

1 **TITLE:**

2 Microfluidic Fabrication Techniques for High-Pressure Testing of Microscale Supercritical CO₂
3 Foam Transport in Fractured Unconventional Reservoirs

4

5 **AUTHORS AND AFFILIATIONS:**

6 Hooman Hosseini¹, Feng Guo², Reza Barati Ghahfarokhi¹, Saman A. Aryana²

7

8 ¹Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
9 66045, USA

10 ²Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA

11

12 **Email addresses of co-authors:**

13 Hooman Hosseini (h.hosseini@ku.edu)

14 Feng Guo (fguo@uwyo.edu)

15

16 **Corresponding authors:**

17 Saman A. Aryana (saryana@uwyo.edu)

18 Reza Barati Ghahfarokhi (reza.barati@ku.edu)

19

20 **KEYWORDS:**

21 scCO₂ Foam, Fractured Reservoirs, Unconventional Reservoirs, Shale, Microfluidics,
22 Photolithography, Wet Etching, Thermal Bonding, Selective Laser-induced Etching

23

24 **SUMMARY:**

25 This paper describes a protocol along with a comparative study of two microfluidic fabrication
26 techniques, namely photolithography/wet-etching/thermal-bonding and Selective Laser-induced
27 Etching (SLE), that are suitable for high-pressure conditions. These techniques constitute
28 enabling platforms for direct observation of fluid flow in surrogate permeable media and
29 fractured systems under reservoir conditions.

30

31 **ABSTRACT:**

32 Pressure limitations of many microfluidic platforms have been a significant challenge in
33 microfluidic experimental studies of fractured media. As a result, these platforms have not been
34 fully exploited for direct observation of high-pressure transport in fractures. This work introduces
35 microfluidic platforms that enable direct observation of multiphase flow in devices featuring
36 surrogate permeable media and fractured systems. Such platforms provide a pathway to address
37 important and timely questions such as those related to CO₂ capture, utilization and storage. This
38 work provides a detailed description of the fabrication techniques and an experimental setup
39 that may serve to analyze the behavior of supercritical CO₂ (scCO₂) foam, its structure and
40 stability. Such studies provide important insights regarding enhanced oil recovery processes and
41 the role of hydraulic fractures in resource recovery from unconventional reservoirs. This work
42 presents a comparative study of microfluidic devices developed using two different techniques:
43 photolithography/wet-etching/thermal-bonding versus Selective Laser-induced Etching. Both
44 techniques result in devices that are chemically and physically resistant and tolerant of high

45 pressure and temperature conditions that correspond to subsurface systems of interest. Both
46 techniques provide pathways to high-precision etched microchannels and capable lab-on-chip
47 devices. Photolithography/wet-etching, however, enables fabrication of complex channel
48 networks with complex geometries, which would be a challenging task for laser etching
49 techniques. This work summarizes a step-by-step photolithography, wet-etching and glass
50 thermal-bonding protocol and, presents representative observations of foam transport with
51 relevance to oil recovery from unconventional tight and shale formations. Finally, this work
52 describes the use of a high-resolution monochromatic sensor to observe scCO₂ foam behavior
53 where the entirety of the permeable medium is observed simultaneously while preserving the
54 resolution needed to resolve features as small as 10 μm.

55

56 INTRODUCTION:

57 Hydraulic fracturing has been used for quite some time as a means to stimulate flow especially
58 in tight formations¹. Large amounts of water needed in hydraulic fracturing are compounded
59 with environmental factors, water-availability issues², formation damage³, cost⁴ and seismic
60 effects⁵. As a result, interest in alternate fracturing methods such as waterless fracturing and the
61 use of foams is on the rise. Alternative methods may provide important benefits such as
62 reduction in water use⁶, compatibility with water sensitive formations⁷, minimal to no plugging
63 of the formation⁸, high apparent viscosity of the fracturing fluids⁹, recyclability¹⁰, ease of clean-
64 up and proppant carrying capability⁶. CO₂ foam is a potential waterless fracturing fluid that
65 contributes to more efficient production of petroleum fluids and improved CO₂ storage capacities
66 in the subsurface with a potentially smaller environmental footprint compared to conventional
67 fracturing techniques^{6,7,11}.

68

69 Under optimal conditions, supercritical CO₂ foam (scCO₂ foam) at pressures beyond the minimum
70 miscibility pressure (MMP) of a given reservoir provides a multi-contact miscible system that is
71 able to direct flow into less permeable parts of the formation, thereby improving sweep
72 efficiency and recovery of the resources^{12,13}. scCO₂ delivers gas like diffusivity and liquid like
73 density¹⁴ and is well suited for subsurface applications, such as oil recovery and carbon capture,
74 utilization and storage (CCUS)¹³. The presence of the constituents of foam in the subsurface helps
75 reduce the risk of leakage in long-term storage of CO₂¹⁵. Moreover, coupled-compressibility-
76 thermal shock effects of scCO₂ foam systems may serve as effective fracturing systems¹¹.
77 Properties of CO₂ foam systems for subsurface applications have been studied extensively at
78 various scales, such as characterization of its stability and viscosity in sand-pack systems and its
79 effectiveness in displacement processes^{3,6,12,15-17}. Fracture level foam dynamics and its
80 interactions with porous media are less studied aspects that are directly relevant to the use of
81 foam in tight and fractured formations.

82

83 Microfluidic platforms enable direct visualization and quantification of the relevant microscale
84 processes. These platforms provide real-time control of the hydrodynamics and chemical
85 reactions to study pore-scale phenomena alongside recovery considerations¹. Foam generation,
86 propagation, transport and dynamics may be visualized in microfluidic devices emulating
87 fractured systems and fracture-microcrack-matrix conductive pathways relevant to oil recovery
88 from tight formations. Fluid exchange between fracture and matrix is directly expressed in

