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Abstract: The 3D shape of a robot’s end-effector plays a critical role in determining
it’s functionality and overall performance. Many industrial applications rely
on task-specific gripper designs to ensure the system’s robustness and accuracy.
However, the process of manual hardware design is both costly and time-consuming,
and the quality of the resulting design is dependent on the engineer’s experience
and domain expertise, which can easily be out-dated or inaccurate. The goal of this
work is to use machine learning algorithms to automate the design of task-specific
gripper fingers. We propose Fit2Form, a 3D generative design framework that
generates pairs of finger shapes to maximize design objectives (i.e., grasp success,
stability, and robustness) for target grasp objects. We model the design objectives by
training a Fitness network to predict their values for pairs of gripper fingers and their
corresponding grasp objects. This Fitness network then provides supervision to
a 3D Generative network that produces a pair of 3D finger geometries for the target
grasp object. Our experiments demonstrate that the proposed 3D generative design
framework generates parallel jaw gripper finger shapes that achieve more stable and
robust grasps compared to other general-purpose and task-specific gripper design
algorithms. Code and data links can be found at https://fit2form.cs.columbia.edu/.
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1 Introduction
As the physical interface between a robot and its environment, the end-effector and its design plays
a critical role in determining the system’s functionality and performance [1]. To grasp different
objects, most of the recent works [2, 3, 4, 5] focused on learning sophisticated control policies for
a generic gripper (Fig.1 a) instead of designing new customized grippers. While these prior works have
significantly improved control algorithms for dexterous manipulation, the application of data-driven
approaches on gripper hardware design is still under-explored. Can a system learn to generate
customized gripper fingers for different grasp objects and design objectives?

Even though task-specific grippers are commonplace in real-world industrial applications (e.g: Fig.1
b), the manual design process depends on many costly trial-and-error experiments and the engineers’
experience, which may be outdated or inaccurate. This prevents fast adaptations to changes in
manufacturing processes that are frequent in small and medium-sized enterprises.

The goal of this paper is to automate the robotic gripper geometry design process with machine
learning: given a target grasp object, the algorithm generates the 3D geometry of a pair of fingers for
a parallel jaw gripper that maximizes the design goals (e.g., grasp success, stability, and robustness).
There are two main challenges in achieving this goal: (1) How to represent a set of design objectives in
a differentiable manner to enable efficient learning, and (2) How to effectively navigate a large design
space to produce a valid solution?

First, to effectively model the design objectives, we train a Fitness network to predict the values of
design objectives (or fitness score) for a given pair of gripper fingers and a target object. The Fitness
network combines high-level design objectives (e.g., grasp success, stability, robustness, etc.) into
a single differentiable objective function. The parameters of the Fitness network are trained in a
self-supervised manner via simulating grasps on random fingers and objects.
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Figure 1: Robot Gripper Design. While most of the recent works have been focused on learning robust control
policy for general-purpose grippers (a), the majority of robot grippers in industrial applications are highly
customized to improve the system’s robustness and accuracy for the target task (b). However, the process of manual
hardware design is costly and time-consuming. The goal of Fit2Form is to automate this design process with a
data-driven approach and generate gripper geometry for a target object that would satisfy the design objectives (c).

Second, to efficiently navigate the large design space (i.e., all possible 3D shapes), we use a 3D
Generator network that models a general distribution of 3D shapes and produces 3D finger geometries
based on the target grasp object. The parameters of the Generator network can be directly optimized to
maximize the Fitness network’s fitness score predictions. During training, both the Generator network
and the Fitness network are optimized jointly in the co-training phase.

In summary, our primary contribution is a novel 3D Generative Design framework, Fit2Form, that
leverages data-driven algorithms to automate the design process of robot hardware. Our experiments
demonstrate that Fit2Form can generate finger shapes for parallel jaw gripper that achieve more
stable and robust grasps given a target object compared to other general-purpose (e.g., WSG50) and
task-specific grippers (e.g., imprint-based designs).

2 Related work

Prior works have investigated manual design and engineering [6], and kinematic structure optimization
[7] of robotic gripper end-effectors. Here, we primarily review works that consider geometry
optimization for 3D design.

