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ABSTRACT

Deep neural networks are often highly overparameterized, prohibiting their use in compute-limited
systems. However, a line of recent works has shown that the size of deep networks can be con-
siderably reduced by identifying a subset of neuron indicators (or mask) that correspond to signif-
icant weights prior to training. We demonstrate that an simple iterative mask discovery method
can achieve state-of-the-art compression of very deep networks. Our algorithm represents a hybrid
approach between single shot network pruning methods (such as SNIP) with Lottery-Ticket type
approaches. We validate our approach on several datasets and outperform several existing pruning
approaches in both test accuracy and compression ratio.

1 Introduction

Motivation. Neural networks have achieved state of the art results across several domains such as computer vision, lan-
guage processing, and reinforcement learning. This performance is generally contingent on large, over-parameterized
networks that are trained using massive amounts of data. For example, the current state of the art on the ImageNet
classification task uses a network with over 480 million parameters [TVDJ20], and consequently, the best performing
networks are prohibitive in terms of computational and memory requirements. Therefore, compressing neural net-
works is vital for resource limited settings (such as self-driving cars and mobile devices). In this work, we present
an algorithm for compressing neural networks to far higher degree of sparsity levels than has been reported in the
literature.

Challenges. Network pruning involves finding a smaller, more efficient representation of a given reference neural
network. Pruning strategies include quantization [HMD15, HCS+17], sparsification [Cha89, TLFF18, DZW18, FC18,
LAT19], and distillation [BFG18, SB16, PPA18]. See [CWZZ17] for a detailed look at several approaches towards
neural network compression.

In sparsification-based network pruning, the goal is to select a subset of the original weights that are easily encoded
while preserving nominal performance on a test set. However, such methods involve expensive retraining of the
weights once the subset is identified, as well as requires significant hyper-parameter tuning. [LAT19] propose a
method called SNIP, which identifies a salient subset of weights for a given dataset prior to training. This avoids
re-training of the weights and thereby offers computational advantage over existing methods, but achieves weaker
compression performance as a trade-off.

The authors of [FC18] present the Lottery Ticket hypothesis, wherein they demonstrate the existence of randomly ini-
tialized sub-networks whose weights can be optimized to achieve high performance. Subsequent work by [FDRC19]
stabilizes the algorithm for finding a winning ‘ticket’ (i.e., a good sub-network) via iterative pruning methods. How-
ever, iterative methods incur larger computation compare to single-shot methods such as [LAT19]. [ZLLY19] further
suggest that finding the winning ticket for very deep networks is an implicit consequence of the training mechanism. In
any case, all these methods require higher computational costs, as well as significant hyperparameter tuning overhead,
than those incurred by a baseline training approach.
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Contributions. Given these observations, clear trade-offs exist among computation, sensitivity to hyperparameters,
and final test performance. In this paper, we show that it is possible to achieve excellent pruning results with not
only low computational costs, but also while being robust to tuning hyperparameters. In essence, our method merges
[LAT19]’s single-shot pruning approach with the iterative pruning strategy by [ZLLY19]. We demonstrate that our
approach is successful at pruning well-initialized, large networks such as residual networks (ResNets). Somewhat
surprisingly, our empirical results demonstrate that it may be possible to compress neural networks to considerably
higher pruning levels than has been reported so far in the literature.

Our specific contributions are fourfold:

1. We present an algorithm for training extremely sparse neural networks, by learning masking operators for the
weights using gradient updates through convex relaxation.

2. We achieve a 5X improvement over baseline methods such as SNIP, while conserving accuracy.
3. We provide extensive comparison on our approach on a variety of models and datasets, outperforming various

state-of-the-art sparse pruning methods especially in extreme pruning ratio (> 99%).
4. Finally, we conduct ablation studies and hyperparameter sensitivity experiments to analyse each component of our

approach in detail.

2 Related Work

Early neural network compression approaches [HMD15, CK14, GYC16] rely on simple magnitude-based heuris-
tic pruning tactics and show significant compression of deep networks while preserving performance. [HMD15],
[GYC16], and [ZG17] rely on iterative fine-tuning and pruning to reduce the effect of removing weights on
the output. Other work adopts second-order approximation of loss surface ([LDS90], [HS93]) to minimize per-
formance degradation, but do not scale well to larger models. Leveraging techniques from information the-
ory and Bayesian statistics have further improved model compression ratios, including information bottlenecks
[DZW18], Fisher pruning [MTK+17, TKTH18], entropy-penalized reparameterization [OBSS20], and Variational
Bayes [MAV17, LUW17, UMW17].

