

1 Synergistic Foam Stabilization and Transport

2 Improvement in Simulated Fractures with

3 Polyelectrolyte Complex Nanoparticles: Microscale

4 Observation using Laser Etched Glass Micromodels

5 *¹Hooman Hosseini, ^{1&2}Jyun Syung Tsau, ³John Wasserbauer, ⁴Saman A. Aryana*, ^{1&2}Reza*
6 *Barati Ghahfarokhi**

7 ¹Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
8 66045, USA

9 ²Tertiary Oil Recovery Program, The University of Kansas, Lawrence, KS, USA 66045

10 ³microGlass LLC, 17647 Trenton Drive, Castro Valley, CA 94546

11 ⁴Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA.

12 Correspondence to: Reza Barati Ghahfarokhi (E-mail: reza.barati@ku.edu), Saman A. Aryana
13 (E-mail:saryana@uwyo.edu)

14

15

16

17

18

19 ABSTRACT:

20 Inaccessibility to direct pore scale observation in hydrocarbon recovery of tight shale
21 formations poses a great challenge to water-energy nexus initiatives and necessitates the use of
22 high throughput technologies to emulate environmentally friendly processes. Herein, we employ
23 a precise glass micromodel fabrication and visualization method to isolate the supercritical CO₂
24 bubbles surrounded by CO₂-water lamella prepared in saline produced water stabilized with
25 molecular complexation of zwitterionic surfactants (ZS) and polyelectrolyte complex
26 nanoparticles (PECNP).

27 The Selective Laser Enhanced Etching (SLE) technique was selected for micromodel
28 simulation of high-pressure flow. Two representative designs, (1) fracture/micro-crack network
29 and (2) fracture/matrix were etched on fused silica glass with a laser printing machine and scCO₂
30 foam was injected to study the foamability, propagation, stability, and fluid loss properties.

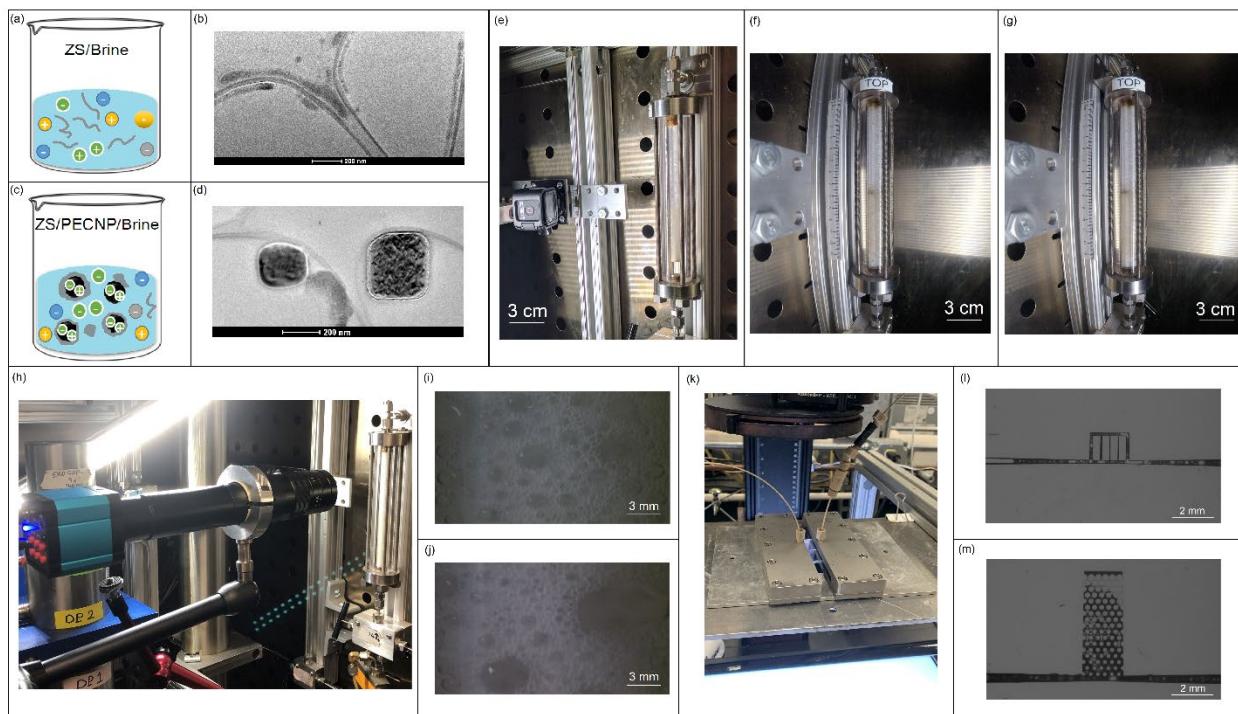
31 The highly monodispersed and uniformly distributed array of scCO₂ bubbles were detected
32 in flow of scCO₂ foam in highly saline brine containing ionic complexes of positively charged
33 PECNPs and ZS, whereas foam flow with the lamella containing ZS in fractures offered a
34 noticeably large and polydisperse array of scCO₂ bubbles. scCO₂ bubble motion and deformation
35 were traced, and local description of foam flow was visually examined. The confined array of
36 scCO₂ bubbles stabilized by ZS in microcracks was affected by bubble growth and coalescence,
37 whereas the super-populated array of monodispersed scCO₂ bubbles with lamella containing
38 complexes of PECNP and ZS were able to fill the channels with stable configurations within the
39 timeframe of comparative stability measurements. The ability of complex fluid to prevent the
40 formation damage was evaluated through fluid loss visualization in micromodels. Probing scCO₂

41 foam transport in homogenous porous media revealed smaller volume leak-off for scCO₂ foam
42 containing PECNP-ZS ionic complexes.

43 KEYWORDS: “Selective Laser Enhanced Etching” “Microfluidic”, “Polyelectrolyte Complex
44 Nanoparticles”, “Zwitterionic Surfactants”, “Fracture”, “scCO₂ foam”, “Produced Water”.

45 **1. INTRODUCTION**

46 Prior to the 2020 pandemic the energy sector was at the highest level of oil and natural
47 gas production [1]. This historic boost was thanks to a combination of horizontal drilling
48 and hydraulic fracturing of tight shale formations aiming at significantly higher production,
49 thereby lowering hydrocarbon cost and petroleum imports [2,3]. Unconventional oil
50 recovery techniques, such as hydraulic fracturing where pressurized fluids are injected to
51 fracture the rock and stimulate the production from low permeability formations
52 (permeability less than 1 mD and below 15% porosity), have become a major contributor
53 to the liquid petroleum production from subsurface formations [4–6]. Moreover, shale
54 formations are potential targets for CO₂ storage [4,5] as part of a global effort to limit
55 greenhouse gas emissions and to utilize the emitted gases in environmental-friendly
56 processes [7,8]. Examples include the use of compressed CO₂ [9] in extraction/purification
57 processes [10,11], microelectronic processing/cleaning [12] efficient drug delivery and
58 controlled release [13]. Additionally, compressed CO₂ has the potential to replace water in
59 fracturing of shales [14] and to contribute to the reduction of anthropogenic carbon
60 emissions by storing CO₂ in geological formations as part of the Carbon capture utilization
61 and storage (CCUS) program in the United States [15,16].

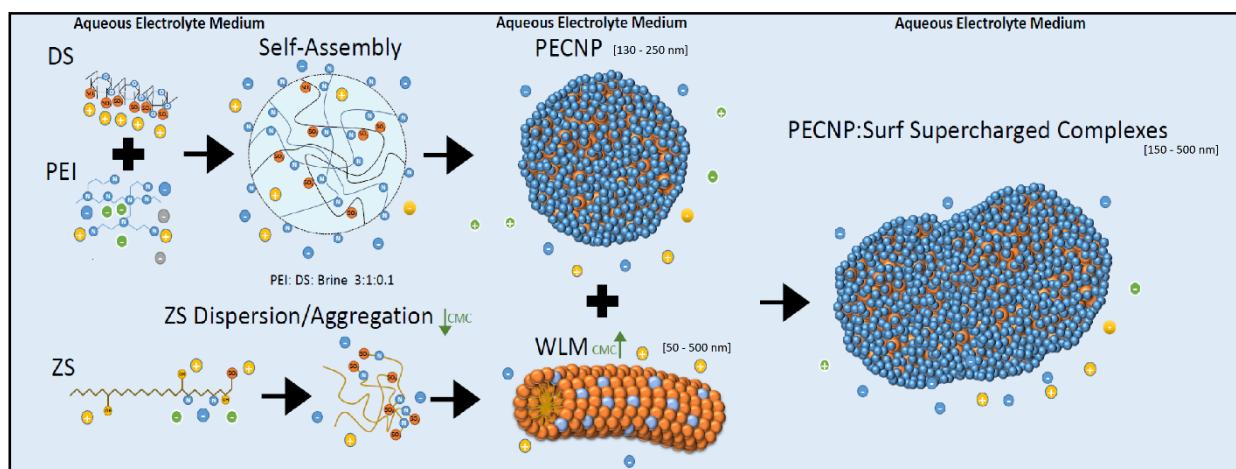

62 Issues related to water availability, large scale water disposal leading to seismicity and
63 earthquakes, freshwater contamination during injection/production, and formation damage

64 have all negatively affected the water-energy nexus in unconventional oil recovery [17,18].
65 Therefore, waterless fracturing using supercritical CO₂ (scCO₂), with CO₂ as the dispersed
66 phase and produced water as the continuous phase (on-site disposal), is a promising path to
67 for subsurface CO₂ storage that improves the sustainability of production life cycles of
68 unconventional assets [5,19].

69 The improved mass transfer and increased selectivity of scCO₂ is due to its the high
70 diffusivity (gas-like properties) and high density (liquid-like properties) [19,20]. Other
71 potential benefits of scCO₂ in the subsurface include improved miscibility and viscosity,
72 lessened risk of formation damage, and relative ease of recycling [14,21,22]. As such,
73 scCO₂ foam (Foams, as a predominant dispersion of gas in liquids) is a prime candidate for
74 waterless fracturing (non-aqueous phase fraction $\Phi \geq 90\%$) [14]. The stability of High Internal
75 Phase (HIP) emulsion scCO₂ foam influences its ability to carry rigid proppant particles,
76 the conductivity of the resulting fractures and hydrocarbon production [23]. Effective
77 injection of foam in wellbores and fractures requires that lamella remain stable [14], until
78 foam contacts the oil to allow for efficient distribution of proppants and flow back recovery
79 prior to fracture closure [5]. The chemical composition of scCO₂-water lamella may be
80 tailored to obtain such a smart HIP emulsion [14]. Since reversible shear-induced
81 degradation and return to the original form in ZS is controlled by short relaxation times, it
82 is an ideal candidate as a foam stabilizer for subsurface applications [20].

83 Synergistic ionic enhancement is additionally introduced to address detrimental impacts
84 of foam behavior under shear and low viscosity, which affect final fracture width and height
85 [6], and related environmental issues [5]. Foam stability and rheological properties of
86 scCO₂ at gas-liquid interfaces in fractures are enhanced via the stabilizing effect of ion

87 active species such as zwitterionic surfactants (ZS) in form of wormlike micelles (WLMs).
 88 These WLMs contain amidopropylhydroxysultaine with a long hydrophobic tail, sulfonate,
 89 and quaternary ammonium pendant groups [14] and polyelectrolyte complex nanoparticles
 90 (PECNP). The nanoparticles comprise self-assembled counter-ionic polymers (Dextran
 91 sulphate (DS) and Polyethylenimine (PEI)) in the form of amphoteric ionomers dissolved
 92 in produced water (concentrated aqueous electrolyte comprising variety of dissociated ions
 93 in particular divalent ions) (Figure 1a, c) and may be evaluated by the lamella liquid
 94 drainage rate and scCO₂ bubble collapsing time obtained by macro scale studies such as
 95 dynamic foam rheology and view cell measurements [14].



96
 97 Figure 1. Variety of foam lamella constituents and resulting foam morphology in multiscale observation of complex
 98 fluid flow: (a, c) schematic of aqueous solutions containing ZS and ZS/PECNP in high saline brine (b, d) TEM
 99 images of electrolyte dispersion of wormlike micelles (WLMs) and Polyelectrolyte Complex Nanoparticle
 100 (PECNP), mechanistic details of molecular complexation is found in our previous study [14], (e) macro-

101 scale observations of foam texture in view cell revealing the height stability of (f) ZS generated scCO₂ foam
102 and (g) ZS-PECNP generated scCO₂ foams. (h) Local magnification of field of view to reveal the macro
103 scale texture of generated scCO₂ foams stabilized with (i) ZS and (j) ZS-PECNP complexes (k) micro scale
104 observation of foam texture, stability, and fracture transport in two configurations: (l) fracture/micro-
105 fracture (m) fracture/matrix.

106

107 Mechanism of this synergistic stabilization in highly concentrated brine (aqueous
108 electrolytes) was previously studied via Raman Spectroscopy and TEM (Figure 1b, d) to
109 establish a framework for gas-water lamella disjoining pressure enhancements in EOR and
110 fracturing applications [7,14]. TEM images of complexes are presented in Figure 1d and a
111 schematic of complexation is shown in Figure 2.

113 Figure 2. vesicular complex formation mechanism in highly concentrated electrolyte, The underlying mechanism
114 was identified with TEM and Raman Spectroscopy as electrostatic rearrangement of WLMs along the structure of
115 PECNP to form electrostatically bond layers bond layers with nanoparticles and create a stable complex [14]

116

117 The novel fracturing fluids enhanced by complexation of ZS and PECNPs improve
118 fracture width and height, clean-up and conductivity as well as the potential for CO₂ storage
119 and sequestration in geological formations [14,22]. However, the microscale transport and

120 stability mechanisms of scCO₂/brine systems, as well as fluid loss between fracture and
121 matrix, are not quite understood [23]. Recent macroscale observations of complex fluid
122 structures (Figure 1e, f, g, h, i, j) [7,14] indicate (i) an accelerated gravity drainage in
123 vertical foam view cell which negatively affects morphological observations and (ii) a lack
124 of complementary transport studies in simulated fractures. These observations are in
125 agreement with the literature regarding difficulties associated with visual analysis of 3D
126 bulk foams and the importance of microscale observations [24].