Geometry Optimization for Robot Hardware Design: Geometry optimization has been an
important part of mechanical design, with applications in designing gears [8, 9], part feeders [10]
and fences [11]. For automatic finger design, Wolniakowski et al. [12] optimized the parameterized
geometry of simple cuboid based gripper using various gripper quality metrics computed in simulation.
To improve the throwing distance, Taylor and Rodriguez [13] optimized the curvature of the
end-effector and motion trajectory. However, finding an effective parameterization is a tedious process
requiring domain expertise, which often results in a severely limited design space. In contrast, our
model is able to efficiently explore the full 3D geometric space by representing 3D geometry with
Truncated Signed Distance Functions (TSDF) [14].

Topology optimization [15, 16] optimizes geometry to reduce material usage while maintaining the
strength. However, these methods can only improve upon pre-existing designs, thus still requires
manual engineering while being prone to local optima. Additionally, its optimization only considers
two objectives, while our algorithm is able to explore a larger unconstrained design space without
human intervention to maximize any number of design objectives.

Heuristic imprinting [17, 18, 19] is another popular method for generating fingers with complementary
geometry to its grasp objects, thus producing grippers which cage the grasp objects. Our experiments
show that these fingers require lengthy manual tuning phases to work properly and are not robust to
perturbations in initial object orientation. However, we leverage imprint fingers to efficiently guide
our network’s exploration of the design space, while exposing the network to a larger space of finger
geometries to encourage diversity and improvement beyond imprints (Sec. 3).

Automatic Design with Evolutionary Algorithms: Lipson et al. [20] proposed a method for
automatic design and manufacturing of soft robots using evolutionary algorithms [21], which
simultaneously explores the space of possible morphological structures, actuation mechanisms, and
physical material properties to maximize its walking speed. However, evolutionary algorithms depend
on simulations for the optimization signal even at test time, and so are slow at generating new instances.
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Figure 2: Fit2Form Overview. Our 3D generative design framework consists of two major components (1) a
Generator network which efficiently navigates the unconstrained 3D design space to produce finger volumes given
the object, and (2) a Fitness network which predicts values for design objectives (e.g., grasp success, stability, and
robustness) given the object, left and right finger. The Generator is trained to maximize all predicted scores from
the Fitness network. During co-training, both the Generator network and Fitness network are optimized jointly.

Our proposed method uses a Fitness network as a fast differentiable proxy for simulation, and can
generate new fingers with a forward pass through the Generator network.

Grasp Quality based Optimization: Most literature in robot grasping have used analytical
[22, 23, 24] or learned grasp quality metrics [25, 26, 27] to select and evaluate the grasping pose.
However, as shown by [28], the grasp quality computed by analytical methods often only models
static contact points without considering the dynamic grasping process and environment constraints
and hence does not translate well to the real world. Instead, we use a physics simulation environment
to simulate the complete dynamic grasping process. Most related to our approach is GQN from
Dexnet-2.0 [3], where grasp quality is predicted by a neural network. However, their approach assumes
a fixed gripper shape. Our Fitness network takes into account both the object and gripper finger
geometries, and provide values for design objectives for the pair.

Generative Models for Design: Many recent works have leveraged powerful generative models
in creative design, such as image manipulation [29, 30] or sketch generation [31, 32] which use 2D
generative networks [33] to model the distribution of the target domain (e.g., paintings or photos),
and then use learned distribution to facilitate the design process. 3D generative models have been
developed for tasks such as shape completion [34], classification [34, 35], and editing [36]. However,
these 3D generative frameworks only focus on modeling objects’ shape distribution based on objects’
semantic categories and do not generate 3D geometry based on given design objectives. In this
work, we leverage an additional differentiable Fitness network to guide the 3D Generative network
in generating desired 3D shapes.

3 Approach
We formulate the gripper finger geometry design problem as follows: for a given target object o, the
goal of a gripper designer is to generate 3D shapes of left fl and right fr finger for a parallel jaw gripper,
where generated fingers should simultaneously maximize m objectives T1,T2,...,Tm. We focus on
three types of objectives, i.e., (1) grasp success ∈{0,1} whether the generated fingers successfully
grasped the target object, (2) force stability∈{0,1}whether the grasp was maintained after application
of certain forces for a certain duration, (3) robustness∈{0,1}whether the generated fingers grasped
the object with perturbations in orientation.