89 accordance with the geometry¹⁸, thereby highlighting the importance of simplistic and realistic
90 representations. A number of relevant microfluidic platforms have been developed over the
91 years to study various processes. For example, Tiggelaar and coworkers discuss fabrication and
92 high-pressure testing of glass microreactor devices through in-plane connection of fibers to test
93 flow through glass capillaries connected to the microreactors¹⁹. They present their findings
94 related to bond inspection, pressure tests and in-situ reaction monitoring by ¹H NMR
95 spectroscopy. As such, their platform may not be optimal for relatively large injection rates, pre-
96 generation of multiphase fluid systems for in situ visualization of complex fluids in permeable
97 media. Marre and coworkers discuss the use of a glass microreactor to investigate high-pressure
98 chemistry and supercritical fluid processes²⁰. They include results as a finite-element simulation
99 of stress distribution to explore the mechanical behavior of modular devices under the load. They
100 use nonpermanent modular connections for interchangeable microreactor fabrication, and the
101 silicon/Pyrex microfluidic devices are not transparent; these devices are suited for kinematic
102 study, synthesis and production in chemical reaction engineering where visualization is not a
103 primary concern. The lack of transparency makes this platform unsuitable for direct, in situ
104 visualization of complex fluids in surrogate media. Paydar and coworkers present a novel way to
105 prototype modular microfluidics using 3D printing²¹. This approach does not seem well-suited for
106 high-pressure applications since it uses a photocurable polymer and the devices are able to
107 withstand only up to 0.4 MPa. Most microfluidic experimental studies related to transport in
108 fractured systems reported in literature focus on ambient temperature and relatively low-
109 pressure conditions¹. There have been several studies with a focus on direct observation of
110 microfluidic systems that mimic subsurface conditions. For example, Jimenez-Martinez and co-
111 workers introduce two studies on critical pore-scale flow and transport mechanisms in a complex
112 network of fractures and matrix^{22,23}. The authors study three-phase systems using microfluidics
113 under reservoir conditions (8.3 MPa and 45 °C) for production efficiency; they assess scCO₂ usage
114 for re-stimulation where the leftover brine from a prior fracturing is immiscible with CO₂ and the
115 residual hydrocarbon²³. Oil-wet silicon microfluidic devices have relevance to mixing of oil-brine-
116 scCO₂ in Enhanced Oil Recovery (EOR) applications; however, this work does not directly address
117 pore-scale dynamics in fractures. Another example is work by Rognmo et al. who study an
118 upscaling approach for high-pressure, in situ CO₂ foam generation²⁴. Most of the reports in
119 literature that leverage microfabrication are concerned with CO₂-EOR and they often do not
120 include important fabrication details. To the best of the authors' knowledge, a systematic
121 protocol for fabrication of high-pressure capable devices for fractured formations is currently
122 missing from the literature.

123
124 This work presents a microfluidic platform that enables the study of scCO₂ foam structures,
125 bubble shapes, sizes and distribution, lamella stability in the presence of oil for EOR and hydraulic
126 fracturing and aquifer remediation applications. The design and fabrication of microfluidic
127 devices using optical lithography and Selective Laser-induced Etching²⁹ (SLE) are discussed.
128 Additionally, this work describes fracture patterns that are intended to simulate the transport of
129 fluids in fractured tight formations. Simulated pathways may range from simplified patterns to
130 complex microcracks based on tomography data or other methods that provide information
131 regarding realistic fracture geometries. The protocol describes step-by-step fabrication
132 instructions for glass microfluidic devices using photolithography, wet-etching and thermal

133 bonding. An in-house developed collimated Ultra-Violet (UV) light source is used to transfer the
134 desired geometric patterns onto a thin layer of photoresist, which is ultimately transferred to the
135 glass substrate using a wet-etching process. As part of quality assurance, the etched patterns are
136 characterized using confocal microscopy. As an alternative to photolithography/wet-etching, an
137 SLE technique is employed to create a microfluidic device and a comparative analysis of the
138 platforms is presented. The setup for flow experiments comprise gas cylinders and pumps,
139 pressure controllers and transducers, fluid mixers and accumulators, microfluidic devices, high-
140 pressure capable stainless-steel holders along with a high-resolution camera and an illumination
141 system. Finally, representative samples of observations from flow experiments are presented.
142

143 **PROTOCOL:**

144
145 CAUTION: This protocol involves handling a high-pressure setup, a high-temperature furnace,
146 hazardous chemicals, and UV light. Please read all relevant material safety data sheets carefully
147 and follow chemical safety guidelines. Review pressure testing (hydrostatic and pneumatic)
148 safety guidelines including required training, safe operation of all equipment, associated hazards,
149 emergency contacts, etc. before starting the injection process.
150

151 **1. Design geometrical patterns**

152
153 1.1. Design a photomask comprising geometrical features and flow pathways of interest (**Figures**
154 **1 and S1**).

155
156 1.2. Define the bounding box (surface area of the device) to identify the area of the substrate
157 and confine the design to the dimensions of the desired medium.
158

159 1.3. Design inlet/outlet ports. Choose port dimensions (e.g., 4 mm in diameter in this case) to
160 achieve a relatively uniform distribution of foam prior to entering the medium (**Figure 1**).
161

162 1.4. Prepare a photomask of the designed geometrical pattern by printing the design onto a sheet
163 of transparent film or a glass substrate.
164

165 1.4.1. Extrude the two-dimensional design to the third dimension and incorporate inlet and
166 outlet ports (for use in SLE).
167

168 NOTE: The SLE technique requires a three-dimensional drawing (**Figure 2**).
169

170 **2. Transfer the geometric patterns to the glass substrate using photolithography**
171

172 NOTE: Etchants and piranha solutions must be handled with extreme care. Use of personal
173 protective equipment including facepiece reusable respirator, goggles, gloves and use of
174 acid/corrosion resistive tweezers (**Table of Materials**) is recommended.
175

176 2.1. Prepare the solutions needed in the wet-etching process by following these steps (also see
177 the Electronic Supporting Information provided as **Supplementary File 1**).
178

179 2.1.1. Pour an adequate amount of chrome etchant solution in a beaker such that the substrate
180 can be submerged in the etchant. Heat up the fluid to approximately 40 °C.
181

182 2.1.2. Prepare a solution of developer (**Table of Materials**) in deionized water (DI water) with a
183 volumetric ratio of 1:8 such that the substrate is able to be fully submerge in the mixture.
184

185 2.2. Imprint the geometrical pattern on a borosilicate substrate coated with a layer of chromium
186 and a layer of photoresist using UV irradiation.
187

188 2.2.1. Using gloved hands, place the mask (glass substrate or the transparent film bearing the
189 geometrical pattern) directly on the side of the borosilicate substrate that is covered with chrome
190 and photoresist.
191

192 2.2.2. Place the photomask and substrate combination under the UV light with the photomask
193 facing the source. This work uses UV light with a wavelength of 365 nm (to match the peak
194 sensitivity of the photoresist) and an average intensity of 4.95 mW/cm².
195

