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Abstract—In-memory computing is a promising solution to
solve the memory bottleneck problem which becomes increasingly
unfavorable in modern machine learning systems. In this paper,
we introduce an architecture of random access memory (RAM)
incorporating deep learning inference abilities. Due to the digital
nature of this design, the architecture can be applied to a
variety of commercially available volatile and non-volatile mem-
ory technologies. We also introduce a multi-chip architecture to
accommodate for varying network sizes and to maximize parallel
computing ability. Moreover, we discuss the opportunities and
limitations of in-memory computing as future neural networks
scale, in terms of power, latency and performance. To do so, we
applied this architecture to various prevalent neural networks,
e.g. Artificial Neural Network (ANN), Convolutional Neural
Network (CNN) and Transformer Network and compared the
results.

Index Terms—In-memory computing, deep neural network,
deep learning, DRAM, Transformer, memory bottleneck

I. INTRODUCTION

Artificial neural networks have grown tremendously in both
size and complexity, but the development and application
have always been hindered by the memory bottleneck as
data has to be sent back and forth between the memory and
processor in the von Neumann machines [1]. Data movement
is very expensive in terms of power and time compared to the
actual computation that happens inside the processor. Recent
analysis shows that the computing power demanded for Al
tasks has increased by a factor of 300,000 since 2012 [2],
whereas Moore’s law is slowing down significantly as we
are approaching the physical limit to further scale the CMOS
devices.

New architectures such as ASICs (e.g. Google’s TPU) and
FPGAs (e.g. Xilinx Zynq Series and Intel HARPv?2) that utilize
weight stationary concepts are developed to accelerate Al
tasks. However, they still rely on on-die SRAM which is very
demanding in terms of die size. There are various attempts to
solve this problem using Dynamic Access Memory (DRAM),
which can be manufactured in much larger densities. The High
Bandwidth Memory (HBM) standard utilizes an ultra-wide
memory data bus on silicon interposers, and 3D stacking of
DRAM dies for a very high memory density and bandwidth,
as shown in Fig. 1. However, 3D structure is less resilient to
manufacturing errors and 3D packaging is comparatively less
cost-efficient.

A departure from classic processor-centric von Neumann
architecture through in-memory neuromorphic computing has

been proposed to solve the increasing processor-memory per-
formance gap of the current artificial neural network acceler-
ators [3]. This may include the implementation of logic cores
inside the memory chip (Fig. 2). The current research toward
this direction has for some time focused on analogue properties
of the memory cells. Especially, resistive memory elements
have received particular interest in the literature [4]. However,
high power of ADCs/DACs, non-linear conductance response,
limited dynamic range of the conductance and its variability
do not make these devices ideal candidates [5].
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Herein, we present a digital approach of in-memory neu-
romorphic computing architecture that is consistent with a
wide variety of memory technologies. The paper is organized
as follows: In Section II, we first provide an introduction to
artificial neural networks and a mathematical operation that
accelerates neural networks inference in hardware. Then, we
briefly review the essential components of a multi-layer in-
memory artificial neural network accelerator based on a fully
self-contained multi-layer capable edge computing prototype.
In Section III, we present a highly parallel/high bandwidth
architecture for high density dynamic random access memory
(DRAM) products, suitable for high performance Al inference
operations. We also demonstrate the commands and workflow
of the presented hardware. At last, a methodology to utilize
multiple chips for massive parallel computation is illustrated.
In Section IV, we first discuss the development trends of
artificial neural networks and the influence on in-memory
computing. Then, we present an analysis of the performance
and power consumption of in-memory computing as future
neural networks scale. Section V gives our projection on
future work and our conclusions for in-memory neuromorphic
computing.