While most of the above approaches are applied to pre-trained existing networks, there has been a recent surge in
approaches that interleave pruning and training. Such approaches rely on reparameterizing the weights and training
over the modified network. Methods such as low-rank decomposition [DSD+13], FastFood transforms [YMD+15],
hashing [CWT+15] leverage reparameterization schemes for fully connected layers. An obvious reparameterization
is inducing sparsity on model connections. However, training sparse models can be unstable. To resolve such is-
sues, [MMS+18] and [DZW18] use iterative parameter growth, allowing the sparse architecture additional degrees
of freedom. Evolutionary approaches such as [BKML18] propose a dynamic sparsification model using connectivity
constraints to train an implicitly sparse model. [MW19] further improve this by allowing a global sparsity constraint
instead of a layer-wise approach, thus forcing a network to learn a consistent sparse model.

Another branch of pruning algorithms learns the auxiliary (masking) parameters via gradient-based approaches by
relaxing non-differentiable constraints (e.g., ℓ0-constraints) to differentiable estimators. [LWK18] re-parameterizes
the weights with the element-wise product of its weight and auxiliary parameters sampled by learning the hard concrete
distribution. [XWR19] adopts the straight-through estimator to take gradients with respect to the indicator function
which generates the binary masks to train auxiliary parameters. [ZLLY19] and [SSM19] trains the auxiliary parameters
through gradient descent by reparameterizing with Bernoulli samplers with sigmoidal probabilities on the auxiliary
parameters. [SWR20] adopts the hard-concrete distribution proposed in [LWK18] to learn both weights and auxiliary
parameters simultaneously. We note that our work and the recent preprint [SWR20] share similar concepts of updating
weights and masks simultaneously, but take different approaches for treating non-differentiable regularized terms.

[LRLZ17] present a runtime pruning method that models the flow of activations through the network as a Markov
process, and use reinforcement learning to learn the best policy for pruning. [HLL+18] also use reinforcement learning
in the context of AutoML to train model architectures that are explicitly optimized for edge devices.

Instead of pruning in the middle of or after the training, [LAT19, WZG20, VSF20] proposes the method pruning
network prior to the training based on saliency scores from an untrained network. While pruning an untrained network
provides a huge advantage in computational cost, the pruning algorithms on a trained network provides par or better
compressing performances than single-shot prunings on untrained networks.

While pruning weights in the level of each weight (unstructured) has the advantage of compressing the network in
the highest degree of freedom, the limitation on inference speed exist due to limited support in current deep learning
software frameworks on parallel processing in each weight level. Instead, structured pruning approaches [LLS+17,
LSZ+19, LWL17, GRK17, AHS17] focuses pruning in a higher structured level such as neurons or filters such that

2



corresponding weight matrix only contains zero elements. In this work, we focus on unstructured weight pruning by
targeting competitive sparsity-accuracy tradeoff.

3 Preliminaries

Notation. Let f : Rd → R
k be a neural network with weights w ∈ R

m. Assume ci ∈ {0, 1}, an auxiliary indicator
for each of the weight, where each ci indicates if the weight wi is a salient parameter. Saliency here refers to the effect
of zeroing out wi on the final risk. A high saliency value (greater than some threshold ǫ) will be indicated by ci = 1.

To motivate our proposed approach, we first describe two existing pruning methods.

SNIP. Single-Shot Network Pruning (SNIP) [LAT19] introduces a saliency based criterion to prune network connec-
tions. The premise is that since neural networks are often overparameterized, they have redundant connections which
can be identified prior to training using a saliency-based approach.

Given a dataset D = {x,y}, and a desired network sparsity level k, training a sparse neural network amounts to
solving the following optimization problem:

min
w

L(f(w;x),y), s.t. ‖w‖0 ≤ k. (3.1)

Here, L(·) refers to any standard loss function, such as the cross entropy or ℓ2 loss. Enforcing the ℓ0-constraint
is combinatorially difficult but can be relaxed either via a sparsifying penalty [CPI18, Cha89, Set97, LWK18] or a
saliency-based weight dropping mechanism [HMD15, MS89].