To achieve this goal, Fit2Form have two main components: a Generator network G which produces
finger volumes given the grasp object, and a Fitness network F which predicts values for design
objectives given the object o, left finger fl, right finger fr. We provide details on how we evaluate
the design objectives in Sec. 3.1, followed by descriptions of the Fitness and Generator network in
Sec. 3.2 and 3.3. Lastly, we will discuss the co-training of Fitness and Generator network in Sec. 3.4.

3.1 Grasp Simulation

For all experiments in this paper, we use the Schunk WSG50 parallel jaw gripper as the base. This
gripper base’s modular design allows us to quickly swap out our 3D printed fingers using a custom
mount (Fig. 1c, Fig. 6). We define a cubical bound of side lengths 6cm that a generated finger can
take (Fig. 4 b). Apart from the geometry of the object being grasped, finger design should also consider
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the gripper strength, kinematics, and dexterity of the control algorithm. However, in this work, we
focus on finger geometry design and hence, utilize a fixed top-down grasp policy (i.e., the gripper
will always attempt to grasp at the same position and orientation).

We generate our target grasping objects using the ShapeNet dataset [37]. For each target object, we
sample a 3D object from ShapeNet and allow it to stabilize from a random orientation on the ground
before re-scaling it to a cubical view bound of side lengths 6cm, centered at the grasp location. The
re-scaled object is then added to a dataset used for grasping called the target object dataset. Thus,
objects from the target object dataset are stable before grasping and fit inside our network’s view
bounds. All target objects have a mass of 50 grams, lateral friction of 0.2, and rolling friction of 0.001,
while fingers have lateral friction 1, and rolling friction 1.

The design objectives are evaluated in the PyBullet physics simulation [38]. To evaluate the grasp qual-
ity, we sample and load an objecto from the target object dataset and a WSG50 with our generated fingers
(fl,fr). The geometries ofo, fl, andfr are encoded as40×40×40volumetric TSDFs, and are converted
to meshes for use in simulation with marching cubes [39] and approximate convex decomposition [40].

(a) Success (b) Stability (c) Robustness 

Fail

Succ

Force =1.5N 30°

Figure 3: Design Objectives are defined by a set of
grasp quality measurements: (a) grasp success, (b) four
force stability directions, and (c) different pre-grasp
orientation of the target object for robustness.

We simulate the grasping process by closing the
gripper centered around the target object with 1.0
N force, then lifting up for 30 cm, before checking
the grasp success. To evaluate grasp stability, we
sequentially apply a 1.5 N force for 20 time steps
in 4 pre-defined directions: one along the negative
z-axis (down direction) and the other three along
the edges of a regular tetrahedron (see Fig 3). After
the application of each force, we restore the post-
grasp state of the system. Whether or not the grasp
was maintained after the application of each force
marks whether the stability test passed. To evaluate
the grasp robustness, we test the grasp success with
the target object rotated with−30◦,−20◦,−10◦,10◦,20◦, 30◦along z-axis (up direction) (Fig 3 c). The
final grasp quality vector T have dimensionm=1+4+6=11.

Apart from the grasp quality, we also want to ensure that the generated fingers can be manufactured
(i.e., 3D printed). To this end, feasible fingers must be (1) significantly base connected, where at least
10% of the finger base area is connected to the mount, and (2) one single connected component. If
the generated finger shape is not fully connected, we use the largest connected component as the final
shape. Otherwise, infeasible fingers receive a grasp score of zero for all design objectives.

3.2 Modeling Design Objectives with Fitness Network

Given the TSDFs of (o,fr,fl), the Fitness network predicts the values for ground truth objectives
Ti(o,fr,fl) computed by the physics simulation. A successfully trained Fitness network acts as a fast
and differentiable proxy for these non-differentiable design objectives. To construct the input volume,
we concatenate the input tuple (o,fr,fl) side-ways along the grasping direction in order (fl,o,fr),
resulting in a 120×40×40 volume. This concatenation helps the network compare local geometries of
objects and fingers by positioning the volumes as they would appear spatially in a grasp.

