed from a (resp. b)

32: i = i+1
33: end if
34: end while

108 DMAPF: A Decentralized and Distributed Solver for MAPF Problem with Obstacles

#program abstract(i).
#external q(i).
1 { r(A2,i) : l(A1,A2) } 1 :- r(A1,i-1).
:- q(i), not r(A,i), g(A).
#show r/2.

Figure 3: The program to make an abstract plan for a single robot.

is designed to minimize makespan – the time step that all robots reach their goal. When a solver s1 of an
area a1 sends a negotiation request to a neighboring solver s2 of an area a2, the message contains a set of
robots that want to migrate, called a1.Rm, with their current location, grouped and ordered by the number
of steps left in their abstract plan to reach the last area (longest first); the result of the grouping will be
referred to as tier After s2 receives the request from s1, it merges a1.Rm with a2.Rm and orders them by
tier from high to low; the result of the merging will be referred to as Rm. It then computes two variables:
the number of incoming (resp. outgoing) borders available, nai (resp. nao). Let nl , nbi, and nbo denote the
number of pairs of connected borders between a1 and a2, the number of incoming borders that have been
blocked, and the number of outgoing borders that have been blocked, respectively, then nai = nl − nbi,
and nao = nl − nbo. Then, s2 goes through Rm tier-by-tier. In each tier, if the robots are in a2, then they
are used to create either atoms a/2 or b/2; otherwise, they are used to create either atoms c/2 or d/2.
Atoms a/2, b/2, c/2, and d/2 in program migrate denote the current location of a robot. Whether to
encode the robots in a/2 (resp. c/2) or b/2 (resp. d/2) depends on the current number of robots that
have been assigned out (resp. in), which we will refer to as no (resp. ni). If the number of robots in
the tier is less than or equal to no (resp. ni), then they are used to create a/2 (resp. c/2); otherwise,
they are used to create b/2 (resp. d/2). After the robots in the considering tier have been used to create
the atoms, then the value of either no or ni is increased by the number of robots added accordingly, and
the tier is removed from Rm. s2 will stop going though Rm when either (i) Rm = /0; or (ii) no ≥ nao and
ni ≥ nai. The atom l(L) in program migrate denotes the limit – the number of robots expected to get the
border assigned. L could be calculated as min(min(ni,nai)+min(no,nao),max(nai,nao)). A collection
of atoms m(R,N1,N2,D), where it denotes that robot R can migrate from border N1 in its current area to
border N2 in another area and the distance from its current node to N1 is D, is obtained from program
migrate. Each atom m/4 is checked whether R is in area a1 or a2. N1 if R ∈ a2 (resp. N2 if R ∈ a1) is
checked whether it is a corner node (i.e., a node that connects to more than two areas); if so, a constraint
:- m(_,N1,_,_). (resp. :- m(_,_,N2,_).) will be added, and the value of nbo (resp. nbi) is increased
by one. These constraints prevent s2 from making border assignments for the next negotiation requests
(within the same round) that would result in conflict at the corners. Finally, s2 remembers the resulting
border assignments and also send them to the caller, s1.

3.2.3 Rejection

Rejection is the second phase of the migration process. Its purpose is to prevent collision at corners that
reside between areas with lower and higher IDs. Suppose there are three solvers: s1, s2, and s3, which
contain areas a1, a2, and a3, respectively; two connected pairs of the areas: (1) a1 and a2, and (2) a2 and
a3; and a corner c in a2 that connects to both a1 and a3. In the negotiation phase, if there are robots from
a1 and a3 that want to migrate to a2, there would be requests from s1 to s2, and from s2 to s3. s2 (resp. s3)
will take care of border assignment between a1 and a2 (resp. a2 and a3). This could result in a collision

Poom Pianpak and Tran Cao Son 109

#program migrate.
1 { m(R,N2,N3,|X1-X2|+|Y1-Y2|) : l(N2,(X2,Y2),N3,C3) } 1 :- a(R,(X1,Y1)).
0 { m(R,N2,N3,|X1-X2|+|Y1-Y2|) : l(N2,(X2,Y2),N3,C3) } 1 :- b(R,(X1,Y1)).
1 { m(R,N2,N3,|X1-X2|+|Y1-Y2|) : l(N3,C3,N2,(X2,Y2)) } 1 :- c(R,(X1,Y1)).
0 { m(R,N2,N3,|X1-X2|+|Y1-Y2|) : l(N3,C3,N2,(X2,Y2)) } 1 :- d(R,(X1,Y1)).
:- m(R1,N,_,_), m(R2,N,_,_), R1!=R2.
:- m(R1,_,N,_), m(R2,_,N,_), R1!=R2.
:- m(_,N1,N2,_), m(_,N2,N1,_).
:- C = #count { R : m(R,_,_,_) }, C!=L, l(L).
d(S) :- S = #sum { D : m(_,_,_,D) }.
#minimize { S : d(S) }.
#show m/4.