SNIP instead uses the following alternative formulation using an auxiliary indicator variable, c ∈ {0, 1}m that indi-
cates if a weight contributes (positively or negatively) to the output. The modified loss therefore is as follows,

min
w,c

L(f(c⊙w;x),y), s.t. ‖c‖0 ≤ k. (3.2)

Here, ⊙ refers to element-wise multiplication. Observe that the auxiliary variable decouples the constraint from the
weights, w. This decoupling allows for measuring the saliency of a specific weight matrix by measuring the effect of
removing a connection. For example, if we consider the difference in loss by removing the jth edge:

∆Lj = L(1⊙w)− L((1− ej)⊙w) (3.3)

where ej is an indicator vector, then the absolute value of ∆Lj indicates the contribution of the jth parameter to the
performance of the network. Instead of directly computing ∆L for m weights which involves cumbersome forward
passes, the author approximates ∆L with the gradient, ∂L/∂cj, which can be easily calculated using automatic differ-
entiation. A posteriori, only the top k connections with the highest gradient values are retained. This can be done using
a simple thresholding operation. Specifically, cj is defined as the following indicator variable (denoting connection
sensitivity),

cj = 1 [sj − sk ≥ 0] , where sj =
∂L/∂cj∑
i ∂L/∂ci

, (3.4)

and sk corresponds to the kth largest sensitivity value. The network weights are then randomly initialized and further
trained with the cj’s kept constant. This allows for a single-shot compression scheme with only one round of training.

Lottery Ticket Hypothesis. The Lottery Ticket (LT) hypothesis proposed by [FC18] claims the existence of a smaller
subnetwork within a standard large, dense neural network architecture that will provide competitive performance when
trained from scratch as that of the original network. This suggests the need for network pruning to become an essential
component of the training process. However, in order to find such a subnetwork, the authors propose an iterative
process that alternately prunes and retrains the pruned network from scratch. They also introduce ‘rewinding’, where
one retrains the pruned model starting with the initial (random) weights instead of the final learned weights upon which
the pruning is performed.

[ZLLY19] further systematically analyse the LT hypothesis and provide two important observations: (1) new values
on kept weights should have the same sign as the original initial values (in line with why rewinding in [FC18] is
important), (2) it is important to set to masked weights to zero, instead of using values other than zero. From the
second observation, [ZLLY19] suggests that magnitude-based masking criteria (which [FC18] use) tends to prune
weights that seem to move towards zero during training.
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Algorithm 1 ESPN-FINETUNE

1: Inputs: f(w): pre-trained network (w ∈ R
d), c = 1: auxiliary parameters, T : fine-tuning epochs, α: sparsity weight, η:

learning rate, p: pruning ratio, ǫ: threshold.
2: procedure TRAINING w AND c VIA SGD
3: w ← (w, c)
4: while Nc ≥ d · (1− p) do
5: w ← w − η∇w(L(f(w ⊙ c; x), y) + α‖c‖1)
6: Nc ← SUM(1(c > ǫ))
7: end while
8: w ← w ⊙ c

9: c ← 1(c > ǫ)
10: end procedure
11: procedure FINE-TUNE THE NETWORK

12: Train f(w ⊙ c) respect to w for T epochs.
13: end procedure

Algorithm 2 ESPN-REWIND

1: Inputs: f(w): Untrained Network (w ∈ R
d), t: warmup epochs, T : epochs c = 1: auxiliary parameters, α:

Lasso coefficient, η: learning rate, p: pruning ratio, ǫ: threshold.
2: procedure WARMUP TRAINING

3: for epoch ∈ {1, . . . , t} do
4: w ←= w − η∇w(L(f(w)))
5: end for
6: wt ← w
7: end procedure
8: procedure TRAINING w AND c VIA SGD
9: w ← (w, c)

10: while Nc ≥ d · (1− p) do
11: w ← w− η∇w(L(f(w ⊙ c;x), y) + α‖c‖1)
12: Nc ← SUM(1(c > ǫ))
13: end while
14: c ← 1(c > ǫ)
15: end procedure
16: procedure REWIND AND TRAIN THE NETWORK

17: w ← wt ⊙ c
18: Train f(w) respect to w via SGD for T − t epochs
19: end procedure

4 Our Approach: ESPN

While SNIP does enable very good network compression at moderate computational cost, a single-shot approach
before training has several disadvantages. The primary issue is that connection sensitivities estimated using single-
shot techniques may be erroneous. This may lead to discarding of network edges that eventually would lead to better
network performance.

