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Abstract: We extend the anomaly inflow methods developed in M-theory to SCFTs engi-
neered via D3-branes in type IIB. We show that the ’t Hooft anomalies of such SCFTs can be
computed systematically from their geometric definition. Our procedure is tested in several 4d
examples and applied to 2d theories obtained by wrapping D3-branes on a Riemann surface.
In particular, we show how to analyze half-BPS regular punctures for 4d N = 4 SYM on a
Riemann surface. We discuss generalizations of this formalism to type IIB configurations with
F3, H3 fluxes, as well as to F-theory setups.
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1 Introduction

Geometric engineering is a powerful tool in the construction and analysis of quantum field
theories (QFTs) in various dimensions. In many situations, geometric methods in string/M-
/F-theory allow one to study strongly coupled QFTs for which a Lagrangian description is not
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available. A prototypical example is furnished by 4d QFTs obtained by wrapping M5-branes
on a Riemann surface with punctures, preserving N = 2 [1, 2] or N = 1 [3–7] supersymmetry.

’t Hooft anomalies are among the most interesting quantities to compute in a geometrically
engineered theory. Since ’t Hooft anomalies are invariant under RG flow, they are particularly
robust observables and can be used to constrain the phases of theories in a non-perturbative
way. In this work, we focus on ’t Hooft anomalies for continuous 0-form symmetries. These
anomalies only occur for QFT in even d spacetime dimensions, and are conveniently summa-
rized in the anomaly polynomial, which is a (d+ 2)-form characteristic class constructed with
the curvatures of the background fields that couple to the global symmetries.

In [8–12] systematic tools have been developed to compute the anomaly polynomial for
even-dimensional QFTs obtained from wrapped M5-branes. The methods of [8–12] are based
on the anomaly inflow mechanism for M5-branes, first studied in [13–16]. The main strategy
underlying these inflow-based tools is to shift the focus from the worldvolume theory on
the M5-branes to the supergravity fields in 11d ambient space that surrounds the branes.
In the presence of the M5-brane stack, the supergravity fields acquire non-trivial boundary
conditions, which in turn generate a classical anomalous variation of the 11d effective action.
This classical variation counterbalances the quantum anomalies of the worldvolume theory on
the M5-branes (including anomalies of modes that decouple in the deep IR).

Having a systematic toolkit for the computation of anomalies in this class of theories
is beneficial in various ways. For instance, the analysis of [8–10] shows that the “bulk” and
“puncture” contributions to ’t Hooft anomalies in a 4d N = 2 theory of class S with regular
punctures can be treated on an equal footing. Indeed, both can be analyzed by studying
the boundary conditions for the G4-flux configuration near the M5-branes. Furthermore, the
inflow perspective can be applied to holographic setups, where it has the potential of yielding
finite terms in N without resorting to AdS loop computations [11]. As exemplified in [12], a
careful treatment of the boundary conditions for the 11d supergravity fields can be efficiently
used as a proxy to track non-trivial dynamics on the worldvolume of the branes, including the
emergence of accidental symmetries and spontaneous symmetry breaking.

Given the success of anomaly inflow methods in M-theory, it is natural to ask whether
similar tools can be developed for other string constructions. The main objective of this work
is to formulate a proposal for inflow tools in type IIB string theory. In the M-theory case, an
essential role is played by a formal 12-form I12, constructed with a 4-form E4 that encodes
the boundary condition for G4 near the M5-branes. In the type IIB context, we have a formal
11-form I11, which is constructed with a 5-form E5, and 3-forms F3, H3, which capture the
boundary conditions for F5, F3, H3, respectively. The structure of I11 is expected to be
considerably richer if we upgrade from type IIB to F-theory (i.e. type IIB backgrounds in
which the axio-dilaton profile has non-trivial monodromies around singular loci). We also
comment about such extension, making contact with the constructions of [17].

To begin with, we consider setups with D3-branes in the absence of F3, H3 fluxes and with
constant dilaton profile. These type IIB constructions have been studied intensively over the
years. Typically, the worldvolume theory on the D3-branes is a well-understood Lagrangian
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theory. We may then use these setups to test our inflow methods. In particular, in these
examples we have full control over the modes that decouple in the IR and we can explicitly
verify that, keeping decoupling into account, anomaly inflow gives results that are exact in
N (the number of D3-branes in the stack). It is worth pointing out that recent work [18]
demonstrates that there are still interesting aspects of the dynamics of D3-branes at the tip
of a Calabi-Yau cone that are not fully understood and deserve further investigation. We
propose that our inflow tools should be applicable to these less-understood cases, as well.

Next, we apply our inflow proposal to some 2d theories. In particular, we exploit the
intuition developed in [8–10] to compute the anomaly of 4d N = 4 SYM compactified on a
Riemann surface with half-BPS punctures.

The rest of this paper is organized as follows. In section 2 we formulate our proposal for
the computation of the inflow anomaly polynomial, introducing the main objects E5, F3, H3,
and I11. Section 3 is devoted to a careful study of several examples of 4d QFTs engineered
using D3-branes in type IIB, which provide various checks of our proposal. In section 4
we consider some 2d examples, obtained from reduction from four dimensions on a Riemann
surface without punctures, or with half-BPS punctures. Section 5 is dedicated to a preliminary
investigation of the extension of I11 to F-theory setups. We conclude with a brief discussion.
Some derivations and other technical material are collected in the appendices.

2 Inflow anomaly polynomial for type IIB

In this section we describe our proposal for the computation of the inflow anomaly polynomial
for type IIB setups. A crucial role is played by a formal 11-form class I11, which captures
the anomalous variation of the type IIB action in the presence of a boundary. Our method is
inspired by the tools of [8–12] for the analysis of anomaly inflow for M5-branes in M-theory.
We therefore start with a quick review of M5-brane inflow before discussing our proposal for
type IIB setups.

2.1 Review: anomaly inflow for M5-branes

Let us consider a stack of N M5-branes with worldvolume W6 inside the 11d spacetime M11.
We suppose that W6 is of the form

W6 = Wd × S6−d , (2.1)

where Wd is external d-dimensional spacetime and S6−d is a smooth compact internal space.
The low-energy dynamics of the degrees of freedom localized at the stack furnishes a QFT in
the d external dimensions. We focus on the case of d even. Our task is it exploit anomaly
inflow from the 11d ambient space of M-theory to compute the ’t Hooft anomalies for global
continuous symmetries of the QFT on Wd.

In order to specify the M5-brane configuration, we need both the geometry of the internal
space S6−d, and information about the normal bundle NW6 to the branes in the ambient 11d
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space. A convenient way to encode these data is to introduce a compact (10− d)-dimensional
space M10−d, which is an S4 fibration over S6−d,

S4 ↪→M10−d → S6−d . (2.2)

We think of the S4 fiber as the unit sphere in the fibers of NW6, or equivalently as the S4

that surrounds the M5-brane stack in its five transverse directions. The fibering of S4 over
S6−d encodes the partial topological twist of the 6d theory on W6 compactified on S6−d.

The key observation for anomaly inflow in this setup is that the M5-brane stack acts
as a singular magnetic source the M-theory flux G4. Following [15, 16], the singularity is
removed by excising a small tubular neighborhood of the M5-brane stack. As a result, the
11d spacetimeM11 acquires a boundary ∂M11 = M10. If r denotes the radial coordinate away
from the M5-brane stack, M10 is located at r = ε, where ε is a small positive constant. The
space M10 is a fibration of M10−d over Wd,

M10−d ↪→M10 →Wd . (2.3)

The fibering of the internal space M10−d over the external spacetime Wd is due to the fact
that we are turning on background gauge connections for the continuous global symmetries
of the QFT living on Wd.

The magnetic source for G4 is modeled by imposing suitable boundary conditions for G4

near r = ε. More precisely, we have [15, 16]

G4

2π
= −ρE4 + . . . . (2.4)

In the above expression, ρ is a bump function depending on r only, which interpolates smoothly
between ρ = −1 at r = ε and ρ = 0 at large r. The ellipsis stands for terms with dr legs
and/or subleading terms in the limit r → ε. The quantity E4 is a closed and globally-defined
4-form on M10. (Thus, by definition, E4 has no legs along r.) In order to be globally defined,
E4 must be gauge invariant under a gauge transformation of the external background gauge
fields. Furthermore, the integral of E4 along the S4 fibers of M10−d, see (2.2), counts the
total number of M5-branes in the stack,∫

S4

E4 = N . (2.5)

In the simplest situation in which we consider six uncompactified directions, the 4-form E4 is
given by

E4 = N e4 (for d = 6) , (2.6)

where e4 is the global angular form of SO(5), normalized to integrate to 1 along S4. The form
e4 is the SO(5) invariant and closed completion of the volume form on S4. Its expression can
be found e.g. in [16].
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The boundary condition (2.4) for G4 is used to build a formal 12-form characteristic class

I12 = −1

6
E3

4 − E4X8 , (2.7)

where we suppressed wedge products for brevity, and we introduced the 8-form

X8 =
1

192

[
p1(TM11)2 − 4 p2(TM11)

]
, (2.8)

where the quantities p1,2(TM11) are the first and second Pontryagin classes of the 11d tangent
bundle, implicitly pulled back to the boundary at r = ε. The importance of the 12-form I12

stems from the fact that it encodes the variation of the M-theory effective action in the presence
of the boundary M10. More precisely, the two terms in I12 originate from the Chern-Simons
C3G4G4 coupling and C3X8 coupling, respectively. The variation of the 11d action is related
to I12 via standard descent procedure,

I12 = dI(0)
11 , δI(0)

11 = dI(1)
10 , δS11d = 2π

∫
M10

I(1)
10 . (2.9)

As a result, the inflow anomaly polynomial for the worldvolume theory on Wd is obtained by
integrating I12 along the M10−d fibers of M10, see (2.3),

I inflow
d+2 =

∫
M10−d

I12 . (2.10)

This quantity cancels against the ’t Hooft anomalies of all degrees of the freedom on Wd.
We are mainly interested in the situation in which, at low energies, the worldvolume theory
consists of an interacting CFT, together with decoupled fields. We may then write

I inflow
d+2 + ICFT

d+2 + Idecoupl
d+2 = 0 . (2.11)

Uusually, one is interested in deriving ICFT
d+2 . In this case, the quantity Idecoupl

d+2 has to be
identified and subtracted by hand from I inflow

d+2 .

2.2 Inflow tools for D3-branes

We would like to develop a formalism analogous to the one of the previous section that can
be applied to type IIB setups. For definiteness, we first consider a stack of N D3-branes with
worldvolume W4 inside the spacetime M10.

The stack supports localized degrees of freedom that yield a non-trivial QFT coupled
to the 10d bulk. In the IR, it consists of N = 4 super Yang-Mills (SYM) with gauge group
SU(N), together with a free 4d N = 4 vector multiplet. The local Lorentz symmetry SO(1, 9)

of type IIB is broken to SO(1, 3) × SO(6), with SO(1, 3) identified with the local Lorentz
symmetry of the worldvolume theory, and SO(6) identified with its R-symmetry. (More
precisely, the R-symmetry is Spin(6) ∼= SU(4).) The 4d worldvolume theory contains chiral
degrees of freedom that induce a cubic ’t Hooft anomaly for the SU(4) R-symmetry. Both the
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interacting SCFT and the decoupling modes admit a Lagrangian description, and the anomaly
can be computed with standard methods. One has

ICFT
6 =

1

2
(N2 − 1) c3(SU(4)) , Idecoupl

6 =
1

2
c3(SU(4)) , (2.12)

where c3 denotes the third Chern class.
We expect that the anomaly (2.12) is counterbalanced by inflow from the type IIB bulk.