196 2.2.3. Transfer the geometrical pattern into the layer of photoresist by exposing the stack of the
197 substrate and the mask to UV light.
198

199 NOTE: Optimum exposure time is a function of the thickness of the photoresist layer and the
200 strength of UV radiation. Photoresist is sensitive to light and the entire process of imprinting the
201 pattern must be performed in a dark room equipped with yellow lighting.
202

203 2.3. Develop the photoresist.
204

205 2.3.1. Remove the photomask and substrate stack from the UV stage using gloved hands.
206

207 2.3.2. Remove the photomask and submerge the substrate in the developer solution for
208 approximately 40 s, thereby transferring the pattern to the photoresist.
209

210 2.3.3. Cascade-rinse the substrate by flowing DI water from the top of the substrate and over all
211 its surfaces a minimum of three times and allow the substrate to dry.
212

213 2.4. Etch the pattern in the chrome layer.
214

215 2.4.1. Submerge the substrate in a chrome etchant heated to about 40 °C for approximately 40
216 s, thereby transferring the pattern from the photoresist to the chrome layer.
217

218 2.4.2. Remove the substrate from the solution, cascade-rinse the substrate using DI water and
219 allow it to dry.

220
221 2.5. Etch the pattern in the borosilicate substrate.
222 NOTE: A buffered etchant (**Table of Materials**) is used to transfer the geometrical pattern to the
223 glass substrate. Prior to the use of the buffered etchant, the backside of the substrate is coated
224 with a layer of photoresist to shield it from the etchant. The thickness of this protective layer is
225 immaterial to the overall fabrication process.
226
227 2.5.1. Using a brush, apply several layers of hexamethyldisilazane (HMDS) on the uncovered face
228 of the substrate and allow it to dry.
229
230 NOTE: HMDS helps promote adhesion of photoresist to the surface of the borosilicate substrate.
231
232 2.5.2. Apply one layer of photoresist on top of the primer. Place the substrate in an oven at 60–
233 90 °C for 30–40 min.
234
235 2.5.3. Pour an adequate amount of the etchant into a plastic container and fully submerge the
236 substrate in the etchant.
237
238 NOTE: The etching rate is influenced by the concentration, temperature and duration of
239 exposure. The buffered etchant used in this work etches an average of 1–10 nm/min.
240
241 2.5.4. Leave the patterned substrate in the etchant solution for a predetermined amount of time
242 based on the desired channel depths.
243
244 NOTE: Etching time may be reduced by intermittent bath sonication of the solution.
245
246 2.5.5. Remove the substrate from the etchant using a solvent-resistant pair of tweezers and
247 cascade-rinse the substrate using DI water.
248
249 2.5.6. Characterize the etched features on the substrate to ensure desired depths have been
250 achieved.
251
252 NOTE: This characterization may be done using a laser scanning confocal microscope (**Figure 3**).
253 In this work, a x10 magnification is used for data acquisition. Once channel depths are
254 satisfactory, move to the cleaning and bonding stage.
255
256 **3. Clean and bond**
257
258 3.1. Remove photoresist and chrome layers.
259
260 3.1.1. Remove the photoresist from the substrate by exposing the substrate to an organic
261 solvent, such as N-Methyl-2-pyrrolidone (NMP) solution heated using a hot plate under a hood
262 to approximately 65 °C for approximately 30 min.
263

264 3.1.2. Cascade-rinse the substrate with acetone (ACS grade), followed by ethanol (ACS grade) and
265 DI water.

266

267 3.1.3. Place the cleaned substrate in chrome etchant heated using a hot plate under a hood to
268 approximately 40 °C for about 1 min, thus removing the chrome layer from the substrate.

269

270 3.1.4. Once the substrate is free from chrome and photoresist, characterize the channel depths
271 using laser scanning confocal microscopy. This work uses a x10 magnification for data acquisition
272 (Figure 4).

273

274 3.2. Prepare the cover plate and the etched substrate for bonding.

275

276 3.2.1. Mark the positions of the inlet/out holes on a blank borosilicate substrate (cover plate) by
277 aligning the cover plate against the etched substrate.

278

279 3.2.2. Blast through-holes in the marked locations using a micro abrasive sandblaster and 50-
280 mirometer aluminum-oxide as the sandblasting medium.

281

282 NOTE: Alternatively, the ports may be created using a mechanical drill.

283

284 3.2.3. Cascade rinse both the etched substrate and the cover plate with DI water.

285

286 3.2.4. Perform an RCA wafer cleaning procedure to remove contaminants prior to bonding.
287 Perform the wafer cleaning steps under a hood due to the volatility of the solutions involved in
288 the process.

289

290 3.2.5. Bring a 1:4 by volume H₂O₂:H₂SO₄ Piranha solution to a boil and submerge the substrate
291 and the cover plate in the solution for 10 min under a hood.

292

293 3.2.6. Cascade rinse the substrate and the cover plate with DI water.

294

295 3.2.7. Submerge the substrate and the cover plate in the buffered etchant for 30–40 s.

296

297 3.2.8. Cascade rinse the substrate and the cover plate with DI water.

298

299 3.2.9. Submerge the substrate and the cover plate for 10 min in a 6:1:1 by volume DI
300 water:H₂O₂:HCl solution that is heated to approximately 75 °C.

301

302 NOTE: Etching and bonding are preferably performed in a cleanroom. If a cleanroom is not
303 available, performing the following steps in a dust-free environment is recommended. In this
304 work, steps 3.2.9–3.2.12 are performed in a glovebox to minimize the possibility of
305 contamination of the substrates.

306

307 3.2.10. Press the substrate and the cover plate tightly against each other while submerged.

308
309 3.2.11. Remove the substrate and the cover plate from DI water:H₂O₂:HCl solution.

310
311 3.2.12. Cascade rinse with DI water and submerge in DI water.

312
313 3.2.13. Make sure the substrate and the cover plate are firmly attached together and carefully
314 remove the two while pressed against each other from DI water.

315
316 3.3. Bond the substrates thermally.

317 3.3.1. Place the stacked substrates (the etched substrate and the cover plate) between two
318 smooth, ½" thick, glass-ceramic plates for bonding.

319
320 3.3.2. Place the glass-ceramic plates between two metallic plates made of Alloy X (**Table of**
321 **Materials**), which is able to withstand the required temperatures without significant distortion.