The Fitness network contains 3D convolution layers with residual connections [41] for down-sampling
followed by fully-connected layers. Each layer is followed by batch normalization and leaky ReLU
activations except the last layer which uses Sigmoid activation. The last layer has m nodes each
corresponding to one design objective Tm. We use the Binary Cross Entropy loss between the estimated
fitness score and the ground truth score T (o,fl,fr) obtained from the simulation:

Lfit=
1

m

m∑
i=1

BCE

(
Fi(o,fl,fr),Ti

)
(1)

Pretraining Fitness Network: Training the Fitness network requires a grasp dataset with datapoints
of input volumetric TSDFs (o,fl,fr) and output simulation grasp scores T (o,fl,fr)∈{0,1}m. To meet
the data requirement of large neural networks, we generate a pretraining grasp dataset containing two
types of fingers and their corresponding grasp scores on target objects:

Imprint fingers: To generate imprint fingers for a given object, a TSDF volume of the object using only
two views along the grasp direction is negated and split along the middle. The resulting volumes are
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Figure 4: Grasping Data Generation. (a) Schunk WSG50 gripper with original fingers. (b) Template of custom
mount and finger volume bounds used to generate new grippers. (c) Imprint gripper (d) Random ShapeNet objects
used as fingers. (e) 3D TSDF volume used by the network.

then passed to marching cubes to generate left and right imprint fingers (Fig. 4c). Using only two views
ensures that the resulting fingers can close properly (see supplementary material for more details).
Imprint fingers are good task-specific gripper baselines and are popular in industry [42] and academia
[17, 18].

ShapeNet fingers: To encourage our networks to explore the large design space, we use objects from
ShapeNet [37] to increase the diversity of the grasp dataset. Since the fingers have to be significantly
connected to the base, we search for such a plane with a significant base area within the top one-third
volume of the finger and if found, slice and stretch it to the finger bounds (Fig. 4d).

3.3 Efficiently Exploring Design Space with Generator Network

Efficiently navigating through a large space of finger designs to find feasible fingers with a good fitness
score is a challenging problem. Our experiments show that naively optimizing random embeddings for
getting good fitness scores performs poorly (Tab. 1). Intuitively, for a particular object, we want fingers
that cage the object like imprint fingers but at the same time are robust to perturbations in the object
orientation. Hence, having a good Generator network will act as prior knowledge about what fingers
might be good. From each target object o’s TSDF, our Generator network generates a pair of 3D finger
TSDFs fl and fr that maximizes the design objectives and satisfy the manufacturing constraints.

The Generator network G has three components: (1) a 3D shape encoder Eshape that encodes the
target objects’ 3D TSDF volume into a 686-dimensional vector embedding, (2) an embedding network
Gemb that predicts two-finger shape embedding given a target object embedding, and (3) a shape
decoder networkDshape that decodes the fingers’ TSDF volume from the embeddings produced by
Gemb. The encoder and decoder each consist of nine 3D convolution layers for down- and up-sampling
with interleaving batch normalization layers and leaky ReLU activation functions. The embedding
network consists of three fully-connected layers with leaky ReLU activation functions. In the following
paragraphs, we describe how we pretrain the shape encoder, decoder, and embedding network. In
Sec.3.4, we describe how to jointly optimize the G with supervision provided by theF .

Learning Shape Distributions with 3D Auto-Encoder. The goal of theEshape andDshape is to reduce
Gemb’s search space to a low-dimensional [−1,1]686 latent space which represents a high-dimensional
[−1,1]40×40×40 volumetric space. We train a 3D auto-encoder with finger TSDF volumes sampled
from the grasp dataset whose encoder and decoder are Eshape andDshape respectively. Once trained,
both Eshape andDshape are then fixed for the rest of the process. We observed that pretraining Eshape

andDshape greatly increases G’s ability to generate feasible 3D shapes.

Pretraining Generator Embedding Network: To provide the Generator network a good initialization
point for later exploration with Fitness network, the Generator network is pretrained to produce imprint
fingers for a given input object with MSE loss. Our experiment shows that this pre-training helps the
Generator network with convergence during co-training.