II. OVERVIEW

A. Software Background

An artificial neural network (ANN), or more specifically
known as Multi-Layer Perceptron (MLP) model, is made up of
interconnected neurons and contains an input layer, an output
layer and one or more hidden layers. Except for those in the
input layer, each node is calculated by adding a weighted
sum of all the input nodes in the previous layer along with a
single bias to offset the threshold for activation purposes. The
sum is then fed into an activation function. The output of the
activation function will be read out or passed as input to the
next layer. This process is illustrated in Fig. 3.
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Fig. 3. Computation of one neuron

Neural networks have been the focus of artificial intel-
ligence for the past decade and various architectures have
been developed, e.g. convoluted neural networks, recurrent
neural networks, Transformer networks, etc. Each Architec-
ture is different and has its own variations, but they all
share the same fundamental multiply-and-accumulate (MAC)
operations. Therefore, a dedicated MAC accelerator is both
universal and crucial to overcome hardware limitations for
neural networks, and we show that an in-memory approach
would be beneficial to all neural network models.

Quantization is another critical aspect of neural network
hardware implementation. Although typical neural networks
are trained with float32 precision, due to the neural network’s
robustness to noise because of its architecture, the precision
during inference can be reduced without losing too much ac-
curacy. The process of mapping a high precision floating point
range to a low precision integer range is called quantization.
A number of edge Al devices have adopted int§8 for speed
concerns, for example, Edge TPU by Google. Research [6]
has shown that with proper quantization from float32 to int8,
neural network inference can be twice as fast with acceptable
losses across multiple benchmark datasets. There are even
extreme cases where binary quantization is exercised with a
few limitations [7]. As a general MAC accelerator, we adopt a
mixed-precision 8b sequential multiplier and 32b accumulator
for the most use cases and efficiency.

III. SYSTEM ARCHITECTURE
A. Hardware Architecture

The proposed architecture is based on a commodity DRAM
design. Its major difference is that it allows multiple word
line activations so that all the sense amplifiers can be utilized
simultaneously, whereas in a commodity DRAM, only “"10%
of the sense amplifiers are leveraged.

It is different from an earlier design based on Phase-Change
Memory (PCM) [8] in that it features a distributed MAC
architecture as is illustrated in Fig. 4. This DRAM consists
of 16 half-banks, and each half-bank comprises an array of
12x16 MAC units. This change vastly increases the parallelism
of MAC operations compared to its PCM predecessor, with a
few limitations, which will be further discussed later.
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Fig. 4. System Architecture

1) Multiply and Accumulate (MAC): The MAC unit is
responsible for multiplying two 8-bit values (weight and input)
and accumulating the product and a bias. Its function is given

by (1): .
S; = Z:ijij + bj (1)
j=1

The MAC accepts two inputs, an 8-bit parallel weight value
W7 : 0] and a serial input value X. Each MAC unit consists
of two parts, the sequential multiplier and the accumulator. The
multiplier generates a 16-bit output word, which is fed into a
32-bit accumulator. The accumulator is able to accumulate up
to at least 2'® = 65536 inputs and a bias without overflow,
which is more than enough for most neural networks today.
After all of the input layer is traversed, we get the MAC result
for one output neuron in each MAC unit.

2) Activation Function: The activation function is a crucial
component in all neural networks. The result of the MAC
operation is passed into the activation function to decide if
this neuron is “activated” or not. It also adds non-linearity to
the system which is essential to all modern Al models. The
activation function, originally, was the Sigmoid function, but



due to the vanishing gradient problem while training a neural
network, it has been substituted by the rectified linear units
(ReLU) function, which is defined by (2).

ReLU(z) = max(0, z) )

ReLU is the prevalent activation function in state-of-the-
art deep learning research since it is robust and faster to
implement in algorithms and adds strong non-linearity.