Figure 4: The program to make border assignments for multiple robots.

at c because s3 would not know which borders s2 has assigned for the robots in a1 to come into a2 – the
corner c could be among them. The collision will happen if s3 also assigns a robot in a3 to come into a2
at c. In the rejection phase, every active solver checks for this case and report to the neighboring solvers
their robots that will cause the collision. The reported solvers will keep the robots in their area for the
current round and attempt to migrate them again in the next round, while the reporting solvers will treat
them as not coming in (in this round).

3.2.4 Movement Planning

A movement plan is a sequence of movements for robots to reach their goal without collision. The
program shown in figure 5 is used by every active solver to make a movement plan for its area that exists
some robot that has not reached its goal or assigned border yet. It is similar to the encoding used by the
ASPRILO project [6], except that it has the following constraints:

• :- r(R,N,0), o(N,_), not m(R,_,_,1), q(t). – forces incoming robots to move into the
area at the first time step (t = 1).

• :- q(t), g(t), r(R,N,t), c(N), not g(R,N). – prohibits robots to stay at any node that
will be migrated into unless it is their goal.

The second constraint helps to increase the success rate of DMAPF, but it could make movement
planning unsuccessful unless there is sufficient free spaces in the area to enforce it. Therefore, we only
add atoms c(N) when (na−nr−ni)≥ n f , where, for an area a; na, nm, ni, and n f denote the number of
nodes; the number of robots currently in it; the number of robots assigned to come in; and the minimum
number of free nodes required, set by the user (currently n f = 4), respectively. Most of the atoms come
directly from Pi, except:

• r(R,N,T) – robot R is at node N at time step T . An atom r(R,N0,0) needs to be added for each
robot R in the area to denote its starting node N0.

• c(N) – denotes that there will be a robot migrating into node N in the next round. The set of such
nodes is determined from the result of the negotiation and the rejection phases.

110 DMAPF: A Decentralized and Distributed Solver for MAPF Problem with Obstacles

#program movement(t).
#external q(t).
{ m(R,D,N2,t) : x(N1,N2,D) } :- r(R,N1,t-1).
:- m(R,D1,_,t), m(R,D2,_,t), D1 != D2.
:- r(R,N,0), o(N,_), not m(R,_,_,1), q(t).
r(R,N2,t) :- r(R,N1,t-1), m(R,D,N2,t), x(N1,N2,D).
r(R,N,t) :- r(R,N,t-1), not m(R,_,_,t).
w(N1,N2,t) :- r(R,N1,t-1), m(R,D,N2,t), x(N1,N2,D).
:- w(N1,N2,t), w(N2,N1,t).
:- { r(_,N,t) } > 1, i(N,_).
g(t) :- r(R,N,t) : g(R,N).
:- q(t), not g(t).
:- q(t), g(t), r(R,N,t), c(N), not g(R,N).
#show m/4.

Figure 5: The program to make a movement plan for multiple robots.

Program movement(t) is solved sequentially from i = 0, . . . ,hm or until an answer set is found. hm

is set to (
√

na + 1) · 2.0 ·F , where na is the number of nodes in area a, and F is a sensitivity constant
set by the user (currently F = 2). The lower the value of F is, the less chance that a movement plan
will be found, but it could terminate earlier if there is actually no plan, and vice versa. If no answer
set is found after i = hm, then we consider it to be impossible to make a movement plan for the given
configuration, and DMAPF will try to relax the configuration by removing the goal of a migrating robot
one at a time, ordered by the Manhattan distance of the robot to its assigned border (longest first), and
restarts the call to the program from t = 0. DMAPF terminates (and returns no solution) if it cannot relax
the configuration any further.

3.2.5 Confirmation

Confirmation is the third, and the last phase of the migration process. After every active solver has
finished movement planning, it will send the information of all the robots that are actually able to move
out to the next area, in the neighboring solver, accordingly. The information of the robots remains
mostly the same, except that their abstract plan will be shorten by one step because the current area will
be removed as they have already been able to move out, and their current location is updated to the border
node that they will be migrating from.