127 In recent years, there has been a renewed interest in experimental systems that enable
128 direct observation of multiphase transport within geological surrogate micromodels in the
129 context of CCUS [23]. Porter et al. used scCO₂ and real-rock micromodels with idealized
130 and realistic fracture patterns to study imbibition, hydrocarbon/brine displacement and
131 scCO₂-brine-oil flow within the channels [25]. Middleton and co-workers used a shale
132 micromodel to inject scCO₂ into a water saturated fracture, and to observe different
133 localized flow patterns and dissolution of scCO₂ in water [15]. These studies did not,
134 however, focus on the stability of scCO₂ foams at microscale in fractured media and the
135 assessment of the potential for formation damage. Much of the literature is centered around
136 micro observation of displacement efficiencies and capillary fingering of scCO₂ or foam
137 generation and mobility control in fractured reservoirs in the context of EOR [20,26,27] As
138 such, there is a need for microscale studies of stabilization of scCO₂ bubbles in concentrated
139 electrolytes with confined movement in fractured media for sustainable and environment-
140 friendly (e.g., water-less) oil recovery processes.

141 Subsurface-emulated lab-on-a-chip (LOC) devices (e.g., figure 11 and m) provide a
142 platform to study pore level dynamics of ionically stabilized scCO₂ in fractures and micro-

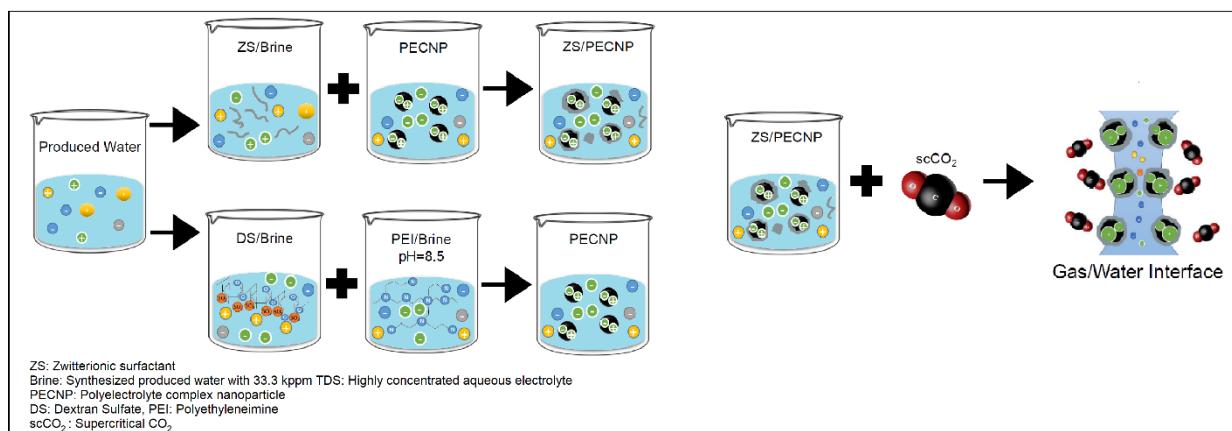
143 fractures with interconnected or dead-end topologies [23] Photolithography, wet etching
144 and thermal bonding provide a pathway to fabricating such LOC devices [28]. Inadequate
145 mechanical integrity and non-uniformity of the etched geometrical patterns due to the
146 bonding process may adversely affect the pressure resistivity and the quality of the
147 observations [29].

148 A number of relevant microfluidic platforms have been developed over the years to study
149 various chemical and petroleum processes [30] and we have reviewed them in our previous
150 work [31]. Most of the reports in literature that leverage microfabrication are concerned
151 with real-time control and characterization of the hydrodynamics, sensing and in-situ
152 chemical reactions, whereas, oil and gas relevant pore-scale observations (e.g., CO₂-EOR)
153 with harsh reservoir condition often leave out of important fabrication details [31].

154 Electromagnetic radiation provides an alternative path to etch channels on glass
155 substrates. Moreover, the advent of femtosecond (fs) laser micromachining of patterns on
156 a variety of materials [32] using short pulse durations and energy deposition times has led
157 to minimum damage and improved spatial resolution [33]. Structures and patterns may also
158 be directly written using fs-lasers in bulk glass [34]. The desired pattern is directly ‘laser-
159 written’ inside the glass substrate and the entire procedure (prior to wet etching) is
160 automated [29] via the use of 3D micro scanners (fast writing of micro vectors with
161 micrometric resolution) and precise micrometric 3-axes system [34]. Such a process
162 eliminates the steps required for sealing the micromodel such as anodic or thermal bonding.

163 Perhaps main advantage of the SLE method over other techniques is that the remaining glass
164 exhibits bulk properties. The wet-etching process does not introduce micro-cracks on the glass
165 surface. Therefore, the pressure limit versus thickness calculation can use the bulk modulus of

166 fused silica. Because the laser passes through a polished surface, the SLE process can write
167 aberration-free voxels to a depth of 10 mm.


168 The present study focuses on foamability, fracture transport, stability, and fluid loss
169 behavior of scCO₂ in highly concentrated electrolytes (high saline brine, sea level salt
170 concentration) containing ionic stabilizers such as ZS and complexes of ZS and PECNP in
171 pressure resistive and simplified 2D fractured patterns of glass micro-models. The
172 performance of dry foams stabilized with 1 wt% ZS was compared to ZS-PECNP enhanced
173 foams containing bio-friendly and supercharged ionomer complexes. Microscale
174 observations were made using glass microfluidics, and the findings helped correlate the
175 physio-chemical characteristics of these foams across micro and macro scales and in the
176 context of unconventional oil recovery. Foam texture and individual lamella resistance in
177 different fracture geometries were determined by steric disjoining pressure enhancement
178 originated from electrostatic complexation of surfactant oligomers and ionomers in
179 nanoparticles. The fracture patterns were designed to simulate the geometry of the
180 pathways that transport fracturing fluids in fractured reservoirs. The pathways may
181 comprise simplified patterns of fractures and micro-fractures, or they may be realistic
182 depictions based on micro-CT data. In this work, the fracture pattern was designed using
183 CAD. Laser etching and photolithography were employed to create glass LOC devices
184 bearing the designed network of channels. These devices were coupled with a high-
185 resolution camera to examine in-situ generation, transport, stability, and fluid loss for dry
186 scCO₂ foams. The collected data was processed to develop a physiochemical correlation
187 between micro-fracture/matrix transport and to understand the stability behavior of scCO₂
188 foams. Additionally, the ability of different ionic stabilizers (ZS and ZS-PECNP) was

189 assessed. The findings of this study are of value in a host of applications dealing with
190 microscale transport and isolation of scCO₂ in confined media.

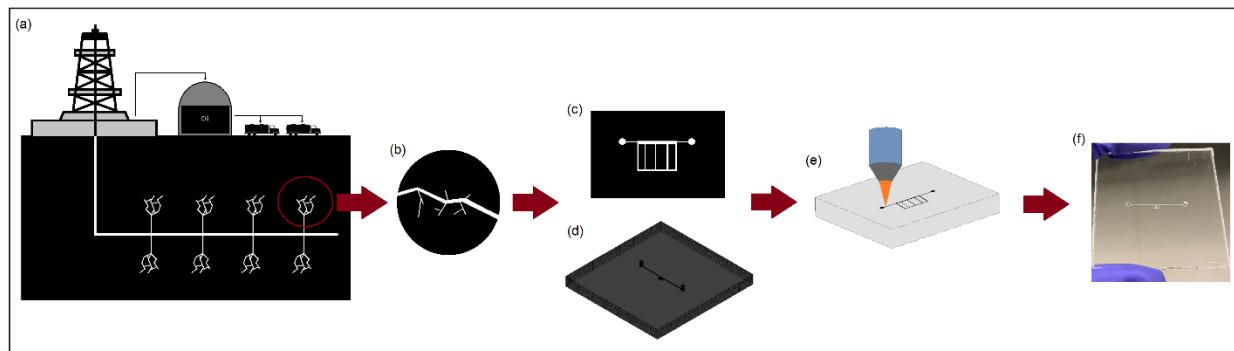
191 **2. MATERIALS AND METHODS**

192 **2.1. Complex fluid preparation**

193 High internal phase emulsion consists of scCO₂ foams stabilized in highly concentrated
194 electrolyte containing surfactants and nanoparticles. Figure 3 illustrates the experimental
195 procedure that was used to produce complex fluids and Figure 2 illustrates the underlying
196 mechanism of ionic complexations between surfactant and nanoparticles in aqueous
197 solution prior to mixing with scCO₂.

199 Figure 3. experimental procedure for complex fluid and gas-water interface formation

200 Highly concentrated aqueous electrolytes were synthesized – see [5,21] for details. The
201 Mississippian Limestone Play (MLP) recipe contains aqueous solution of more than
202 202,848 ppm total dissolved solids consisting of CaCl₂.2H₂O (Fisher Chemical, Certified
203 ACS), MgCl₂.6H₂O (Fisher Chemical, Certified ACS, Crystalline), SrCl₂.6H₂O (Fisher
204 Science Education, Lab Grade), Na₂SO₄ (Fisher Chemical, Certified ACS, Granular) NaCl
205 (Fisher Chemical, Certified ACS, Crystalline) and KCl (Fisher Chemical, Potassium


206 chloride for calomel cells, Crystalline). These salts were dissolved in reverse osmosis and
207 deionized water (RO- DI- water) according to enthalpy of dissolution. The salt type and
208 concentration in MLP brine are shown in Table S1 in (Electronic Supporting Information,
209 ESI). The highly concentrated brine was synthesized according to laboratorial recipe
210 adopted from original MLP recipe (202,848 ppm, ~200,000 ppm), and it was diluted to sea-
211 water salinity of 33,333 ppm (6X) nominal concentration. Zwitterionic surfactant HDP-
212 0761-12-2AM was provided by Harcros Chemicals Inc. The surfactant structure was
213 designed for optimum ionic activity in the form of short chain aliphatic molecules with
214 positive amine and negative sulfonate functional groups (Figure 2). The main ingredients,
215 i.e., solvents and additives used in the surfactant solutions, are listed in Table S2 (provided
216 by Harcros). The ZS was dissolved in 33.3 kppm brine to form 1 w/w% reference solutions.
217 Polyelectrolyte complex nanoparticles (PECNP) were prepared according to the procedure
218 developed by Barati and co-workers [21,22,35]. Branched polyethyleneimine (PEI) was
219 obtained from Sigma Aldrich with an average molecular weight of 25,000, 1.03 g/mL
220 density at 25 °C and corresponding viscosity ranging between 13,000 cP to 18000 cP at 50
221 °C. Dextran sulfate (DS) was provided from Sigma Aldrich with 500,000 molecular weight.
222 PEI and DS were separately dissolved in high salinity brines with 1 w/w% and the pH for
223 PEI solution was lowered to 8.5 by addition of 6N HCl. The solution of 1 w/w% DS in high
224 salinity brine was prepared and PEI and DS solutions were mixed accordingly. The mixing
225 ratio of PEI to DS, to the diluting brine solution (PEI:DS:Brine) was chosen to be 3:1:0.1
226 to make positively charged nanoparticles with optimum surface charge. This ratio was
227 developed based on previous observations with zeta potential and particle size
228 measurements [5,14]. The nanoparticle solution was mixed with surfactant solutions (1

229 w/w %) in 33.3 kppm brine for 20 minutes to form the PECNP-surfactant complexes with
230 mixing ratio of PECNP:Surfactant 1:9 (best performing ratio according to previous
231 observations [5,14]). The concentration of the ZS surfactant remains constant when mixed
232 with nanoparticles (1 w/w %).

233 **2.2. Microfluidic device fabrication: Selective Laser-enhanced Etching (SLE)**

234

235 network of fracture/micro channels (Figure 4).

236

237 Figure 4. Emulation of fractures for SLE-based glass micromodels for subsurface oil recovery of tight shale
238 formations (a) hydraulic fracturing of tight shale formations is considered as the target model; (b) data related to
239 real fracture geometry from rock samples are obtained; (c, d) simplified pseudo fracture network is
240 designed in 2D and 3D; (e) Laser printing of the pseudo fracture network in a fused glass micromodel; and
241 (f) a completed SLE micromodel.

242 A pattern of fractures covering an area 127 μm in width and 2.2 cm in length was
243 developed. The arrays of micro-cracks were all connected to the main channel – see Figure
244 6a. The microfractures, labelled 2 through 4 in Figure 6a, were 15.87 μm , 31.75 μm , 63.5
245 μm in width, respectively, while the main fracture (labelled 1, 5 and 6 in Figure 6a) was
246 127 μm in width. The main fracture was linked to circular inlet/outlet ports 0.04 cm in
247 diameter. These inlets enable homogenous dispersion of multiphase fluids upon

248 injection/extraction. These features are all 254 μm in depth and are positioned
249 approximately 1746 μm from one face of a 4.5 mm thick glass micromodel (Figure S2 and
250 S3 in ESI). Following the design described above, the SLE micromodels were fabricated
251 from Fused silica glass (SIEGERT WAFER GmbH) by LightFab GmbH, Germany. A
252 LightFab 3D printer with a scanning focused ultrashort pulsed laser (femtosecond laser)
253 source from Trumpf GmbH, Ditzingen, Germany was used to locally change the glass
254 properties in the focal volume with a pulse duration of 0.5 ns, a repetition rate of 50 kHz,
255 pulse energy of 400 nJ, and a wavelength of 1.06 μm . A linearly polarized laser beam
256 oriented perpendicular to the stage was used to write the pattern in the double-polished
257 fused silica. During fabrication of SLE chips, the laser beam was focused on a spot that was 2 μm
258 in diameter. The absorption volume (voxel) was approximately 2 μm in diameter in the horizontal
259 direction and 5 μm long in the vertical direction. The laser writes a volume pixel (voxel) in the
260 shape of an oblate spheroid. These shapes connect to form a surface through the etching process.
261 The surface resembles connected series of wavelets with an average roughness (R_a) of between
262 300 and 400 nm (in some rare occasion might peak to 1 μm). The etching rate for treated glass
263 and untreated glass were reported as \sim 250 $\mu\text{m}/\text{hour}$ and \sim 0.25 $\mu\text{m}/\text{hour}$, respectively. The
264 time of the process for bulk etching is referred to as ‘write time’ during which the laser
265 modifies a fraction of the glass substrate, which is removed during a wet etching step to
266 form channels. For our design, a write time of approximately 5 minutes was used to
267 generate the microchannels. Micromodels were manually singulated to an accuracy of \pm 1
268 mm and a channel width tolerance of $+$ / $-$ 5 μm . During the wet etching step, a KOH 32 wt%
269 solution at 85°C with sonication (ultrasound) was used. The fabricated chip was pressure

270 tested up to 9.65 MPa during scCO₂ foam injection experiments. Detailed fabrication
271 technique is found in our recent publication [31].