322
323 3.3.3. Center the glass wafers in the ceramic-metallic holder.

324
325 NOTE: This work uses ceramic plates that are 10 cm x 10 cm x 1.52 cm in thickness. The stacked
326 setup is secured using 1/4" bolts and nuts (**Figure 5**).

327
328 3.3.4. Hand-tighten the nuts and place the holder in a vacuum chamber for 60 min at
329 approximately 100 °C.

330
331 3.3.5. Remove the holder from the chamber and carefully tighten the nuts using approximately
332 10 lb-in of torque.

333
334 3.3.6. Place the holder inside a furnace and execute the following heating program. Raise the
335 temperature at 1 °C/min up to 660 °C; keep the temperature constant at 660 °C for 6 h followed
336 by a cooling step at approximately 1 °C/min back down to room temperature.

337
338 3.3.7. Remove the thermally bonded microfluidic device, rinse it with DI water, place it in HCl
339 (12.1 mol/L) and bath sonicate (40 kHz at 100 W of power) the solution for one hour (**Figure 6**).

340
341 **4. Fabricate laser-etched glass microfluidic devices**

342
343 NOTE: Device fabrication was performed by a third-party glass 3D printing service (**Table of**
344 **Materials**) via an SLE process and using a fused silica substrate as the precursor.

345
346 4.1. Write the desired pattern in a fused silica substrate using a linearly polarized laser beam
347 oriented perpendicular to the stage generated via a femtosecond laser source with a pulse
348 duration of 0.5 ns, a repetition rate of 50 kHz, pulse energy of 400 nJ, and a wavelength of 1.06
349 μm.

350

351 4.2. Remove the glass from the written pattern inside the fused silica substrate using a KOH
352 solution (32 wt%) at 85 °C with ultrasound sonication (**Figure 7**).

353

354 **5. Perform high-pressure testing**

355

356 5.1. Saturate the microfluidic device with the resident fluid (e.g., DI water, surfactant solution,
357 oil, etc. depending on the type of experiment) using a syringe pump.

358

359 5.2. Prepare foam-generating fluids and related instruments.

360

361 5.2.1. Prepare the brine solution (resident fluid) with the desired salinity and dissolve the
362 surfactant (such as lauramidopropyl betaine and alpha-olefin-sulfonate) with the desired
363 concentration (according to surfactant's critical micelle concentration) in the brine.

364

365 5.2.2. **Fill the tanks of the CO₂ and water pumps with adequate amount of fluids per the**
366 **experiment at room temperature.**

367

368 5.2.3. **Fill the brine accumulator and flow lines with the surfactant solution** using a syringe. This
369 work uses an accumulator with a capacity of 40 ml.

370

371 5.2.4. Rinse the brine line with the brine solution.

372

373 5.2.5. Rinse the line connecting the accumulator to the device and the outlet lines with the
374 resident fluid (the brine solution in this case).

375

376 5.2.6. **Place the pre-saturated microfluidic device in a pressure-resistant holder and connect the**
377 **inlet/outlet ports to the appropriate lines using 0.010" inner diameter tubing (**Figures 8 and S5**).**

378

379 5.2.7. **Increase the temperature of the circulating bath, which controls the temperature of the**
380 **brine and CO₂ lines, to the desired temperature** (e.g., 40 °C here (**Figure 9**)).

381

382 5.2.8. Check all the lines to ensure the integrity of the setup prior to injection.

383

384 5.3. Generate the foam.

385

386 5.3.1. Begin injecting the brine at a rate of 0.5 mL/min and check the flow of surfactant solution
387 into the device and the backpressure line.

388

389 5.3.2. **Increase the backpressure and brine-pump pressure simultaneously in gradual steps (~**
390 **0.006 MPa/s) while maintaining continuous flow from the outlet of the backpressure regulator**
391 **(BPR). Increase the pressure up to ~7.38 MPa (minimum required scCO₂ pressure) and stop the**
392 **pumps.**

393

394 5.3.3. **Increase the CO₂ line pressure up to a pressure above 7.38 MPa (minimum scCO₂ pressure).**

395
396 5.3.4. Open the CO₂ valve and allow the scCO₂ mixed with the high-pressure surfactant solution
397 to flow through an inline mixer to generate foam.
398
399 5.3.5. Wait until flow is fully developed inside the device and the channels are saturated. Monitor
400 the outlet for the onset of foam generation.
401
402 NOTE: Auxiliary ports may be used to help pre-saturate the medium fully with the resident fluid
403 (**Figure 1**). Inconsistencies in the rate of pressure build-up and sudden increases in BPR may lead
404 to breakage (**Figure 10**). Fluid pressures and backpressure must be raised gradually to minimize
405 the risk of damage to the device.
406
407 5.4. Perform real-time imaging and data analysis.
408
409 5.4.1. Turn on the camera to capture detailed images of flow inside the channels. This work uses
410 a camera featuring a 60 megapixel, monochromatic, full-frame sensor
411
412 5.4.2. Launch the dedicated shutter control software (**Table of Materials**).
413
414 5.4.3. Select a shutter speed of 1/60, a focal ratio (f-number) of f/8.0, and select the appropriate
415 lens.
416
417 5.4.4. Launch the dedicated camera software (**Table of Materials**).
418
419 5.4.5. Select the camera, the desired format (e.g., IIQL) and an ISO setting of 200 in the pulldown
420 menu under the “CAMERA” setting of the software.
421
422 5.4.6. Adjust the working distance of the camera to the medium as needed to focus on the
423 medium.
424
425 5.4.7. Capture images at prescribed time-intervals by pressing the **capture** button in the
426 software.
427
428 5.5. Depressurize the system back to ambient conditions.
429
430 5.5.1. Stop injection (gas and liquid pumps), close the CO₂ and brine pump inlets, open the rest
431 of the line valves and turn off the heaters.
432
433 5.5.2. Decrease the backpressure gradually (e.g., at a rate of 0.007 MPa/s) until the system
434 reaches ambient pressure conditions. Decrease the brine and CO₂ pump pressures separately.
435
436 NOTE: Decreasing the scCO₂ pressure may result in inconsistent or turbulent BPR outflow,
437 therefore the pressure drawdown must be executed with requisite care.
438

439 5.6. Clean the microfluidic device thoroughly after each experiment as needed by flowing the
440 following sequence of solutions through the medium: isopropanol/ethanol/water (1:1:1), 2 M
441 HCl solution, DI water, a basic solution (DI water/NH₄OH/H₂O₂ at 5:5:1) and DI water.