4 Experiment

Table 1 provides comparison between three MAPF solvers: (i) DMAPF; (ii) ros-dmapf [10]; and (iii)
ECBS4 [2] – a relaxed version of CBS [12] where the solution quality is bounded-suboptimal instead of
optimal. We also tried asprilo [6] – an ASP encoding that solves MAPF problems optimally – but it
cannot solve any of the problem instances within the timeout, so it has been excluded from the table.
There are 15 problem configurations according to each row. Their map size is denoted in the first column
(from the left). Each configuration contains a different number of robots according to the second column

4https://github.com/whoenig/libMultiRobotPlanning

https://github.com/whoenig/libMultiRobotPlanning

Poom Pianpak and Tran Cao Son 111

Map nR
DMAPF ros-dmapf ECBS

Time Span Moves Time Span Moves Time Span Moves

24
x

24

23 2.5 41 443 1.6 46 419 0.1 38 412
46 2.6 44 960 1.8 58 884 0.1 39 797
69 2.8 51 1432 2.0 69 1278 0.7 40 1132
92 3.6 57 2119 2.2 80 1883 1.4 40 1574
120 3.9 61 2751 2.5 82 2595 2.5 39 1973

48
x

48

92 6.8 104 2890 3.8 118 2768 2.2 76 2651
184 9.8 117 6815 4.9 137 6625 11.8 81 5929
276 10.4 128 11683 7.7 187 11223 87.7 87 9387
368 13.2 124 16090 8.3 187 15858 191.7 86 12481
460 15.6 125 20920 11.0 210 20428 - - -

96
x

96

369 31.8 225 25041 30.0 242 24513 - - -
737 41.7 240 52916 - - - - - -
1106 61.8 280 88943 - - - - - -
1474 83.2 282 124374 - - - - - -
1843 175.4 282 165573 - - - - - -

Table 1: Comparison between DMAPF, ros-dmapf, and ECBS. The timeout is 180 seconds.

(nR), and each robot is randomly assigned a different goal location. The problem instances do not include
obstacles because we would be unable to compare with ros-dmapf since it does not support having
obstacles. The last three main columns contain results from the three solvers, which are Time – the
solving time in seconds; Span – makespan of the solution; and Moves – the total number of moves from
all the robots. The size of subproblems for both DMAPF and ros-dmapf is set to 8x8. The suboptimality
bound for ECBS is set to 1.2. The tests were performed on Ubuntu 20.04 with Clingo 5.5.0, running on
a Dell Precision-3630 Tower with Intel i9-9900K CPU and 64 GB of RAM.

5 Conclusion and Discussion

The experiment in Section 4 shows that, while ECBS performs very fast on the small problem instances,
its performance becomes noticeably worse in a 48x48 map with 276 robots, and is unable to find the
solution within the timeout in the bigger problems. ros-dmapf is generally slightly faster than DMAPF,
but it is due to its simpler solver interaction protocol. It is unable to scale further when the maps get
denser – in terms of the ratio between the number of robots to the number of borders within an area.
When this ratio increases, there is more chance for border assignments that will result in no movement
plan to be selected. Since ros-dmapf randomly assigns borders to migrating robots and cannot change
the assignment afterwards, it has difficulties to scale further. The resulting makespan of DMAPF is
consistent, and better than ros-dmapf due to the better border assignment mechanism, but it comes with
a slight increase in the number of moves. The solution quality of ECBS is still better than the other
two solvers due to its centralized nature, but not by much in many cases. We believe DMAPF can scale
further given a better hardware and/or the use of clusters. To scale DMAPF even further, the question
whether it is feasible to also backtrack when movement planning fails even after all the relaxation should
be addressed. Mechanisms that can balance the density of robots across the areas may also be helpful.

112 DMAPF: A Decentralized and Distributed Solver for MAPF Problem with Obstacles

References
[1] Benjamin Andres, David Rajaratnam, Orkunt Sabuncu & Torsten Schaub (2015): Integrating ASP into ROS

for Reasoning in Robots. In: Proceedings of the 13th International Conference on Logic Programming and
Nonmonotonic Reasoning, 9345, Springer, Lexington, Kentucky, pp. 69–82, doi:10.1007/978-3-319-23264-
5_7.

[2] Max Barer, Guni Sharon, Roni Stern & Ariel Felner (2014): Suboptimal Variants of the Conflict-Based Search
Algorithm for the Multi-Agent Pathfinding Problem. In: Seventh Annual Symposium on Combinatorial
Search, doi:10.3233/978-1-61499-419-0-961.

[3] Simona Citrigno, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Christoph Koch, Nicola Leone, Cristinel
Mateis, Gerald Pfeifer & Francesco Scarcello (1997): The dlv System: Model Generator and Application
Frontends. In: Proceedings of the 12th Workshop on Logic Programming, 128137, pp. 128–137. Available
at https://www.wfaber.com/research/papers/wlp97.pdf.