272 **2.3. Optical Microscopy**

273 OLYMPUS OLS4000, A Lext 3D measuring laser microscope was used to optically
274 examine the pattern on the surface of the glass micromodels. The observation was performed
275 to visually examine the top view of pattern, to measure the channel widths and to identify
276 possible flaws.

277 **2.4. Micro-CT Analysis**

278 3D micro X-ray computer tomography (Xradia MicroXCT-400, Carl Zeiss Microscopy,
279 LLC, Thornwood, New York), optimized for non-destructive imaging of complex internal
280 structures, was employed to image geological samples and develop the desired internal
281 structure of the chips. The instrument was equipped with 90 keV Microfocus X-ray source
282 and 2K*2K CCD camera and an X-ray detector with a pixel resolution of about 0.3 mm
283 and spatial resolution of less than 1 mm. The transmission X-ray imaging of the samples
284 was performed using an X-ray tube with a tungsten anode setting of 50 kV at 8 W. 3D
285 images were constructed with the help of the software “XM Reconstructor 8.0” (Carl Zeiss
286 Microscopy, LLC, Thornwood, New York), using 1600 images taken at 35 sec to 40 sec
287 exposure times per image.

288 **2.5. scCO₂ foam injection/isolation experiments**

289 scCO₂ foam texture, fracture transport, stability and loss properties were examined via
290 a high-pressure foam flooding apparatus utilized along with a micromodel module, a high-
291 resolution Phase one camera system, an illumination source. The schematic of the system
292 is presented in Figure 5.

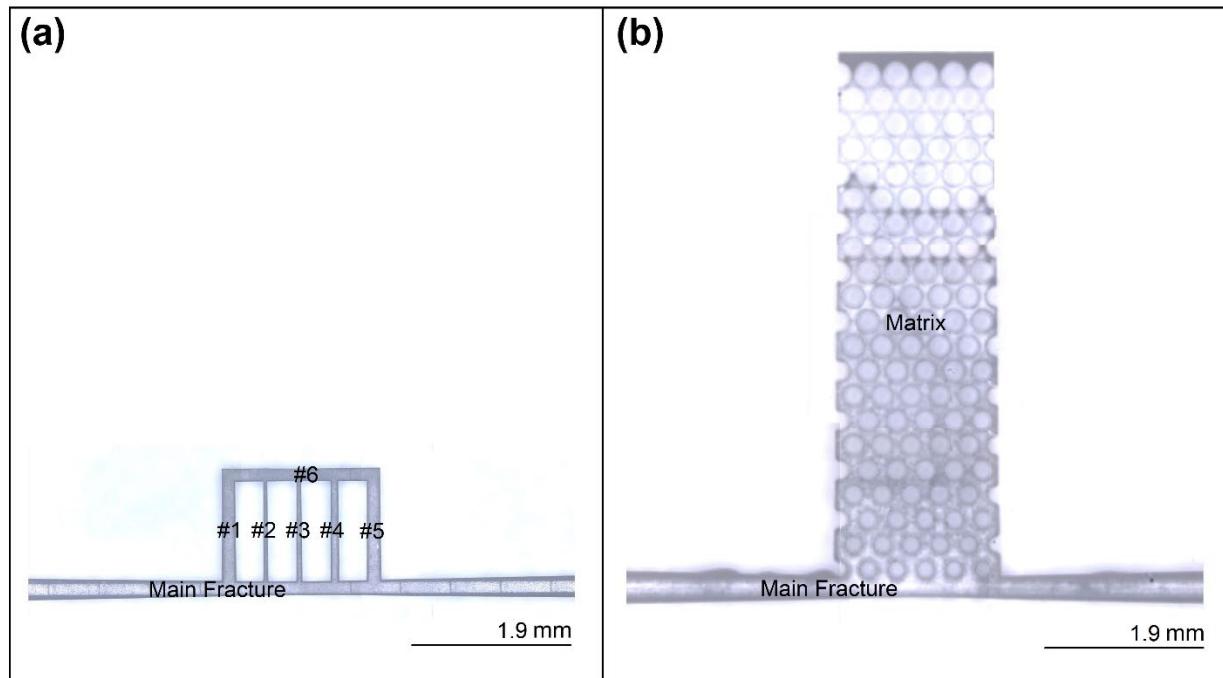
294 Figure 5. (a) schematic of high-pressure CO_2 foam injection and visualization of micromodel in laboratorial scale;
 295 the system is capable of sc CO_2 foam generation as well as oil injection through the micromodels. Simultaneous
 296 visualization is performed using a high-resolution camera. (b) The photo of the actual setup in the lab,
 297 reprinted with permission from [31] JOVE 2020

298 The CO_2 and high salinity brine were compressed and co-injected at 40°C and ~ 8.6
 299 MPa. sc CO_2 and pressurized high salinity brine were mixed (through glass micro-bead pack
 300 and Swagelok inline mixer with 7 μm and 15 μm pore size) and directed to the micromodel
 301 that was secured inside a pressure holder. A back pressure was applied at the outlet. The
 302 initial flow rate was selected to achieve a range of foam qualities (FQ), e.g., FQ = 90% (5.4
 303 ml/min sc CO_2 and 0.6 ml/min brine containing surfactant/nanoparticle). After foam

304 generation was detected at the outlet, the flow rate was reduced 100 times and relatively
305 low flow rates were maintained up to 30 min to stabilize the flow inside the micromodel.
306 For stability measurements, the flow was stopped, and inlet/outlet valves were closed
307 instantly, so the multiphase fluid inside the micromodel was isolated and visual
308 characterization was executed. The microscale observations were performed with Phase
309 One IQ260 Camera mounted on DT Versa capture station manufactured by DT Scientific.
310 An LED light box placed under the device provided the required backlight luminance. The
311 images were captured, processed, and stored electronically via Capture One software
312 running on a machine with INTEL® Xenon® CPU E5-2687W v2 @ 3.40GHz, 3.40 GHz
313 (dual processors) and NVIDIA Tesla K20 Graphic Card - 706 MHz Core - 5 GB GDDR5
314 SDRAM - PCI Express 2.0 x16. At the end of the observation, the valves were opened,
315 heaters turned off and the system was depressurized to ambient conditions. The micromodel
316 was flushed with DI water multiple times. In the case of hydrocarbon injection, the
317 microfluidic device was thoroughly cleaned by injecting a brine containing surfactants and
318 nanoparticles to rinse the oil followed by injection of DI water to rinse the surfactants and
319 nanoparticles.

320 **2.6. Image analysis and post-processing**

321 MATLAB image processing tool (the MathWorks, Inc. Natick MA, USA) coupled with
322 a general image analysis tool ImageJ (an open-source Java image-processing program
323 originally developed at the National Institute of Health and the Laboratory for Optical and
324 Computational Instrumentation at the University of Wisconsin) were used to enhance the
325 quality of images, e.g., their light, contrast, and sharpness, and to obtain the average bubble
326 size and bubble size distributions for each image. The size distribution is obtained using


327 the following steps: i) the desired area in each image is selected; ii) the image is converted
328 to gray scale (8-bit image type); iii) the known distance obtained from optical/microCT
329 observations is entered into ImageJ with ‘Set Scale’. FFT Bandpass Filter command filters
330 large structure down to 160 pixels; iv) “Adjust Threshold” is employed to create the black
331 and white contrast between the two phases. By checking “over/under”, the contrast is varied
332 in a green and black coloured background and on B&W the ultimate black and white
333 contrast is set; and v) using “Analyze particle” with a size range of 1 to infinity and selecting
334 to show the overlay, the summary of particles and particle size distribution is obtained.

335 These quantification steps are also shown in Figure S5 in ESI.

336 **3. RESULTS AND DISCUSSION**

337 **3.1. Fracture network properties**

338 The main model for fracture/micro-crack emulation used in this work consists of a main
339 fracture and a regular pattern of micro-cracks with determined apertures illustrated by
340 optical/laser microscopy in Figure 6a. The design may also include a main fracture
341 connected to an array of circular pins to increase the flow resistance and to simulate fluid
342 loss in tight shale formations - see Figure 6b.

344 Figure 6. A close view of superimposed optical micrographs for (a) pseudo fractured network (b) fracture/matrix
 345 etched with SLE technique on fused silica.

346 In fracture network design #1 (Figure 3a), the largest aperture belongs to the main
 347 fracture (173.23 μm) which distributed the flowing phases through the array of micro-
 348 cracks with smaller apertures (down to 45.26 μm). For fracture/matrix design #2 main
 349 fracture aperture is 178.49 μm wide and is connected to a matrix with cylindrical grains
 350 that have an average diameter of 202.66 μm . Table 1 lists the fracture/matrix network
 351 dimensional properties for the two micromodel designs. Micro-CT validated the accuracy
 352 of reactive etching for SLE fabrication with a negligible degree of error (Figure S5 and S6
 353 in ESI).

354

355

356

357 Table 1. Physical and dimensional properties of pseudo-fracture network (design #1) and fracture/matrix (design #2)
 358 on glass micromodel. The measurements were made by optical microscopy and micro-CT analysis.

Feature in Network (Design #1)	L (μm)	H (μm)	W (μm)	K (D)	d _H
Main Fracture (limited					
length in field of view as shown in Figure 6a)	6509.18	297.1	173.23	1,290	66.09
Micro-crack #1					
Micro-crack #1	1166.24	282.67	168.3	-	-
Micro-crack #2	1189.98	282.67	45.26	-	-
Micro-crack #3	1189.98	282.67	60.86	-	-
Micro-crack #4	1178.08	282.67	96.93	-	-
Micro-crack #5	1189.98	282.67	167.53	-	-
Micro-crack #6	1880.20	282.67	150.9	-	-
Fracture/Matrix (Design #2)					
	L	H	W	K (mD)	d _H
Main Fracture (limited					
length in Figure 6b)	6842.38	336.9	178.49	1369.82	66.75
Matrix (pinned area)	6271.18	342.67	1832.564	306.86	-
Matrix (pore throat)	-	342.68	135.1	-	-
Matrix (grain)	202.66	342.66	202.66	-	-

359
 360 Hydraulic aperture was measured by injection of DI water and recording the injection
 361 pressure. Flow rate is related to the pressure gradient in a single fracture as [36,37].

362

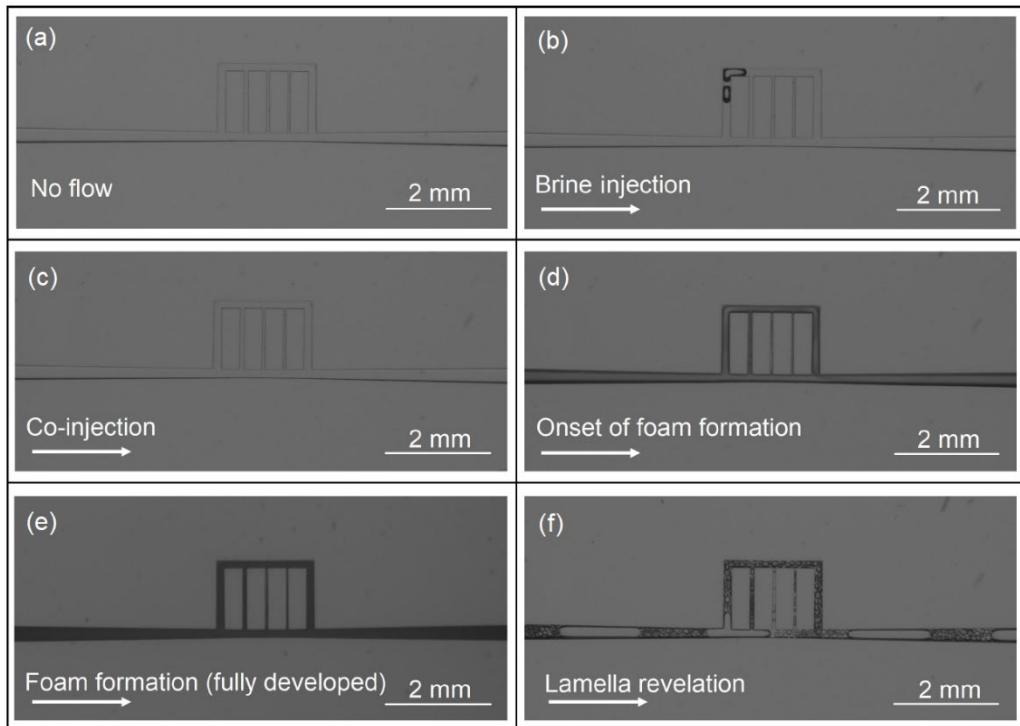
$$Q = \frac{1}{12} \frac{|\nabla P| w d_H^3}{\mu} \quad (1)$$

363 where Q denotes volumetric flow rate, $|\nabla P|$ represents the pressure gradient, w is
 364 fracture width and d_H and μ are hydraulic aperture and viscosity of fracturing fluid,
 365 respectively. The pseudo-linear relation between fluid pressure and flow rate is illustrated

366 in Figure S7 in ESI. A near linear relation between pressure gradients. and flow rate points
367 to negligibility of the inertial force and variations in the aperture [36]. A slight deviation
368 from the linearity indicates minor changes in aperture during flow due to the presence of
369 main features (micro-cracks/matrix) etched near the middle of the micromodel. The aperture
370 was slightly widened for Design #2 (66.75) indicating the presence of the matrix in the
371 fracture flow pathway. The permeability of each fracture/macro-crack/matrix pathway was
372 calculated according to Darcy's equations [14], as