442

443 5.7. Post-process collected images.

444

445 5.7.1. Isolate the pore scape by excluding the background from the images.

446

447 5.7.2. Correct minor misalignments by performing perspective transformation and implementing
448 a local thresholding strategy as needed to account for non-uniform illumination²⁸.

449

450 5.7.3. Calculate geometrical and statistical parameters relevant to the experiment such as
451 average bubble size, bubble size distribution and bubble shape for each foam microstructural
452 images in the channel.

453

454 **REPRESENTATIVE RESULTS:**

455 This section presents examples of physical observations from scCO₂ foam flow through a main
456 fracture connected to array of micro-cracks. A glass microfluidic device made via
457 photolithography or SLE is placed inside a holder and in the field of view of a camera featuring a
458 60 megapixel, monochromatic, full-frame sensor. **Figure 11** illustrates the process of fabrication
459 microfluidic devices and their placement in the experimental setup. **Figure 12** is illustration of
460 CO₂ foam transport and stability in the UV-lithography microfluidic device (4 MPa and 40 °C)
461 during the first 20 min of generation/isolation. The multiphase moved across the
462 fracture/microcracks and foam was generated through the microfractures. **Figure 13** shows
463 scCO₂ foam generation in a SLE microfluidic device (7.72 MPa and 40 °C) starting from ambient
464 condition with no flow to fully developed scCO₂ foam at high and low flow rates. **Figure 14**
465 presents images of foam distribution and stability under reservoir conditions (7.72 MPa and 40
466 °C) during the first 20 min of generation/isolation. **Figure 15** shows the distribution of the bubble
467 diameters and the raw and intermediate images as part of the quantification of the foam
468 microstructure including, raw image, post-processed image with improved brightness, contrast
469 and sharpness, and its binarized equivalent.

470

471 **FIGURE LEGENDS:**

472

473 **Figure 1: Example photomask designs for fabrication of microfluidic devices (black and white**
474 **colors are inverted for clarity).** (a) Entire field of view for a connected fracture network
475 containing a main fracture and micro cracks. (b) Zoomed-in view of the main feature comprising
476 a connected fracture network containing a main fracture and micro-cracks. (c) A third port is
477 added at the bottom. (d) Zoomed-in view of the main feature comprising a connected fracture
478 network containing a main fracture and micro-cracks along with a distribution network
479 connecting the network to the port at the bottom of the device.

480

481 **Figure 2: 3D Microfluidic design used in SLE fabrication and high-pressure foam flow through**
482 **microchannels.**

483

484 **Figure 3: Examination of channel depth via confocal microscopy for substrate dipped in BD-**
485 **etchant for 136 h (no sonication in this case). (a) channel overview (b) channel depth**
486 **measurement (~43 µm).**

487

488 **Figure 4: Examination of channel depth via confocal microscopy for a substrate with chrome**
489 **layer removed after NMP rinsing. (a) Channel overview. (b) Channel depth measurement (~42.5**
490 **µm).**

491

492 **Figure 5: Schematic of thermal bonding process. (a) Placing two glass wafers between two**
493 **smooth ceramic plates. (b) Placing the ceramic plates between two metallic plates and tightening**
494 **the bolts. (c) Placing the metallic and ceramic holder containing the substrates inside a**
495 **programmable furnace to achieve the desired temperatures for thermal bonding.**

496

497 **Figure 6: The completed UV-etched glass microfluidic device.**

498

499 **Figure 7: SLE design and fabrication process. (a) Schematic of SLE design and fabrication process**
500 **(this figure has been reprinted with permission from Elsevier 2019²⁷), and (b) the resulting 3D**
501 **printed microfluidic device. Design and fabrication steps include (a.i) designing the inner volume**
502 **of channels, (a.ii) slicing the 3D model to create a z-stack of lines to define the laser path, (a.iii)**
503 **laser irradiation on the polished fused silica substrate, (a.iv) preferential KOH etching of laser**
504 **etched materials, and (a.v) the finished product.**

505

506 **Figure 9: High-pressure scCO₂ foam injection setup into a microfluidic device and a visualization**
507 **system using a high-resolution camera and image processing unit; (a) photograph of laboratory**
508 **setup, and (b) schematic of process flow diagram and the image processing unit.**

509

510 **Figure 8: Microfluidic device placed inside a holder and the imaging system comprising a high-**
511 **resolution camera and an illumination system. (a) A photograph of laboratory setup, and (b)**
512 **schematic of a lab-on-a-chip under observation via the high-resolution camera and illumination**
513 **system.**

514

515 **Figure 10: De-bonded device at an injection port (right entrance) as a result of mishandling the**
516 **pressure profile by BPR and water pump during injection.**

517

518 **Figure 11: Comparative fabrication methods of glass microfluidic device. (a) Fabrication process**
519 **for fractured media microfluidic device using photo-lithography (i) design for a positive**
520 **photoresist, (ii) printed photomask on a polyester-based transparency film, (iii) blank and**
521 **photoresist/chrome coated glass substrates, (iv) transferring the pattern to the substrate via UV**
522 **radiation, (v) etched substrate, (vi) etched substrate after chrome layer removal and the blank**
523 **substrate prepared for thermal bonding, (vii) thermally bonded device, and (viii) scCO₂ injection.**

524 **(b) Fabrication using the SLE technique: (i) design for SLE printing, (ii) laser irradiation on the**
525 **polished fused silica substrate, (iii) SLE printed glass microfluidic device, and (iv) scCO₂ injection.**

526

527 **Figure 12: CO₂ foam transport and stability in the UV-lithography microfluidic device (4 MPa**

528 and 40 °C) during the first 20 min of generation/isolation.

529

530 **Figure 13: scCO₂ foam generation in the SLE microfluidic device (7.72 MPa and 40 °C).** (a)

531 Ambient condition with no flow through the micro channels. (b) Co-injection of CO₂ and aqueous

532 phase (containing surfactant or nanoparticle) at supercritical condition. (c) Onset of scCO₂ foam

533 generation 0.5 min after start of co-injection. (d) Fully developed scCO₂ foam at high flow rates

534 (e) lowering the flow rates of co-injection to reveal the borders of multiphase. (f) Profoundly low

535 flow rates reveal dispersed scCO₂ bubbles in the aqueous phase.