To address these, we present a novel network pruning method: Extremely Sparse Pruned Networks (ESPN). Our
method resembles SNIP, but learns the sparse masking operator, c, via a standard iterative gradient update framework,
instead of using a single-shot estimator. This modification to the standard SNIP framework is also inspired by the
observations from Zhou et al. [ZLLY19] that learning such sparse indicators can be viewed as a natural process
concurrent to training a neural network on data.

Approach. Our approach consists of three steps:

1. pretraining w while freezing c = 1,
2. leveraging a relaxed form of the SNIP saliency objective to train c, thereby pruning the network to required sparsity,

and finally,
3. finetuning the pruned network to boost final performance.

For the first step, we train our base architecture on the given dataset to ensure a good initialization for the sparse
problem. However, we note that unlike previous works [HMD15, GYC16, LDS90, HS93, LWK18, MAV17], which
rely on a fully trained network as input, we do not require our network to be trained to convergence. Instead, we
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require the network to only be trained for a few iterations. We also point out that in case of preexisting networks, this
step can be safely skipped.

We further modify the SNIP objective in order to iteratively learn masks. First, instead of freezing weights and
indicators, we simultaneously train them both, thus keeping track of changes in sensitivity values during training. To
achieve this, we modify any given architecture to have an additional matrix associated with each weight matrix such
that C = {Ci = 1m×n|Wi ∈ R

m×n}. This is similar to the implementation of the auxiliary variable in SNIP.
Secondly, we relax the sparsity constraint in Eq. 3.2 to an ℓ1 penalty, so as to be make the objective differentiable. The
training objective is given by:

min
w,c

L(f(c⊙w,x),y) + α‖c‖1 . (4.1)

We rely on standard backpropagation (e.g. SGD) to update both w and c, until we achieve the required sparsity. We
propose a simple update for c with c ∈ R

m initialized to 1 rather than randomly as in [BFG18, LWK18, XWR19,
SSM19, SWR20, ZLLY19]. This is advised by Zhou et al. ’s [ZLLY19] observations regarding the masking operation.
Note that optimizing Eq. 4.1 with respect to c, c may no longer be sparse with ci /∈ {0, 1}. Assuming that c is the
optimal selection with salient connections, we update w via the element-wise product of w and c as per Eq. 4.1. Subse-
quently, we restore c to be an indicator function by thresholding, 1(c > ǫ) where ǫ is a hyperparameter corresponding
to non-zero elements in c.

For our algorithm, the choice of the termination condition is significant. Given a target pruning ratio p, we train both
weights w and c until sparsity of c is less or equal to target sparsity 1 − p. While the alternative approach is to train
w and c with a given fixed training budget, the algorithm may either not reach the required sparsity level or may
unnecessarily waste computation. Our terminating condition allows us to not only to terminate the training, but also
removes a sensitive hyperparameter (no. of epochs).

For the third (finetuning) step, we consider two variants. The first variant simply trains the pruned network with
the given dataset with a low learning rate until we achieve the desired accuracy (we call this ESPN-FINETUNE; see
Alg. 1).

Alternatively, we can also use the ‘rewinding’ technique from [FC18] and [RFC20]. Rewinding involves training the
pruned architecture by initializing weights from a previously well-performing supernetwork. In this case, we use the
subset of wt from the warm-up training (trained t epochs) instead of pretrained weights. After learning auxiliary
parameter c with a procedure from Alg. 1 Line (4-9), we rewind to epoch t updating weights by w = wt ⊙ c and
train the model with remaining budget. We call this ESPN-REWIND; see Alg. 2.

In the following section, we present a comprehensive evaluation of our approach on various image classification
networks and datasets. Our code can be accessed at https://github.com/chomd90/extreme_sparse.

5 Experiments and Results

We analyse the performance of our approach, ESPN, on various image classification tasks. For purposes of our analysis,
we consider three architectures, (1) simple fully-connected networks, (2) VGG architectures, and (3) residual networks,
for various pruning ratios. Specifically, we first consider fully connected networks trained for MNIST in order to
demonstrate the efficacy of our approach. Subsequently, we study the efficacy of ESPN for compressing two massively
overparameterized architectures, VGG and ResNet trained on complex datasets such as CIFAR-10/100 [Kri09] and
ImageNet [RDS+15].

