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Abstract: Roll-to-Roll (R2R) mechanical peeling for dry transfer has the potential to enable high 
throughput production of 2D materials and flexible electronics, while minimizing the environmental 
impact. The dry transfer process is highly nonlinear, involving challenging peeling front dynamics. In this 
study, a novel convexification scheme is developed based on polytopic linear differential inclusions 
(PLDI). An LQR controller is used to establish that the performance of a linear approximation built using 
this PLDI-based method is consistently superior to that of a Taylor’s expansion-based approximation, 
demonstrating that the PLDI-based scheme is an effective control tool for complex systems, including the 
R2R mechanical peeling process. 
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1. INTRODUCTION 

In the realm of flexible electronics, transfer printing is a class 
of methods that retrieve printed electronic features from a 
printed substrate and move them to a target substrate to build 
more advanced flexible electronic devices (Linghu et al., 
2018). Improving this transfer process is critical to the 
development of multi-layered microelectronic devices (Zhou 
et al., 2019). Until now, research has focused on device 
printing rather than transferring (Khan et al., 2020). For 2D 
materials such as electronic-grade graphene, the typical 
manufacturing process involves growing these materials on a 
substrate and then dissolving that substrate in acid. This 
dissolution process causes environmental concerns and the 
loss of the substrate material. To address these issues, Sun et 
al. (2016), proposed a method where an electrochemical 
bubbling method was used to separate the 2D material from 
the growth substrate; however, the energy release by bubble 
collapse could damage the transferred material. As an 
alternative, a roll-to-roll (R2R) dry transfer process was 
developed by Xin et al. (2018). The process has the potential 
to minimize chemical waste and other adverse environmental 
effects. Most importantly, it can be used to significantly 
increase the throughput of 2D materials manufacturing. 

The R2R dry transfer process involves mechanical peeling of 
printed patterns or thin films, such as graphene made using 
chemical vapor deposition (CVD), from a substrate and 
depositing it onto another in a continuous manner. Controlling 
the web tension has been identified as one of the critical 
objectives of the peeling process (Zhao et al., 2020). Previous 
work has demonstrated that R2R mechanical peeling is a 
viable method for high-throughput production of CVD 
graphene. However, the process precision needs to further 
improve to produce microelectronic-grade graphene for device 
fabrication. In addition to graphene, the R2R dry transfer 
process has the potential to enable high-throughput production 
of sophisticated flexible electronic devices through transfer 

printing. Currently, there does not exist a R2R transfer process 
for printed micro-electronic devices. 

Controlling such a R2R mechanical peeling process is 
challenging since the process is highly nonlinear due to 
variations in the adhesion energy between the material-to-
transfer and the substrate, the viscoelastic nature of the flexible 
substrates, and the fact that the web tension and speed control 
are coupled. Researchers have used nonlinear optimization 
techniques to control the tension and speed of R2R processes, 
but none of them involved mechanical peeling (Jabbar and 
Pagilla, 2016; Chen et al., 2018). Zhao, et al., (2020) 
developed a linear model of the R2R peeling front by assuming 
that the peeling front velocity was constant. A nonlinear model 
was subsequently developed to account for the varying peeling 
front velocity (Zhao, et al., 2021) and is adapted in this work 
to develop a polytopic linear differential inclusion (PLDI)-
based convexification strategy for the R2R peeling process. 

Previously, PLDI methods have been used for robust control 
design by constraining the worst-case error of a linearized 
system such that the developed controller can achieve 
guaranteed stability or optimality properties (Olalla et al., 
2009; Tanaka, 1996). This paper takes a new and further step 
by exploring the use of terms produced by the PLDI method 
for system convexification, such that a more accurate linear 
representation can be obtained. Rodrigues et al. (2011) and 
Kuiava et al. (2012) used a similar PLDI-based 
convexification method, but their method is only valid for 
control-affine systems and cannot be applied to the R2R 
peeling process. The PLDI-based convexification strategy 
developed in this paper is valid for all nonlinear systems and 
can be applied to the R2R peeling process. The convexification 
approach used in this paper is chosen instead of other 
convexification methods, such as the Koopman operator 
method (Mezić, 2015; Korda and Mezić, 2018), because the 
PLDI-based method is reversible, meaning one can maintain a 
connection between the linear approximation and the 



 
 

     

 

nonlinear terms of the system model to facilitate control design 
and enable a tradeoff analysis between process development 
and control optimization. In contrast, the Koopman operator 
lifts the nonlinear system into a high dimensional space in such 
a way that the link to the variables in the nonlinear space is 
lost. This reversibility property of the PLDI convexification 
method, along with the fact that the  convex matrix set that 
bounds the linear approximation changes with the system state, 
suggest that this convexification strategy could be amenable to 
the control design, for instance, of model predictive control 
(MPC) controllers in future work.  