3.4 Generator and Fitness Network Co-Training

After pre-training, the Generator network G and Fitness networkF are co-trained for 20 cycles, where
G tries to maximizeF’s fitness score prediction, andF tries to accurately predict grasp scores for a
growing grasp dataset, consisting of both the pretrain grasp dataset and G’s new co-train grasp dataset.
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Grasp Stability Robustness

Succ. S1 S2 S3 S4 avg. −30◦ −20◦ −10◦ 10◦ 20◦ 30◦ avg.

WSG50 25.8 3.3 2.1 2.1 1.9 2.4 12.2 14.3 17.6 17.5 14.6 12.9 14.8
Imprint [42] 78.0 64.9 59.0 57.3 57.8 59.8 66.6 68.9 70.7 70.0 68.7 67.0 68.7

RandEmb+FN 21.3 12.4 6.5 6.8 6.6 8.1 12.7 13.9 16.4 16.2 13.4 11.9 14.1
ImpGN 28.9 13.3 10.4 10.5 10.3 11.1 17.1 20.0 23.2 23.0 19.5 16.3 19.8
Fit2Form/ImpGN 81.8 65.6 54.8 59.0 56.6 59.0 72.0 73.9 76.2 75.1 74.2 73.4 74.1

Fit2Form GS 85.2 64.3 57.0 58.6 53.3 58.3 71.0 75.2 78.5 78.0 74.0 69.7 74.4
Fit2Form GS + R 81.8 62.8 51.9 53.3 50.9 54.7 70.6 72.9 75.5 74.6 71.9 69.5 72.5
Fit2Form GS + S 87.5 70.8 66.0 62.6 64.1 65.9 75.7 78.1 81.4 81.2 78.3 75.3 78.3
Fit2Form 87.6 69.0 61.6 60.5 61.7 63.2 76.1 78.3 81.1 81.1 79.2 76.8 78.8

Table 1: Quantitative Evaluation.

Each co-training cycle consists of three steps: First, 512 target objects are sampled, and a new pair of
fingers are generated using G for each object. The ground truth design object values are computed
using simulation, and these new data points are added to the co-train grasp dataset. Second, we trainF
by sampling batches with 16 data points from the pretrain and co-train grasp dataset each. Batches are
also balanced for the success rate. F is trained withLfit for at least 5 epochs, until it reaches a target
loss of 0.2 or for a maximum of 50 epochs in the current cycle. Finally, we train G using the target
object dataset to maximize F’s predicted fitness score, where G’s loss is Lgen =−F(o,G(o)). This
training proceeds for 5-50 epochs or a target lossLgen of−0.9 is achieved. Here, one epoch is limited
to 500 optimization steps of batch size 32.

This co-training of G and F allows F to adapt its prediction to G’s newly generated fingers, which
might have a very different distribution from the pretrain grasp datasets, and better guide G to produce
better fingers. The mixing of co-train grasp dataset with pretrain grasp datasets allowsF to guide G out
of local optima, beyond fingers that G is currently producing.

4 Evaluation
Data: We trained Fit2Form on a target object dataset sampled from 39 ShapeNet categories, and test
them on 8 unseen ShapeNet object categories. We also include 13 unseen adversarial objects from
Dex-Net 2.0 [3] in the test set. In total, we use 161,804 objects for training and 5,127 objects for
evaluation.

Metrics: As described in Sec 3, we use three design objectives to evaluate the quality of generated
fingers: grasp success, stability under various forces, and robustness to initial object orientation. For all
experiments, we use a top-down grasp, centered around the target object with no rotation along the
z-axis, with 1.0N grasping force. This small grasp force was chosen to increase the task difficulty and
highlight differences between different gripper designs.

Baselines: We compare our algorithm with the following alternative gripper designs: (1) [WSG50] the
original fingers from the WSG50 gripper, (2) [Imprint] the Imprint based grippers (described in Sec.
3.2), To analyze the effectiveness of the various parts of our approach, we also compare our method
with: (3) [RandEmb+FN] Test time optimization of random finger embeddings using the shape decoder
Dshape and Fitness network without the Generator network, (4) [ImpGN] the Generator pretrained
with the imprint grasp dataset only without co-training with Fitness network, (5) [Fit2Form/ImpGN]
Our method without pretraining the Generator on the imprint grasp dataset.