This was indeed verified in [19] by using the coupling
∫
W4

i∗C4 on the D3-brane worldvolume,
where C4 is the type IIB 4-form potential and i∗ is pullback along the embedding of W4 inside
M10. Our strategy, however, is different. In analogy with our M-theory analysis, we aim at
performing anomaly inflow by removing a small neighborhood of the D3-brane stack. Instead
of using the coupling

∫
W4

i∗C4, our goal is to describe the variation of the action for the 10d
bulk of type IIB supergravity in the presence of a boundary. In the rest of this subsection we
describe a prescription to do so when only D3-brane sources are activated. At the moment
we do not have a direct first-principle derivation of our formulae, also due to the fact that the
self-duality of F5 flux in type IIB makes it harder to write down an action. We nonetheless
offer a motivation for our method. Moreover, we test it thoroughly in several examples in the
following sections.

Let us remove a small tubular neighborhood of the D3-brane stack. The 10d spacetime
M10 acquires a boundary M9, located at r = ε, where r is the radial coordinate away from
the branes, and ε is a small positive constant. The space M9 is an S5 fibration over W4,

S5 ↪→M9 →W4 . (2.13)

We think of the S5 fiber as the unit sphere in the fibers of normal bundle NW4 to W4, or
equivalently as the S5 that surrounds the D3-brane stack in its six transverse directions.

To proceed we must give an appropriate boundary condition for the F5 flux of type IIB
supergravity in the vicinity of r = ε. In analogy with (2.4), we write

F5

2π
= (1 + ∗10)

[
− ρE5 + . . .

]
. (2.14)

In the previous expression, ∗10 denotes the Hodge star with respect to the 10d metric, so that
F5 is manifestly self-dual. Inside the bracket, the bump function ρ = ρ(r) is as above, and the
ellipsis denote terms with dr legs and/or subleading terms in the limit r → ε. The quantity
E5 is a globally-defined 5-form on M9.

In analogy with (2.6), the natural guess for E5 is

E5 = N e5 , (2.15)

where e5 is the global angular form of SO(6). The latter is globally defined on M9 and
integrates to 1 along the S5 fibers of M9. The explicit expression of e5 is as follows,

e5 =
1

π3

[
1

5!
εABCDEF y

ADyB DyC DyDDyE DyF − 1

48
εABCDEF F

AB yC DyDDyE DyF

+
1

64
εABCDEF F

AB FCD yE DyF
]
, DyA := dyA −AAB yB . (2.16)
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The quantities yA, A = 1, . . . , 6 are constrained coordinates on S5, satisfying yA yA = 1, with
SO(6) indices raised and lowered with δ. The 1-forms AAB are the components of the SO(6)

connection, and FAB denote the corresponding field strengths. In contrast with e4, the 5-form
e5 is not closed. More precisely, the 6-form de5 has only legs along the external W4 directions,
and is given by

de5 =
1

48

1

(2π)3
εABCDEF F

AB FCD FDE . (2.17)

An equivalent, more compact way of expressing (2.17) is

de5 = −π∗
[
χ6(SO(6))

]
= −π∗

[
c3(SU(4))

]
. (2.18)

In the above expression, the 6-form χ6(SO(6)) is the Euler class of the normal bundle to the
D3-brane stack. Under SO(6) ∼= SU(4), it yields the third Chern class c3(SU(4)). The map
π : M9 →W4 is the projection map of the bundle (2.13), and π∗ in the pullback from the base
W4 to the total space W9. In what follows, for the sake of notational simplicity, we omit π∗

from formulae like (2.18).
The next step in our analysis is to use the boundary condition E5 to build a suitable

11-form I11, which is going to be the type IIB analog of I12 in M-theory. The class I11 must
be such that the inflow anomaly polynomial I inflow

6 is given by integrating I11 along the S5

fibers of M9. The quantity I inflow
6 should counterbalance the ’t Hooft anomalies of interacting

and decoupling modes on the D3-branes,

I inflow
6 =

∫
S5

I11 , I inflow
6 + ICFT

6 + Idecoupl
6 = 0 , (2.19)

with ICFT
6 , Idecoupl

6 given in (2.12). The relation (2.18) suggests a simple definition of I11,

I11 =
1

2
E5 dE5 . (2.20)

Indeed, we have

I inflow
6 = −1

2
N2

∫
S5

e5 c3(SU(4)) = −1

2
N2 c3(SU(4)) , (2.21)

where in the last step we used the fact that in our conventions e5 integrates to 1 on the S5

fibers. We see that our definition of I11 reproduces the anomalies of N = 4 SYM with gauge
group SU(N), plus one free vector multiplet. Notice that (2.20) does not originate from a
Chern-Simons coupling in the type IIB effective action. Indeed, we argue below that its origin
is the kinetic term for F5, due to self-duality of the latter.

The fact that (2.20) reproduces the anomalies of 4d N = 4 SYM is non-trivial. In section
3 we test our definition (2.20) in several other examples, including D3-branes at a tip of a
Calabi-Yau cone. We find that (2.20) correctly captures the inflow anomaly polynomial for
all these 4d theories.
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2.3 The class I11

Before proceeding with tests of (2.20), we would like to discuss its generalization to more
general type IIB setups. More precisely, we aim at including the boundary conditions for the
F3 and H3 fluxes of type IIB inside I11. For the time being, we do not include terms involving
derivatives of the axion C0 or the dilaton φ. We comment on such terms in section 5.

Since we are focusing on backgrounds with dC0 = 0, the Bianchi identities of F3 and H3

are standard, dF3 = 0, dH3 = 0. In analogy with (2.4), we write

F3

2π
= −ρF3 + . . . ,

H3

2π
= −ρH3 + . . . , (2.22)

where F3 and H3 are closed and globally defined 3-forms on M9. We then argue that (2.20)
generalizes to

I11 =
1

2
E5 dE5 + E5F3H3 . (2.23)

The new term in I11 is consistent with the SL(2,Z) symmetry of type IIB. Indeed F5 (and
hence E5) is an SL(2,Z) singlet, while F3 and H3 (and hence F3 and H3) transform as a
doublet. As a result, the 6-form F3H3 is an SL(2,Z) singlet.

The term E5F3H3 in I11 originates from the Chern-Simons coupling C4 F3H3 in the type
IIB effective action. In contrast, the term E5 dE5 is intuitively related to the kinetic term for
F5. Notice that, due to the self-duality constraint on F5, the naïve kinetic term in the type
IIB pseudo-action vanishes. In order to clarify the relation between E5 dE5 and the kinetic
term for F5 we can consider the reduction of type IIB on a circle to nine dimensions. This is
discussed in appendix A, where we provide indirect evidence for the relative weight of the two
terms in (2.23).

As a final remark, we point out that no higher-derivative corrections to (2.23) are allowed,
under the assumption that dC0 = 0 = dφ. More precisely, we cannot include any terms
involving the curvature 2-form of the 10d metric. A priori, the 11-form I11 might contain the
terms

p1(TM10)ω7 , p1(TM10)2 ω3 , p2(TM10)ω′3 , χ10(TM10)ω1 , (2.24)

where χ10(TM10) is the Euler class of TM10. The forms ω7, ω3, ω′3, ω1 must be built with
E5, F3, H3 and be SL(2,Z) invariant. It is easy to see, however, that such forms cannot be
constructed. The structure of I11 is much richer if we allow terms built with gradients of C0,
φ, as we discuss in section 5.

3 Four-dimensional examples

In this section we verify that the 11-form I11 given in (2.20) correctly captures the inflow
anomaly polynomial of the worldvolume theory of a stack of D3-branes at the tip of a Calabi-
Yau cone. Since we consider setups that only have D3-brane charge, the dilaton profile is
constant and the fluxes F3 and H3 play no role.
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After discussing some general properties of the 5-form E5, we compute the inflow anomaly
polynomial for the case of a Calabi-Yau which is a cone over a smooth Sasaki-Einstein man-
ifold. We compare the inflow result to the known 4d worldvolume theory, which consists of
an interacting N = 1 SCFT plus decoupling modes. We show that the inflow anomaly poly-
nomial computed from (2.20) cancels exactly against the anomalies of the SCFT and of the
decoupling modes, up to terms involving accidental symmetries that emerge in the IR.

As another example, we consider D3-branes probing a C2/Γ singularity, with Γ an ADE
subgroup of SU(2). The worldvolume theory is an N = 2 SCFT, plus decoupling modes. We
check the inflow anomaly polynomial against the total anomalies of the worldvolume theory,
and we get a match.

3.1 General form of E5

We consider a stack of D3-branes extended along an uncompactified worldvolume W4. In the
six transverse directions, the branes sit at the tip of a Calabi-Yau cone Y3. The latter is a
metric cone over a compact smooth Sasaki-Einstein space SE5,

ds2(Y3) = dr2 + r2 ds2(SE5) . (3.1)

The metric gmn on SE5 satisfies the Einstein condition Rmn = 4 gmn. The worldvolume theory
in the IR consists of an interacting 4d N = 1 SCFT, together with decoupling modes.

Let us consider the 5d supergravity theory that is obtained from compactification of
type IIB supergravity on SE5. This supergravity theory contains massless gauge fields. They
correspond to global continuous symmetries of the worldvolume theory. In the 5d supergravity,
massless gauge fields originate from two sources:

1. Isometries of SE5: the 5d massless vectors are off-diagonal components of the 10d metric
along the direction of Killing vectors of SE5.

2. Harmonic 3-forms on SE5: the 5d massless vector are obtained expanding the C4 po-
tential of type IIB supergravity onto a basis of harmonic 3-forms.

After we remove a small tubular neighborhood of the D3-branes, the boundary M9 of 10d
spacetime takes the form

SE5 ↪→M9 →W4 . (3.2)

The fibering of SE5 over W4 is due to the background connections for symmetries associated
to isometries of SE5.

Our task is the construction of the 5-form E5 that enters the boundary condition for F5

on M9, as in (2.14). The form E5 contains the external connections listed in points 1. and
2. above. Moreover, there are two natural requirements on E5:

(i) The form E5 is globally defined on M9, and in particular it is invariant under gauge
transformations of the background connections associated to isometries of SE5.

– 9 –



(ii) If all external connections are turned off, the form E5 reduces to N V5, where N is the
number of D3-branes in the stack, and V5 is the volume form on SE5.

In our conventions, V5 is normalized as ∫
SE5

V5 = 1 . (3.3)

In order to discuss efficiently the fibration (3.2), it is convenient to introduce some notation
for isometries of SE5.

We denote the Killing vector of SE5 as kmI , where m = 1, . . . , 5 is a curved tangent on
index SE5 and I labels the generators of the isometry group of SE5. The Lie algebra of Killing
vectors reads

[kI , kJ ]m = fIJ
K kmK , (3.4)

where fIJK are the structure constants. Let ξm be local coordinates on SE5, and let Λ be
a p-form on SE5, Λ = 1

p! Λm1...mp dξ
m1 . . . dξmp . The form Λ is not invariant under a gauge

transformation of the background connections. We can remedy this problem by introducing
a “gauged” version of Λ. It is denoted Λg and it is defined by

Λg =
1

p!
Λm1...mp Dξ

m1 . . . Dξmp , Dξm = dξm + kmI A
I , (3.5)

where AI is the background connection for the symmetry associated to the I-th isometry
generator of SE5. The field strength of AI reads

F I = dAI − 1

2
fJK

I AK AK . (3.6)

A useful identity to compute derivatives of Λg is

d(Λg) +AI (£IΛ)g = (dΛ)g + F I (ιIΛ)g , (3.7)

where £I is the Lie derivative along kmI , and ιI denotes the interior product of the vector kmI
with a p-form.