373
$$K = \frac{\mu Q L}{A \Delta P} \quad (2)$$

374 where K is permeability of the medium (mD), μ is the viscosity of the complex fluid
375 (cp), Q is the volumetric flow rate of scCO₂ foam (ml/s), L is the feature length, ΔP is the pressure
376 difference across the medium, and A is the cross-section area of the fluid pathway through the
377 channels of fracture/micro-crack/matrix (cm²). The Darcy law here is used as a mean to compare
378 the permeability of medium. Permeability values for the two designs are reported in Table 1 (see
379 Table S3 for additional details). Even though the value of matrix permeability is not within the
380 range of tight shale formations (0.15 mD [14]), it is significantly lower than the permeability of
381 the main pathway (main fracture) and the ratio of matrix permeability to that of the fracture in
382 model #1 is 2.37E-4. This ratio indicates that there is a dramatic permeability change between the
383 fracture and the matrix, and that resistance to flow increases sharply as the fluids enter the matrix.
384 Fracture conductivity (F_c) was obtained from equation (3) by finding the product of fracture
385 permeability and fracture width, as


386
$$F_c = K \cdot W. \quad (3)$$

387 F_c was found for the main fracture (0.73 D.ft). Aspect ratio, defined as the ratio of the height of
388 the channel (H) to its width (W), is a critical factor [38]. In this work, channel dimensions are

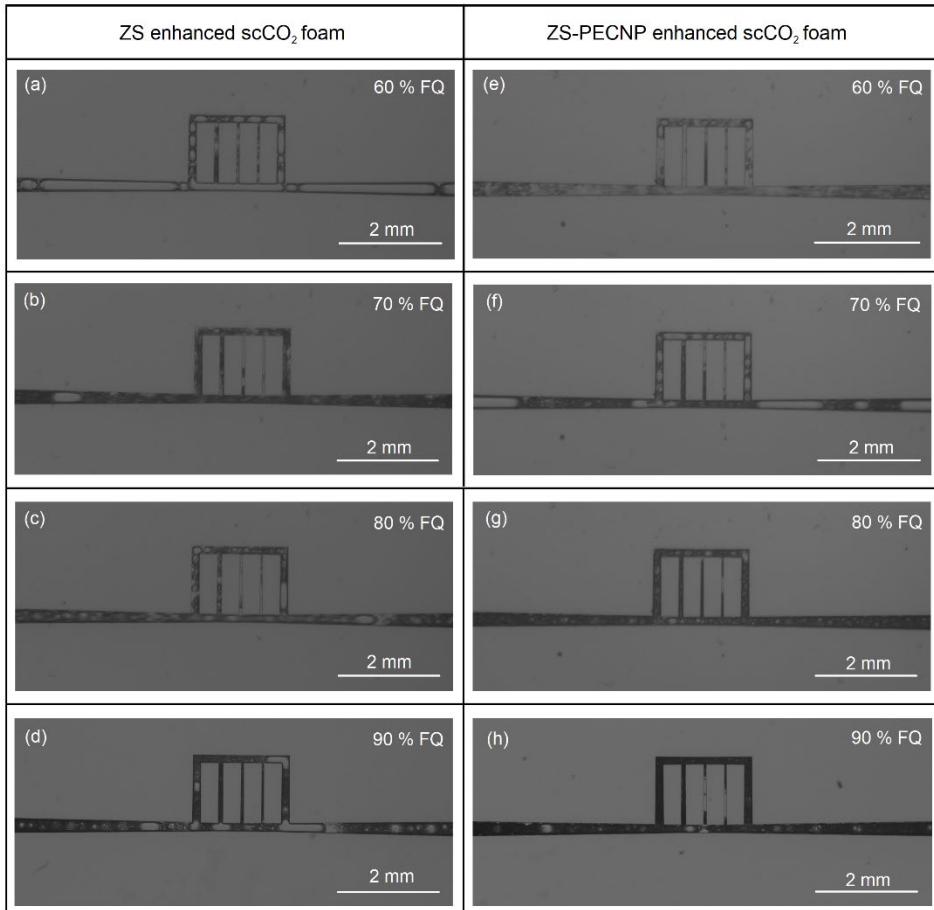
389 chosen such that their aspect ratios are larger than one ($\alpha = H/W$), a value that is not recommended
390 for PDMS microfluidics due to lack of channel mechanical integrity [38]. The overall size range
391 agrees with stimulated hydraulic fractures reported in the literature; for example, Li et al. employed
392 scCO₂ to induce hydraulic fractures on homogenous and layered tight sandstones in laboratory
393 triaxial fracturing experiment and stimulated a shattered zone with main fractures up to 348 μm
394 wide and micro-cracks ranging from 0.2 to 92 μm in width [39]. The comparison of UV
395 lithography chip with SLE chip in terms of design and performance is included in ESI (Figure S8
396 and Table S4 and S5).

397 **3.2. Dry scCO₂ foam generation**

398 Pumping a particle-laden fluid in perforated rock with low permeability exerts a shear
399 force on the fluid not comparable (much lower shear rate [40]) to the shear history the fluid
400 experiences while it is pumped through the wellbore tubular [14,41]. Thus, injection of the
401 components of scCO₂ foam inside fractures (pre-foam generation) and real-time monitoring
402 of multiphase flow in the formation would help elucidate the transport, shear resistivity,
403 stability, and proppant release capability of complex fluids in fractures. scCO₂ foam pre-
404 generation involves the transition of single to multiphase flow while propagating inside the
405 main fracture and micro channels. Figure 7 illustrates multiple stages of scCO₂ foam pre-
406 generation in high flow rates and a foam quality (FQ) of 90% in the SLE micromodel.

407

408 Figure 7. schematic of ZS enhanced scCO₂ foam pre-generation in the SLE micromodel: (a) Ambient conditions
 409 with no flow through the micro-channels; (b) injection of brine containing surfactants in the channel moves the air
 410 bubbles within the pattern (ambient conditions); (c) co-injection of CO₂ and the aqueous phase (containing
 411 surfactants or nanoparticles) at supercritical conditions (7.72 MPa and 40 °C) and at a total superficial velocity of
 412 1.94 m/s; (d) onset of scCO₂ foam generation 5 min after the start of co-injection (8.35 MPa and 40 °C); (e) fully
 413 developed scCO₂ foam at high flow rates, 6 min after the start of co-injection (8.41 MPa and 40 °C); and (f)
 414 lowering the total superficial velocity to 0.019 m/s helps reveal dispersed scCO₂ bubbles separated by lamella in
 415 aqueous phase (8.41 MPa and 40 °C).


416 The 2D geometrical pattern with no direct flow inside the pattern is shown at ambient
 417 conditions in Figure 7a (referred to as the background). Subsequently, ZS containing, high
 418 salinity brine (33.3 kppm) was introduced to the channel at ambient conditions. As shown
 419 in Figure 7b, moving air bubbles are clearly visible upon onset of liquid pressurization. Co-
 420 injection of brine and scCO₂ at 7.72 MPa and 40 °C made no visual difference compared
 421 to the background since a recognizable multiphase flow was not formed at this stage (Figure

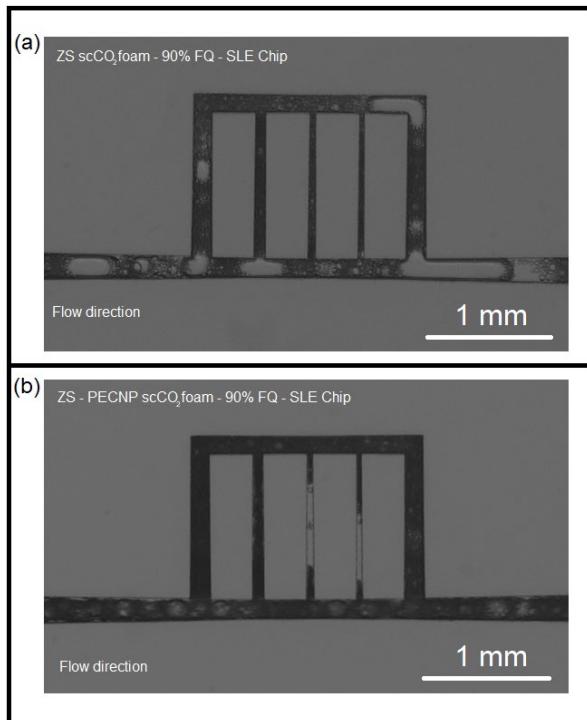
422 7c). Five minutes after inline mixing of the two phases (at inline filters, Swagelok with 15
423 and 7 μm pore size placed before the micromodel inlet), the grey phase was detected within
424 the flow pathway (Figure 7d) as gas-liquid lamella started to form at this stage. The grey
425 phase turned dark as mixing of two phases continued to create more lamella and led to a
426 relatively uniform and homogenous multiphase case (Figure 7e). The fully developed foam
427 was observed at the outlet of the micromodel at this stage (6 min from the start of the co-
428 injection). Fast fluid transport (1.94 m/s) was required at initially to create and stabilize a
429 high internal phase emulsion and once the homogeneity was achieved, the superficial
430 velocity was reduced by 100 times to 0.019 m/s to detect the dispersed phase isolated by
431 lamella interface (Figure 7f). Therefore, dispersed scCO₂ bubbles and a continuous
432 electrolyte phase containing ionic stabilizers (ZS) were recognizable within the simplified
433 fracture pattern.

434 **3.3. scCO₂ volume fraction effect on fracture transport**

435 Minimal fresh water use and produced water disposal are core pillars of environment-
436 friendly hydraulic fracturing [5,19]. Therefore, establishing a sustainable water-less
437 process highlights the effect of the gas/liquid phase volume ratio on foam stability and
438 transport in subsurface formations [42]. It is commonly acknowledged that foam viscosity
439 and texture are mainly controlled by FQ as the behaviour of wet and dry foams differ in
440 terms of bubble dispersion, interaction and frictions [3]. Recent studies of foams formed
441 near the ultra-dry limit (90 v/v% scCO₂ phase) indicate that these foams yielded significant
442 viscosity improvements and fluid loss reductions in macro scale fluid transport
443 observations [14,43]. Significant differences in flow pattern and bubble size were observed
444 with alternation of scCO₂ volume fraction, as shown in micrographs presented in Figure 8.

445 Varying superficial velocities of scCO₂ and stabilizing the solution had a significant impact
446 on the quality and texture of the foam.

448 Figure 8. Comparison of foam quality at fixed injection velocities for scCO₂ foams generated in the fractured
449 network: (a-d) ZS containing scCO₂ lamella in 33.3 kppm brine, and (e-h) ZS-PECNP containing scCO₂ lamella in
450 33.3 kppm brine.


451 For all the obtained patterns (FQ = 60 To 90%) the flow is not identified as
452 segregated due to the homogeneity of the dispersion, uniform mixing verified by shear
453 resistance properties presented in our previous observations [14,22]. In addition, the
454 absence of gravity segregations in the micromodels may contribute to the foam flowing in
455 threads of free gas and foam slugs [44]. For all FQs, bubble shape remained round;

however, FQ of ultra-dry foams ($\phi > 90\%$) was not tested. Achieving a complex fluid with single uniform phase would be ideal for fracture opening and optimum proppant distribution [14]. Injection of a lower quantity of the internal phase (60 v/v%) led to formation of millimetric bubbles in the form of free gas threads in ZS stabilized foam (Figure 8a) as opposed to a nearly phase-inverted foam with a similar FQ containing ZS-PECNP enforced lamella (Figure 8e). Changing the FQ to higher volume fractions of injected scCO₂ phase (FQ = 70%) led to the development of a wetted foam stabilized with ZS (Figure 8b) and a dryer foam with large bubbles stabilized with PECNP-ZS (Figure 8f). Subsequent increase in the proportion of the internal phase (FQ = 80%) led to entrapment and cumulation of scCO₂ bubbles in the highly concentrated electrolyte solution (Figures 8c and 8g). Formation of more CO₂-water lamella with smaller bubbles was observed for ZS-PECNP stabilized scCO₂ foam (Figure 8g). This is in line with our previous bulk studies indicating that the addition of PECNP resulted in a more viscous and more stable foam [7,14]. Plug flow of a foam with a fully developed texture is observed in Figures 8g and 8h for ZS-PECNP stabilized scCO₂ foam, while ZS generated a scCO₂ foam with high FQs (Figures 8c and 8d) with a major fine texture with sparse dispersion of noticeably large bubbles. Cumulation of scCO₂ bubbles was frequently observed for higher values of FQ and for both ionically stabilized mixtures. The increase in the amount of liquid film per unit length is a result of formation of multiple electrostatically stabilized lamellas and is directly responsible for the rise in the apparent viscosity [45]. It's been reported that the foam elasticity improves with higher values of FQ (i.e., drier foams) as a contributing factor to the foams' capability to transport proppant [46]. It has been demonstrated that an improved viscoelasticity is achieved with more solid- like gas-water interface stabilized by

479 nanoparticle and surfactant complexes in shear thinning studies for laminar flow of
480 incompressible scCO₂ foam through a Couette geometry rheometer [7,14]. Furthermore, a
481 higher FQ may lead to a higher viscosity and reduced fluid loss to the matrix [47] (read
482 section 3.6). One may conclude that the closely packed monodispersed arrays of bubbles
483 in ZS-PECNP scCO₂ foam with a 90 v/v% gas volume fraction is an ideal candidate to
484 optimize the foam's transport behaviour and its ability to carry and distribute proppants in
485 fractures.

486 **3.4. Dry scCO₂ foam fracture transport**

487 Characteristics of foam flow in fractures is of importance for tight and low permeability
488 reservoirs, since fractures are the main flow pathway of complex fluid [45]. Figures 9a and
489 b reveals the scCO₂ foam produced with ZS and ZS-PECNP complexes dissolved in 33.3
490 kppm high saline brine upon reaching a slow momentum with low superficial velocities
491 (0.017 m/s for scCO₂, 0.002 m/s for aqueous phase). An FQ equal to 90% was selected for
492 comparative analysis, due to its optimal texture (Figures 8d and h).