4.1 Experimental Results

Comparison with WSG50 Gripper: The WSG50, which was designed for general purpose ma-
nipulation, has special geometry on its fingertips to increase friction and contact surface for better
grasping. Tab. 1 shows that WSG50 fingers performs much worse than Fit2Form fingers (-61.8% in
grasp success), highlighting the benefits of using task-specific gripper designs when the target object
mass to grasp force ratio is high.

Comparison with Imprint Gripper: Imprint grippers are designed to achieve perfect form closure
for the target object which maximizes grasp stability. However, we observed that premature contact
with target objects often prevent imprint fingers from properly closing around the objects, leading to
misaligned and failed grasps (e.g., Fig. 5 a,f,g,h). Naturally, this sensitivity to object poses results in
lower robustness scores compared to Fit2Form grippers (-10.1% in robustness).
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Figure 5: Qualitative Results. We compare with grippers generated using the Imprint baseline and highlight four
typical strategies used by Fit2Form: relaxed imprint (a,b), single-sided scoop (c,d), double-sided scoop (e,f), and
dynamic hook (g,h). The green/red string above each gripper indicates success/failure of grasp success, 4 stability,
and 6 robustness metrics. Objects in b,e,g,h adversarial objects from DexNet 2.0, the rest are from ShapeNet.

Effects of using a Generator Network: In [RandEmb+FN], random finger embeddings are optimized
for 200 steps to maximize Fitness network’s grasp score prediction for a given o. Despite having access
to the same Fitness network, [RandEmb+FN] performs much worse (−66.3% in grasp success) than
Fit2Form’s Generator network. This demonstrates that a good Fitness network alone can lead to fingers
stuck in local optima, while a Generator network trained with Fit2Form’s pipeline can efficiently
explore the unconstrained 3D design space to produce high performance and feasible fingers.

Effect of co-training with Fitness Network and pretraining with Imprints: In this experiment, we
investigate the effect of the Fitness network’s supervision. Without the co-training phase with the
Fitness Network, [ImpGN] performs significantly worse than our approach (−58.7% in grasp success).
In contrast, a randomly initialized Generator Network with supervision from the Fitness network
resulted in only a small drop in performance (−5.8% in grasp success). Thus, while a good Generator
Network initialization helps, the Fitness Network’s supervision during the co-training phase was more
crucial to the final performance.
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Figure 6: 3D printed Fit2Form gripper fingers. We evaluated the manufactured Fit2Form finger’s success,
stability, and robustness, and observed that all 4 strategies discovered in simulation were also present in the
real-world experiments.

Effect of objective functions: We explore optimizing Fit2Form with only grasp success [Fit2Form
GS], grasp success and robustness [Fit2Form GS + R], grasp success and stability [Fit2Form GS +
S], and all objectives [Fit2Form] by evaluating their performance after 18 cotrained cycles. Table 1
show that stability is an important optimization metric, as removing it in [Fit2Form GS + R] results in
−8.5% in stability and−6.3% in robustness compared to optimizing all metrics [Fit2Form]. In contrast,
robustness is not required to perform well, as [Fit2Form GS + S]’s scores are close to [Fit2Form].

What does Fit2Form learn? Fig. 5 shows examples of generated finger shapes for different target
objects. By inspecting the qualitative results, we found that Fit2Form frequently use the following
strategies to improve its grasping quality. Relaxed imprint finger: the generated fingers form a closure
around the object in a similar fashion to imprint fingers, with some extra space for better robustness.
This strategy is particularly beneficial when the target object has a complicated thin structure (Fig. 5
a,b), where a precise imprint geometry can fail due to subtle misalignment. Single-sided scooping: in
many cases, one finger is generated with a simple flat surface and the other finger is generated with a
cage-like shape. The flat surface pushes the object into the other fingers cavity and results in a more
stable position (Fig. 5 c,d). Double-sided scooping: similar to single-sided scooping but both fingers
are generated with cage shapes, which the algorithm prefers over single-sided scooping for objects
with larger volumes (Fig. 5 e,f). Dynamic hook: instead of directly creating a form closure around the
target object, the gripper hooks target object’s protruding structures during the lifting process (Fig. 5
g,h). Please see the supplementary material for additional results.