536

537 **Figure 14: Visualization of foam stability under reservoir conditions (7.72 MPa and 40 °C) during**

538 **the first 20 min of generation/isolation.**

539

540 **Figure 15: Analysis of foam microstructure.** (a) Image of scCO₂ foam flow in the fracture network,

541 (b) post-processed image with improved brightness, contrast and sharpness, (c) binarized image

542 using ImageJ, and (d) bubble diameter distribution profile obtained from ImageJ, particle analysis

543 mode.

544

545 **Figure 16: Color-coded plot of UV intensity in a 10 × 10 cm² area of the stage where the**

546 **substrate is placed for UV exposure.** UV intensity values range from 4 to 5 mW/cm² as recorded

547 using a UV meter.

548

549 **Figure 17: Illustration of in-house collimated UV light source.** (a) Photograph and (b) a schematic

550 of laboratory UV light stand containing LED light sources and a stage.

551

552 **DISCUSSION:**

553 This work presents a protocol related to a fabrication platform to create robust, high-pressure

554 glass microfluidic devices. The protocol presented in this work alleviates the need for a

555 cleanroom by performing several of the final fabrication steps inside a glovebox. The use of a

556 cleanroom, if available, is recommended to minimize the potential for contamination.

557 Additionally, the choice of the etchant should be based on the desired surface roughness. The

558 use of a mixture of HF and HCl as the etchant tends to reduce surface roughness³⁰. This work is

559 concerned with microfluidic platforms that enable direct, in situ visualization of transport of

560 complex fluids in complex permeable media that faithfully represent the complex structures of

561 subsurface media of interest. As such, this work uses a buffered etchant that enables the study

562 of mass transfer and transport in surrogate media resembling geologic permeable media.

563

564 **Design of patterns**

565 The patterns are created using a computer aided design software (**Table of Materials**) and the

566 features are intended to represent fractures and microcracks to study transport and stability of

567 foam (see **Figure 1**). These patterns may be printed on a high-contrast, polyester-based

568 transparent film, or a borofloat or quartz plate (photomask). The patterns used in

569 photolithography comprise a main channel, 127 µm in width and 2.2 cm in length, that serves as

570 the main fracture. This channel is connected to an array of micro-fractures with various

571 dimensions, or a permeable medium consisting of an array of circular posts, with diameters of
572 300 μm , that are connected to the middle of the fracture path. Additional auxiliary ports may be
573 included in the design to help with the initial saturation of the main features, e.g., fractures.

574

575 **Photoresist**

576 This work uses a positive photoresist. As a result, the areas in the design that correspond to
577 features that are intended to be etched on the substrate are optically transparent and the other
578 areas obstruct the transmission of light (collimated UV light). In the case of a negative
579 photoresists, the situation would be the opposite: the areas in the design that correspond to the
580 features that are intended to be etched on the substrate shall be optically nontransparent.

581

582 **UV light source**

583 The patterns are transferred to the photoresist by altering its solubility as a result of its exposure
584 to UV light. A full-spectrum, mercury-vapor lamp may serve as the UV source. The use of a
585 collimated, narrow-band UV source, however, improves the quality and precision of the
586 fabrication significantly. This work uses a photoresist with peak sensitivity at 365 nm, a collimated
587 UV source consisting of an array of light emitting diodes (LED), and an exposure time of
588 approximately 150 s. This UV source is a developed in-house and offers a low maintenance, low-
589 divergence, collimated UV light source for lithography. The UV source consists of a square array
590 of nine high-power LEDs with a target peak emission wavelength of 365 nm at 25 °C (3.45 mm x
591 3.45 mm UV LED with Ceramic substrate—see **Table of Materials**). A light-collecting UV lens (LED
592 5 W UV Lens – see Table of Materials) is used on each LED to reduce the divergence from $\sim 70^\circ$ to
593 $\sim 12^\circ$. The divergence is further reduced ($\sim 5^\circ$) by using a 3 x 3 array of nine converging
594 polyvinylchloride (PVC) Fresnel lenses. The setup produces collimated and uniform UV radiation
595 over a 3.5-inch squared area. The details of the fabrication of this low-cost light source for UV
596 lithography is adapted from the method presented by Erickstad and co-workers²⁵ with minor
597 modifications^{15,26}. **Figure 16** illustrates the LED UV light source mounted on the ceiling of UV
598 stand alongside the stage at the bottom for substrate UV exposure (the procedure is performed
599 in a darkroom). The UV stage is placed 82.55 cm from the nine Fresnel lenses that are mounted
600 on a rack 13.46 cm below the rack that houses the LEDs. As seen in **Figure 16a**, there are four
601 small fans (40 mm x 40 mm x 10 mm 12 V DC Cooling Fan—see **Table of Materials**) on the bottom
602 of the plate that houses the LEDs and there is a larger fan (120 mm x 38 mm 24 V DC Cooling
603 Fan—see **Table of Materials**) on the top. Three variable DC power supplies (**Table of Materials**)
604 are used to power the LEDs. One power supply feeds the center LED at 0.15 A, 3.3 V; one power
605 supply feeds the four corner LEDs at 0.6 A, 14.2 V; and one power supply feeds the remaining
606 four LEDs at 0.3 A, 13.7 V. The stage, shown schematically in **Figure 16b**, is divided into 1 cm²
607 sub-areas and the intensity of the UV light is measured in each using a UV power meter (**Table of**
608 **Materials**) that is equipped with a 2 W 365 nm robe assembly. On average, the UV light has an
609 average strength of 4.95 mW/cm² with a variability characterized by a standard deviation of 0.61
610 mW/cm². **Figure 17** presents a color-coded plot of UV intensity map for this UV light source. The
611 intensity over the region of 10 cm x 10 cm is relatively uniform with values ranging from 4 to 5
612 mW/cm² in the center of the stage where the substrate is placed and exposed to the light. For
613 more information on the development of the in-house collimated UV-light source refer to ESI,
614 Figure S3 and S4. The use of the UV source may be coupled with UV blocking shields/covers for

615 its safe use. Additional safety measures may include the use of UV safety goggles (Laser Eye
616 Protection Safety Glasses for Red and UV Lasers – (190–400 nm)), face-shields marked with the
617 term Z87 that meets the ANSI standard (ANSI Z87.1-1989 UV certification) to provide basic UV
618 protection (**Table of Materials**) lab coats and gloves to minimize the exposure.
619