After these preliminaries we are in a position to present E5. It is given by

E5 = N

(
V g

5 +
F I

2π
ωg
I +

Fα

2π
ωg
α

)
. (3.8)

In the above expressions, ωα is a basis of harmonic 3-forms on SE5. The external 2-forms
Fα = dAα are the field strengths of the connections associated to the harmonic 3-forms, as
per point 2. above. We notice that a harmonic 3-form is automatically invariant under Lie
derivative along all isometry directions,1

£Iωα = 0 . (3.9)
1From dωα = 0 we derive £Iωα = d(ιIωα). Making use of ∇(mkI|n) = 0 and ∇mωαmnp = 0, we verify

(£Iωα)mnp = ∇q(kI ∧ ωα)qmnp. We have thus established that the 3-form £Iωα is both exact and co-exact.
It follows that

∫
SE5

(£Iωα) ∗ (£Iωα) = 0 (no sum over α, I), which in turn guarantees £Iωα = 0.

– 10 –



This condition ensures that the term Fα ωg
α in E5 is invariant under gauge transformations of

the external connections AI . We stress that, while dωα = 0, we have d(ωg
α) = F I (ιIωα)g by

virtue of (3.7).
The quantities ωI in (3.8) are 3-forms on SE5, determined as follows. The volume form

V5 is closed and invariant under the action of the isometries of SE5, dV5 = 0, £IV5 = 0. It
follows that, for each I, ιIV5 is a closed 4-form on SE5. A Sasaki-Einstein space, however, has
no harmonic 4-forms,2 and thus ιIV5 is exact. The 3-form ωI is then defined by the relation

dωI + 2π ιIV5 = 0 . (3.10)

We notice that, in order to ensure that E5 is invariant under gauge transformations of the
connections AI , the 3-forms ωI must satisfy

£IωJ = fIJ
K ωK . (3.11)

This relation is compatible with (3.10).3

The form E5 in not closed. Indeed, with the help of (3.7) and the Bianchi identities for
F I , Fα, we find

dE5 = N F I F J
(ιIωJ)g

2π
+N F I Fα

(ιIωα)g

2π
. (3.12)

Crucially, by virtue of (3.10) there is a cancellation between d(V g
5 ) and F Id(ωg

I ), in such a
way that all terms in dE5 have two external field strengths.

Comments

The expressions (3.8), (3.12) deserve some comments.
Firstly, we point out that E5 contains terms associated to an expansion onto harmonic

3-forms, but does not contain terms associated to expansion onto the dual harmonic 2-forms.
Including such terms would be redundant, since they are generated by ∗10E5 when we construct
F5 = E5 + ∗10E5.

Secondly, we notice that a non-zero dE5 is not in contradiction with the Bianchi identity
for F5 = E5 + ∗10E5. The latter is the boundary condition for the physical 5-form field of
type IIB, which (in the absence of F3, H3) must be closed and self-dual on shell. In appendix
B we show that our expression (3.8) for E5 is indeed compatible with dF5 = 0. Moreover, we
show that dF5 = 0 is the origin of the condition (3.10) on the 3-forms ωI .

Next, there seems to be a tension between (3.12), which holds for a general Sasaki-Einstein
manifold, and (2.17), which holds for the global angular form e5 associated to a round S5 and
shows that de5 is purely horizontal. We also notice that e5 in (2.16) contains terms quadratic

2Its first Betti number is zero because the first Betti number of any compact and orientable Riemannian
manifold of positive definite Ricci curvature is zero, see e.g. [20] theorem 3.2.1 page 87.

3Indeed, using (3.10) and the identities £IιJ − ιJ£I = fIJ
K ιK , £IV5 = 0, we derive d£IωJ = fIJ

K dωK .
By modifying ωI by a exact piece if necessary, we can achieve (3.11).
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in FAB, which are crucial in guaranteeing (2.17) but are absent from the parametrization (3.8).
The key observation to reconcile (2.16) and (3.8) is that we can modify e5 into a different e′5
without affecting the inflow anomaly polynomial,∫

S5

e5 de5 =

∫
S5

e′5 de
′
5 , (3.13)

where the new form e′5 is obtained from e5 by omitting the term quadratic in FAB,

e′5 =
1

π3

[
1

5!
εABCDEF y

ADyBDyC DyDDyE DyF − 1

48
εABCDEF F

AB yC DyDDyE DyF
]
,

de′5 = −1

8

1

(2π)3
εABCDEF F

AB FCDDyDDyE . (3.14)

As expected, de′5 in (3.14) is no longer purely external, but rather has the structure (3.12).
The equivalence between e5 and e′5 for the purposes of anomaly inflow is a specific example

of a more general property of E5, demonstrated in appendix B: as soon as (3.10) holds, we are
free to add arbitrary “non-minimal” FFλ terms to E5 (where λ is a 1-form on SE5) without
modifying the value of the integral

∫
SE5

E5 dE5.
The example of S5 shows that non-minimal terms can be tuned in such a way as to

ensure that de5 is purely horizontal. It is natural to wonder if this holds true for a generic
Sasaki-Einstein space. We show in appendix B that, as soon as SE5 admits harmonic 3-forms,
there is an obstruction to making dE5 purely horizontal: there is no choice of non-minimal
terms such that dE5 is the pullback of a 6-form in external spacetime. Thus, in the presence
of harmonic 3-forms, a relation of the form (3.12) is the “most horizontal possible” for dE5.

Finally, we would like to point out that the 3-forms ωI are not uniquely determined by
(3.10), since they can be shifted by an arbitrary closed 3-form. We argue in appendix B that
this ambiguity has no effect on the inflow anomaly polynomial.

Collective notation

In what follows, it is convenient to introduce a shorthand notation for describing all external
connections collectively. We introduce the new index X = (I, α) and we write

FX = (F I , Fα) , ωX = (ωI , ωα) . (3.15)

As a result, we may rewrite (3.8) and (3.12) as

E5 = N

(
V g

5 +
FX

2π
ωg
X

)
, dE5 = 2πN

FX

2π

F Y

2π
(ιXωY )g , (3.16)

with the understanding that the operation ιX is defined to be ιI if X = I and is defined to
be zero if X = α. We also notice that the closure property dωα = 0 for the harmonic 3-forms
can be combined with (3.10) into a single relation,

dωX + 2π ιXV5 = 0 . (3.17)
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3.2 Inflow analysis for smooth SE5

In this subsection we compute the inflow anomaly polynomial in the case in which SE5 is a
smooth manifold admitting a possibly non-Abelian isometry group and an arbitrary number
of harmonic 3-forms.

Computation of the inflow anomaly polynomial

Making use of (3.16) it is immediate to verify that∫
SE5

E5 dE5 = 2πN2 F
X

2π

F Y

2π

FZ

2π

∫
SE5

ωX ιY ωZ . (3.18)

As a result, the inflow anomaly polynomial obtained from (2.20) can be written as

I inflow
6 =

1

6
cXY Z

FX

2π

F Y

2π

FZ

2π
,

1

6
cXY Z =

1

2
N2 · 2π

∫
SE5

ω(X ιY ωZ) , (3.19)

where the total symmetrization (XY Z) is performed with weight 1, i.e. with the combinatorial
prefactor 1/6.

Our expression for I inflow
6 agrees with the results of [21], where the anomalies of the

interacting SCFT on the D3-brane were derived at leading order in N from the 5d supergravity
effective action.4 Notice in particular that I inflow

6 is proportional to N2, without subleading
terms. This is due to the fact that we have included a prefactor N in front of the harmonic
3-forms ωα in E5. As explained in [21], this is the correct prescription to reproduce the charge
of D3-brane states that are charged under the baryonic U(1) symmetries associated to the
harmonic 3-forms ωα.

Anomaly inflow should yield results that are exact inN , and not just the leading order part
in the large N limit. To verify this claim, we must take into account the whole worldvolume
theory, including decoupled sectors. We address this analysis in a class of examples in the
next subsection.

Comparison with worldvolume theory

For the sake of concreteness, in this subsection we focus on the case of a toric Calabi-Yau cone
with smooth Sasaki-Einstein base. We expect, however, that the picture we describe should
hold for general Calabi-Yau cones.

The worldvolume theory on a stack of D3-branes at the tip of a toric Calabi-Yau cone is
an N = 1 quiver gauge theory with bifundamental and adjoint matter chiral superfields, and
a superpotential. The quiver and the superpotential are extracted from the toric diagram of
the Calabi-Yau cone [22]. Let the label i enumerate the nodes of the quiver. At the node

4The collective index X here corresponds to the index I in [21]. The normalization of the 3-forms ω here
and in [21] is the same, as can be seen from (2.15) in that paper, taking into account that vol◦ there is the
same as V5 here, and that the quantity kI there contains a factor 2π, as stated above their (2.15). By a similar
token, our expression for the c coefficients agrees with (2.20) in [21], taking into account that they have an
implicit 2π factor in the interior product ι. In our expression, this 2π factor is explicit.
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i we have a gauge group U(Ni). In the toric phase, Ni = N for each i, but for the sake of
generality we consider possibly distinct Ni’s in what follows.

The quiver gauge theory with U(Ni) gauge groups is not conformal. In the IR, the U(1)

factor inside each U(Ni) decouples. We are then left with a quiver with SU(Ni) gauge groups,
and one free vector multiplet for each node in the quiver. Moreover, each chiral field in the
adjoint representation of U(Ni), of dimension N2

i , splits into a chiral field in the adjoint
representation of SU(Ni), of dimension N2

i −1, plus one free massless chiral field. In contrast,
the bifundamental representation of U(Ni)×U(Nj), of dimension NiNj , simply becomes the
bifundamental representation of SU(Ni)× SU(Nj), of the same dimension, without any free
chiral field decoupling.

For i 6= j, let mij be the number of chiral superfields in the bifundamental of SU(Ni)×
SU(Nj). We denote these fields as Xij,α, with α = 1, . . . ,mij . In a similar way, if there are
mii chiral superfields in the adjoint of SU(Ni), we denote them as Xii,α with α = 1, . . . ,mii.
From the discussion of the previous paragraph, we know that each Xii,α comes accompanied
by a free chiral superfield, which we denote Yii,α.

The interacting CFT defined by the quiver with SU(Ni) gauge groups admits global
symmetries. We choose a basis in which R0 is a reference U(1) R-symmetry, while all other
global symmetries are flavor symmetries. We ignore non-Abelian flavor symmetries, if present,
and we denote the generators of U(1) flavor symmetries as TI .