In this paper, a nonlinear model is presented to describe the 
R2R peeling process. A PLDI-based scheme is used to perform 
the convexification, based on which an LQR control problem 
is formulated. This control method is then applied to the 
nonlinear peeling system, and the overall system performance 
is contrasted with that of a conventional method using 
averaged Taylor approximation. It is shown that the proposed 
PLDI-based convexification method is far superior to classical 
methods in linear approximations. 

2. THE NONLINEAR R2R PEELING SYSTEM MODEL 

Figure 1 shows a schematic of the R2R process (Zhao, et al, 
2021). The unwinding roller supplies a laminated roll of donor 
and receiver substrates, and a pair of nipping rollers are used 
to peel the laminate. After peeling, the two rewinding rollers 
collect the two substrates. The peeling front is shown in Fig. 
2. Roller 1 is the unwinding roller and rollers 2 and 3 are the 
rewinding rollers. v1, v2, and v3 represent the linear velocities 
of the web on the three rollers. D1, D2, and D3 represent the 
distance along the web from each of the three rollers to the 
nipping rollers. Let C1 be the web section from the unwinding 
roller to the peeling front, while C2 and C3 be the two web 
sections that stretch between the two rewinding rollers and the 
peeling front.   and  represent the strains of three web 
sections. 1 and 2 are the angles between a line extending 
from C1 at the peeling front and C3 and C2, respectively.  and 
 are the angles correspond to the contact sections of C1 and C3 
when they wrap around corresponding nipping rollers. h is the 
distance along C3 from the peeling front to the nipping roller. 
R is the radius of the nipping rollers. 

 

Fig. 1. The R2R peeling process: Overall R2R schematic 
(Zhao, et al, 2021) 

The nonlinear R2R peeling model is summarized as follows 
(Zhao, et al., 2021). First, the relationship between the web 
tensions t1, t2, and t3 and the peeling front geometry can be 
expressed as 

𝑡1 = 𝑡3 cos 𝜃1 + 𝑡2𝑐𝑜𝑠𝜃2                 (1) 

𝑡3𝑠𝑖𝑛𝜃1 = 𝑡2𝑠𝑖𝑛𝜃2.            (2) 

With v1 constant, the time derivatives of v2 and v3 can be 
defined as 

𝑣̇𝑖(𝑡) = −
𝑅𝑖

2

𝐽𝑖
𝑡𝑖(𝑡) +

𝑅𝑖

𝐽𝑖
𝑢𝑖(𝑡) −

𝑓𝑖

𝑅𝑖
𝑣𝑖(𝑡), 𝑖 = 2,3         (3) 

where Ri is the radius, Ji is the moment of inertia, and fi is the 
damping coefficient of the corresponding rewinding roller. 

 

Fig. 2. Peeling Front: A detailed look at the R2R peeling front 
(Zhao, et al, 2021) 

If l1, l2, and l3 are defined as the unstretched lengths of the webs 
corresponding to the three web sections and L1, L2, and L3 are 
the actual length of the web sections, then 

𝑙𝑖(𝑡) =
𝐿𝑖(𝑡)

1+𝜀𝑖(𝑡)
, 𝑖 = 1,2,3            (4) 

𝑙1̇(𝑡) =
𝑣1(𝑡)−𝑣𝑝(𝑡)

1+𝜀1(𝑡)
             (5) 

𝑙2̇(𝑡) =
𝑣𝑝(𝑡)

1+𝜀1(𝑡)
−

𝑣2(𝑡)

1+𝜀2(𝑡)
            (6) 

𝑙3̇(𝑡) =
𝑣𝑝(𝑡)

1+𝜀1(𝑡)
−

𝑣3(𝑡)

1+𝜀3(𝑡)
            (7) 

where vp is the peeling front velocity, defined as the speed of 
separation of the webs as observed from C1. The complex 
plane method can be used to define the following equations. 
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𝑅