620 **Fabrication techniques**

621 This work also presents a step by step roadmap for high-pressure foam injection in fabricated
622 glass microfluidic devices using a high-resolution camera and an illumination source. Examples of
623 CO₂ and scCO₂ foam microstructure and transport in microfluidic devices are also presented with
624 relevance to fractured tight and ultra-tight formations. Direct observation of transport in these
625 subsurface media is a challenging task. As such, the devices described in this work provide an
626 enabling platform to study transport in permeable media under temperature and pressure
627 conditions that are relevant to subsurface applications such as fractured media, EOR processes
628 and aquifer remediation.
629

630 Devices used in this work are fabricated using two different techniques, namely
631 photolithography/wet-etching/thermal-bonding and SLE. The photolithography/wet-
632 etching/thermal-bonding technique comprises a relatively low-cost etching process using a low-
633 maintenance, collimated UV light-source. SLE is executed using a femto-second laser source
634 followed by removal of modified glass from the glass bulk via wet-etching. The main steps
635 involved in the photolithography/wet-etching/thermal-bonding technique include: (i) creation of
636 the map of the channel network, (ii) printing the design on polyester based transparency film or
637 a glass substrate, (iii) transferring the pattern on to a chrome/photoresist coated borosilicate
638 substrate, (iv) removal of exposed area by photo developer and chrome etchant solutions, (v)
639 etching the patterned area of the borosilicate substrate to the desired depth, (vi) preparing a
640 cover plate with entry holes positioned in appropriate locations, and (vii) thermal bonding of the
641 etched substrate and the cover plate. In contrast, SLE employs a two-step process: (i) selective
642 laser-induced printing in a transparent fused silica substrate, and (ii) selective removal of the
643 modified materials via wet chemical etching leading to the development of three-dimensional
644 features in the fused silica substrate. In the first step, laser radiation through the fused silica glass
645 internally modifies the glass bulk to increase the chemical/local etch-ability. The focused laser
646 scans inside the glass to modify a three-dimensional connected volume that is connected to one
647 of the surfaces of the substrate.
648

649 Both techniques result in devices that are chemically and physically resistant and tolerant of high
650 pressure and temperature conditions that correspond to subsurface systems of interest. Both
651 techniques provide pathways to create high-precision etched micro-channels and capable lab-
652 on-a-chip devices. The photolithography/wet-etching/thermal-bonding technique is robust in
653 terms of the geometry of the channels and may be used to etch complex channel networks,
654 whereas SLE is limited to relatively simple networks due to practical reasons. On the other hand,
655 devices made with photolithography/wet-etching/thermal-bonding may be more vulnerable to
656 breakage due to bonding imperfections, residual thermal stresses from fast heating/cooling rates
657 during thermal bonding and structural flaws from the wet-etching process. In contrast to
658 photolithography, SLE devices appear more resilient under high pressures (tested up to 9.65

659 MPa). Regardless of the fabrication technique, rapid pressure buildup rates may increase the
660 chance of mechanical failures in microfluidic devices.

661

662 **ACKNOWLEDGMENTS:**

663 The authors from the University of Wyoming gratefully acknowledge support as part of the
664 Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and
665 Tight Oil Formations (CMC-UF), an Energy Frontier Research Center funded by the U.S.
666 Department of Energy, Office of Science under DOE (BES) Award DE-SC0019165. The authors
667 from the University of Kansas would like to acknowledge the National Science Foundation EPSCoR
668 Research Infrastructure Improvement Program: Track -2 Focused EPSCoR Collaboration award
669 (OIA- 1632892) for funding of this project. Authors also extend their appreciation to Jindi Sun
670 from the Chemical Engineering Department, University of Wyoming for her generous help in
671 instrument training. SAA thanks Kyle Winkelman from the University of Wyoming for his help
672 with constructing the imaging and UV stands. Last but not the least, the authors gratefully
673 acknowledge John Wasserbauer from microGlass, LLC for useful discussions regarding the SLE
674 technique.

675

676 **DISCLOSURES:**

677 The authors declare no conflicts of interest and disclosure.

678

679 **REFERENCES:**

- 680 [1] Hyman, J.D., Jimenez-Martinez, J., Viswanathan, H.S., Carey, J.W., Porter, M.L., Rougier,
681 E., et al. Understanding hydraulic fracturing: a multi-scale problem. *Philosophical Transactions of
682 the Royal Society A: Mathematical, Physical and Engineering Sciences A*, **374**(13), 1-15 (2016).
- 683 [2] Middleton R.S., Carey J.W., Currier R.P., Hyman J.D., Kang Q., Karra S., et al. Shale gas and
684 non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO₂. *Applied
685 Energy*, **147** (1), 500-509 (2015).
- 686 [3] Hosseini, H., Tsau, J., Peltier, E., Barati, R. Lowering Fresh Water Usage in Hydraulic
687 Fracturing by Stabilizing scCO₂ Foam with Polyelectrolyte Complex Nanoparticles Prepared in
688 High Salinity Produced Water. *SPE-189555-MS* (2018).
- 689 [4] Gregory, K.B., Vidic, R.D., Dzombak, D.A. Water management challenges associated with
690 the production of shale gas by hydraulic fracturing. *Elements*, **7**, 181–186. (2017).
- 691 [5] Ellsworth W.L. Injection-Induced Earthquakes **341**, 1–8 (2013).
- 692 [6] Hosseini, H., Tsau, J.S., Shafer-peltier, K., Marshall, C., Ye, Q., Ghahfarokhi, R.B.
693 Experimental and Mechanistic Study of Stabilized Dry CO₂ Foam Using Polyelectrolyte Complex
694 Nanoparticles Compatible with Produced Water To Improve Hydraulic Fracturing Performance.
695 *Journal of Industrial and Engineering Chemistry Research*, **58**, 9431–9449 (2019).
- 696 [7] Hosseini, H., Tsau, J.S., Peltier, E., Ghahfarokhi, R.B. Highly stable scCO₂-high salinity brine
697 interface for waterless fracturing using polyelectrolyte complex nanoparticles. *Abstract Paper of
698 American Chemical Society*, **256**, Boston, MA, ACS (2018).
- 699 [8] Al-Muntasher, G.A. Critical Review of Hydraulic-Fracturing Fluids for Moderate- to
700 Ultralow- Permeability Formations Over the Last Decade. *SPE Production & Operations*, *SPE-*
701 *169552-PA*, **29**, (04), 243-260 (2014).