The generators R0 and TI must be free of ABJ anomalies with the generators of each
gauge group SU(Ni). This requirement gives

0 = Ni +

mii∑
α=1

Ni

(
R0[Xii,α]− 1

)
+

1

2

∑
j 6=i

mij∑
α=1

Nj

(
R0[Xij,α]− 1

)
+

1

2

∑
j 6=i

mji∑
α=1

Nj

(
R0[Xji,α]− 1

)
,

0 =

mii∑
α=1

Ni TI [Xii,α] +
1

2

∑
j 6=i

mij∑
α=1

Nj TI [Xij,α] +
1

2

∑
j 6=i

mji∑
α=1

Nj TI [Xji,α] . (3.20)

The symbol R0[Xii,α] denotes the charge of the scalar Xii,α under the generator R0, and
similarly for other scalars and generators. The R0 and TI charges of the free chiral superfields
Yii,α are not constrained by ABJ anomalies, because the fields Yii,α are gauge singlets. Given
the common origin of Yii,α and Xii,α from the adjoint representation of U(Ni), the natural
charge assignments for Yii,α are

R0[Yii,α] = R0[Xii,α] , TI [Yii,α] = TI [Xii,α] . (3.21)

It follows that, if we consider the interacting CFT together with the free chiral fields Yii,α,
and one free vector multiplet for each node in the quiver, we have

TrCFT+ freeR0 = 0 , TrCFT+ free TI = 0 . (3.22)

This is derived by multiplying the conditions (3.20) for the ith node by Ni, and summing over
i, as in [23].
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Let us now consider the quantity TrCFT+ free (abc), where a, b, c ∈ {R0, TI} not necessarily
distinct. If a bifundamental field Xij,α contributes to TrCFT+ free (abc), it does so with a
prefactor NiNj , because this is the dimension of the gauge representation in which Xij,α

transforms. By a similar token, if Xii,α contributes, it does so with a prefactor N2
i − 1.

Because of the charge assignments (3.21), the contribution of Yii,α is identical to that of Xii,α.
As a result, Xii,α and Yii,α give together a contribution with a prefactor N2

i . From these
considerations, it follows that TrCFT+ free (abc) is an order N2 quantity, without any O(1)

terms. More precisely, let N be the greatest common divisor of the Ni’s, so that we may write
Ni = N ni with coprime ni’s. Then all dependence of TrCFT+ free (abc) on N is via an overall
factor N2.

It should be noted that each free chiral field Yii,α comes together with an additional U(1)

factor in the global symmetry group of the theory, with generator T̂ii,α. These are accidental
symmetries of the IR theory. All fields in the system have charge zero under T̂ii,α, except the
free chiral field Yii,α, which by convention has charge 1.

The superconformal R-symmetry of the total system comprised of the interacting CFT
and the free fields is of the form

RN=1 = R0 +
∑
I
sI TI +

∑
i

mii∑
α=1

sii,α T̂ii,α , (3.23)

for suitable values of the parameters sI , sii,α. We notice that, if we did not include the T̂ii,α
generators, then the interacting field Xii,α and the free field Yii,α would have had the same
charge under RN=1, because they have the same charges under R0 and TI . Clearly this would
be in tension with the fact that Xii,α has a non-trivial anomalous dimension, while Yii,α has
dimension 1. This puzzle is resolved by the terms with T̂ii,α in RN=1. The parameter sii,α
can always be tuned in such a way that RN=1[Yii,α] = 2/3, as appropriate for a free chiral
field.

Let c0
1 be the first Chern class of the background connection for the R0 symmetry, cI1

the first Chern class for the symmetry TI , and c
ii,α
1 for the accidental symmetry T̂ii,α. The

anomaly polynomial of the CFT together with the free fields takes the form

ICFT
6 + Idecoupl

6 = IN
2

6 (c0
1, c
I
1 ) + Iaccidental

6 (c0
1, c
I
1 , c

ii,α
1 , p1(TW4)) . (3.24)

We have collected all terms containing cii,α1 in Iaccidental
6 , while the remaining terms without

any cii,α1 factor are gathered in IN2

6 . Notice that IN2

6 does not contain p1(TW4) by virtue of
(3.22). Moreover, IN2

6 has an overall N2 factor. In contrast, Iaccidental
6 is independent of N . In

fact, Iaccidental
6 only receives contributions from the free chiral fields Yii,α. The total number

of such fields is determined by the quiver to be
∑

imii, but it does not scale with the ranks
of the gauge groups at the nodes of the quiver.

We notice that the quantity IN2

6 (c0
1, c
I
1 ) has an equivalent interpretation: it is the leading

large-N part of the anomaly polynomial of the interacting CFT without free fields. In [21]
it is demonstrated that the formula (3.19) for the inflow anomaly coefficients agrees with the
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large-N anomaly coefficients on the field theory side for any toric Calabi-Yau cone. This
means that we can write

I inflow
6 = −IN2

6 (c0
1, c
I
1 ) , ICFT

6 +Idecoupl
6 +I inflow

6 = Iaccidental
6 (c0

1, c
I
1 , c

ii,α
1 , p1(TW4)) . (3.25)

In conclusion, the inflow anomaly polynomial matches exactly the anomalies of the worldvol-
ume theory on the D3-branes, up to accidental symmetries that emerge in the IR from the
decoupling of free chiral multiplets. Our expectation is that this conclusion should hold for
any Calabi-Yau cone. It would be interesting to explore the relations between this proposal
and the theories discussed in [18].

3.3 D3-branes probing a C2/Γ singularity

In this subsection we consider a class of examples that yield 4dN = 2 SCFTs. The background
geometry probed by the D3-branes is Y3 = (C2/Γ)×C, where Γ is an ADE subgroup of SU(2).
While Y3 is a Calabi-Yau cone, the associated Sasaki-Einstein base is S5/Γ and has orbifold
singularities. To compute the inflow anomaly polynomial we resolve these singularities by
blow-up, in the spirit of [24].

Anomaly inflow computation

Let us consider the type IIB background R1,3 × (C2/Γ) × C, where Γ is an ADE subgroup
of SU(2). We insert a stack of D3-branes extended along R1,3 and located at the origin of
(C2/Γ)×C. This setup preserves 4d N = 2 supersymmetry and has been studied in [25, 26].
We introduce coordinates z1 = y1 + i y2, z2 = y3 + i y4 for the C2 factor acted upon by Γ,
while we use z3 = y5 + i y6 for the other C factor. The isometry group SO(6) of C3 ∼= R6 is
reduced by the action of Γ according to

SO(6)→ GL × SU(2)R × U(1)φ . (3.26)

The factors GL×SU(2)R are the subgroup of the SO(4) ∼= SU(2)L×SU(2)R rotating y1, y2,
y3, y4 that commutes with the action of Γ,

GL =


SU(2)L for Γ = Z2 ,

U(1)L for Γ = Zk, k ≥ 3 ,

trivial for Γ of D, E type .
(3.27)

The group U(1)φ is identified with rotations in the y5y6 plane, with φ defined to be the polar
angle in the usual way, z3 = |z3| eiφ. The isometries SU(2)R × U(1)ψ are identified with the
R-symmetry of the worldvolume theory on the D3 branes.

All points on the y5y6 plane, with y1 = · · · = y4 = 0, are fixed points of the action of
Γ. The unit sphere S5 ⊂ R6 intersects the set of fixed points along the circle y2

5 + y2
6 = 1 in

the y5y6 plane, which we denote as S1
φ. As a result, the quotient S5/Γ has a circle of orbifold

singularities located along S1
φ.
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If we consider C2/Γ in isolation, the orbifold singularity at the origin can be resolved in
a canonical way, introducing a set of resolution 2-cycles. Each resolution cycles is a copy of
CP1. We have rank(gΓ) resolution cycles, where rank(gΓ) is the rank of the ADE Lie algebra
gΓ associated to Γ. We use the notation CP1

α, α = 1, . . . , rank(gΓ). The intersection pairing
of the resolution 2-cycles reproduces the Cartan matrix of gΓ. To each resolution 2-cycle in
C2/Γ we can associate a Poincaré dual harmonic 2-form. We denote these harmonic 2-forms
as ω̃α. We have ∫

C2/Γ
ω̃α ω̃β = −Cαβ , (3.28)

where Cαβ is the Cartan matrix of gΓ.
If we now turn to S5/Γ, if we blow up the orbifold singularities along S1

φ we introduce a
set of rank(gΓ) 3-cycles, of the form CP1

α×S1
φ. The blow-up can be performed while preserving

the U(1)φ isometry of S5/Γ. The 3-cycles CP1
α × S1

φ in the blow-up of S5/Γ are dual to a set
of harmonic 3-forms, denoted ωα. We can write

ωα = ω̃α
dφ

2π
. (3.29)

The 2-forms ω̃α were previously defined on C2/Γ. We can extend them to S5/Γ; by abuse of
notation, we use the same symbol ω̃α. After the extension, these 2-forms are supported along
the S1

φ circle at y1 = · · · = y4 = 0. They do not depend on the coordinate φ, and they do not
have any dφ leg.

Let us now discuss E5 for the setup under consideration. It takes the form

E5 = N |Γ| eS5

5 +
Fα

2π

[
(ωα)g + FAB (λABα)g

]
. (3.30)

In the previous expression, eS5

5 can be taken to be the global angular form of SO(6). Its
expression is recorded in appendix C. The quantities FAB are the components of the curvature
for the background SO(6) connection. As stated in (3.26), only a subgroup of SO(6) is
preserved by the action of Γ. It is therefore implicitly understood that the only non-zero
components of FAB are those along the generators of the subgroup GL × SU(2)R × U(1)φ.
The 2-forms Fα in (C.1) are external field strengths for the U(1)rank(gΓ) global symmetry
originating from the 3-cycles in the blow-up of S5/Γ. Moreover, we can write

(ωα)g = ω̃α
Dφ

2π
, Dφ = dφ−Aφ , (3.31)

where Aφ is the background connection for U(1)φ. Notice that the gauging does not affect the
2-forms ω̃α. This is because they are localized at y1 = · · · = y4 = 0, they do not depend on
φ, and they do not have any dφ leg. The 1-forms λABα can be left arbitrary, since we check
that the anomaly does not depend on them.

The computation of the inflow anomaly polynomial from E5 in (3.30) is recorded in
appendix C. The result reads

I inflow
6 =

1

2

∫
S5/Γ

E5 dE5 = N2 |Γ| cR1
[
c2(SU(2)R)− c2(GL)

]
+ Cαβ cR1 cα1 cβ1 . (3.32)

– 17 –



In writing the above expressions, we have identified the field strengths Fφ, Fα with 4d Chern
classes according to

Fφ
2π

= 2 c1(U(1)RN=2
) ≡ 2 cR1 ,

Fα

2π
= c1(U(1)α) ≡ cα1 . (3.33)

Moreover, we have introduced the shorthand notation

c2(GL) =


c2(SU(2)L) for Γ = Z2 ,

−c1(U(1)L)2 for Γ = Zk, k ≥ 3 ,

0 for Γ of D, E type .
(3.34)

Comparison with worldvolume theory

The worldvolume theory on a stack of D3-branes probing the C2/Γ singularity is a 4d N = 2

quiver gauge theory [25, 26]. The quiver has the shape of the affine Dynkin diagram of the
Lie algebra gΓ associated to Γ. The total gauge group is of the form

Ggauge =
∏
i

U(N ni) , (3.35)

where the product is over nodes of the affine Dynkin diagram, and the quantities ni are integers
associated to each node. In table 1 we depict the quivers with their ni assignments. Each link
in the quiver represents a bifundamental hypermultiplet. In the IR, the U(1) factors in the
gauge group decouple. We are left with a quiver with SU gauge groups, which describes an
interacting N = 2 SCFT, together with a number of free N = 2 vector multiplets, equal to
the number of nodes in the quiver, which is rank(gΓ) + 1.