𝑐𝑜𝑠(𝜃2 2⁄ )
∙ 𝑒

𝑖∙(
𝜋−𝜃2(𝑡)

2
−𝛽(𝑡))

+ ℎ(𝑡) ∙ 𝑒𝑖∙(𝜃1(𝑡)−𝛽(𝑡)) − 𝑅 ∙

 𝑒𝑖∙(−𝛾(𝑡)) = 2𝑅 ∙ 𝑒𝑖∙
𝜋

2                 (8) 

𝛽(𝑡) − 𝛾(𝑡) +
𝜋

2
= 𝜃1(𝑡)              (9) 

𝐿1(𝑡) − 𝐷1 = 𝑅 ∙ 𝛽(𝑡) + 𝑅 ∙ 𝑡𝑎𝑛 (
𝜃2(𝑡)

2
)        (10) 

𝐿2(𝑡) − 𝐷2 = 𝑅 ∙ {
𝜋

2
− 𝛽(𝑡) − 𝜃2(𝑡) + 𝑡𝑎𝑛 (

𝜃2(𝑡)

2
)}       (11)                  

𝐿3(𝑡) − 𝐷3 = 𝑅 ∙ 𝛾(𝑡) + ℎ(𝑡)               (12) 

Finally, the peeling front velocity, vp, depends on the 
relationship between the mechanical energy release rate, G, 
and the adhesion energy between the laminate and the 
substrate, . G can be found using the following equation, 

𝐺 =  
𝑡3

𝑏
(1 − 𝑐𝑜𝑠𝜃1 + 𝜀3 − 𝜀1) +

𝑡2

𝑏
(1 − 𝑐𝑜𝑠𝜃2 + 𝜀2 − 𝜀1) −

ℎ𝑤3∙𝐸3

2(1+𝜀1)
(𝜀3

2 − 𝜀1
2) −

ℎ𝑤2∙𝐸2

2(1+𝜀1)
(𝜀2

2 − 𝜀1
2)        (13) 

where b is the web width, and hw2 and hw3 are the thicknesses 
of C2 and C3, respectively. When    G, peeling cannot occur, 
so vp = 0. When  = G, peeling occurs, so vp will be a positive 
value. Due to physical constraints, G cannot be greater than .  

Unlike the previous work (Zhao, et al., 2021), where a discrete 
time method is applied to model the system using the 
constraint that   G, a continuous time nonlinear approach is 
employed to represent the system in the following state-space 
form, 

𝑥̇ = 𝑓(𝑥, 𝑢), 𝑥 = [𝑣2, 𝑣3, 𝑡1, 𝑡2, 𝑡3]𝑇 , 𝑢 = [𝑢2, 𝑢3]𝑇       (14) 

where u2 and u3 are torque inputs on the two rewinding rollers. 
This state space form is desirable because it can be readily 
applied to control design. To represent the system in this form, 
one must define vp in a continuous, differentiable fashion, and 
vp must be a function of the system states. A novel approach is 
proposed in this study to represent vp in this manner. 

To approximate vp, a heuristic approach is taken, where the 
discrete time method is used to find vp as a function of G- 
with v2 and v3 held constant, and vp as a function of the average 
of v2 and v3, with G- held constant. According to this 
approximation, vp varies logarithmically with G- and linearly 
with the average of v2 and v3. In addition, at steady-state, when 
G = , 

𝑣𝑝 = 𝑣2 = 𝑣3 = 𝑣1          (15) 

where v1 is the constant unwinding velocity. A piece-wise 
continuous, differentiable function that follows the two 
heuristics and (15) is, 

𝑣𝑝 = {
𝑣2+𝑣3

2
⋅ (1 + 𝑙𝑛(1 + (𝐺 − Γ))) , 𝐺 − Γ > −1

0,    𝐺 − Γ ≤ −1  
       (16) 

where there is a lower saturation limit at zero, as vp cannot be 
negative. 

This functional approximation of vp has all the stated desirable 
properties: it represents vp as a function of state variables, and 
it is continuous and differentiable in the neighbourhood of the 
stable operating point G = . It also aligns well with the trends 
of the discontinuous model. Thus, (16) represents a novel and 
reasonable approximation of vp that characterizes the peeling 
front in a state space form. 