We compare our approach with several pruning methods: (1) SNIP [LAT19], GraSP [WZG20], (2) stabilized Lottery
Ticket Hypothesis (LT) [FDRC19] and (3) Dynamic Sparse Reparameterization (DSR) [MW19]. Additionally, we
conduct ablation studies to understand the roles of various algorithm components.

Experimental Setup. To ensure fair comparisons, we run all algorithms with official implementations and with the
best hyperparameters reported in the literature. In the case of ESPN-REWIND, for all experiments except ImageNet,
we train the network for 160 epochs through SGD with learning rate 0.1, momentum parameter 0.9, and weight
decay 0.0005. We also decay the learning rate with a factor of 0.1 at epochs 80 and 120. For ImageNet, we adapt
the official PyTorch implementation [PGM+19] to train the pruned network for ESPN-REWIND without modifying
the hyperparameter setups (90 epochs, learning rate 0.1, learning rate decay 0.1 every 30 epochs, and weight decay
0.0001).

For ESPN-FINETUNE, we subsequently train the network for 50 epochs with SGD with a learning rate of 0.001 with a
decay factor of 0.1 at epoch 30. We also use the weight decay coefficient with 0.0005 for all training except ImageNet.
We use the pretrained ResNet50 from Pytorch library. For ESPN finetuning stage, we train ResNet50 on ImageNet
with 2/3 of training epochs to the official pytorch implementation (60 epoch, learning rate 0.01, learning rate decay
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Table 1: LeNet300 and LeNet5-Caffe Comparison on MNIST and Fashion-MNIST. Note that ESPN outperforms
all other approaches for various pruning ratios except on LeNet5-Caffe trained withFashion-MNIST dataset pruning
95% ratio.

Dataset MNIST Fashion-MNIST

LeNet300-100 Acc: 98.80% Params: 266K Acc: 89.81% Params: 266K

Pruning Ratio 95% 98% 99% 99.6% 95% 98% 99% 99.6%
(13K) (5.3K) (2.7K) (1.1K) (13K) (5.3K) (2.7K) (1.1K)

SNIP 97.86 97.15 95.27 86.57 88.31 87.14 81.93 68.60
GraSP 97.96 96.96 93.54 45.02 88.47 86.59 77.62 38.37
LT+ (Rewind) 98.26 97.74 96.95 92.90 89.55 88.59 87.38 83.57

ESPN-Rewind 98.57 98.39 97.94 97.24 89.94 89.33 88.87 87.74
ESPN-Finetune 98.52 98.35 98.24 97.28 89.59 88.53 88.16 87.67

LeNet5-Caffe Acc: 99.32% Params: 431K Acc: 90.48% Params: 431K

Pruning Ratio 95% 98% 99% 99.6% 95% 98% 99% 99.6%
(22K) (8.6K) (4.3K) (1.7K) (22K) (8.6K) (4.3K) (1.7K)

SNIP 99.33 99.06 98.93 97.24 90.89 90.30 89.69 84.35
GraSP 99.26 99.21 98.47 97.08 90.58 90.43 89.25 85.79
LT+ (Rewind) 99.27 99.27 99.17 98.30 91.57 91.11 90.36 87.96

ESPN-Rewind 99.37 99.26 99.22 99.06 91.48 91.15 91.20 90.37
ESPN-Finetune 99.30 99.26 99.10 99.10 91.22 91.48 91.60 90.94

+ LT rewinded to epoch 1 after magnitude-based pruning on fully-trained networks.

0.1 at 30 and 50 epoch). For LT, we prune the fully-trained network with respect to magnitude and rewind to the early
epoch as suggested in [RFC20].

While we train both model weights and auxiliary parameters, we use a standard SGD with Nesterov-momentum 0.9,
and no weight decay penalty.

5.1 Experimental Results
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Figure 1: Sparsity-accuracy tradeoff curve on ResNet32 with CIFAR10/100 dataset. Tested on extreme pruning ratios: {90%, 95%,
98%, 99%, 99.5%, 99.8%}. 99.8% pruned ResNet32 has only 3.8k non-zero parameters. Note that ESPN-finetuning outperforms
all other methods for extremely high sparsity levels while being comparable at lower sparsity levels.