According to the general anomaly inflow paradigm, I inflow
6 should balance against the

contributions of all degrees of freedom on the worldvolume theory of the branes. We should
then have

I inflow
6 + Iworldvol

6 = 0 , Iworldvol
6 = ISU quiver

6 + I free vec. multiplets
6 . (3.36)

Since the worldvolume theory is a Lagrangian theory, we can readily compute Iworldvol
6 and

use it as a check of I inflow
6 given in (3.32).

As a first check, let us verify that the symmetries visible in the inflow computation
correspond to the global symmetries of the worldvolume theory. The inflow geometry S5/Γ

has isometry group GL × SU(2)R ×U(1)φ, with GL given in (3.27). Moreover, the resolution
3-cycles of S5/Γ provide an additional U(1)rank(gΓ) global symmetry. On the field theory
side we have an SU(2)R × U(1)RN=2

R-symmetry, which is identified with the isometries
SU(2)R × U(1)φ. Moreover, each hypermultiplet gives a U(1) global symmetry. The case
Γ = Z2 is special, since the quiver has two nodes connected by two links. As a result, the
hypermultiplets contribute a factor U(2) ∼= SU(2)×U(1) to the global symmetry of the theory.
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. . .<latexit sha1_base64="rK3ZXOXkuyGkm33aYETjMpfTTZE=">AAAB43icbZC7TgJBFIbP4g3xhlrabCQmFobsoomWRBtLTFwggQ2ZHQ4wYfaSmbMkZMMTWJgYCy18IB/Bt3HAbQD/6sv5zyX/CRIpNDnOj1XY2Nza3inulvb2Dw6PyscnTR2niqPHYxmrdsA0ShGhR4IkthOFLAwktoLxw9xvTVBpEUfPNE3QD9kwEgPBGZmS1+3HpHvlilN1FrLXwc2hArkavfK3meNpiBFxybTuuE5CfsYUCS5xVuqmGhPGx2yIGQu1nobBzL4IGY30qjcv/ud1Uhrc+ZmIkpQw4qbFeINU2hTb8xx2XyjkJKcGGFfCXLb5iCnGyaRd3qQxYiHqK7s/EYlesJ8tXjcrmezuatJ1aNaq7nW19nRTqd/nXyjCGZzDJbhwC3V4hAZ4wEHAK3zAp4XWi/Vmvf+1Fqx85hSWZH39AhwOi6M=</latexit> 1<latexit sha1_base64="+9fC7BUUD6ueay0MnQ504pgxB4w=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUcPvFklN2lrI3wc2gBJnq/eJ3bxCxOKDQMIFad11HGi9BZTgTNC/0Yk0S2QRHlGCg9Szw5/ZVgGas171F8T+vG5vhvZfwUMaGQpa2pN4wFraJ7EUGe8AVMSNmKSBTPL1sszEqZCZNurpJU4gB6Rt7MOVSL9lLlm+bF9Ls7nrSTWhVym61XGnclmoP2RfycAGXcA0u3EENnqAOTWBA8Aof8Gmh9WK9We9/rTkrmzmHFVlfv7ZliZY=</latexit> 1<latexit sha1_base64="+9fC7BUUD6ueay0MnQ504pgxB4w=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUcPvFklN2lrI3wc2gBJnq/eJ3bxCxOKDQMIFad11HGi9BZTgTNC/0Yk0S2QRHlGCg9Szw5/ZVgGas171F8T+vG5vhvZfwUMaGQpa2pN4wFraJ7EUGe8AVMSNmKSBTPL1sszEqZCZNurpJU4gB6Rt7MOVSL9lLlm+bF9Ls7nrSTWhVym61XGnclmoP2RfycAGXcA0u3EENnqAOTWBA8Aof8Gmh9WK9We9/rTkrmzmHFVlfv7ZliZY=</latexit>

1<latexit sha1_base64="+9fC7BUUD6ueay0MnQ504pgxB4w=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUcPvFklN2lrI3wc2gBJnq/eJ3bxCxOKDQMIFad11HGi9BZTgTNC/0Yk0S2QRHlGCg9Szw5/ZVgGas171F8T+vG5vhvZfwUMaGQpa2pN4wFraJ7EUGe8AVMSNmKSBTPL1sszEqZCZNurpJU4gB6Rt7MOVSL9lLlm+bF9Ls7nrSTWhVym61XGnclmoP2RfycAGXcA0u3EENnqAOTWBA8Aof8Gmh9WK9We9/rTkrmzmHFVlfv7ZliZY=</latexit>

k � 1
<latexit sha1_base64="WuyDxDCNo02GCfLyRWsdPuPzPfM=">AAAB4XicbZC7TgJBFIbP4g3xhlraTCQmFkp20URLoo0lRrkksCGzwwEmzO5OZmZJyIYHsDAxFlr4RD6Cb+OA2wD+1Zfzn0v+E0jBtXHdHye3tr6xuZXfLuzs7u0fFA+PGjpOFMM6i0WsWgHVKHiEdcONwJZUSMNAYDMY3c/85hiV5nH0bCYS/ZAOIt7njBpbehpdet1iyS27c5FV8DIoQaZat/jd6cUsCTEyTFCt254rjZ9SZTgTOC10Eo2SshEdYEpDrSdhMCVnITVDvezNiv957cT0b/2URzIxGDHbYr1+IoiJySwF6XGFzIiJBcoUt5cJG1JFmbFZFzdpjGiI+oL0xlzqOfvp/HHTgs3uLSddhUal7F2VK4/Xpepd9oU8nMApnIMHN1CFB6hBHRgM4BU+4NNhzovz5rz/teacbOYYFuR8/QLiN4pC</latexit>

so(2k) k 4k−8 . . .<latexit sha1_base64="rK3ZXOXkuyGkm33aYETjMpfTTZE=">AAAB43icbZC7TgJBFIbP4g3xhlrabCQmFobsoomWRBtLTFwggQ2ZHQ4wYfaSmbMkZMMTWJgYCy18IB/Bt3HAbQD/6sv5zyX/CRIpNDnOj1XY2Nza3inulvb2Dw6PyscnTR2niqPHYxmrdsA0ShGhR4IkthOFLAwktoLxw9xvTVBpEUfPNE3QD9kwEgPBGZmS1+3HpHvlilN1FrLXwc2hArkavfK3meNpiBFxybTuuE5CfsYUCS5xVuqmGhPGx2yIGQu1nobBzL4IGY30qjcv/ud1Uhrc+ZmIkpQw4qbFeINU2hTb8xx2XyjkJKcGGFfCXLb5iCnGyaRd3qQxYiHqK7s/EYlesJ8tXjcrmezuatJ1aNaq7nW19nRTqd/nXyjCGZzDJbhwC3V4hAZ4wEHAK3zAp4XWi/Vmvf+1Fqx85hSWZH39AhwOi6M=</latexit>

1<latexit sha1_base64="+9fC7BUUD6ueay0MnQ504pgxB4w=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUcPvFklN2lrI3wc2gBJnq/eJ3bxCxOKDQMIFad11HGi9BZTgTNC/0Yk0S2QRHlGCg9Szw5/ZVgGas171F8T+vG5vhvZfwUMaGQpa2pN4wFraJ7EUGe8AVMSNmKSBTPL1sszEqZCZNurpJU4gB6Rt7MOVSL9lLlm+bF9Ls7nrSTWhVym61XGnclmoP2RfycAGXcA0u3EENnqAOTWBA8Aof8Gmh9WK9We9/rTkrmzmHFVlfv7ZliZY=</latexit>

1<latexit sha1_base64="+9fC7BUUD6ueay0MnQ504pgxB4w=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUcPvFklN2lrI3wc2gBJnq/eJ3bxCxOKDQMIFad11HGi9BZTgTNC/0Yk0S2QRHlGCg9Szw5/ZVgGas171F8T+vG5vhvZfwUMaGQpa2pN4wFraJ7EUGe8AVMSNmKSBTPL1sszEqZCZNurpJU4gB6Rt7MOVSL9lLlm+bF9Ls7nrSTWhVym61XGnclmoP2RfycAGXcA0u3EENnqAOTWBA8Aof8Gmh9WK9We9/rTkrmzmHFVlfv7ZliZY=</latexit>

1<latexit sha1_base64="+9fC7BUUD6ueay0MnQ504pgxB4w=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUcPvFklN2lrI3wc2gBJnq/eJ3bxCxOKDQMIFad11HGi9BZTgTNC/0Yk0S2QRHlGCg9Szw5/ZVgGas171F8T+vG5vhvZfwUMaGQpa2pN4wFraJ7EUGe8AVMSNmKSBTPL1sszEqZCZNurpJU4gB6Rt7MOVSL9lLlm+bF9Ls7nrSTWhVym61XGnclmoP2RfycAGXcA0u3EENnqAOTWBA8Aof8Gmh9WK9We9/rTkrmzmHFVlfv7ZliZY=</latexit>

1<latexit sha1_base64="+9fC7BUUD6ueay0MnQ504pgxB4w=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUcPvFklN2lrI3wc2gBJnq/eJ3bxCxOKDQMIFad11HGi9BZTgTNC/0Yk0S2QRHlGCg9Szw5/ZVgGas171F8T+vG5vhvZfwUMaGQpa2pN4wFraJ7EUGe8AVMSNmKSBTPL1sszEqZCZNurpJU4gB6Rt7MOVSL9lLlm+bF9Ls7nrSTWhVym61XGnclmoP2RfycAGXcA0u3EENnqAOTWBA8Aof8Gmh9WK9We9/rTkrmzmHFVlfv7ZliZY=</latexit>

k � 3
<latexit sha1_base64="Mej02S82mNsFt5gYkxNuelsC4Fs=">AAAB4XicbZC7TgJBFIbPekW8oZY2E4mJhZJdMNGSaGOJUS4JbMjscIAJM7ObmVkSsuEBLEyMhRY+kY/g27jgNoB/9eX855L/BJHgxrruj7O2vrG5tZ3bye/u7R8cFo6OGyaMNcM6C0WoWwE1KLjCuuVWYCvSSGUgsBmM7md+c4za8FA920mEvqQDxfucUZuWnkZXlW6h6JbcucgqeBkUIVOtW/ju9EIWS1SWCWpM23Mj6ydUW84ETvOd2GBE2YgOMKHSmIkMpuRcUjs0y96s+J/Xjm3/1k+4imKLiqUtqdePBbEhmaUgPa6RWTFJgTLN08uEDammzKZZFzcZVFSiuSS9MY/MnP1k/rhpPs3uLSddhUa55FVK5cfrYvUu+0IOTuEMLsCDG6jCA9SgDgwG8Aof8Okw58V5c97/WtecbOYEFuR8/QLlLYpE</latexit>