Next, the three tensions as a function of the three unstretched 
lengths can be found using (1), (2), (4), and (8)-(12). It should 
be noted that their relationship cannot be determined 
analytically. To find a solution, an iterative approach was used 
to generate three interpolation maps, one for each tension 
value. These maps were used to estimate the partial derivatives 
of each tension value with respect to each of the three 
unstretched lengths. Using this strategy, the following 
equation defines the tension time derivatives, 

𝑡𝑖̇ =
𝜕𝑡𝑖

𝜕𝑙1
(t) ∙ 𝑙1̇ +

𝜕𝑡𝑖

𝜕𝑙2
(t) ∙ 𝑙2̇ +

𝜕𝑡𝑖

𝜕𝑙3
(t) ∙ 𝑙3̇, 𝑖 = 1, 2, 3        (17) 

where the partial derivatives are defined numerically, as 
described above, and (5)-(7) define the three unstretched 
length derivatives. Thus, (3) and (17) define the state 
derivatives of the R2R system as a function of states and inputs 
to allow the system representation in the form of (14).  

3. THE PLDI-BASED CONVEXIFICATION STRATEGY 

This section presents a novel method to create a linear 
estimation of the system to facilitate control design. A PLDI 
convexification approach similar to the one used in Rodrigues 
et al., (2011) is applied. A nonlinear system in a state space 
form, such as (14), can be transformed into 

𝑓(𝑥, 𝑢) = 𝑓(𝑦) = [𝑓1(𝑦), 𝑓2(𝑦), … , 𝑓𝑛(𝑦)]𝑇        (18) 

where 𝑦 = [𝑥, 𝑢]𝑇, 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚, q = n + m, and 𝑓𝑖: ℝ𝑞 →
ℝ. Using this representation, f(y) can be rewritten as 

𝑓(𝑦) =  ∑ 𝑉𝑛(𝑖)𝑓𝑖(𝑦)𝑛
𝑖=1 , 𝑉𝑛(𝑖) = [0, 0, … , 1𝑖 , … ,0 ]𝑇       (19) 

Next, the mean value theorem for multi-dimensional functions 
states that  

𝐿𝑒𝑡 𝑓(𝑦): ℝ𝑞 → ℝ𝑛; 𝜇, 𝜌 ∈ ℝ𝑞;  ∃ 𝜎1, 𝜎2, … , 𝜎𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 

𝑓(𝜇) − 𝑓(𝜌) = (∑ ∑ 𝑉𝑖𝑗
𝜕𝑓𝑖(𝜎𝑖)

𝜕𝑦𝑗

𝑞
𝑗=1

𝑛
𝑖=1 ) (𝜇 − 𝜌)       (20) 

where 𝑉𝑖𝑗  = 𝑉𝑛(𝑖)𝑉𝑞
𝑇(𝑗), and  𝜎1, 𝜎2, … , 𝜎𝑛 are in the convex 

hull of  and .  

Based on (18)-(20), a PLDI-based convexification strategy is 
proposed as follows. At each equilibrium operating point, the 
following method is used to approximate an upper and lower 
bound of the true state and control matrix Ay. First, define 
vectors 𝜐1, 𝜐1, 𝜐2, 𝜐2, … 𝜐𝑛, 𝜐𝑛 ∈ 𝐶𝑜(𝑦(𝑡), 𝑦̂(𝑡)), where Co() 
denotes the convex hull, such that 

𝜕𝑓𝑖

𝜕𝑦
(𝜐̅𝑖) ∙ (𝑦 − 𝑦̂) = max

𝑦𝑠𝑖

{
𝜕𝑓𝑖

𝜕𝑦
(𝑦𝑠𝑖) ∙ (𝑦 − 𝑦̂)}       (21) 

𝜕𝑓𝑖

𝜕𝑦
(𝜐𝑖) ∙ (𝑦 − 𝑦̂) = min

𝑦𝑠𝑖

{
𝜕𝑓𝑖

𝜕𝑦
(𝑦𝑠𝑖) ∙ (𝑦 − 𝑦̂)}       (22) 



 
 

     

 

can be found, where 𝑦̂(𝑡) is a stable operating point, y(t) is 
some trajectory near, but not the same as, 𝑦̂, and 𝑦𝑠𝑖(𝑡) ∈