493

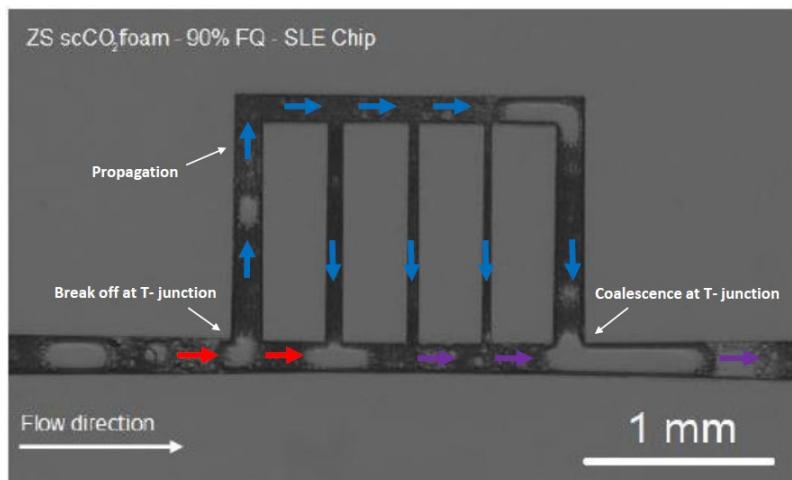
494 Figure 9. A dry scCO₂ foam (FQ = 90%) generated within the main fracture and micro-crack after the flow with low
 495 flow rates reaches the pseudo laminar stage: (a) bubble lamella stabilized with ZS in 33.3 kppm brine, and (b)
 496 bubble lamella stabilized with ZS-PECNP in 33.3 kppm.

497 Larger bubbles were formed within the ZS generated foam with an average size of 40.74
 498 μm and the largest size of 1028.27 μm . As a result, a coarse texture was observed, whereas
 499 the largest detectable bubble sizes during coherent and stable flow of ZS-PECNP stabilized
 500 scCO₂ foam were 137.85 μm , with a detectable average bubble size of 35.42 μm
 501 representing a fine-textured foam. Table 2 lists the microstructural quantification of two
 502 flow regimes in pseudo-fractured media.

503 Table 2. Microstructural quantification of complex fluids flowing through the fracture and micro crack (analysis was performed
 504 on detectable phases)

Foam mixture	Mean bubble size (μm)	Largest bubble size (μm)	scCO ₂ bubble morphology	Polydispersity Index (PDI)
ZS scCO ₂ foam	40.74	1028.27	Near to coarse	7.87 (highly polydisperse)
ZS-PECNP scCO ₂ foam	35.42 (detectable)	137.85	Fine	2.00 (near uniform)

505
 506 The bubble population in ZS-PECNP generated foam is the result of its excellent lamella
 507 formation and the stability of electrostatically enhanced foam systems. The instability of
 508 ZS-lamella upon foam generation and isolation of scCO₂ bubbles led to a higher bubble
 509 coalescence and lamella drainage and formation of larger bubbles upon the onset of mixing
 510 (Figure 9a). On the other hand, ZS-PECNP generated scCO₂ foams exhibited condensed
 511 and populated arrays of smaller and monodispersed bubbles with barely recognizable mid-
 512 sized bubbles in the smallest micro channels (Figure 9b). Fast inter-bubble
 513 diffusion/compression (no collusion) regulates the bubble size in ZS-PECNP scCO₂ foams
 514 propagated through the main fracture; bubble dynamic has been introduced and
 515 investigated as an influencing factor on bubble geometry in the literature [36].


516 Previously, it was reported that the electrostatic complexation of ZS and PECNP
 517 improves the lamella disjoining pressure and repulsive forces over the capillary pressure
 518 and van der Waals mechanisms responsible for bubble degradation and expansions [14,48].
 519 Ostwald ripening rate is slowed down by the high packing efficiency of WLMs [49] and
 520 the effect is improved by the PECNP conjugation to WLM [14]. The improvement of the

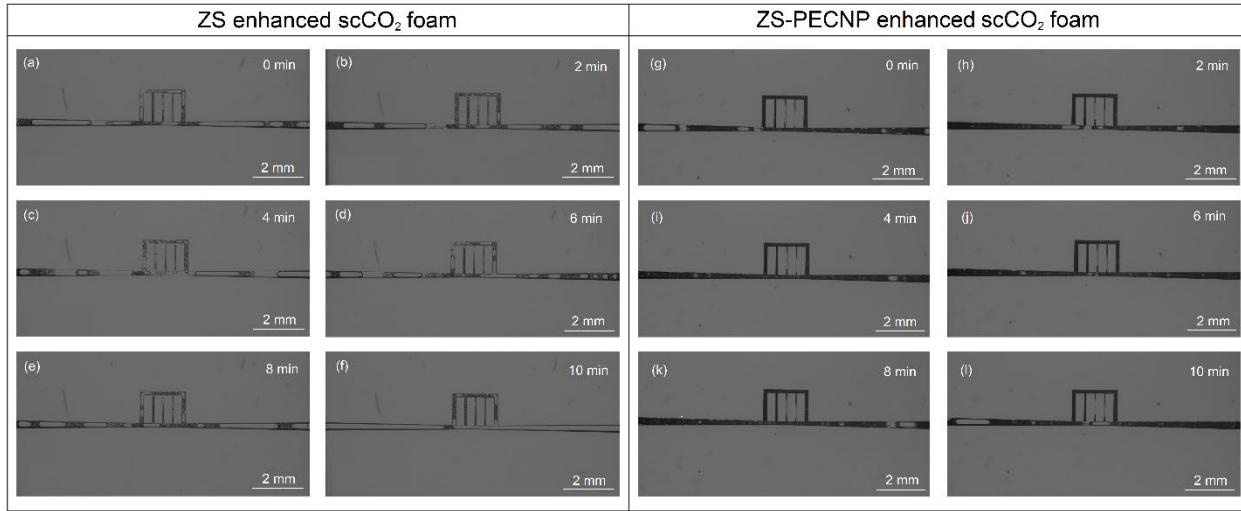
521 ionic strength for aqueous polyelectrolytes is responsible for the appearance of more
522 populated arrays of smaller scCO₂ bubbles. This indicates more lamellas were formed in
523 ZS-PECNP generated scCO₂ foams and larger volume of foams were generated with better
524 foamability using ZS-PECNP complexations with a constant concentration of surfactant.

525 Both mixtures successfully entered micro-cracks as wide as 45 μm , which illustrates the
526 high efficiency of multiphase fluid propagation and fracture invasion to maintain pathway
527 conductivity in the presence of a range of sizes in hydrofractures [50]. Foams were
528 successfully diverted in cross flow from high permeability to low permeability areas and
529 withstood the high-pressure build-up upon entering the micro-cracks. For ZS generated
530 scCO₂ foams, the dispersed phase size was controlled by the width of the flow pathway
531 under a constant flow rate (0.019 m/s). The stability of bubbles was not affected between
532 the main fracture and micro-cracks for both stabilizing mixtures (Figure 9). ZS generated
533 scCO₂ foams successfully and filled the smallest channel sizes (45 μm channel width for
534 micro-crack #2). The PECNP-ZS generated scCO₂ foams, however, were unable to fill
535 channels #2 and #3 (45, 60 μm in width, respectively) entirely. A high frequency of lamella
536 formation resulted in a lower bubble size and a higher internal pressure led to a faster
537 transport and rate of diffusion for ZS-PECNP scCO₂ foams. It also negatively affected
538 micro-crack storage capacity and foam propagation into short-range micro-cracks (Figure
539 9b).

540 Slower transport for ZS generated scCO₂ foams allowed for effective tracing of the
541 movement of singular bubbles in the network. An analogy between with the movement of
542 a race car on the track may be used for energy loss during multiphase flow [51]: if flow
543 carries a high momentum, it loses energy in turns and morphology and integrity are

544 affected. Figure 10 reveals the bubble flow direction through the fracture and channel
545 network for lamella stabilized with ZS. Bubbles in plug flow broke upon meeting the first
546 T-junction and fed the smaller bubbles to the micro-crack network as foam propagated
547 through and filled the smaller channels. The movement of bubbles between smaller and
548 larger channels may be examined in terms of stability when the flow experiences a pressure
549 drop.

551 Figure 10. scCO₂ bubble direction through the fracture and channel network for ZS scCO₂ foam flow in SLE
552 micromodel.


553 The morphology and integrity of ZS-PECNP generated scCO₂ foams were not affected
554 by flow divergence from micro-cracks to the main fracture, whereas the bubble growth and
555 coalescence at T-junction was observed for ZS generated scCO₂ foams (Figure 10). This
556 indicated that the scCO₂ lamella became unstable around sharp edges and when lamella
557 was only filled with WLMs. Conversely, confinement and flow divergence did not induce
558 deformation in bubbles and breakup of fluid interface comprising ZS-PECNP complexes.
559 Flow of ZS-PECNP foams in the main fracture and the network of micro-cracks remained
560 stable for a relatively long period (Figure 11). Inability to fully examine the texture of ZS-

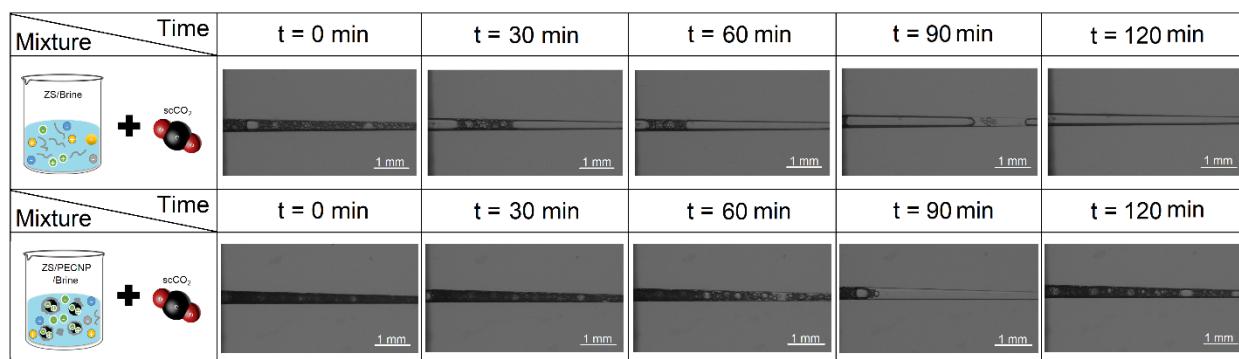
561 PECNP scCO₂ foams was in part due to a high lamella formation and the high degree of
 562 droplet monodispersity. This prohibited a reliable analysis of bubble population. Instead,
 563 we generated foams at macroscale and observed using a view cell (Figures 1i and 1j). To
 564 characterize the dynamics of scCO₂ foam bubbles, dimensionless parameters, namely Reynolds,
 565 Peclet, Stokes and Capillary numbers are used to capture information about the microstructure,
 566 shear condition and relative density [46]. These parameters help explain the foam hydrodynamic
 567 dependence on the microstructure (Table S6 in ESI). To calculate basic hydrodynamic parameters,
 568 results from macro scale observations were considered (see Figures 1h – j, and Table 3). Macro
 569 scale observation was performed on visualized flow of scCO₂ foams generated in standard 1/8
 570 inches stainless steel pipes. The shear rate was calculated according to the velocity distribution
 571 profile for power-law flow in circular pipes [52]. Refer to Tables S7 and S8 in ESI for more details.
 572 Table 3. Dimensionless parameters to characterize the dynamics of bubbles in scCO₂ foam (T=40 °C, 313.15 °K, K_b
 573 = 1.38064852 × 10⁻²³ m² kg s⁻² K⁻¹, $\zeta = 1$) FQ = 90 %

Parameters/33.3	ZS scCO ₂	ZS-PECNP scCO ₂ foam
kppm System	foam	
R_b(μm)	144.76	102.62
μ_m(cp)	1	1.05
γ̇ (1/s)	26.30	31.74
ρ_m (gr/cm³)	1.0217	1.0221
ρ_b(gr/cm³)	0.526	0.526
Σ (mN/m)	6.355	6.43
Re	56.32	32.54
Pe	3.48E+8	1.57E+8
Stk	4.2E-3	1.7E-3
Ca	6E-4	5.3E-4

574 Table 3 shows the values of the dimensionless parameters using the average bubble
575 diameters obtained from macro visualization experiments (Figures 1h – j). Values of Reynolds
576 number, defined as the ratio of inertial to viscous forces, suggests that the flow regime for all
577 stabilizing mixtures was laminar ($Re < 2300$). This illustrates the homogeneity of phase dispersions
578 and a lack of eddies at moderate flow rates in small tubes [53]. Relatively high values of Peclet
579 number indicates that slow bubble movements overcame Brownian movements and that
580 hydrodynamic interactions were prevalent. Low values of Stokes number ($Stk \ll 1$) showed that
581 no phase segregation occurred in scCO₂ foams (FQ = 90%) [46]. Capillary number is a measure
582 of bubble deformity [46]; at early stages of deformation and at low values of capillary number, the
583 emulsion is isotropic [46]. Capillary number has a correlation with bubble deformation under
584 shear, so it represents destabilizing forces in the lamella as well as the magnitude of opposite forces
585 to disjoining pressure. In the case of ordered foams, the packing structure of the bubbles is dictated
586 by capillary pressure and surface energy minimization [46]. As such, improvements in disjoining
587 pressure through electrostatic interactions balances the forces in CO₂-water interfaces, and the
588 capillary value decreases for ZS-PECNP generated scCO₂ foams (Table 4).

589 The propagation of scCO₂ foam for both ZS and ZS-PECNP mixtures are shown in
590 Figure 11.

592 Figure 11. scCO₂ foam propagation schemes in chronological order for scCO₂ bubble in highly saline brine (FQ =
 593 90%) containing (a-f) ZS and (g-l) ZS-PECNP mixtures.