ReLU is also hardware-friendly. Traditionally, non-linear
activation functions like Sigmoid are realized with FPGAs
[9], or approximated using a stochastic approach [10]. For
ReLU, output is simply the input with the negative values
being clipped off, which greatly simplifies the design of a
hardware implementation. Nevertheless, a bit shift function
is added to the simple clip function. The advantage of this
modification is twofold. First, since the accumulator comprises
32 shift registers, the activation function can be implemented
right within the accumulator with merely a few extra inverters,
which minimizes the footprint of the activation function.
Secondly, the ReLU function causes positive mean shift, which
means that the neuron values would drastically increase as the
network gets wider and deeper. This is not a huge concern
on float32 precision processors, but can lead to severe data
overflow in the 8-bit architecture. Therefore, a right shifter is
needed to scale the activation values back to [0, 255] range.
This activation function is given by (3):

if x < 256x2"

3
if x > 256x2" ©)

B max (0, floor(5x))

where n is the number of bits shifted. We call this function
clipped staircase ReL.U.
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Fig. 5. Activation function transition

A software simulation is conducted to evaluate the feasi-
bility of this approach. First we trained several multi-layer
perceptron models to solve the classic mnist problem and
achieved an average accuracy of 96.83%. Each model consists
of 3 hidden layers and the layer sizes are different from each
other. The output layer has 10 neurons, each corresponding
to one category. We noticed that the distributions of weight,
bias and MAC result (input to activation function) across all
four layers are all normal distributions. Therefore, as long
as the staircase region of the clipped staircase ReLU covers
the majority of the positive region of MAC results, we can
minimize precision loss.

Next, we took the trained model and replaced the activation
function with our clipped staircase ReLU. The inference result

shows that the clipped staircase ReLU is considerably effective
on this problem. The accuracy dropped a negligible amount of
0.7% to 96.14%. This proves that the clipped staircase ReLU
would work on categorical ANN problems.

Providing ReLU allows multiple layers of operations to
stay within memory, and returns another order of magnitude
reduction in memory IO. More complex activation functions
are still possible on this architecture by reading out 32-bit
accumulations directly, but forego the degree of in-memory
advantage The host can then perform any desired activation,
filtering, dropout, etc. to generate outputs to be written back
into DRAM for the next layer.

3) Memory Array: The memory array consists of 16 half-
banks, and each half-bank is made up of 12x32 bitcell sub-
arrays. In the proposed architecture, we insert a column of
MAC units (MAC stack) in between two groups of word line
drivers between two adjacent bitcell arrays. Every two bitcell
arrays share a MAC unit, so there are 16 * 12 x 16 = 3072
MAC units in total. We also modified the row address decoder
so that multiple word lines can be opened up simultaneously.
This structure minimizes the distance between the processing
unit and storage and greatly increases the parallel throughput.
Each MAC accepts weight data from the adjacent bitcell array,
as is shown in Fig. 4, data from the green array is transferred
to the green MAC unit next to it. The input value X, on the
other hand, is broadcasted to all the MACs in a MAC stack
via master data lines (MDL). Each MAC stack can be fed with
different input values. Thus, we are able to execute thousands
of MAC operations simultaneously with one command.

B. Inference Workflow

The workflow of a complete ANN inference can be sum-
marized as follows:

1) Upon receiving a MAC command, a normal read is
performed to read out 8-bit input data from the array
and store the data temporarily in a buffer off-array.

2) To get the weight data, we activate the word lines and
transfer the data from the DRAM cell to the primary
sense amplifiers. Then, for each MAC unit, the column
select signal (CSL) selects 4 bits from the top SAs and 4
bits from the bottom SAs, and the 8 bits are transferred
into the gap area over the local data line (LDL) and
presented on the W input of the MAC units parallelly.

3) The off-array buffer that stores 8-bit input data starts to
broadcast the input bit by bit to all the MACs across
the chip. After 8 clock cycles, a latch accumulator
command is issued to accumulate the 16-bit product in
the accumulator.

4) CSL selects the next 8-bit weight data from the SAs
and Step 3) is repeated until all the input neurons are
processed. A counter monitors how many weights have
been processed. If all the SAs have been accessed, then
new word lines are opened to update the values in the
SAs.