MNIST and Fashion-MNIST Dataset. We start by evaluating ESPN for LeNet300 and LeNet5-Caffe. For the
purposes of comparison, we use SNIP and GraSP as baselines. LeNet300 and LeNet5-Caffe consist of 266K and
431K parameters respectively. We observe that the performance of ESPN to 95% pruning ratio is at par or better when
compared to other approaches as shown in Table 1. Upon more severe pruning (99% and 99.6%), ESPN outperforms
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Table 2: VGG19 and ResNet32: Comparison on CIFAR10 and CIFAR100. ESPN compares favorably with DSR
for the case of VGG-19 and CIFAR-10 while being better for the harder problem of CIFAR-100. For the more
complicated ResNet32 model, ESPN outperforms other methods across all settings. DSR also fails to converge for
extremely sparse settings (> 99%) in the case of ResNet model whereas our method significantly outperforms every
other approach.

Dataset CIFAR10 CIFAR100

VGG19 Acc: 93.53% Params: 20M Acc: 73.96% Params: 20M

Pruning Ratio 95% 98% 99% 99.5% 95% 98% 99% 99.5%
(1M) (400K) (200K) (100K) (1M) (400K) (200K) (100K)

SNIP [LAT19] 92.97 92.37 10.00# 10.00# 71.90 19.60 1.00# 1.00#

GraSP[WZG20] 92.81 91.94 91.27 88.62 71.28 68.72 65.84 60.28
DSR[MW19] 94.00 93.57 93.15 91.62 72.96 70.77 69.70 66.79

LT+ [FDRC19] 93.15 92.70 91.29 10.00# 70.97 69.13 66.32 17.60

ESPN-Rewind 93.57 92.72 91.88 91.94 71.68 70.85 69.48 67.93
ESPN-Finetune 93.62 93.24 92.87 91.88 72.32 71.00 70.35 66.45

ResNet32 Acc: 93.93% Params: 1.9M Acc: 74.83% Params: 1.9M

Pruning Ratio 95% 98% 99% 99.5% 95% 98% 99% 99.5%
(95K) (38K) (19K) (9.5K) (95K) (38K) (19K) (9.5K)

SNIP [LAT19] 91.20 88.31 83.35 78.36 63.82 54.09 38.32 27.38
GraSP [WZG20] 91.69 89.01 85.06 80.46 66.20 56.90 47.30 32.63
DSR [MW19] 92.80 90.46 44.96 41.86 69.46 63.56 12.84⋆ 8.11⋆

LT+ [FDRC19] 90.57 88.51 85.81 80.31 65.92 57.62 48.74 36.22

ESPN-Rewind 91.83 90.54 89.93 89.31 70.76 69.42 64.83 56.88
ESPN-Finetune 93.06 92.49 90.65 88.77 73.28 70.35 64.89 59.91

# Failed to converge with accuracy 1/(number of classes).
⋆ DSR failed to converge.
+ LT rewinded to a epoch 5 after magnitude-based pruning on fully-trained networks.

all SNIP, GraSP, and LT with only minor degradation in test accuracy. Surprisingly, ESPN-Finetune finds the “lottery
ticket” on LeNet5-Caffe with Fashion-MNIST at 99.6% pruning ratio while achieving 90.94% test accuracy.

CIFAR10/100 and Tiny-ImageNet/ImageNet Dataset. We now evaluate ESPN on modern architectures, VGG19
and ResNet32 on CIFAR10/100, and Tiny-ImageNet image classification datasets. Note that the total number of pa-
rameters of VGG19 and ResNet32 are 20M and 1.9M respectively.2 For VGG19 with CIFAR10, we show comparable
performance with DSR (the current state-of-the-art) for lower compression ratios. However, we outperform all other
existing algorithms. Specifically, we draw attention to the high pruning ratio of 99.5%, where we report minimal
degradation of accuracy for a highly sparse network with only ∼ 100k parameters. We observe that ESPN outper-
forms SNIP, GraSP, LT, and DSR for all other cases except VGG19 with CIFAR10 shown in Table 2. Especially, all
our candidate algorithms except ESPN faces huge degradation in performance when pruning extreme pruning ratio
(99% and 99.5%). We notice that ESPN-Finetune represents the Pareto frontiers for ResNet32 on high pruning ratios:
{90%, 95%, 98%, 99%, 99.5%, 99.8%} as shown in Figure 1. Overall, we observe that ESPN learns meaningful
subnetworks with empirical evidence of achieving extreme compression ratios with minor accuracy degradation.