594 The transport of scCO₂ foams through the fracture slit is shown in Figure 11. The fluid
 595 total superficial velocity was 0.019 m/s. The prominent feature of ZS-generated scCO₂
 596 foams was the movement of rather large bubbles of scCO₂ surrounded by interconnected
 597 arrays of smaller scCO₂ bubbles dispersed in highly saline brine (Figure 11a). At early
 598 stages of transport (Figure 12b, t = 2 min), the flowing phases appeared segregated in the
 599 main fracture, even though flow was homogenous in the micro-crack network. At later
 600 times, the flowing phases became segregated throughout (Figure 11c to 11e) and eventually
 601 a scCO₂ filled the main channel (Figure 11f, t = 10 min). This phenomenon is attributed to
 602 the instability of CO₂-water lamella leading to bubble growth, coalescence, and ultimate
 603 instability of the multiphase transport. Bubble growth and coalescence directly affects
 604 proppant settling rate and triggers fast sedimentation [54]. Zhu et al. argued that for unstable
 605 lamella, the plateau border is unable to provide the drag force against gravity in shale
 606 formations due to a reduction of bubble pressure [55]. Therefore, a deficient proppant
 607 settlement is expected for ZS generated scCO₂ foams. Consistently textured foam was

608 observed in the case of ZS-PECNP generated scCO₂ foams (Figure 11 g to 11 l). The slugs
609 of scCO₂ were smaller (detectable up to 35μm), although channel filling (micro crack
610 network) was not as effective as in the case of foams generated with WLMs. In ZS-PECNP
611 generated scCO₂ foams, high shear rates in narrower micro-cracks had a negative impact
612 on consistent foam transport throughout the system [46]. The distribution of phases with
613 supercharged ionic complexes in aqueous phase was relatively uniform during the time
614 frame of fluid invasion of micro-cracks (10 min). Micro-cracks with smaller dimensions
615 than main fractures (up to 4 times smaller, see Table 1) induce larger pressure gradient and
616 may locally strain the stability of the foams due to topological changes [56]. The pressure
617 drop through the micro channel network did not, however, appear to adversely affect bubble
618 size and phase stability in the observations. It was previously reported that ZS-PECNP
619 scCO₂ foams offer higher apparent viscosities compared to ZS foams in the range of shear
620 rates experienced from wellbores to fractures [14]. Higher shear resistivity leads to the
621 formation of smaller bubbles and narrower size distribution [46]. This is mainly due to the
622 ability of ionic complexes to improve storage capacity of interfaces against the
623 deformations [46]. The observations are consistent with previously measured flow
624 consistency index $K = 2916.4 \text{ Pa.s}^n$ for ZS-PECNP foams versus $K = 1184.3 \text{ Pa.s}^n$ for ZS
625 based scCO₂ foams in the studied shear rate range (Figure S9 and Table S7 in ESI). These
626 observations verify an improved capability of complex fluids to transport proppants
627 [14,57] and undergo elastic deformations in constrictions [56].

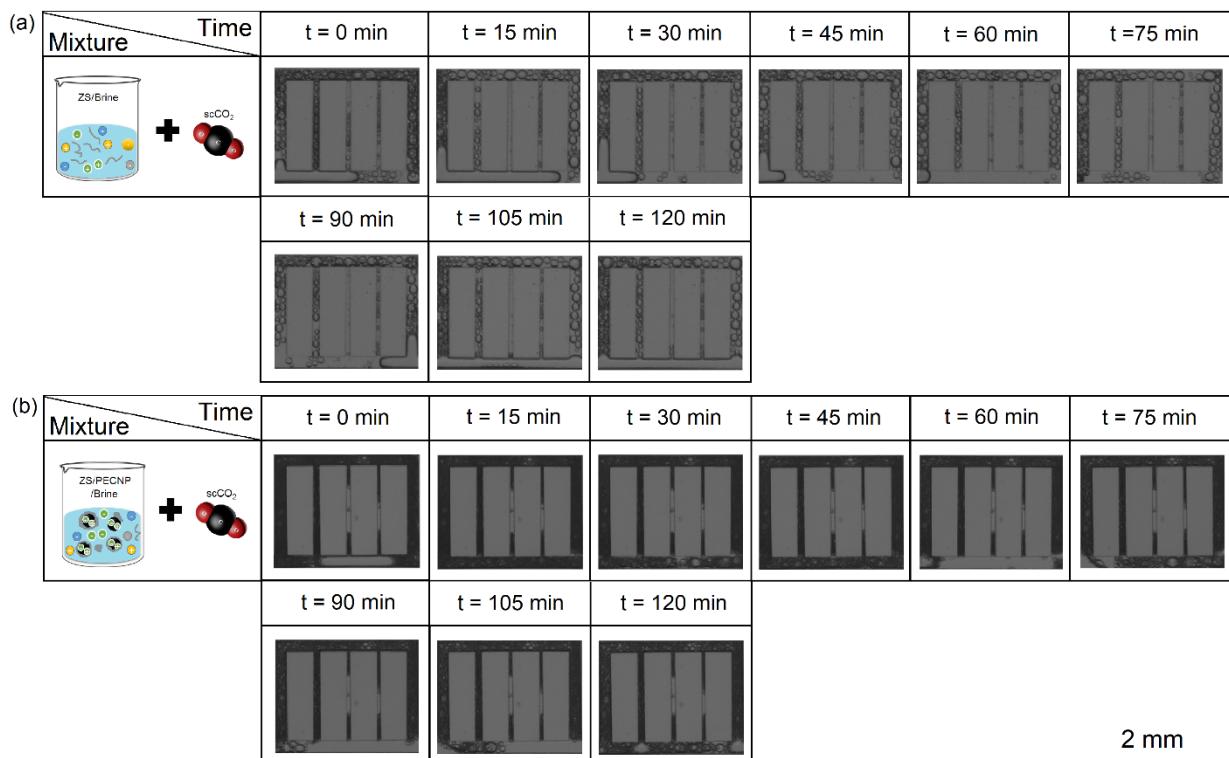
628 **3.5. scCO₂ bubble stability in main fracture**

629 Selection of proper fracturing fluids has a direct impact on the resulting fracture width,
630 fluid loss, fracture conductivity and fracture clean-up process [14]. Failure to maintain foam

631 stability results in an inhomogeneous distribution of proppants in the fractures [10]. scCO₂
632 foam stability in the fracture may be affected by high temperature conditions, high shear
633 rates during the pumping stage and low shear rates while fracture is closing [10]. Stability
634 of ZS and ZS-PECNP generated scCO₂ foam was compared over a period of 120 min from
635 the point the multiphase flow was stopped, and the micromodel was isolated. The
636 micrographs are illustrated in Figure 12.

637
638 Figure 12. Foam stability comparison in the main fracture, starting from when flow was stopped, and
639 micromodel was isolated.

640 The stability of scCO₂ foams generated using ZS along the main fracture was drastically
641 affected by bubble coalescence and lamella breakage during the first 30 min of stabilization.
642 The lamella was not stable enough to separate the scCO₂ phases from each other in the
643 electrolyte solution. For ZS-PECNP generated scCO₂ foams, extremely small and
644 monodispersed droplets were largely stable in the fracture slit for the entire duration of the
645 experiments, except for infrequent unstable movements at t = 90 min, attributed to inertia
646 effects. Some gradual bubble growth was observed but these effects were not significant to
647 destabilize the overall stream. ZS-PECNP scCO₂ foams remains stable for during the entire
648 time frame of isolation (up to 7 hr – Figure S10 in ESI).


649

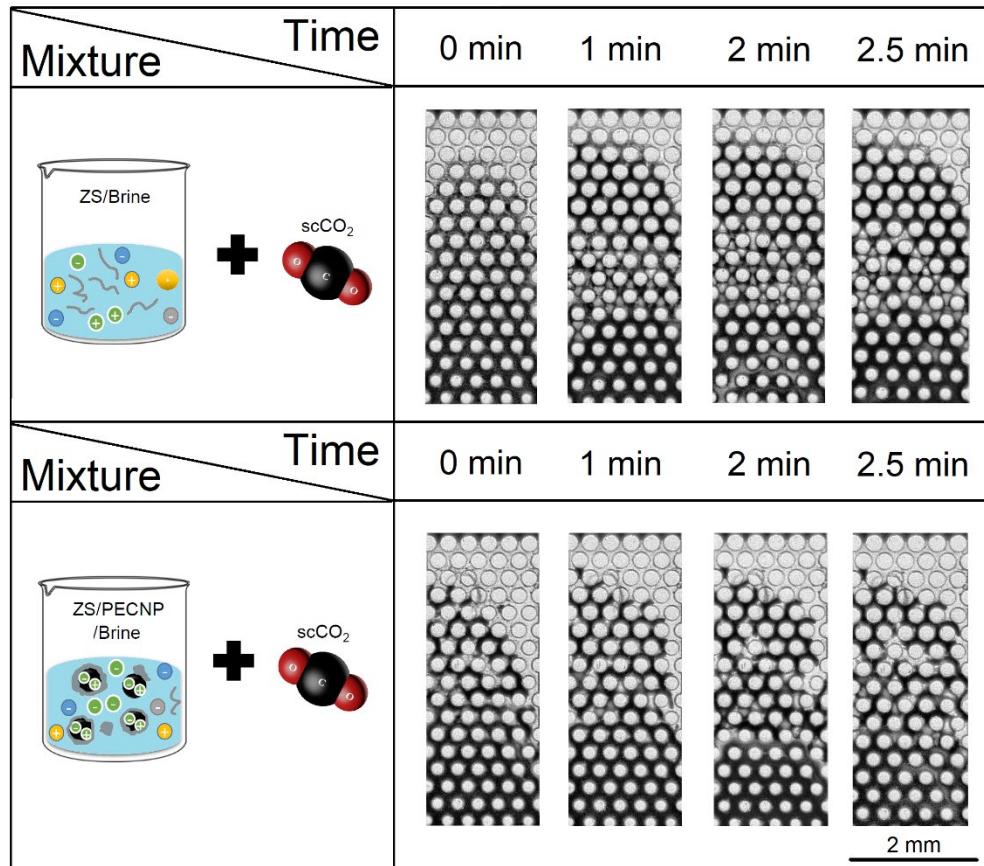
650 **3.6. scCO₂ bubble stability in micro-cracks**

651 Figure 13 illustrates the level of stability for scCO₂ bubbles in micro-crack networks.

652 The main foaming solution fed the micro-cracks from the main channel positioned at the

653 lower edge on the field of view.

654


655 Figure 13. Stability of foaming mixtures in the network of micro-cracks for scCO₂ bubbles stabilized in high
656 salinity electrolytes containing (a) ZS, and (b) ZS-PECNP, in 15 min increments after foam isolation in the SLE
657 micromodel.

658 Movements of bubbles was visible in ZS generated foams (Figure 13a). Initially the
659 bubbles in the main fracture entered the micro-cracks by breaking into smaller bubbles
660 within the aperture of the micro cracks. Foam within the micro-cracks was stable
661 throughout the experiments (t = 2 h). Local variations in bubble size were observed as
662 bubbles traveled and collided with the single millimetric bubble (Figure 13a, after t = 105

663 min). Despite the isolation of the micromodel from the inlet and the outlet, the inertia in the
664 channels resulted in bubble movement and relocation. Highly monodispersed and
665 emulsified scCO₂ foams with lamella containing ZS-PECNP complexes successfully
666 maintained their stability and resulted in high channel occupancy (Figure 13b). The mixture
667 remained stable for the entire time frame of isolation (up to 7 hr – Figure S11 in ESI). This
668 was mainly due to surfactant-brine solubility and nanoparticle compatibility to the WLMs
669 and concentrated electrolytic interface.

670 **3.7. Fluid loss assessment in fracture/matrix**

671 High internal fracture conductivity and control of the leak-off rate to the formation
672 reduce pumping costs and ensure the mechanical integrity of the formation in an
673 environment-friendly oil recovery process [14]. Limiting the leak-off extends the fracture
674 length in practical operations due to higher viscosities [58]. Damage in tight and shale
675 formations may be evaluated as a simplified 2D flow in the matrix. The schematic of this
676 design is shown in Figure 6b and the dimensional analysis is provided in Table 1. The fluid
677 loss assessment was performed for the flow of scCO₂ foams in fracture/matrix (design #2)
678 with a high total superficial velocity of 1.66 m/s to distinguish the fluid pattern and to
679 highlight the colour contrast in tight and shale formations. Figure 14 presents the fluid loss
680 micrographs for ZS and ZS-PECNP generated scCO₂ foams from the main fracture to the
681 matrix with an average pore throat size of 135.10 µm (micromodel design #2; see Table 1)
682 within the first 2.5 min after foam generation. The efficient electrostatic conjugation of ZS
683 and PECNP creates a reliable nanoparticle additive to control the formation damage in
684 micro-scale.

685

686 Figure 14. Fluid loss patterns (chronological binary graphs) representing leak off from the fracture to the matrix on
 687 SLE micromodel design #2 (top row) flow of ZS and (bottom row) flow of ZS-PECNP stabilized scCO₂ foams with
 688 90% FQ at high superficial velocities (total 1.66 m/s).

689 Fluid leak off to the matrix from the fracture was smaller in the case of scCO₂ foams
 690 stabilized with ZS-PECNP (Table 4). It was previously reported larger magnitude of
 691 compressibility and higher apparent and dynamic viscosities prevent the fluids from
 692 penetrating in pore throats of tight shale formations and help maintain a relatively high
 693 internal fracture conductivity [14,59]. The volume of lost fluid to the matrix in the
 694 micromodel (design #2) is related to time as [60]

695
$$V_L = C_w \sqrt{t} + S_p \quad (3)$$

696 where V_L is the total fluid loss volume, C_w is the fluid loss coefficient and S_p is
 697 volume leaked off prior to the formation of filter cake. In micromodel tests, filter cake was
 698 neglected due to the lack of filter cake formation for foams. As a result, the following
 699 simplified relation was used for assessment, as

700
$$V_L = C_w \sqrt{t}. \quad (4)$$

701 Table 4 illustrates the matrix storage capacity (portion of filled area in the matrix) and
 702 the estimated volume loss to the matrix, where the fluid loss was reduced by 11 % with ZS-
 703 PECNP scCO₂ foam.

704 Table 4. Matrix storage capacity (portion of filled area in the matrix) and the estimated volume loss for the
 705 flow into the glass micromodel.

Time (min)	Percentage of matrix filled with ZS scCO ₂ foam		Percentage of matrix filled with ZS-PECNP scCO ₂ foam (%)	
		Volume loss for ZS (ft ³)		Volume loss for ZS-PECNP (ft ³)
0	80.55	1.51e-8	72.97	1.41e-8
1	88.8	1.73e-8	78.16	1.71e-8
2	88.19	1.74e-8	79.87	1.68e-8
2.5	88.49	2.04e-8	81.82	1.81e-8

706
 707 Table 5 presents the values of the fluid loss coefficient for flow in glass micromodels
 708 with and for the flow through Kentucky sandstone tight core as reported in the literature:
 709 0.18 mD permeability for Kentucky sandstone [14]. Table 5 shows the dramatic decline of fluid
 710 loss coefficient observed in microscale observations, where the fluid loss coefficient for
 711 PECNP:Surfactant mixtures is reduced by 60%.

712 Table 5. Fluid loss coefficients for measured volumes of fluid penetration into tight formation performed
 713 with micro scale observations.