702 [9] Tong, S., Singh, R., Mohanty, K.K. Proppant Transport in Fractures with Foam-Based
703 Fracturing Fluids, *SPE-187376-MS* (2017).

704 [10] Fernø, M.A., Eide, Ø., Steinsbø, M., Langlo, S.A.W., Christophersen, A., Skibenes, A., et al.
705 Mobility control during CO₂ EOR in fractured carbonates using foam: Laboratory evaluation and
706 numerical simulations. *Journal of Petroleum Science and Engineering*, **135**, 442–51 (2015).

707 [11] Middleton R., Viswanathan H., Currier, R., Gupta, R. CO₂ as a fracturing fluid: Potential for
708 commercial-scale shale gas production and CO₂ sequestration. *Energy Procedia*, **63**, 7780–7784
709 (2014).

710 [12] Guo, F., Aryana, S.A. Improved sweep efficiency due to foam flooding in a heterogeneous
711 microfluidic device. *Journal of Petroleum Science and Engineering*, **164**, 155–163 (2018).

712 [13] Nazari, N., Hosseini, H., Jyun-Syung, T.; Shafer-Peltier, K., Marshall, C., Ye, Q.,
713 Ghahfarokhi, R.B.. Development of Highly Stable Lamella Using Polyelectrolyte Complex
714 Nanoparticles: An Environmentally Friendly scCO₂ Foam Injection Method for CO₂ Utilization
715 Using EOR. *Fuel*, **261**, 11636 (2020).

716 [14] Nguyen, V.H., Kang, C., Roh, C., Shim, J.J. Supercritical CO₂ -Mediated Synthesis of
717 CNT@Co₃O₄ Nanocomposite and Its Application for Energy Storage. *Industrial and Engineering
718 Chemistry Research*, **55**, 7338–7343 (2016).

719 [15] Guo, F., Aryana, S.A., Wang, Y., McLaughlin, J.F., Coddington, K. Enhancement of storage
720 capacity of CO₂ in megaporous saline aquifers using nanoparticle-stabilized CO₂ foam.
721 *International Journal of Greenhouse Gas Control*, **87**, 134–141 (2019).

722 [16] Guo, F., Aryana, S. An experimental investigation of nanoparticle-stabilized CO₂ foam used
723 in enhanced oil recovery. *Fuel*, **186**, 430–42 (2016).

724 [17] Guo, F., He, J., Johnson, A., Aryana, S.A. Stabilization of CO₂ foam using by-product fly ash
725 and recyclable iron oxide nanoparticles to improve carbon utilization in EOR processes.
726 *Sustainable Energy and Fuels*, **1**, 814–22 (2017).

727 [18] Wang, Y., Shahvali, M. Discrete fracture modeling using Centroidal Voronoi grid for
728 simulation of shale gas plays with coupled nonlinear physics. *Fuel*, **163**, 65–73 (2016).

729 [19] Tiggelaar, R. M., Benito-Lopez, F., Hermes, D.C., Rathgen, H., Egberink, R.J.M., Mugele,
730 F.G., Reinhoudt, N.D., van den Berg, A., Verboom, W., Gardeniers, H.J.G.E. Fabrication,
731 mechanical testing and application of high-pressure glass microreactor chips. *Chemical
732 Engineering Journal*, **131**, 163–170 (2007).

733 [20] Marre, S., Adamo, A., Basak, S., Aymonier, C. Jensen, K. F. Design and Packaging of
734 Microreactors for High Pressure and High Temperature Applications. *Industrial and Engineering
735 Chemistry Research*, **49**, 11310–11320 (2010).

736 [21] Paydar, O. H., Paredes, C. N., Hwang, Y., Paz, J., Shah, N.B., Candler, R.N. Characterization
737 of 3D-printed microfluidic chip interconnects with integrated O-rings. *Sensors Actuators A:
738 Physical*, **205**, 199–203 (2014).

739 [22] Jiménez-Martínez, J., Anna, P. De., Tabuteau, H., Turuban, R., Borgne, T. Le., Méheust Y.
740 Pore-scale mechanisms for the enhancement of mixing in unsaturated porous media and
741 implications for chemical reactions. *Geophysical Research Letters*, **42**, 5316–5324 (2015).

742 [23] Jiménez-martínez, J., Porter, M.L., Hyman, J.D., Carey, J.W., Viswanathan, H.S. Mixing in a
743 three-phase system: Enhanced production of oil-wet reservoirs by CO₂ injection. *Geophysical
744 Research Letters*, **43**, 196–205 (2016).

745 [24] Rognmo, A. U., Fredriksen, S. B., Alcorn, Z. P. Pore-to-Core EOR Upscaling for CO₂ Foam
746 for CCUS. *SPE Journal*, **24**, 1-11 (2019).

747 [25] Erickstad, M., Gutierrez, E., Groisman, A low-cost low-maintenance ultraviolet lithography
748 light source based on light-emitting diodes. *Lab on a Chip* **15**, 57–61 (2015).

749 [26] Guo, F., Aryana, S.A. An Experimental Investigation of Flow Regimes in Imbibition and
750 Drainage Using a Microfluidic Platform. *Energies*, **12**(7), 1390, 1–13 (2019).

751 [27] Burshtein, N., Chan, S.T., Toda-peters, K., Shen, A.Q., Haward S.J. 3D-printed glass
752 microfluidics for fluid dynamics and rheology. *Current Opinion in Colloid & Interface Science*, **43**,
753 1–14 (2019).

754 [28] Wang, Y., Aryana, S.A. Creation of Saturation Maps from Two-Phase Flow Experiments in
755 Microfluidic Devices. In *Advances in Petroleum Engineering and Petroleum Geochemistry.*
756 *Advances in Science, Technology & Innovation*. Edited by Banerjee, S., Barati, R., Patil, S. 77–80,
757 Springer (2019).

758 [29] Hermans, M., Gottmann, J., Riedel, F. Selective, Laser-Induced Etching of Fused Silica at
759 High Scan-Speeds Using KOH. *Journal of Laser Micro/Nanoengineering*, **9**, 126–131 (2014).

760 [30] Iliescu, C., Jing, J., Tay, F.E.H., Miao, J., Sun, T. Characterization of masking layers for deep
761 wet etching of glass in an improved HF/HCl solution. *Surface & Coatings Technology*, **198**, 314–
762 318 (2005).

763

764