𝐶𝑜(𝑦(𝑡), 𝑦̂(𝑡)). Thus, finding the 𝜐𝑖, 𝜐𝑖 values involves 
maximizing and minimizing the function 𝜕𝑓𝑖

𝜕𝑦
(𝑦𝑠𝑖) ∙ (𝑦 − 𝑦̂) 

along the line 𝐶𝑜(𝑦(𝑡), 𝑦̂(𝑡)) in q-dimensional space. This 
optimization problem could be challenging in general, but for 
the function f and the vector 𝑦 = [𝑥, 𝑢]𝑇 defined in (14), the 
function 𝜕𝑓𝑖

𝜕𝑦
(𝑦𝑠𝑖) ∙ (𝑦 − 𝑦̂) is continuous and differentiable, so 

for the application discussed in this paper the optimization 
problems (21) and (22) are straightforward. Once the 𝜐𝑖 , 𝜐𝑖 
values are found, by (20), and observing that 𝑥̇̂ = 0, the state 
derivatives can be bounded in the following manner, 

𝑥̇ ∈ (𝐶𝑜{∑ ∑ 𝑉𝑖𝑗𝛿𝑖𝑗
𝑞
𝑗=1

𝑛
𝑖=1 })(𝑦 − 𝑦̂)         (23) 

where 𝛿𝑖𝑗 ∈ {
𝜕𝑓𝑖

𝜕𝑦𝑗
(𝜐̅𝑖),

𝜕𝑓𝑖

𝜕𝑦𝑗
(𝜐𝑖)}. Using this representation, one 

can define a convex PLDI PLDI, as presented in Boyd et al. 
(1994), whose trajectories contain all possible solutions to 
(23), by the set of vertices, 

𝑉𝑃𝐿𝐷𝐼={∑ ∑ 𝑉𝑖𝑗𝛿𝑖𝑗
𝑞
𝑗=1

𝑛
𝑖=1 ∶  𝛿𝑖𝑗 ∈ {

𝜕𝑓𝑖

𝜕𝑦𝑗
(𝜐̅𝑖),

𝜕𝑓𝑖

𝜕𝑦𝑗
(𝜐𝑖)}}.       (24) 

In the proposed convexification scheme, the scope of possible 
system matrices is further restricted to be within the set 

𝐴𝑃𝐿𝐷𝐼 ∈ {𝐴𝑃𝐿𝐷𝐼
̅̅ ̅̅ ̅̅ ̅ ∙ 𝜆 + 𝐴𝑃𝐿𝐷𝐼 ∙ (1 − 𝜆) ∶  𝜆 ∈ [0,1]}       (25) 

where APLDI is an estimation of the true system matrix Ay,  is 
a weighting factor that represents a tradeoff between the lower 
and upper bounds, and 

𝐴𝑃𝐿𝐷𝐼
̅̅ ̅̅ ̅̅ ̅ = ∑ ∑ 𝑉𝑖𝑗

𝜕𝑓𝑖

𝜕𝑦𝑗
(𝜐𝑖)

𝑞
𝑗=1

𝑛
𝑖=1          (26) 

𝐴𝑃𝐿𝐷𝐼 = ∑ ∑ 𝑉𝑖𝑗
𝜕𝑓𝑖

𝜕𝑦𝑗
(𝜐𝑖)

𝑞
𝑗=1

𝑛
𝑖=1 .         (27) 

Thus, an estimation is made on the true system matrix Ay that 
is a bounded, convex combination of two matrices 
𝐴𝑃𝐿𝐷𝐼
̅̅ ̅̅ ̅̅ ̅,  𝐴𝑃𝐿𝐷𝐼   VPLDI.  

To demonstrate that the proposed PLDI convexification 
scheme can be used for control design and to compare its 
effectiveness to that of Taylor’s expansion, an LQR controller 
was developed. Using (25), a linear representation of the 
system as defined by (14) was developed. Then, using an 
averaged Taylor’s method, another linear representation of the 
same system was developed. The LQR problem was then 
solved using each of these two system matrix approximations 
to obtain KPLDI and KTaylor. The system control law was chosen 
to be 

𝑢 = −𝐾 ∙ 𝑥,           (28) 

where K was KPLDI or KTaylor, and x and u are the same as those 
in (14). For each run, the Q and R matrices were changed in 
the LQR problem to optimize the performance at that specific 
equilibrium operating point 𝑦̂. These two gain matrices were 
used to control the nonlinear model developed in Section 2 to 

follow a reference trajectory that moved in steps around 𝑦̂. The 
KPLDI gain matrix consistently resulted in superior control 
performance to the KTaylor matrix. This convexification and 
control scheme was performed around 5 different stable 
operating points of 𝑦̂.  