Stabilizing mixture	Volume loss slope (ft ³ /min ^{0.5})	C _w (ft/min ^{0.5})
ZS generated scCO ₂ foam	2.00E-08	2.39E-02
ZS-PECNP generated scCO ₂ foam	8.00E-09	9.57E-03

714 The fluid loss coefficient is a function of FQ [58], matrix permeability,
 715 surfactant/nanoparticle concentration and temperature [47]. Given constant FQ (90%),
 716 temperature (40°C), and matrix permeability (see Table 1), the stabilizing mixture
 717 determines the foam tendency to retain water by improving the viscosity and osmotic
 718 pressure [14]. Imbibition in shale matrix of the fracturing fluid is also influenced by
 719 compressibility of the rock, fracture/rock conductivity and permeability [61]. Here,
 720 compressibility of complex fluids and capillary pressure in the pores controlled the amount
 721 the fluids that penetrated through the pore throats of the matrix. PECNP/surfactant scCO₂
 722 foams resulted in less pore throat plugging and damage, demonstrating yet another environment-
 723 friendly aspect of waterless fracturing fluid enhanced with supercharged complexes.

724 **4. CONCLUSIONS**

725 Herein, we report the results from synergistic stabilization of scCO₂ in highly concentrated
 726 electrolytes and corresponding fracture/matrix multiphase flow visualization in SLE fabricated
 727 fused silica glass micromodels for CCUS with the potential to reduce the environmental footprint
 728 of oil recovery processes. Also, we present a comparative study between micromodels fabrication
 729 techniques, different ionic stabilizers and mixing phase ratios to find the optimum complex fluid
 730 composition and lab-on-a-chip platform for sustainable and waterless multiphase flow in tight and
 731 shale formations. The major conclusions can be summarized as follows:

732 1. In order to emulate a recyclable and sustainable water-less fracturing process on LOC, a
733 zwitterionic surfactant compatible with concentrated electrolytes and charged nanoparticles was
734 employed to interact with PECNPs electrostatically in a high salinity brine (33.3 kppm) and the
735 mixture was co-injected with scCO₂ into SLE micromodels. Pre-generation of scCO₂ foam coupled
736 with in-situ observation of SLE micromodel helped to identify the optimal foam quality and
737 superficial velocities to achieve the formation of HIP with near to coarse textures and larger
738 bubbles within the ZS generated foams. The largest detectable bubbles during the stable
739 flow of ZS-PECNP stabilized scCO₂ foams were roughly 0.13x smaller and the foam had
740 a fine-texture. The morphology and integrity of ZS-PECNP generated scCO₂ foams was
741 not affected by geometrical constraints and pressure variations induced by flow divergence
742 from micro-crack to the main fracture, whereas destabilizing effects such as bubble growth
743 and coalescence at T-junctions were observed for ZS generated scCO₂ foams.

744 2. To characterize the dynamics of scCO₂ foam bubbles, dimensionless parameters containing
745 important information about the microstructure, shear condition and relative density were
746 calculated from macroscale observations. Laminar flow and homogenous phase dispersion were
747 verified by the Reynolds number. Existence of hydrodynamic interactions were revealed by Peclet
748 and low stokes value ($Stk \ll 1$), which indicated that phase segregation did not occur in the scCO₂
749 foams (FQ = 90%). Improvements in disjoining pressure through electrostatic interactions
750 balances the forces in CO₂-water interfaces. This effect was verified by a decline of capillary
751 number for ZS-PECNP generated scCO₂ foam.

752 3. The transport behaviour of scCO₂ foams enhanced with ZS and ZS-PECNP complexes in
753 fractures was studied. Bubble population of unknown frequency was observed for ZS-
754 PECNP generated foams because of high lamella formation and excellent stability of

755 electrostatically enhanced bubbles. The instability of ZS-lamella upon foam generation and
756 isolation of scCO₂ bubbles led to more bubble coalescence, lamella drainage and formation
757 of larger bubbles upon onset of mixing. On the other hand, ZS-PECNP generated scCO₂
758 foams exhibited condensed and populated arrays of smaller and monodispersed bubbles
759 and barely recognizable midrange bubbles with sizes as big as the main fracture aperture.

760 4. Foam stability in fractures/micro-cracks was evaluated for a variety of stabilizing
761 mixtures. The stability of ZS generated scCO₂ foams along the main fracture was negatively
762 affected by bubble coalescence and lamella breakage. The lamella was not stable enough
763 to separate the scCO₂ bubbles from each other in electrolyte solutions, whereas in ZS-
764 PECNP generated scCO₂ foams, small and monodisperse droplets were largely stable in
765 the fracture slit in the entire duration of the experiments. The stability of scCO₂ bubbles in the
766 fractures were improved through the formation of electrostatically enhanced bubbles containing
767 the aggregates of PECNP-surfactants. ZS generated scCO₂ foams broke into smaller bubbles
768 confined by the micro-crack aperture. Foams within the micro-cracks were stable through
769 the entire timeframe ($t = 2$ h) with local variations in bubble size, however, the bubbles
770 travelled and collided into the single millimetric bubble and eventually the foam broke in
771 the main fracture. Highly monodispersed and emulsified scCO₂ foam with lamella
772 containing ZS-PECNP complexes successfully maintained their stability and offered proper
773 channel filling due to the surfactant-brine solubility, nanoparticle compatibility to the
774 WLMs and concentrated electrolytic interfaces.

775 5. An alternative design comprising a simplified two-dimensional complex flow in a
776 matrix domain was evaluated to measure formation damage. The formation of vesicular
777 complexes originated from electrostatic complexation of PECNP with WLMs led to stabilization

778 of the water-CO₂ lamella by enhancing the viscosity and osmotic pressure. The chronological
779 binary graphs of emulated tight matrix exhibited the effective reduction of the fluid loss volume
780 and fluid loss coefficients for PECNP:Surfactant mixtures down to 11% and 60%, respectively, by
781 employing PECNP: surfactant which resulted in lower formation damage.

782 **ORCID**

783 Hooman Hosseini: 0000-0002-5072-6737

784 Jyun Syung Tsau: 0000-0002-1497-1911

785 John Wasserbauer: 0000-0002-5748-2472

786 Saman A. Aryana: 0000-0001-9509-7420

787 Reza Barati Ghahfarokhi: 0000-0002-1064-9562

788 **ASSOCIATED CONTENT**

789 Electronic Supporting Information (ESI) is provided by the authors. High saline brine and
790 ZS surfactant composition, schematic of different steps in UV lithography technique, patterns used
791 in UV lithography and SLE printing, details of image quantification, micro CT images of glass
792 micromodels, hydraulic aperture curves, permeability calculations, notes on SLE fabrication, fused
793 silica physical and mechanical properties, hydrodynamic and flow properties of scCO₂ foam, shear
794 rate calculation in circular pipe, and chronological graphs of foam stability in fracture/matrix are
795 presented in ESI.

796 **AUTHOR INFORMATION**

797 **Corresponding Authors**

798 *Reza Barati Ghahfarokhi, Department of Chemical and Petroleum Engineering, The

799 University of Kansas, Lawrence, Kansas 66045, E-mail: reza.barati@ku.edu

800 Phone Number: (785)864-1232

801 *Saman A. Aryana, Department of Chemical Engineering, University of Wyoming, Laramie,
802 WY 82071, USA, E-mail: saryana@uwyo.edu
803 Phone Number: (307) 766-1992

804 **AUTHOR CONTRIBUTION**

805 Conceptualization: R.G.B., H.H., S.A.A. Methodology: H.H., R.G.B., S.A.A., J.W.
806 Software, Resources, and Investigation: S.A.A., R.G.B., H.H. Project Administration:
807 R.G.B., S.A.A. Validation: H.H., R.B.G., S.A.A. Writing-original draft: H.H. Writing-
808 review and editing: R.B.G., S.A.A., J.S.T., J.W., H.H. Supervision and Funding
809 acquisition: R.G.B., S.A.A.

810 **DISCLOSURES**

811 There are no conflicts to declare.

812 **ACKNOWLEDGMENT**

813 This work was supported by the National Science Foundation EPSCor Research
814 Infrastructure Improvement Program: Track -2 Focused EPSCoR Collaboration award
815 (OIA- 1632892). This work was also supported as part of the Center for Mechanistic
816 Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil
817 Formations (CMC-UF), an Energy Frontier Research Center funded by the U.S. Department of
818 Energy, Office of Science under DOE (BES) Award DE-SC0019165. Last but not the least,
819 Authors gratefully acknowledge Harcros Company for providing surfactant used in this work and
820 the authors thank Dr. Qiang (Charles) Ye for Micro-CT scanning of SLE micromodels performed
821 at Institute for Bioengineering Research (IBER) Laboratories at University of Kansas.

822 **ABBREVIATIONS**

823 SLE, Selective laser induced etching; UV, Ultraviolet; scCO₂, supercritical CO₂; CCUS,
824 carbon capture utilization and storage; HIP, High internal phase; VES, viscoelastic surfactant;
825 WLM, wormlike micelle; PEI, polyethylenimine; DS, dextran sulfate; PECNP, polyelectrolyte
826 complex nanoparticle; MLP, Mississippian limestone play; RO-DI water, reverse osmosis and
827 deionized water; CMC, critical micelle concentration; CAD, computer aided design; IFT,
828 interfacial tension; TDS, total dissolved solids; FQ, Foam quality; LOC, lab-on-a-chip.

829 **REFERENCES**

830 [1] Salisu AA, Ebuh GU, Usman N. Revisiting oil-stock nexus during COVID-19 pandemic:
831 Some preliminary results. *Int Rev Econ Financ* 2020;69:280–94.

832 [2] Fitzgerald T. Frackonomics: some economics of hydraulic fracturing. *Case W Res L Rev*
833 2012;63:1337.

834 [3] Edrisi AR, Kam SI. A new foam rheology model for shale-gas foam fracturing applications.
835 *SPE Can. Unconv. Resour. Conf.*, Society of Petroleum Engineers; 2012.

836 [4] Montgomery CT, Smith MB. *Hydraulic Fracturing: History Of An Enduring Technology*. *J*
837 *Pet Technol* 2010;62:26–40. <https://doi.org/10.2118/1210-0026-JPT>.

838 [5] Hosseini H, Tsau J, Peltier E, Barati R. Lowering Fresh Water Usage in Hydraulic
839 Fracturing by Stabilizing scCO₂ Foam with Polyelectrolyte Complex Nanoparticles
840 Prepared in High Salinity Produced Water. *SPE Int Conf Exhib Form Damage Control*
841 2018. <https://doi.org/10.2118/189555-MS>.

842 [6] Yekeen N, Padmanabhan E, Idris AK. A review of recent advances in foam-based fracturing
843 fluid application in unconventional reservoirs. *J Ind Eng Chem* 2018;66:45–71.
844 <https://doi.org/10.1016/j.jiec.2018.05.039>.

845 [7] Nazari N, Hosseini H, Tsau JS, Shafer-Peltier K, Marshall C, Ye Q, et al. Development of

846 highly stable lamella using polyelectrolyte complex nanoparticles: an environmentally
847 friendly scCO₂ foam injection method for CO₂ utilization using EOR. Fuel
848 2020;261:116360.

849 [8] Rogelj J, Den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, et al. Paris Agreement
850 climate proposals need a boost to keep warming well below 2 C. *Nature* 2016;534:631–9.

851 [9] Rindfleisch F, DiNoia TP, McHugh MA. Solubility of polymers and copolymers in
852 supercritical CO₂. *J Phys Chem* 1996;100:15581–7.

853 [10] Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, et al. Application
854 of supercritical CO₂ in lipid extraction—A review. *J Food Eng* 2009;95:240–53.

855 [11] Mukhopadhyay M. Extraction and processing with supercritical fluids. *J Chem Technol*
856 *Biotechnol Int Res Process Environ Clean Technol* 2009;84:6–12.

857 [12] Weibel GL, Ober CK. An overview of supercritical CO₂ applications in microelectronics
858 processing. *Microelectron Eng* 2003;65:145–52.

859 [13] Kankala RK, Zhang YS, Wang S, Lee C, Chen A. Supercritical fluid technology: an
860 emphasis on drug delivery and related biomedical applications. *Adv Healthc Mater*
861 2017;6:1700433.

862 [14] Hosseini H, Tsau JS, Shafer-Peltier K, Marshall C, Ye Q, Barati Ghahfarokhi R.
863 Experimental and mechanistic study of stabilized dry CO₂ foam using polyelectrolyte
864 complex nanoparticles compatible with produced water to improve hydraulic fracturing
865 performance. *Ind Eng Chem Res* 2019;58:9431–49.

866 [15] Middleton RS, Carey JW, Currier RP, Hyman JD, Kang Q, Karra S, et al. Shale gas and
867 non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO₂. *Appl*
868 *Energy* 2015;147:500–9.

869 [16] Nguyen VH, Kang C, Roh C, Shim J-J. Supercritical CO₂-mediated synthesis of CNT@
870 Co₃O₄ nanocomposite and its application for energy storage. *Ind Eng Chem Res*
871 2016;55:7338–43.

872 [17] Middleton RS, Carey JW, Currier RP, Hyman JD, Kang Q, Karra S, et al. Shale gas and
873 non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO₂. *Appl*
874 *Energy* 2015;147:500–9. <https://doi.org/10.1016/j.apenergy.2015.03.023>.

875 [18] Hosseini H, Tsau JS, Peltier E, Ghahfarokhi RB. Highly stable scCO₂-high salinity brine
876 interface for waterless fracturing using polyelectrolyte complex nanoparticles. *Abstr. Pap.*
877 *Am. Chem. Soc.*, vol. 256, AMER CHEMICAL SOC 1155 16TH ST, NW,
878 WASHINGTON, DC 20036 USA; 2018.

879 [19] Hosseini H, Tsau JS, Shafer-Peltier K, Marshall C, Ye Q, Barati R. Environmentally
880 friendly waterless fracturing with supercritical CO₂ foam prepared in produced water:
881 Mechanistic study. *Abstr. Pap. Am. Chem. Soc.*, vol. 258, AMER CHEMICAL SOC 1155
882 16TH ST, NW, WASHINGTON, DC 20036 USA; 2019.

883 [20] Gautepllass J, Chaudhary K, Kovscek AR, Fernø MA. Pore-level foam generation and flow
884 for mobility control in fractured systems. *Colloids Surfaces A Physicochem Eng Asp*
885 2015;468:184–92. <https://doi.org/10.1016/j.colsurfa.2014.12.043>.