Manufacturing generated gripper. To demonstrate feasibility, Fit2Form’s gripper fingers were 3D
printed along with their corresponding grasp objects (Fig. 6) using the Sindoh 3DWox 1. For each set,
we mount our gripper fingers onto the WSG50 gripper with a custom mount and position the grasp
object into its rest pose with the lowered gripper as reference. To evaluate grasp success, we execute a
top-down grasp with 5N of force (the minimum force limit of the gripper) followed by a 15cm vertical
lift. Upon a successful grasp, we test for stability by shaking the gripper with the object along the X and
Y axes, then poking the object with roughly 30N of force. Finally, we test for robustness rotating the
gripper along the z-axis by the specified angle before executing a grasp and measuring grasp success.
We observed that the 4 strategies Fit2Form discovered in simulation were also present in the real-world
experiments. Qualitative results for the grasp can be found at https://fit2form.cs.columbia.edu/.

5 Conclusion and Future Directions
In this paper, we propose Fit2Form, a novel 3D Generative Design framework that leverages data-driven
algorithms to automate the robot hardware design process. Experiments demonstrate that the proposed
algorithm can generate finger shapes for a target object that achieves more stable and robust grasps.
However, since our algorithm focuses on geometry optimization, it does not optimize for the gripper
strength, kinematic structure and grasping policy. The algorithm also does not explicitly reason about
objects’ physical material properties such as their friction and deformation. As future directions, it will
be interesting to investigate the joint optimization of gripper geometry, kinematic structure, material,
and grasping policy. We would also like to study how to apply this generative design approach to other
design tasks beyond robot gripper such as furniture or tool design, where the object’s functionality is
strongly influenced by their 3D geometry.
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Object properties Postion Perturbation

Original m 100g m 150g µ 0.1 µ 0.05 x±0.5, y±1cm x±0.5, y±2cm

WSG50 25.8 2.2 1.5 6.7 2.0 24.8 21.8
Imprint 78 57.9 49.4 68.4 63.9 75.6 72.8
Fit2Form 88.9 63.9 51.6 76.3 73.0 86.3 83.6

Table 2: Testing our approach and baselines with uncertainties in various system parameters

A Justification on Sim2Real transfer

We have considered the following aspects to ensure that the algorithm can be applied to the real-world
robotics systems:

Manufacturing constraints: In our experiments, we give a score of zero to the generated fingers
which are not feasible, i.e., the largest connected component of the volume is not significantly connected
to the base. We were able to get 100% feasible fingers on the test set, showing that all the fingers can be
manufactured.

Robustness against perturbations to object orientation One of the major problems in Sim2Real
transfer is the imprecise placement of objects. We specifically included robustness to perturbations in
object orientation as one of our design objectives (in paper Sec. 3). We have seen in experiments that
the generated fingers can achieve an average robustness of 78.8% (in paper Tab. 1), showing that the
generated fingers are robust against perturbations in object orientation.

Stable against the application of external forces Another major challenge in Sim2Real transfer is
the presence of unwanted forces on the object after it is grasped. These forces may arise due to jerky
movement or unwanted shakes of the robotic arm carrying gripper or due to collision with other tools
or objects in the environment. To mitigate this, we have specifically included force stability as one of
our design objectives (in paper Sec. 3) where we apply external forces in the lower hemisphere of the
object after it is grasped. We have seen in experiments that the generated fingers have average stability
of 63.2%, which demonstrates that Fit2Form’s grippers are likely to maintain its grasp through such
unexpected external forces.

Generating target object representation using accurate depth images: Input to our approach are
TSDF volumes of the target objects, which are computed from multi-view depth images instead of
directly voxelizing the 3D object meshes. This procedure closely resembles the sensory input that
can be obtained by the real-world system (e.g., RGB-D cameras like Intel RealSense). Therefore, our
approach is likely to succeed with real-world data.

Simulation of dynamic grasping process: We simulate the entire dynamic grasping process with
contact simulation using the PyBullet physics engine [38] for our experiments, which allows the target
to be moved as the gripper closes, during lifting and application of external forces. This dynamic
interaction in this simulation more closely mimics the real world in comparison to other grasp synthesis
works [28] which assumes the object to be static during grasp. We believe that it adds significantly to
the chances of a successful Sim2Real transfer.