We observe similar performance on Tiny-ImageNet as that on CIFAR10/100 as seen in Table 3. While DSR achieved
significantly higher test accuracy on 90%-pruned VGG19 with CIFAR10, ESPN performs on par with DSR at higher
pruning levels. Similar to the CIFAR10/100 case, ESPN outperforms all other candidate algorithms for ResNet32 for
three different pruning ratios. We note that for the highest pruning ratio (98%), ESPN outperforms other approaches
by a large margin.

We further test our algorithm on ResNet50 (25.6M parameters) for the ImageNet dataset. We test two different pruning
ratios {80%, 90%} using our approach and compare with reported results for SNIP, GraSP, and DSR. Note that our
approach surpasses SNIP and GraSP for all pruning ratios, while being comparable to DSR. Specifically, ESPN-
FINETUNE outperforms DSR in top-1 accuracy for the 80% case, while being comparable in all other cases.

2We use the ResNet architecture defined in [WZG20] for our analysis.
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Table 3: VGG19 and ResNet32: Comparison on Tiny-Imagenet. ESPN favorably surpasses state of the art ap-
proaches on most settings. Note that ESPN and DSR, being dynamic reparameterization methods are proven to exceed
single-shot performance. ESPN also exceeds the performance of LT by a significant margin.

Architecture VGG19: 61.70% (20M) ResNet32: 61.60% (1.9M)

Pruning Ratio 90% 95% 98% 90% 95% 98%
(2M) (1M) (400K) (190K) (95K) (38K)

SNIP [LAT19] 61.07 57.12 0.5 51.56 40.41 24.81
GraSP [WZG20] 60.26 59.53 56.54 54.84 48.45 37.25

DSR [MW19] 62.43∗ 59.81∗ 58.36* 57.19* 56.08* 12.42⋆

LT+ [FDRC19] 60.69 59.28 56.59 55.64 50.13 39.90

ESPN-Rewind 60.05 59.86 58.66 58.48 57.60 54.21
ESPN-Finetune 59.46 59.27 57.67 60.08 59.83 54.56

* Experimental results from [WZG20].
⋆ DSR failed to converge.
+ LT rewinded to Epoch 5 after magnitude-based pruning on fully-trained networks.

Table 4: ResNet50 on Imagenet

Architecture ResNet50 (25.6m)

Pruning Ratio (κ) 80% (7.3m) 90% (5.1m)

Test Accuracy Top-1 Top-5 Top-1 Top-5

Unpruned Model 76.15 92.87 - -

SNIP* 69.67 89.24 61.97 82.90

GraSP* 72.06 90.82 68.14 88.67

DSR# 73.3 92.4 71.6 90.5

ESPN-Rewind 72.60 91.08 68.70 89.00
ESPN-Finetune 74.34 92.10 71.35 90.68

* Experimental results from [WZG20].
# Experimental results from [MW19].

5.2 Visualizing Weight Distribution of Pruned Networks

To understand better why ESPN outperforms other existing pruning approach in extreme pruning ratio, we visualize
sparsity ratios for each layer of the network. We analyse VGG19 and ResNet32 trained with CIFAR10 for two pruning
ratios: p = 90% and 98%. Conventional pruning algorithms tend to remove fewer weights in earlier layers (to preserve
fine features of the input) and prune more in the deeper layers with higher number of parameters. While VGG19 weight
distributions from ESPN follows this trend, we observe that ESPN shows a different trend on ResNet32 compared
to SNIP and Lottery Ticket hypothesis (Fig. 2). SNIP follows trend of conventional methods by pruning deeper
layers aggressively while preserving weights in the beginning. LT’s weight distribution is comparatively uniform
across layers. Given that LT performs better than SNIP (refer Sec. 5.1), we hypothesize that pruning deeper layers in
ResNet32 aggressively may induce information bottlenecks, degrading the performance significantly. ESPN, counter-
intuitively, prunes more in the earlier layers and the middle layers than in deeper layers. Considering that ESPN
outperforms the SNIP and LT for most of the case, ESPN weight distribution counters the conventional pruning
intuition and emphasizes the importance of careful rather than excessive pruning in deeper layers.

In case of VGG19, we observe opposite trend to ResNet32 on ESPN weight distribution. While ESPN-Finetune
prunes more in the earlier layer and the middle layers than in deeper layers in ResNet32, ESPN aggressively prunes
deeper layer compare to SNIP and LT. The presented weight distributions show that the pruning strategy using the
same algorithm can differ based on the network architectures.