4. RESULTS AND DISCUSSION 

4.1 Model Validation 

Experimental data was used to validate the differentiable 
representation of vp developed in this study. The experiments 
were conducted by peeling apart two polyethylene 
terephthalate (PET) films heat sealed together using a hot roll 
laminator. Note that, during the peeling, the t2 reference, t3 
reference, and v1 values were held constant. The experiments 
consisted of six different runs with different combinations of 
constant t2 reference, t3 reference, and v1 values. The average 
1 and 2 values for each of the six runs were measured and  
was determined based on the model.  

Simulations were performed using the model presented in 
Section 2 at the same set points as those in the experiments. 
Table 1 presents the simulation and experimental results. The 
first three columns show the set points for the t2 reference, t3 
reference, and  values that were used in the experiments and 
simulations; the next four columns show the average 1 and 2 
values for the six parallel experiments and simulations, 
respectively; and the final column shows the percent 
difference between these average 1 and 2 results for each 
experiment-simulation pair. In both the experiments and the 
simulations, neither 1 nor 2 was controlled directly, so 
agreement between the 1 and 2 values in the experiments and 
simulations would validate the model. 

Table 1. Steady state model validation 

t2 
Ref. 
(N) 

t3 
Ref. 
(N) 

 Ref. 
(J/m2) 

1 
Exp.  

1  
Sim. 

2  
Exp. 

2  
Sim. 

Absolute 
Diff. (%) 

1 2 

9.9 20.0 149.3 28.8º 28.4º 103.6º 105.3º 1.4 1.6 

10.0 15.7 154.5 40.6º 38.4º 103.5º 101.6º 5.4 1.8 

9.8 20.0 137.4 29.1º 28.6º 96.8º 99.4º 1.7 2.7 

15.5 19.6 172.1 48.2º 48.4º 71.0º 71.3º 0.4 0.4 

15.0 19.8 161.5 45.5º 45.6º 70.2º 70.8º 0.2 0.9 

19.9 20.2 204.6 59.5º 59.8º 61.1º 61.3º 0.5 0.3 

 

Notice that in all cases the absolute percent difference between 
the simulation and experimental average 1 and 2 data is less 
than 6%, and in all cases but one the percent difference is less 
than 3%. This suggests that the model can describe the steady 
state operation of the peeling process with high accuracy. 

The next experimental validation set investigates the system 
transient response under a step tension input. In this 
experiment the t2 and t3 reference values underwent a step 
change from 26.5 N and 27 N, to 28 N and 34 N, and back to 
26.5 N and 27 N, respectively. In addition,  varied from an 
average of 260 J/m2 at the first tension state to an average of 



 
 

     

 

230 J/m2 at the second state, and then back to 260 J/m2. The 
adhesion energy  varies stochastically with time, and this is 
important in the transient case because the variation causes 
dynamics at the peeling front. In contrast to other continuous 
time modelling techniques, the proposed model can represent 
these random peeling front dynamics accurately because it 
represents vp as a function of . 

A simulation was conducted that tracked the same tension 
reference trajectory as the experiment did. To simulate its 
stochastic nature,  was set to follow the same average 
trajectory as in the experimental case, but with added Gaussian 
noise with a variance of 10 (J/m2)2. Figure 3 presents the 
experimental and simulation data. Figure 3(a) shows the 
simulation step response data. Figure 3(b) shows the 
experimental step response data. The figure also shows the 1 
and 2 values from both the simulation (Fig. 3(c)) and the 
experiment (Fig. 3(d)).  Note that both the testing and 
simulated systems tracked the reference tension trajectories 
well, and that the t1 values of the simulation matched those of 
the experiment. In addition, the simulated and experimental 
peeling angles follow the same trajectories, disregarding the 
noise.  

 
Fig. 3. Step-response model validation 

4.2 Simulation Results of Convex PLDI-Based Control  

After validation of the differentiable representation of vp, an 
LQR control framework was used to compare the web tension 
control performance of the proposed convex PLDI-based 
scheme to that of the Taylor’s expansion method. This study 
focuses on web tension control because controlling the web 
tensions is equivalent to controlling the peeling angle, and past 
work has demonstrated that controlling the peeling angle is 
critical to the R2R dry transfer process (Zhao et al., 2020). 