Testing our approach and baselines with uncertainties in various system parameters: Apart
from the above considerations in our approach, we have also tested our approach by varying system
parameters which are most likely to have uncertainties in the real world. They are: (a) [Original]
original parameters, i.e., object mass 50g, object lateral friction 0.2, object placement x 0, y 0 cm, (b)
[m 100g] object mass 100g, (c) [m 150g] object mass 150g, (d) [µ 0.1] object lateral friction 0.1 (e)
[µ 0.05] object lateral friction 0.05 (f) [ x±0.5, y±1cm] object position will be uniformly selected
from x∈±[0.1,0.5], y∈±[0.1,1] cm. Here x represents the gripper closing direction and have small
uncertainty (0.5 cm) as compared to the y direction (1 cm) because a larger deviation in x almost always
causes the object to collide with gripper during the gripper’s downward motion. (g) [ x±0.5, y±2cm]
object position will be uniformly selected from x∈±[0.1,0.5], y∈±[0.1,2] cm.

As we can see from Tab. 2, Fit2Form can outperform all baselines even with strong perturbations to the
desired system parameters.
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B Additional Details

B.1 Imprint-based gripper

(a)

(b)

Figure 7: Imprint fingers (a) Naively inverting the ob-
ject geometry (b) Inverting the object geometry created
by only two views along the grasp direction.

An intuitive way to create an imprint gripper for
a given object is to use the profile created by the
inverse of object geometry as fingers. Using the
inverse object geometry provides maximum con-
tact area and tightly cages the object. However,
naively using the inverse object volume can cause
the gripper to collide with the object prematurely
and prevent it from tightly closing in on the object
(Fig. 7a). To generate imprint fingers for a given ob-
ject, a TSDF volume of the object is created using
only two views along the grasp direction. This vol-
ume is then negated and split along the mid-plane
to give left and right imprint fingers. Using only
two views mitigates the problem shown in Fig. 7b
and ensures that the resulting fingers can close properly.

B.2 Network architecture

In the following description, all convolution layers C and convolution transpose layers CT are
represented by C(n,k,s), where n is the number of kernels, k is the kernel size, and s is the stride.
FC(n) represents fully connected layer with n output nodes. AllC,CT , FC layers are followed by
Batch Normalization [43] and Leaky ReLU activation, unless another activation is explicitly mentioned
right after the layer. For the Generator network, padding size is always zero for bothC andCT layers.
Following is the description for three components of the Generator network:

Shape Encoder: C(8,3,1)− C(16,3,1)− C(32,3,1)− C(64,3,1)− C(64,3,2)− C(32,3,1)−
C(16,3,1)−C(8,3,1)−C(4,3,1)
Shape Decoder: FC(1024)−FC(2048)−FC(4096)−CT (64,3,1)−CT (64,3,1)−CT (32,3,3)−
CT (16,3,1)−CT (8,3,1)−CT (4,3,1)−CT (2,3,1)−CT (1,3,1)−CT (1,3,1)−CT (1,3,1)−
CT (1,3,1)−TanH
Generator Embedding network: FC(2096)−FC(4096)−FC(1372)−TanH
Apart from convolution layers, the Fitness network also uses residual blocks. A residual block is
represented byR(N) and is made up of C(N,3,1)−ReLU−C(N,3,1)−ReLU where the input is
added to the output of the second 3D convolution layer just before applying the ReLU activation [? ].
AllC,R layers in the Fitness Network has padding size 1 except the first layer for which padding of
size 2 is used.

Fitness network: C(32,5,2) − R(32) − R(32) − C(64,3,2) − R(64) − R(64) − C(128,3,2) −
R(128)−B(256,3,2)−R(256)−C(512,3,2)−R(512)−C(1024,3,2)−R(1024)−C(1024,3,2)−
FC(512)−FC(256)−FC(128)−FC(11)−Sigmoid
The Fitness network and the Generator network are both optimized using the ADAM optimizer with
weight decay 10−5 and learning rate 10−4 in all phases of the training.
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