5.3 Ablation Studies

Role of weight updates, auxiliary parameters, and the L1 penalty. In the previous section, we have shown that
our approach can prune the neural networks with various pruning ratios, specifically for extreme cases (> 99%) with
minor sparsity-accuracy tradeoff. We now analyse each of the components of ESPN through ablation studies.
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(a) ResNet32 (p = 90%)
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(b) ResNet32 (p = 98%)

Figure 2: Weight distribution comparisons on ResNet32 with CIFAR10. Almost all pruning algorithms (including
ESPN) tend to prune weights in the middle layers. Surprisingly though, ESPN also tends to prune initial layers,
concentrating most non-zero weights in the final layers. We hypothesize that learning masks allows us to specifically
learn sparser abstractions in earlier layers, analogous to learning sparse features in older classification techniques.
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(a) VGG19 (p = 90%)
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Figure 3: Weight distribution comparisons on VGG19 with CIFAR10. ESPN prunes aggressively in the first two
layers and deeper layers. Considering ESPN outperforms SNIP, GraSP, and LT for the most of the case, good pruning
strategies may be different depending on the architectures as ESPN’s VGG19 weight distribution trend is opposite to
the results from ResNet32.

We consider four different scenarios while learning the auxiliary parameter c: (1) updating both w and c with L1
penalty on c (original ESPN), (2) only updating c with L1 penalty on c, (3) updating w and c without L1 penalty, and
(4) only updating c without L1 penalty. Then we compare the test accuracy after the fine-tuning the model (Line 13).
We experiment on VGG19 with CIFAR10/100 datasets with pruning ratio {70%, 80%, 90%, 95%, 95%, 99%, 99.5%,
99.8%, 99.9%} which includes common to extreme pruning ratio. We observe that freezing weights and optimizing
for only c shows similar performance as ESPN, but is unstable for some pruning ratios. We also see improvement in
performance when both w and c are updated. The results are shown in Fig. 4

5.4 Stability on Lasso Coefficient and Learning rate

We check our algorithm’s stability on lasso coefficient α and learning rate η by observing the sparsity of c while
learning the auxiliary parameters. We conduct experiments on tracking non-zero elements in c with various learning
rate and lasso coefficient. We use pretrained LeNet300 (266K parameters) with MNIST dataset. Our experiment
shows that both strength and rate of shrinkage on c are proportional to learning rate (η) and lasso coefficient α. This
shows that an extreme pruning ratio requires higher lasso coefficients to meet the condition sparsity of c less or equal
to a targeted number of weights.

An interesting observation is that overall sparsity ratios post training are nearly independent of the learning rate,
showing that the network is generally robust to reasonable hyperparameter choices. However, in the case of ℓ1 penalty,
the choice of the coefficient needs to be high enough to ensure that we can achieve the required high sparsity.
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Figure 4: Ablation study on four different setups learning the auxiliary parameters: “Grad/No Grad" and “L1/No L1”
correspond to weights updated or not and L1 penalty on auxiliary parameters or not, respectively in stage 1. We test
from regular to extreme pruning ratio: {70%, 80%, 90%, 95%, 99%, 99.5%, 99.8%, 99.9%}.
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Figure 5: Strength and rate of shrinkage comparison depending on lasso coefficient and learning rate with LeNet300.

6 Discussion and Conclusions

In this work, we provide a new algorithm, ESPN, which is a simple and scalable approach to prune a variety of neural
network models. While ESPN achieves comparable (even improved) accuracy to SNIP, our algorithm is successfully
able to compress the network to extremely high pruning levels (> 99%), up to the regime where the number of
parameters are comparable to the input size. To the best of our knowledge, our approach is the first to achieve such
high compression ratios for large networks such as ResNet32.

There still exist several open directions for further research. First, ESPN can perhaps be further expanded to a
structured-pruning setup that enforces structural sparsity at level of either neurons, or convolutional filters, using group-
lasso type constraints [YL07]; this may provide the extra advantage of faster inference over unstructured pruning.
Secondly, analysing ESPN’s performance on large-scale language models such as GPT [RWC+19]/BERT [DCLT19]
and other transformer models would be an important study to undertake. Finally, it would be interesting to carefully
understand why our compressed models generalize so well, given that their high levels of compression.
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