[4] Martin Gebser, Roland Kaminski, Benjamin Kaufmann & Torsten Schaub (2014): Clingo = ASP + Con-
trol: Preliminary Report. In: Technical Communications of the 13th International Conference on Logic
Programming, 14(4-5). Available at https://arxiv.org/abs/1405.3694.

[5] Martin Gebser, Benjamin Kaufmann, André Neumann & Torsten Schaub (2007): clasp : A Conflict-Driven
Answer Set Solver. In: Proceedings of the 9th International Conference on Logic Programming and Non-
monotonic Reasoning, 4483, Springer, Tempe, Arizona, pp. 260–265, doi:10.1007/978-3-540-72200-7_23.

[6] Martin Gebser, Philipp Obermeier, Thomas Otto, Schaub Torsten, Orkunt Sabuncu, Van Nguyen & Tran Cao
Son (2018): Experimenting with robotic intra-logistics domains. Theory and Practice of Logic Programming
18(3-4), pp. 502–519, doi:10.1017/S1471068418000200.

[7] Michael Gelfond & Vladimir Lifschitz (1990): Logic Programs with Classical Negation. In: Logic Pro-
gramming, Proceedings of the Seventh International Conference, MIT Press, Jerusalem, Israel, pp. 579–597.
Available at https://dl.acm.org/doi/10.5555/87961.88030.

[8] Victor W. Marek & Miroslaw Truszczynski (1999): Stable Models and an Alternative Logic Program-
ming Paradigm. In: The Logic Programming Paradigm - A 25-Year Perspective, Springer, pp. 375–398,
doi:10.1007/978-3-642-60085-2_17.

[9] Ilkka Niemelä (1999): Logic Programs with Stable Model Semantics as a Constraint Pro-
gramming Paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), pp. 241–273,
doi:10.1023/A:1018930122475.

[10] Poom Pianpak, Tran Cao Son, Z O Toups & William Yeoh (2019): A Distributed Solver for Multi-Agent Path
Finding Problems. In: Proceedings of the First International Conference on Distributed Artificial Intelligence,
pp. 1–7, doi:10.1145/3356464.3357702.

[11] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler &
Andrew Y. Ng (2009): ROS: an open-source Robot Operating System. In: ICRA workshop on open
source software, 3, Kobe, Japan, p. 5. Available at http://www.cim.mcgill.ca/~dudek/417/Papers/
quigley-icra2009-ros.pdf.

[12] Guni Sharon, Roni Stern, Ariel Felner & Nathan R. Sturtevant (2015): Conflict-based search for optimal
multi-agent pathfinding. Artificial Intelligence 219, pp. 40–66, doi:10.1016/j.artint.2014.11.006.

[13] David Silver (2005): Cooperative Pathfinding. In: Proceedings of the 1st Artificial Intelligence and
Interactive Digital Entertainment Conference, 1, Marina Del Rey, pp. 117–122. Available at https:
//www.aaai.org/Library/AIIDE/2005/aiide05-020.php.

http://dx.doi.org/10.1007/978-3-319-23264-5_7
http://dx.doi.org/10.1007/978-3-319-23264-5_7
http://dx.doi.org/10.3233/978-1-61499-419-0-961
https://www.wfaber.com/research/papers/wlp97.pdf
https://arxiv.org/abs/1405.3694
http://dx.doi.org/10.1007/978-3-540-72200-7_23
http://dx.doi.org/10.1017/S1471068418000200
https://dl.acm.org/doi/10.5555/87961.88030
http://dx.doi.org/10.1007/978-3-642-60085-2_17
http://dx.doi.org/10.1023/A:1018930122475
http://dx.doi.org/10.1145/3356464.3357702
http://www.cim.mcgill.ca/~dudek/417/Papers/quigley-icra2009-ros.pdf
http://www.cim.mcgill.ca/~dudek/417/Papers/quigley-icra2009-ros.pdf
http://dx.doi.org/10.1016/j.artint.2014.11.006
https://www.aaai.org/Library/AIIDE/2005/aiide05-020.php
https://www.aaai.org/Library/AIIDE/2005/aiide05-020.php

	1 Introduction
	2 Background
	2.1 Multi-Agent Path Finding Problem
	2.2 Answer Set Programming
	2.3 Robot Operating System

	3 Methodology
	3.1 Problem Division
	3.2 Problem Solving
	3.2.1 Abstract Planning
	3.2.2 Negotiation
	3.2.3 Rejection
	3.2.4 Movement Planning
	3.2.5 Confirmation

	4 Experiment
	5 Conclusion and Discussion