5) If the current input layer has been traversed, the activa-
tion function is then applied to the 32-bit output of the



accumulator. Then we write the 8-bit output from the
activation function back to the array.
6) A counter checks if all the output neurons have been
calculated, and if not, Steps 1 through 5 are repeated.
Layer information and network connectivity will be com-
piled into data that stores in the array. An on-chip controller
will extract the required information at runtime and issue com-
mands accordingly to inference the neural network following
the above workflow.

C. Multiple Chips

The architecture also has the potential to scale with multiple
chips. As illustrated in Fig. 6, where two chips are utilized,
the weight data is divided into two chips while the input data
is duplicated across the chips. In this case, Chip 1 calculates
half of the output neurons and Chip 2 calculates the other half.
As long as the weights are allocated properly to each of the
chips, they can work simultaneously to increase throughput.
At last, the output from each chip can be merged as a whole
layer of neurons.
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Fig. 6. Multiple chips

D. Summary

A distributed memory array with MAC units working to-
gether with a central controller, a fully functional, self con-
tained MAC accelerator has been constructed. It has significant
parallel computing ability and very low latency. Nevertheless,
it comes with some limitations. First, the row address decoder
is modified to support multiple word line activation, which
might increase peak current consumption compared to normal
DRAMs. Second, it suffers from performance degradation
when the activation function is complex. In this situation, a
separate activation function needs to be implemented off-array
to process the MAC results. At last, embedding the MAC stack
and activation function inside the array would increase the chip
size by around 12%.

Knowing these limitations, we examined multiple clas-
sic neural networks and evaluated different architectures to
highlight how performing these functions less efficiently still
guarantees growing orders of magnitude savings overall as a
function of AI’s development.

IV. NEURAL NETWORK SCALING

The first neural network to achieve parity with state-of-the-
art algorithms was a Convolutional Neural Network built in

1998 known as LeNet-5, which featured approximately 60k
parameters that were trained via unsupervised backpropaga-
tion to identify handwritten decimal numbers [15]. Generally
speaking, CNNs convolve small kernels of parameters across
an image to identify patterns, and use downsampling functions
like max pooling to discern higher order information about
the image. In the process of convolution and striding, each
weight value is reused in tens or hundreds of computations
to make the most out of memory operations. Since then,
CNNs have grown in size and complexity alongside the
computational efficiency of the underlying silicon, which hit
an inflection point in 2012 when AlexNet set the standard
of deploying GPUs to train over 60M parameters to break
ImageNet classification records. This newfound parallelism
then made way for architectures like VGG and ResNet to scale
with blocks composed of multiple layer operations, which are
then stacked to scale performance with over 500M parameters
in some designs.
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The Transformer network (Fig. 7) emerged in 2017 and
quickly gained popularity in the machine learning research
field for natural language processing [12]. Recent research has
also discovered its potential in image processing tasks with
minor modifications [13]. Transformers are closer in nature to
Recursive Neural Networks, which operate on sequences of
data to make inferences based on previous states and location
within the sequence. Unlike CNNs which are easily contained
to SRAM and batched over multiple inputs, transformers
become prohibitively expensive for longer sequence lengths
because each step requires memory 1O to perform operations
with a significant percentage of all parameters. While the
original publication had a base model of 65M parameters, it
has not taken long to scale to over 1 trillion parameters in
the case of the switch transformer, which is pretrained for
translations between 101 different languages [14]. There is



a greater diversity of operations for transformers such as 10
embeddings and key-value-query attention mechanisms, but
by volume most of the parameters are used for classical fully-
connected feedforward MAC and/or ReLU. We pick five most
representative Transformer architectures from [14] and show
a distribution of weights as Transformer scales in Fig. 8. The
following discussion on scaling will be based on these five
architectures. Noticeably, it is these classical layers that most
readily scale transformer performance.
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Fig. 8. Weight distribution as Transformer scales

To understand how in-memory computing lends itself to
the scaling properties of Al, we develop a model to project
performance metrics for architectures of interest for single
batch processing:

1) Baseline von Neumann (von Neumann) - Network
parameters read from memory for all computations in
logic

2) In-memory MAC (IMMAC) - Layer inputs written to
memory for MAC operations, accumulation is read by
logic for activations, pooling, softmax, etc.