886 [21] Nazari N, Tsau J-S, Barati R. CO₂ Foam Stability Improvement Using Polyelectrolyte
887 Complex Nanoparticles Prepared in Produced Water. *Energies* 2017;10:516.
888 <https://doi.org/10.3390/en10040516>.

889 [22] Anandan R, Johnson S, Barati R. Polyelectrolyte Complex Stabilized CO₂Foam Systems
890 for Hydraulic Fracturing Application. *SPE Liq Basins Conf - North Am* 2017:1–19.
891 <https://doi.org/10.2118/187489-MS>.

892 [23] Hyman JD, Jiménez-Martínez J, Viswanathan HS, Carey JW, Porter ML, Rougier E, et al.
893 Understanding hydraulic fracturing: a multi-scale problem. *Philos Trans R Soc A Math Phys*
894 Eng Sci 2016;374:20150426.

895 [24] Badve M, Barigou M. Local description of foam flow, deformation and pressure drop in
896 narrow constricted channels. *Int J Multiph Flow* 2020;103279.

897 [25] Porter ML, Jiménez-Martínez J, Martinez R, McCulloch Q, Carey JW, Viswanathan HS.
898 Geo-material microfluidics at reservoir conditions for subsurface energy resource
899 applications. *Lab Chip* 2015;15:4044–53.

900 [26] Chen YF, Wu DS, Fang S, Hu R. Experimental study on two-phase flow in rough fracture:
901 Phase diagram and localized flow channel. *Int J Heat Mass Transf* 2018;122:1298–307.
902 <https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.031>.

903 [27] Rognmo AU, Fredriksen SB, Alcorn ZP, Sharma M, Føyen T, Eide Ø, et al. Pore-to-Core
904 EOR Upscaling for CO₂ Foam for CCUS. *SPE J* 2019.

905 [28] Karadimitriou NK, Hassanizadeh SM. A review of micromodels and their use in two-phase
906 flow studies. *Vadose Zo J* 2012;11:vzj2011-0072.

907 [29] Elgohary A, Block E, Squier J, Koneshloo M, Shaha RK, Frick C, et al. Fabrication of
908 sealed sapphire microfluidic devices using femtosecond laser micromachining. *Appl Opt*
909 2020;59:9285–91.

910 [30] Hyman JD, Jiménez-Martínez J, Viswanathan HS, Carey JW, Porter ML, Rougier E, et al.
911 Understanding hydraulic fracturing: A multi-scale problem. *Philos Trans R Soc A Math*
912 *Phys Eng Sci* 2016;374. <https://doi.org/10.1098/rsta.2015.0426>.

913 [31] Hosseini H, Guo F, Ghahfarokhi RB, Aryana SA. Microfluidic fabrication techniques for
914 high-pressure testing of microscale supercritical CO₂ foam transport in fractured

915 unconventional reservoirs. *J Vis Exp* 2020;2020:1–29. <https://doi.org/10.3791/61369>.

916 [32] Wang ZB, Guo W, Pena A, Whitehead DJ, Luk'Yanchuk BS, Li L, et al. Laser micro/nano
917 fabrication in glass with tunable-focus particle lens array. *Opt Express* 2008;16:19706–11.

918 [33] Yonemura M, Kato S, Hasegawa K, Takahashi H. Formation of through holes in glass
919 substrates by laser-assisted etching. *J Laser Micro Nanoeng* 2016;11:143–6.
920 <https://doi.org/10.2961/jlmn.2016.02.0001>.

921 [34] Borrelli NF, Schroeder JF, Smith CM, Streltsov A. Direct writing of optical devices in
922 silica-based glass using femtosecond pulse lasers 2005.

923 [35] Kalyanaraman N, Arnold C, Gupta A, Tsau JS, Ghahfarokhi RB. Stability improvement of
924 CO₂ foam for enhanced oil-recovery applications using polyelectrolytes and polyelectrolyte
925 complex nanoparticles. *J Appl Polym Sci* 2017;134:1–15.
926 <https://doi.org/10.1002/app.44491>.

927 [36] AlQuaimi BI, Rossen WR. Study of foam generation and propagation in fully characterized
928 physical-model fracture. *J Pet Sci Eng* 2019;175:1169–81.

929 [37] Fernø MA, Gautepllass J, Pancharoen M, Haugen Å, Graue A, Kovscek AR, et al.
930 Experimental study of foam generation, sweep efficiency, and flow in a fracture network.
931 *SPE J* 2016;21:1–140.

932 [38] Burshtein N, Chan ST, Toda-Peters K, Shen AQ, Haward SJ. 3D-printed glass microfluidics
933 for fluid dynamics and rheology. *Curr Opin Colloid Interface Sci* 2019;43:1–14.

934 [39] Li S, Zhang S, Ma X, Zou Y, Li N, Chen M, et al. Hydraulic fractures induced by water-
935 /carbon dioxide-based fluids in tight sandstones. *Rock Mech Rock Eng* 2019;52:3323–40.

936 [40] Wu, X., Song, Z., Zhen, J., Wang, H., Yao, L., Zhao, M., & Dai C. A smart recyclable VES
937 fluid for high temperature and high pressure fracturing. *Pet Sci Eng* 2020;190:107097.

938 [41] Barbati AC, Desroches J, Robisson A, McKinley GH. Complex fluids and hydraulic
939 fracturing. *Annu Rev Chem Biomol Eng* 2016;7:415–53.

940 [42] Espinosa D, Caldelas F, Johnston K, Bryant SL, Huh C. SPE 129925 Nanoparticle-
941 Stabilized Supercritical CO₂ Foams for Potential Mobility Control Applications 2010:1–
942 13.

943 [43] Anandan R, Barati R, Johnson S. Polyelectrolyte Complex Stabilized CO₂ Foam Systems
944 for Improved Fracture Conductivity and Reduced Fluid Loss 2018.

945 [44] Gajbhiye RN, Kam SI. Characterization of foam flow in horizontal pipes by using two-
946 flow-regime concept. *Chem Eng Sci* 2011;66:1536–49.
947 <https://doi.org/10.1016/j.ces.2010.12.012>.

948 [45] Chen L, Huang M, Li Z, Liu D, Li B. Experimental study on the characteristics of foam
949 flow in fractures. *J Pet Sci Eng* 2020;185:106663.

950 [46] Faroughi SA, Pruvot AJCJ, McAndrew J. The rheological behavior of energized fluids and
951 foams with application to hydraulic fracturing: Review. *J Pet Sci Eng* 2018;163:243–63.
952 <https://doi.org/10.1016/j.petrol.2017.12.051>.

953 [47] Harris PC. Dynamic Fluid-Loss Characteristics of CO₂-Foam Fracturing Fluids. *SPE Prod*
954 *Eng* 1987:89–94.

955 [48] Zhou, Jun, P. G. Ranjith WAMW. Different strategies of foam stabilization in the use of
956 foam as a fracturing fluid. *Adv Colloid Interface Sci* 2020;276:102104.

957 [49] Xue Z, Worthen AJ, Da C, Qajar A, Ketchum IR, Alzobaidi S, et al. Ultradry Carbon
958 Dioxide-in-Water Foams with Viscoelastic Aqueous Phases. *Langmuir* 2016;32:28–37.
959 <https://doi.org/10.1021/acs.langmuir.5b03036>.

960 [50] Green S, Walsh J, McLennan J, Forbes B. ARMA 17-555 Hydraulic Fracture Propagation

961 in Steps Considering Different Fracture Fluids 2017:1–11.

962 [51] Palisch, T. T., Duenckel, R. J., Bazan, L. W., Heidt, J. H., & Turk GA. Determining realistic
963 fracture conductivity and understanding its impact on well performance-theory and field
964 example. SPE Hydraul. Fract. Technol. Conf., 2007.

965 [52] R. Byron Bird, Warren E. Stewart ENL. Transport Phenomena, Revised. 2nd Editio. Wiley-
966 VCH Verlag GmbH & Co.; 2006.

967 [53] Hanselmann W, Windhab E. Flow characteristics and modelling of foam generation in a
968 continuous rotor/stator mixer. J Food Eng 1998;38:393–405.

969 [54] Fei Y, Pokalai K, Johnson R, Gonzalez M, Haghghi M. Experimental and simulation study
970 of foam stability and the effects on hydraulic fracture proppant placement. J Nat Gas Sci
971 Eng 2017;46:544–54. <https://doi.org/10.1016/j.jngse.2017.08.020>.

972 [55] Zhu J, Yang Z, Li X, Song Z, Liu Z, Xie S. Settling behavior of the proppants in viscoelastic
973 foams on the bubble scale. J Pet Sci Eng 2019;181:106216.

974 [56] Badve M, Barigou M. Local description of foam flow, deformation and pressure drop in
975 narrow constricted channels. Int J Multiph Flow 2020;103279.
976 <https://doi.org/10.1016/j.ijmultiphaseflow.2020.103279>.

977 [57] Dlugogorski BZ, Schaefer TH, Kennedy EM. Verifying consistency of effective-viscosity
978 and pressure-loss data for designing foam proportioning systems. NIST SP984-3, Natl Inst
979 Stand Technol 2005.

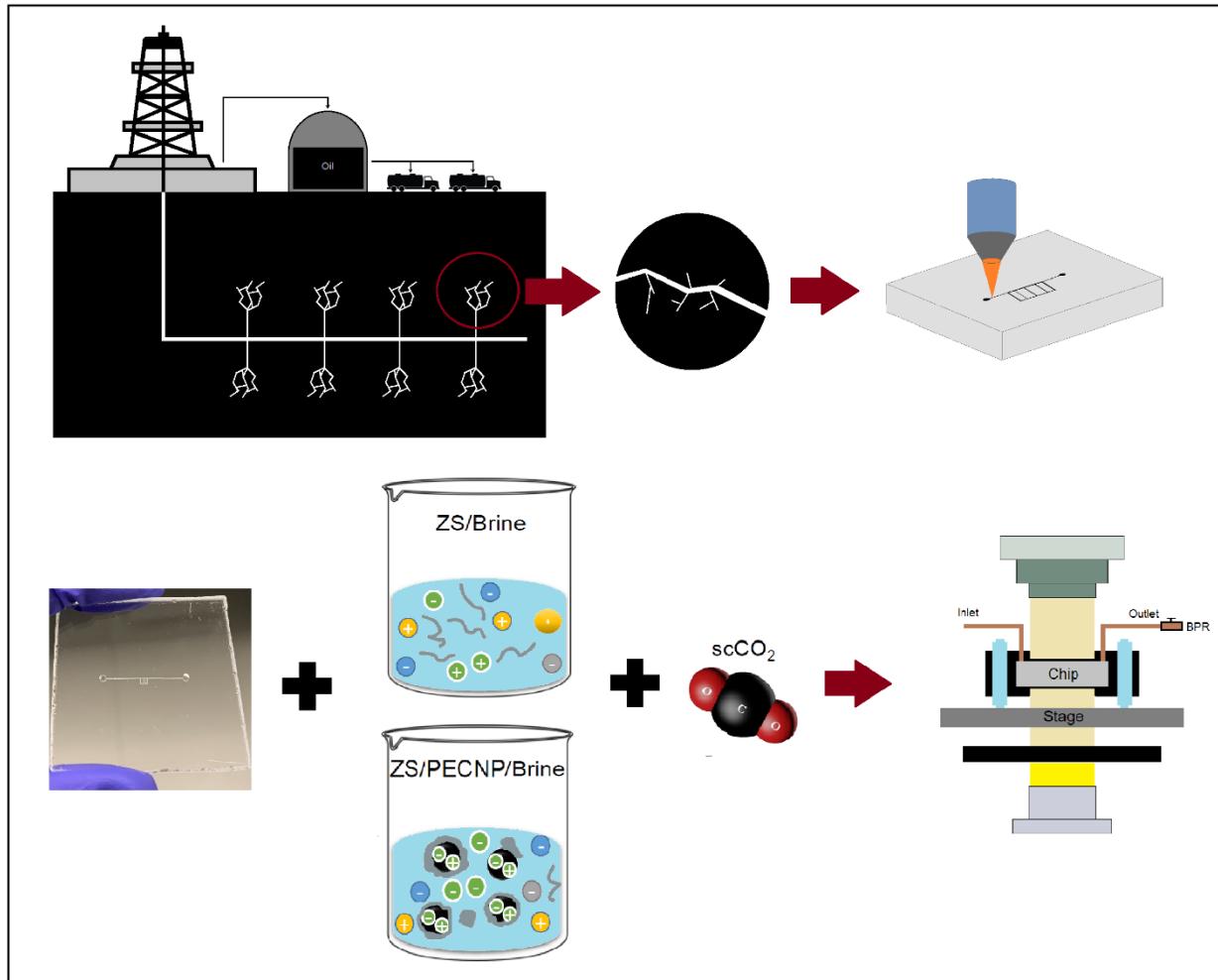
980 [58] Wang, Jiehao DE. Fracture penetration and proppant transport in gas-and foam-fracturing.
981 J Nat Gas Sci Eng 2020;103269.

982 [59] Saldungaray PM, Palisch TT. Hydraulic fracture optimization in unconventional reservoirs.
983 SPE Middle East Unconv. gas Conf. Exhib., Society of Petroleum Engineers; 2012.

984 [60] Howard GC, Fast CR. Optimum Fluid Characteristics for Fracture Extension. Drill Prod
985 Pract 1957.

986 [61] Gehne, Stephan PMB. Permeability enhancement through hydraulic fracturing: laboratory
987 measurements combining a 3D printed jacket and pore fluid over-pressure. Sci Rep
988 2019;9:1–11.

989


990

991 **Nomenclature**

φ	gas volume fraction
V_L	fluid loss volume (ft ³)
C_w	fluid loss coefficient (ft/min ^{1/2})
S_p	Spurt volume (cm ³)
μ_{app}	apparent viscosity of fluids (cP)
ΔP	pressure difference read by ISCO pump (psi)
A	cross section area of the channel (cm ²)
Q	volumetric flow rate of fracturing fluid flow (cm ³ /s)
k	permeability (mD)
K	flow consistency index (Pa.S ⁿ)
n	flow behavior index
η	viscosity (cP)
$\dot{\gamma}$	shear rate (s ⁻¹)
w	Fracture width (μm)
L	Length of feature on the chip (μm)
H	Channel depth (μm)
d_H	Hydrodynamic aperture (dimensionless)

992

993 Graphical Abstract:

995