2<latexit sha1_base64="sm1FTySO3c9l9BOCwEq2ymEM/O0=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUqPSLJafsLGVvgptBCTLV+8Xv3iBicUChYQK17rqONF6CynAmaF7oxZoksgmOKMFA61ngz+2rAM1Yr3uL4n9eNzbDey/hoYwNhSxtSb1hLGwT2YsM9oArYkbMUkCmeHrZZmNUyEyadHWTphAD0jf2YMqlXrKXLN82L6TZ3fWkm9CqlN1qudK4LdUesi/k4QIu4RpcuIMaPEEdmsCA4BU+4NNC68V6s97/WnNWNnMOK7K+fgG34ImX</latexit> 2<latexit sha1_base64="sm1FTySO3c9l9BOCwEq2ymEM/O0=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUqPSLJafsLGVvgptBCTLV+8Xv3iBicUChYQK17rqONF6CynAmaF7oxZoksgmOKMFA61ngz+2rAM1Yr3uL4n9eNzbDey/hoYwNhSxtSb1hLGwT2YsM9oArYkbMUkCmeHrZZmNUyEyadHWTphAD0jf2YMqlXrKXLN82L6TZ3fWkm9CqlN1qudK4LdUesi/k4QIu4RpcuIMaPEEdmsCA4BU+4NNC68V6s97/WnNWNnMOK7K+fgG34ImX</latexit> 2<latexit sha1_base64="sm1FTySO3c9l9BOCwEq2ymEM/O0=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUqPSLJafsLGVvgptBCTLV+8Xv3iBicUChYQK17rqONF6CynAmaF7oxZoksgmOKMFA61ngz+2rAM1Yr3uL4n9eNzbDey/hoYwNhSxtSb1hLGwT2YsM9oArYkbMUkCmeHrZZmNUyEyadHWTphAD0jf2YMqlXrKXLN82L6TZ3fWkm9CqlN1qudK4LdUesi/k4QIu4RpcuIMaPEEdmsCA4BU+4NNC68V6s97/WnNWNnMOK7K+fgG34ImX</latexit>

2<latexit sha1_base64="sm1FTySO3c9l9BOCwEq2ymEM/O0=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUqPSLJafsLGVvgptBCTLV+8Xv3iBicUChYQK17rqONF6CynAmaF7oxZoksgmOKMFA61ngz+2rAM1Yr3uL4n9eNzbDey/hoYwNhSxtSb1hLGwT2YsM9oArYkbMUkCmeHrZZmNUyEyadHWTphAD0jf2YMqlXrKXLN82L6TZ3fWkm9CqlN1qudK4LdUesi/k4QIu4RpcuIMaPEEdmsCA4BU+4NNC68V6s97/WnNWNnMOK7K+fgG34ImX</latexit>

e6 6 24

1<latexit sha1_base64="+9fC7BUUD6ueay0MnQ504pgxB4w=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUcPvFklN2lrI3wc2gBJnq/eJ3bxCxOKDQMIFad11HGi9BZTgTNC/0Yk0S2QRHlGCg9Szw5/ZVgGas171F8T+vG5vhvZfwUMaGQpa2pN4wFraJ7EUGe8AVMSNmKSBTPL1sszEqZCZNurpJU4gB6Rt7MOVSL9lLlm+bF9Ls7nrSTWhVym61XGnclmoP2RfycAGXcA0u3EENnqAOTWBA8Aof8Gmh9WK9We9/rTkrmzmHFVlfv7ZliZY=</latexit>2<latexit sha1_base64="sm1FTySO3c9l9BOCwEq2ymEM/O0=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUqPSLJafsLGVvgptBCTLV+8Xv3iBicUChYQK17rqONF6CynAmaF7oxZoksgmOKMFA61ngz+2rAM1Yr3uL4n9eNzbDey/hoYwNhSxtSb1hLGwT2YsM9oArYkbMUkCmeHrZZmNUyEyadHWTphAD0jf2YMqlXrKXLN82L6TZ3fWkm9CqlN1qudK4LdUesi/k4QIu4RpcuIMaPEEdmsCA4BU+4NNC68V6s97/WnNWNnMOK7K+fgG34ImX</latexit>3
<latexit sha1_base64="fgWREeBCdZ9tqqKY6PpG0bkrWhg=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUqPaLJafsLGVvgptBCTLV+8Xv3iBicUChYQK17rqONF6CynAmaF7oxZoksgmOKMFA61ngz+2rAM1Yr3uL4n9eNzbDey/hoYwNhSxtSb1hLGwT2YsM9oArYkbMUkCmeHrZZmNUyEyadHWTphAD0jf2YMqlXrKXLN82L6TZ3fWkm9CqlN1qudK4LdUesi/k4QIu4RpcuIMaPEEdmsCA4BU+4NNC68V6s97/WnNWNnMOK7K+fgG5W4mY</latexit>

2<latexit sha1_base64="sm1FTySO3c9l9BOCwEq2ymEM/O0=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUqPSLJafsLGVvgptBCTLV+8Xv3iBicUChYQK17rqONF6CynAmaF7oxZoksgmOKMFA61ngz+2rAM1Yr3uL4n9eNzbDey/hoYwNhSxtSb1hLGwT2YsM9oArYkbMUkCmeHrZZmNUyEyadHWTphAD0jf2YMqlXrKXLN82L6TZ3fWkm9CqlN1qudK4LdUesi/k4QIu4RpcuIMaPEEdmsCA4BU+4NNC68V6s97/WnNWNnMOK7K+fgG34ImX</latexit>

1<latexit sha1_base64="+9fC7BUUD6ueay0MnQ504pgxB4w=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUcPvFklN2lrI3wc2gBJnq/eJ3bxCxOKDQMIFad11HGi9BZTgTNC/0Yk0S2QRHlGCg9Szw5/ZVgGas171F8T+vG5vhvZfwUMaGQpa2pN4wFraJ7EUGe8AVMSNmKSBTPL1sszEqZCZNurpJU4gB6Rt7MOVSL9lLlm+bF9Ls7nrSTWhVym61XGnclmoP2RfycAGXcA0u3EENnqAOTWBA8Aof8Gmh9WK9We9/rTkrmzmHFVlfv7ZliZY=</latexit>

2<latexit sha1_base64="sm1FTySO3c9l9BOCwEq2ymEM/O0=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUqPSLJafsLGVvgptBCTLV+8Xv3iBicUChYQK17rqONF6CynAmaF7oxZoksgmOKMFA61ngz+2rAM1Yr3uL4n9eNzbDey/hoYwNhSxtSb1hLGwT2YsM9oArYkbMUkCmeHrZZmNUyEyadHWTphAD0jf2YMqlXrKXLN82L6TZ3fWkm9CqlN1qudK4LdUesi/k4QIu4RpcuIMaPEEdmsCA4BU+4NNC68V6s97/WnNWNnMOK7K+fgG34ImX</latexit>

1<latexit sha1_base64="+9fC7BUUD6ueay0MnQ504pgxB4w=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUcPvFklN2lrI3wc2gBJnq/eJ3bxCxOKDQMIFad11HGi9BZTgTNC/0Yk0S2QRHlGCg9Szw5/ZVgGas171F8T+vG5vhvZfwUMaGQpa2pN4wFraJ7EUGe8AVMSNmKSBTPL1sszEqZCZNurpJU4gB6Rt7MOVSL9lLlm+bF9Ls7nrSTWhVym61XGnclmoP2RfycAGXcA0u3EENnqAOTWBA8Aof8Gmh9WK9We9/rTkrmzmHFVlfv7ZliZY=</latexit>

e7 7 48
2

<latexit sha1_base64="sm1FTySO3c9l9BOCwEq2ymEM/O0=">AAAB33icbZDLTsJAFIZP8YZ4Q126aSQmLgxpwUSXRDcuIZFLAg05HQ4wYdpOZqYkpGHtwsS40IWP5CP4NhbsBvBffTn/ueQ/vhRcG8f5sXJb2zu7e/n9wsHh0fFJ8fSspaNYMWqySESq46MmwUNqGm4EdaQiDHxBbX/yuPDbU1KaR+GzmUnyAhyFfMgZmrTUqPSLJafsLGVvgptBCTLV+8Xv3iBicUChYQK17rqONF6CynAmaF7oxZoksgmOKMFA61ngz+2rAM1Yr3uL4n9eNzbDey/hoYwNhSxtSb1hLGwT2YsM9oArYkbMUkCmeHrZZmNUyEyadHWTphAD0jf2YMqlXrKXLN82L6TZ3fWkm9CqlN1qudK4LdUesi/k4QIu4RpcuIMaPEEdmsCA4BU+4NNC68V6s97/WnNWNnMOK7K+fgG34ImX</latexit>
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Table 1: For each ADE subgroup Γ of SU(2), we give the associated Lie algebra gΓ, its rank,
the order Γ of the group, and the quiver that describes the worldvolume theory of D3-branes
probing C2/Γ. The number associated to each node is denoted ni in the text. A node with
label ni corresponds to a gauge group U(N ni).

In summary, the flavor symmetry of the D3-brane worldvolume theory for each Γ is

gΓ = su(2) : Gflavor = SU(2)L × U(1) ,

gΓ = su(k) , k ≥ 3 : Gflavor = U(1)L × U(1)k−1 ,

gΓ = so(2k) : Gflavor = U(1)k−1 ,

gΓ = e6,7,8 : Gflavor = U(1)6,7,8 . (3.37)

These global symmetries correspond to those visible in the inflow computation. The factors
with a subscript L in the A series are identified with the GL isometry of S5/Zk. The other
factors are U(1)’s and their number is equal to the number of resolution 3-cycles in the blow-up
of S5/Γ.

Let us now discuss Iworldvol
6 . We compute5

Iworldvol
6 = −N2 cR1 c2(SU(2)R)

∑
i

n2
i −

∑
x

Mx c
R
1 (cx1)2 . (3.38)

5In our conventions, TrRN=2 I
a Ib = TrRN=2 (I3)2 δab, δab Fa

2π
Fb
2π

= p1(SO(3)R) = −4 c2(SU(2)R), where
Ia are the generators of SU(2)R.
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In the above expression, i labels the nodes of the quiver, while x labels the links. The quantity
cx1 is the first Chern class of the U(1)x flavor symmetry of the hypermultiplet at the link x.
The integerMx is the product of the ranks of the two U gauge groups connected by the link x.
If we describe the hypermultiplet living at the link x as the pair (Qx, Q̃x) of N = 1 chiral
multiplets, then in our conventions Qx has charge +1 and Q̃x has charge −1 under the flavor
symmetry U(1)x. The expression (3.38) holds for Γ 6= Z2. For Γ = Z2, we have

Iworldvol
6, Γ = Z2

= −2N2 cR1 c2(SU(2)R) + 2N2 cR1 c2(SU(2)L)− 2N2 cR1 c1(U(1))2 . (3.39)

We have recalled that the flavor symmetry associated to the double link is SU(2)L × U(1).
The chiral multiplet Q is in the fundamental of SU(2)L and has charge +1 under U(1), while
Q̃ is in the antifundamental of SU(2)L and has charge −1 under U(1).

We can now compare (3.38) and (3.32) to verify (3.36). Let us first check the case Γ = Z2.
The inflow result (3.32) reads in this case

I inflow
6 = 2N2 cR1

[
c2(SU(2)R)− c2(SU(2)L)

]
+ 2 cR1 (cα=1

1 )2 , (3.40)

where cα=1
1 denotes the first Chern class associated to the unique resolution 3-cycle in the

blow up of S5/Z2. We match (3.39) with the identification cα=1
1 = N c1(U(1)).