3) In-memory MAC+AF (IMnet) - Network inputs
written to memory, final outputs quantized/processed
through the ReLU function before readout

The computational path is broken into 6 sections that are
common to all architectures. The toggle count for each section
is calculated as a function of a layer’s hyperparameters. Each
section receives an “energy-per-toggle” value derived from
SPICE simulations of our mixed-precision MAC/shift/ReLU,
which operates with randomized parameters and inputs to
achieve an average “per-bitcell-toggle” approximation. To un-
derstand how performance scales with memory interface, we
use published energy and throughput numbers for a variety of
standards. For scaling by logic technology, we apply methods
from Stillmaker et al. [11], which similarly use measurements
from an FO4 inverter to achieve such projections. Table I
shows the result.

Next, we obtain the memory IO statistics for each of
the five aforementioned Transformers by breaking down the
models block by block and counting the parameters in each
block. To emphasize the relative relationship between 10 and
computation amount, the X axis is the total number of MAC
operations. The Y axis is the number of bits on the memory
I0. Both axes are logarithmic.
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For each Transformer surveyed, in-memory architectures
display 2-3 orders of magnitude less 1O than traditional von
Neumann architecture, and this difference remains as networks
scale. Since this is a loglog plot, it means the advantage of
in-memory computing will grow exponentially as a function
of AI's development.

We then calculate the total number of operations and
translate it into the number of bits toggled according to our
architecture for each of the network, for example, bit counts
for the “Small” Transformer architecture are shown in Table II.
Multiplying the number of bits toggled in each block with its
corresponding power data in Table I, we obtain the power
consumption for each of the networks, as is shown in Fig. 10.

TABLE I
ENERGY PER BITCELL TOGGLE
irort 10 Compute
Architecture input | weight | multiply CY I AF control signals
von N 0.16 0.00037 0.00055 0.019
0.00022
IMMAC 4.00 0.124
IMinet 0.35 0.0033 0.005 0002 0155

Unit: Picojoules

TABLE II
NUMBER OF BITS TOGGLED (SMALL TRANSFORMER)
Architecture 10 Compute
input weight multiply AF control signals
von T 3,388,608 8,388,608
IMMAC 32,768 8,388,608 | 134,217,728 | 33,554,432 | 311,296 [ 18,891,776
TMnet 20,480 18,889,728
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Fig. 10. Power comparison

It demonstrates that in-memory computation of these layers
is almost 5x more efficient for real time performance without
batching. Again as networks continue to scale in volume,
advantages are retained by the overall reduction in IO between
logic and memory.



At last, we project the performance of in-memory comput-
ing as the manufacturing process advances. Again a “fanout
of 4” methodology is outlined to project performance scaling.
The result exhibits ongoing potential in terms of energy
efficiency for in-memory computing.
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Fig. 11. Technology trend

V. FUTURE WORK AND CONCLUSION

There are still endless possibilities that the work in this
paper could be extended as increasing attention has been
focusing on in-memory approaches for Al accelerating. First,
more work needs to be done to carry out the design that meets
tight thermo budget and metal area. Second, Al algorithm
acceleration is a comprehensive task that requires revolution
in the whole technology stack. Further efforts need to be made
in the operating system and compiler to fully support the
functionality provided by the hardware.

In this work, we introduced a novel approach to implement
a fully digital MAC accelerator in a DRAM memory. We
presented a mechanism that minimizes the circuit size of
MAC units and activation function so that massive parallel
MAC in memory is possible. We also proposed a multiple-
chip architecture to tackle scaling networks in the future.
What’s more, an evaluation of the power and performance
is conducted to discuss the advantages and limitations of in-
memory MAC acceleration. We concluded from the analysis
that the proposed architecture will excel in an Al scenario that
requires no batching, low power and low latency.
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