Figure 4 shows the t3 results in one of the five simulated runs, 
each around a different stable operating point. In Fig. 4, the 
graph on the top shows the LQR-controlled system response 
using the convex PLDI-based scheme as defined by (25), while 
the graph at the bottom shows the LQR-controlled system 
response using the Taylor’s expansion scheme. The system t3 
response is in red, while the reference t3 trajectory is in blue. 
The inserts of both graphs show zoomed the part of the run 

with the largest overshoot. The system response shown in Fig. 
4 is similar to that of the other runs.  

Notice that both linear models resulted in control schemes that 
performed well. The settling time was about the same for both 
methods, but the overshoot was much less in the graph 
corresponding to the convex PLDI-based linear model. This 
difference is significant, as overshoot is the critical control 
parameter for the R2R peeling process. Excessive overshoot 
will cause defects in the transfer of graphene or printed 
electronics. Thus, Fig. 4 suggests that the convex PLDI-based 
method can improve the performance of the R2R peeling. 

Table 2 summarizes the tension overshoots for both the PLDI-
based and Taylor-based controls on the five runs around 
different equilibrium points. Each of the four columns under 
the headings “PLDI Average Overshoot” and “Taylor’s 
Approx. Average Overshoot” contain the mean t2 and t3 
overshoots for each of the steps in each of the simulated runs, 
all of which are similar to those that have been shown in Fig. 
4. The tensions under the “PLDI Average Overshoot” heading 
correspond to the runs that were controlled using the convex 
PLDI-based scheme, while the tensions under the “Taylor’s 
Approx. Average Overshoot” heading correspond to the 
Taylor’s approximation-based control. The final two columns 
contain the percent difference between the average t2 and t3 
overshoots, respectively, corresponding to the two methods at 
each operating point. 

 

Fig. 4. Simulated LQR control based on both linear 
approximations 

Table 2. Overshoot Comparison 

Run 
# 

PLDI Average 
Overshoot 

Taylor’s Approx. 
Average Overshoot 

t2 

Percent 
Diff. 
(%) 

t3 
Percent 

Diff. 
(%) t2 (N) t3 (N) t2 (N) t3 (N) 

1 1.90E-3 2.51E-1 8.13E-3 5.13E-1 76.6 51.1 
2 0.00E+0 1.53E-1 0.00E+0 2.66E-1 N/A 42.5 
3 8.72E-1 1.10E+0 9.71E-1 1.21E+0 10.1 8.9 
4 4.20E-1 5.74E-1 8.09E-1 1.27E+0 48.1 54.6 
5 6.41E-1 5.64E-1 7.37E-1 7.81E-1 13.0 27.9 

 



 
 

     

 

The results in Table 2 show that the transient performance of 
the convex PLDI-based scheme outperformed the that of the 
Taylor expansion-based scheme by 10-70% in overshoot. 
These results suggest that the novel convex PLDI-based 
scheme can significantly improve the peeling angle control 
performance of the R2R peeling process. Thus, the PLDI-
based method can be an enabling tool that will allow high 
quality R2R dry transfer of CVD graphene and printed 
electronics. 

5. CONCLUSIONS 

This paper presented a nonlinear, continuous time adaptation 
of a discrete model for a R2R mechanical peeling system and 
developed a methodology for convexifying nonlinear systems 
using a PLDI approach. The continuous time adaptation 
contains a novel way to represent the peeling front velocity as 
a continuous and differentiable function, and this approach 
was experimentally validated. An LQR control platform was 
established to compare the benefits of the proposed convex 
PLDI-based modeling to that of the conventional Taylor’s 
expansion. The simulation results showed that the PLDI-based 
approach resulted in 10-70% less tension overshoot than 
Taylor’s expansion. This improvement suggests that the PLDI-
based convexification scheme will be able to significantly 
improve the dry transfer quality of 2D materials and printed 
electronics in a R2R process. In addition, the improved 
accuracy is critical for other high precision manufacturing 
processes, such as the R2R manufacturing of electrode 
assembly for lithium-ion batteries, proton exchange membrane 
fuel cells, and organic solar cells.   
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