Next, let us consider the case Γ = Zk, or gΓ = su(k). The quiver gauge theory result
(3.38) becomes

Iworldvol
6 = −N2 k cR1 c2(SU(2)R)−N2

k∑
i=1

cR1 (c
(i,i+1)
1 )2 . (3.41)

For quivers of A type, it is convenient to trade the link label x for a pair (i, i + 1), with the
understanding that the link (i, i+1) connects the i-th and (i+1)-th nodes in the quiver. (The
i index is understood modulo k, so that the (k + 1)-th node is by definition the first node.)
Let us consider the following redefinition of the external curvatures,

N c
(1,2)
1 = N c1(U(1)L) + cα=1

1 ,

N c
(2,3)
1 = N c1(U(1)L) − cα=1

1 + cα=2
1 ,

...
N c

(k−1,k)
1 = N c1(U(1)L) − cα=k−2

1 + cα=k−1
1 ,

N c
(k,1)
1 = N c1(U(1)L) − cα=k−1

1 .

(3.42)

The anomaly polynomial of the worldvolume theory takes the form

Iworldvol
6 = −N2 k cR1 c2(SU(2)R)−N2 k cR1 c1(U(1)L)2 −

k−1∑
α,β=1

Cαβ cR1 cα1 cβ1 , (3.43)

where Cαβ is the standard Cartan matrix of su(k), with 2’s on the diagonal entries and −1’s
on the subdiagonal and superdiagonal entries. The expression (3.43) shows that −Iworldvol

6 is
exactly equal to I inflow

6 in (3.32).
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Finally, let us briefly discuss the D and E cases. Let us focus first on the mixed ’t
Hooft anomaly between U(1)RN=2

and SU(2)R. The relation (3.36) holds for this part of the
anomaly polynomial by virtue of the relation∑

i

n2
i = |Γ| , (3.44)

which is valid for every choice of Γ, see table 1. If gΓ is of D or E type, the number of links
in the quiver is equal to the rank of gΓ. As a result, the labels α and x both have range 1 to
rank(gΓ). By a suitable change of basis, we can obtain

rank(gΓ)∑
α,β=1

Cαβ cα1 cβ1 =

rank(gΓ)∑
x,y=1

Mx δx,y c
x
1 c

y
1 . (3.45)

Notice that Mx is proportional to N2. As a result there is a factor N in the change of basis
relating cα1 to cx1 , as in the case of the A series discussed above.

For the sake of completeness, let us give the anomaly polynomial of the free vector mul-
tiplets that decouple in the IR,

I free vec. multiplets
6 =

[
rank(gΓ) + 1

][1

3
(cR1 )3 − 1

12
cR1 p1(TW4)− cR1 c2(SU(2)R)

]
. (3.46)

Let us also notice that the central charges of the total worldvolume theory are

aworldvol = cworldvol =
1

4
N2 |Γ| , (3.47)

while the decoupling vector multiplets contribute

(a, c)free vec. multiplets =

(
5

24
,
1

6

) [
rank(gΓ) + 1

]
. (3.48)

4 Two-dimensional examples

In this section we use the 11-form I11 to compute the inflow anomaly polynomial for setups
with D3-branes wrapping a Riemann surface. We first discuss a setup with D3-branes at
the tip of a generic Calabi-Yau cone, with worldvolume compactified on a Riemann surface
without punctures. Compactifications of D3-brane theories on Riemann surfaces have been
intensively investigated [27–33]. Next, we focus on 4d N = 4 SYM on a Riemann surface with
half-BPS punctures.

4.1 SE5 fibrations over a smooth Riemann surface

In this section, our starting point is the 4d SCFT living on a stack of D3-branes probing a
given Calabi-Yau cone, with base SE5. This 4d SCFT is compactified to two dimensions on a
genus-g Riemann surface without punctures. We focus on the case g 6= 1. In order to preserve
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supersymmetry, we perform the appropriate twist of R-symmetry over the Riemann surface.
We also allow for twists of U(1) flavor symmetries of the SCFT associated to isometries of SE5.

As expected on the grounds of anomaly matching across dimensions, the inflow anomaly
polynomial I inflow

4 for the 2d theory is closely related to the inflow anomaly polynomial of
the parent 4d theory I inflow

6 . Our analysis demonstrates how to correctly identify 4d and 2d
background curvatures in the integration of I inflow

6 over Σg.

Some preliminaries

The relevant internal geometry for anomaly inflow is the 7d space

SE5 ↪→M7 → Σg . (4.1)

The fibering of SE5 over Σg encodes the partial topological twist of the parent 4d theory in
the compactification to two dimensions. Throughout this section, we use a bar to distinguish
objects and labels associated to the SE5 fibers of M7. For example, the normalized volume
form on SE5 is denoted V 5. The isometries of SE5 are labelled by the indices Ī, J̄ , and so on.

The fibration (4.1) can be described by assigning background fluxes for the connections
associated to the isometries of SE5. We may parametrize such background fluxes by writing

F ĪΣ = pĪ VΣ ,

∫
Σg

VΣ = 2π , (4.2)

where the integer parameters pĪ specify which generators of the (Cartan subalgebra of) isome-
tries of SE5 are twisted over the Riemann surface. For any given choice of parameters pĪ , the
residual isometry group of SE5 that is preserved by the twist is comprised by those linear
combination of generators that commute with the background flux. We use the index I to
label the generators of the preserved subgroup. We may then write

tI = sI
Ī tĪ , (4.3)

where tĪ are all generators of the isometry group of SE5, tI are the generators of the preserved
subgroup, and sI Ī are suitable constants. The latter satisfy

sI
Ī pJ̄ fĪJ̄

K̄ = 0 , (4.4)

where fĪJ̄ K̄ are the structure constants of the full isometry group of SE5. The condition (4.4)
is simply encoding the fact that the generators tI commute with the background flux.

In this work we only consider twists that preserve (0,2) supersymmetry in two dimensions.
Let us fix a reference R-symmetry generator R0 in the 4d SCFT, and suppose R0 is given in
terms of the isometry generators of SE5 as

R0 = sR0
Ī tĪ , (4.5)

for suitable constants sR0
Ī . We may then write

pĪ = pR0 sR0
Ī + pĪflavor with pR0 = −χ . (4.6)
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The condition pR0 = −χ is needed to cancel the curvature of TΣg. The term pĪflavor describes
any further twisting along isometry generators that are not R-symmetries (i.e. such that all
Killing spinors of the Calabi-Yau cone are neutral under them).

Finally, recall from section 3.1 that, for each Ī, the 4-form ιĪV 5 is exact, i.e. there exists
a 3-form ωĪ on SE5 such that

dωĪ + 2π ιĪ V 5 = 0 . (4.7)

We use the notation ωᾱ for the harmonic 3-forms on SE5, with index ᾱ = 1, . . . , b3(SE5).

Results of the anomaly inflow computation

In (4.3) we have parametrized the generators of the isometries of the SE5 fiber that are com-
patible with the fibration, and hence give isometries of the total space M7. These isometries
correspond to global symmetries of the 2d theory. The space M7, however, might have ad-
ditional isometries. For instance, if the Riemann surface is a sphere we have an additional
SO(3) isometry. Moreover, the space M7 generically has harmonic 3-forms, which correspond
to additional U(1) global symmetries of the 2d field theory. For the sake of simplicity, in this
work we only discuss the ’t Hooft anomalies for the 2d symmetries associated to the isometries
of M7 that originate from the SE5 fiber. We refer the reader to appendix D for the derivation
of the results stated below.

The inflow anomaly polynomial I inflow
4 for the 2d theory is conveniently expressed in terms

of the inflow anomaly polynomial I inflow
6 of the parent theory. As derived in section 3.2, the

latter is given by (3.19) and therefore takes the form

I inflow
6 =

1

6
cĪJ̄K̄

F Ī4d

2π

F J̄4d

2π

F K̄4d

2π
+

1

2
cĪJ̄ ᾱ

F Ī4d

2π

F J̄4d

2π

F ᾱ4d

2π
+

1

2
cĪᾱβ̄

F Ī4d

2π

F ᾱ4d

2π

F β̄4d

2π
, (4.8)

where the anomaly coefficients are given as

cĪJ̄K̄ = 3N2 (2π)

∫
SE5

ω(Ī ιJ̄ ωK̄) ,

cĪJ̄ ᾱ = N2 (2π)

∫
SE5

[
ω(Ī ιJ̄) ωᾱ + ωᾱ ι(Ī ωJ̄)

]
= 2N2 (2π)

∫
SE5

ωᾱ ι(Ī ωJ̄) ,

cĪᾱβ̄ = N2 (2π)

∫
SE5

ω(ᾱ| ιĪ ω|β̄) = N2 (2π)

∫
SE5

ωᾱ ιĪ ωβ̄ . (4.9)

In (4.8) we have separated the collective index X of (3.19) into (I, ᾱ) and we have written
explicitly the terms associated to isometries of SE5 and to harmonic 3-forms of SE5. The
2-forms F Ī4d, F

ᾱ
4d are the 4d field strengths of the connections associated to the symmetries of

the parent 4d theory.
The result of anomaly inflow for the 2d theory can then be stated as follows. The 2d

inflow anomaly polynomial is obtained from integration on Σg of the parent 4d inflow anomaly
polynomial,

I inflow
4 =

∫
Σg

I inflow
6 , (4.10)
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with the following identifications between the 4d and 2d background field strengths,

F Ī4d = F I sI
Ī + pĪ VΣ , F ᾱ4d = F I sI

ᾱ . (4.11)

The quantities pĪ are the twist parameters introduced in (4.2), while the tensor sI Ī introduced
in (4.3) describes the embedding of the residual isometry group after the twist inside the
original isometry group of SE5. The new quantities sI ᾱ in (4.11) are determined by the
following linear equation,

pK̄ cK̄ᾱβ̄ sI
β̄ + sI

J̄ pK̄ cJ̄K̄ᾱ = 0 . (4.12)

In general, the quantities sI ᾱ are non-zero. This means that, in uplifting the 2d curvatures F I

to four dimensions, we must also activate the vectors F ᾱ4d associated to baryonic symmetries
of the parent 4d theory. For each fixed I, (4.12) admits a unique solution sI

β if and only
if the matrix mαβ = pK̄ cK̄ᾱβ̄ is invertible. We argue below that this is the case for the
universal supersymmetric twist. In more general situations, invertibility of mαβ seems to be
a consistency requirement on the choice of twist parameters pK̄ .

The condition (4.12) admits an interesting interpretation. Consider the integration of
the 4d inflow anomaly polynomial on the Riemann surface, keeping the constants sI ᾱ in
(4.11) as free parameters. The resulting inflow anomaly polynomial in 2d has the form
I inflow

4 = a(sI
ᾱ)IJ F

I F J , with the anomaly coefficients a(sI
ᾱ)IJ given as a function of the

free parameters sI ᾱ. We have checked that imposing the condition (4.12) on the parameters
sI
ᾱ is equivalent to extremizing simultaneously all 2d anomaly coefficients a(sI

ᾱ)IJ .
The non-trivial interplay between mesonic symmetries in 2d and baryonic symmetries in

4d encoded in (4.11), (4.12) has been observed in [33].

A comment on the universal supersymmetric twist

By universal supersymmetric twist we mean the twist in which the vector pĪ points exactly
in the direction of the exact superconformal R-symmetry of the parent 4d theory, as studied
in [33, 34]. If the generator RN=1 of the exact superconformal R-symmetry is given in terms
of isometries of SE5 by

RN=1 = sRN=1

Ī tĪ , (4.13)

then the twist parameters for the universal supersymmetric twist read

pĪ = −χ sRN=1

Ī . (4.14)

We should stress that, as explained in [33, 34], this is a viable choice only if the charges of
all gauge-invariant operators of the 4d QFT under RN=1 are rational. In what follows, we
assume that this condition is met.

If we choose the universal supersymmetric twist, the quantity pK̄ cK̄ᾱβ̄ is proportional to
Tr(RN=1 Jᾱ Jβ̄) in the SCFT, where Jᾱ is the generator of the U(1) baryonic flavor symmetry
associated to the harmonic 3-form ωᾱ in SE5. As explained in [35], if we let the index X

label all flavor symmetries of the 4d SCFT, the matrix Tr(RN=1 JX JY ) is negative-definite.
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This implies that also the sub-matrix Tr(RN=1 Jᾱ Jβ̄) is negative-definite. As a result, mαβ =

pK̄ cK̄ᾱβ̄ is invertible, and (4.12) admits a unique solution for sI ᾱ, for each I. If we consider a
more general twist, in which the vector pĪ deviates from the direction of the 4d superconformal
R-symmetry, we have no general argument to guarantee that pK̄ cK̄ᾱβ̄ is invertible. We may
conjecture, however, that the matrix pK̄ cK̄ᾱβ̄ remains non-singular for choices of twists that
do not deviate too much from the universal supersymmetric twist.

4.2 N = 4 SYM with half-BPS punctures

In this section we consider 4d N = 4 SYM theory with gauge group SU(N), compactified on a
Riemann surface with a partial topological twist to yield a 2d N = (4, 4) theory. This type IIB
setup is the direct analog of the M-theory setup in which the 6d N = (2, 0) theory living on
a stack of M5-branes is compactified on a Riemann surface with a partial topological twist to
give a 4d N = 2 theory. In this case, it is known how to introduce punctures on the Riemann
surface preserving N = 2 supersymmetry [1, 2]. In particular, we may consider a Riemann
surface Σg,n of arbitrary genus g and with an arbitrary number n of regular punctures.

The purpose of this section is to exploit the analogy with the M5-brane construction to
introduce punctures in the reduction of 4d N = 4 SYM. We bypass a direct field-theoretic
analysis of the punctures, and instead study anomaly inflow from the ambient space. In this
way, we extend the M-theory anomaly inflow approach of [8–10] to analogous configurations
in type IIB.

In order to streamline our exposition, all derivations for the results of this section are rele-
gated to appendix E, together with useful background material on the treatment of punctures
along the lines of [9, 10].

4.2.1 Outline of the computation

The computation of anomaly inflow in the presence of (regular) punctures is based on a
suitable decomposition of the internal space M7 that enters the anomaly inflow formula

I inflow
4 =

∫
M7

I11 . (4.15)

More precisely, if we consider a setup with n punctures, the space M7 takes the form

M7 = Mbulk
7 ∪

n⋃
α=1

Xα
7 , (4.16)

where the label α enumerates the punctures. The space Mbulk
7 encodes the geometry away

from the punctures and is an S5 fibration over the punctured Riemann surface,

S5 ↪→Mbulk
7 → Σg,n . (4.17)

The presence of S5 is due to the fact that the parent 4d theory is N = 4 SYM. The fibration
of S5 over Σg,n encodes the partial topological twist. As mentioned earlier, we only consider
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setups that preserve N = (4, 4) supersymmetry in 2d. In this case, the SO(6) isometry of S5

(the R-symmetry of 4d N = 4 SYM) is broken as

SO(6)→ SO(4)× SO(2) , (4.18)

and the topological twist is performed by turning a background connection for the SO(2)

factor. The residual isometry group SO(4)× SO(2) of Mbulk
7 is identified with the SU(2)2 ×

U(1) R-symmetry of the 2d theory.
The spaces Xα

7 in (4.16) encode the local geometry near each puncture. Crucially, Xα
7 is

not an S5 fibration over a 2d base space. Some aspects of the geometry of Xα
7 are described

below; a more thorough account can be found in appendix E.
The decomposition (4.16) of the internal spaceM7 implies a corresponding decomposition

of the inflow anomaly polynomial into a bulk piece, plus puncture pieces,

I inflow
4 = I inflow

4 (Σg,n) +

n∑
α=1

I inflow
6 (Pα) , (4.19)

where one has

I inflow
4 =

∫
M7

I11 , I inflow
4 (Σg,n) =

∫
Mbulk

7

I11 , I inflow
4 (Pα) =

∫
Xα

7

I11 . (4.20)

The task at hand is the construction of the 5-form E5 for Mbulk
7 and Xα

7 and the computation
of the above integrals.

4.2.2 The bulk contribution to anomaly inflow

The bulk anomaly inflow polynomial I inflow
4 (Σg,n) in (4.20) can be obtained in various equiv-

alent ways. One can specialize the results of section 4.1, which are valid for any smooth
Sasaki-Einstein 5-manifold, to the case of S5. Alternatively, one can take the 6-form anomaly
polynomial of 4d N = 4 SYM and integrate it on the Riemann surface. The result is

I inflow
4 (Σg,n) =

1

2

∫
Mbulk

7

E5 dE5 = −1

2
N2 χ(Σg,n)χ4(SO(4)) , (4.21)

where we have introduced the 4-form characteristic class

χ4(SO(4)) =
1

(2π)2

1

8
εabcd F

ab F cd , (4.22)

where F ab is the field strength of the connection for the SO(4) isometry of Mbulk
7 . The

interested reader can find the expression for the 5-form E5 for the bulk of the Riemann
surface in appendix E, where we also discuss non-minimal terms in E5 (in the terminology of
section 3.1) and how they drop out from the anomaly inflow result.
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4.2.3 The puncture contribution to anomaly inflow

The contribution of each puncture to anomaly inflow can be studied independently. For this
reason, let us temporarily omit the puncture label α to improve readability.

The salient features of the puncture geometry X7 are the following. The space X7 is an
S3

Ω fibration over a 4d space X4, which is in turn a circle fibration over R3,

S3
Ω ↪→ X7 → X4 , S1

β ↪→ X4 → R3 . (4.23)

The round 3-sphere S3
Ω has SO(4) isometry, which is identified with the SO(4) isometry

factor of the bulk geometry Mbulk
7 . The 4d space X4 has a U(1)2 isometry: one U(1) factor is

associated to the S1
β fiber, while one U(1) factor is due to the fact that the S1

β fibration is axially
symmetric in the base R3. The latter U(1) isometry is identified with the SO(2) isometry
factor of Mbulk

7 . The former U(1) from S1
β does not yield an isometry of the total internal

space M7. In fact, when the puncture geometry is glued onto the bulk geometry, the circle S1
β

is identified with the boundary of the small disk D that is removed from the Riemann surface
to introduce the puncture. A more detailed description of the gluing conditions between bulk
and puncture geometries can be found in appendix E.

The S1
β fibration over R3 has p monopole sources, of integer positive charges ka, a =

1, . . . , p. All monopoles are aligned along a line in the base space R3 of X4. The positions
of the monopoles are encoded in a set of parameters {wa}pa=1. Flux quantization implies
that {wa}pa=1 is an increasing sequence of positive integers. The integers {ka}pa=1, {wa}pa=1

determine a partition of N ,

N =

p∑
a=1

kawa . (4.24)

This partition labels the puncture. The partition can be chosen independently for each punc-
ture on the Riemann surface. As we shall see below, the anomaly contribution of a given
puncture depends on its associated partition of N .

It is worth pointing out that, at the location of the a-th monopole, the 4d space X4 is
locally of the form R4/Zka . As a result, X4 has orbifold singularities if ka ≥ 2. These orbifold
singularities can be resolved by blow-up preserving supersymmetry. The resolution introduces
additional 2-cycles in the geometry, as well as additional harmonic 2-forms.

In the M-theory setup with wrapped M5-branes, expansion of the C3 potential onto these
harmonic 2-forms yields additional vectors. This mechanism is the origin of flavor symmetries
associated to regular punctures [36]. In type IIB, expansion of the C4 potential onto these
harmonic 2-forms does not yield extra vectors. As a result, the punctures in the type IIB
construction do not carry any flavor symmetry.

We are now in a position to give the anomaly inflow polynomial I inflow
6 (Pα) for the α-th

puncture. It is given by

I inflow
6 (Pα) = −χ4(SO(4))

pα∑
a=1

`α,a (w2
α,a − w2

α,a−1) , `α,a =

p∑
b=a

kα,b . (4.25)
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Since we have reintroduced the puncture label α on the LHS, we have done so on the RHS
too, to stress that each puncture comes with its partition data pα, kα,a, wα,a. The derivation
of (4.25) is performed in appendix E, where we also discuss in detail the 5-form E5 for a
puncture.

5 Towards F-theory anomaly inflow

In this section we collect preliminary remarks on the generalization of our anomaly inflow tools
to F-theory setups. More precisely, we want to study configurations in which the axio-dilaton
field τ = C0 + i e−φ of type IIB supergravity has a non-trivial profile over 10d spacetime and
is allowed to be multivalued, i.e. to have monodromies around singular loci. Different values
of τ at the same spacetime point are related by the action of an element of SL(2,Z),

τ ′ =
a τ + b

c τ + d
,

(
a b

c d

)
∈ SL(2,Z) . (5.1)

A non-trivial monodromy for τ signals the presence of a 7-brane. We refer the reader to
e.g. [37, 38] for reviews on F-theory.

The τ profile in 10d spacetime is conveniently captured by introducing an auxiliary T 2,
or more precisely an elliptic curve Eτ = C/Λτ , where Λτ is the lattice in C generated by
1 and τ = τ1 + i τ2, with τ2 > 0. The complex structure parameter τ of Eτ is identified
with the axio-dilaton field of type IIB supergravity. As a result, a non-trivial axio-dilaton
profile is encoded in an auxiliary 12d geometry M12, obtained fibering Eτ over the physical
10d spacetime M10,

Eτ ↪→M12
π−→M10 . (5.2)

The volume of Eτ is constant over M10. The loci on the base M10 where the fiber Eτ degen-
erates correspond to locations of 7-branes.

A new term in I11

Making use of the geometry of the auxiliary space M12, we can construct a new term in I11,
to be added to (2.23). It takes the form

∆I11 = −E5 π∗X8[M12] , X8[M12] =
1

192

[
p1(TM12)2 − 4 p2(TM12)

]
. (5.3)

The 5-form E5 is the same as in (2.23). The characteristic class X8 is as in (2.8), but it is
computed not in the physical 10d spacetime, but in the auxiliary 12d geometry (5.2). The
symbol π∗ denotes the pushforward of X8 associated to the map π in (5.2).6 In analogy with

6If we were to consider a fibration Eτ ↪→ M12
π−→ M10 with Eτ smooth everywhere, π∗ would be identified

with integration along the Eτ fibers. The latter operation is characterized by the property∫
M10

π∗αp β12−p =

∫
M12

αp π
∗β12−p , (5.4)

– 28 –



the M-theory anomaly inflow analysis, π∗X8[M12] is implicitly pulled back to r = ε at the
location of the boundary of M10 which appears after we remove the sources.

As a small sanity check, let us first verify that the new term (5.3) is immaterial if we
consider a trivial fibration, i.e. a direct product M12 = Eτ ×M10. In this case p1(TM12) =

0 = p2(TM12), and the new term vanishes.
Let us now illustrate the role of the new term (5.3) in an example based on the construction

of [17]. Our discussion will be somewhat heuristic, and it would be interesting to revisit this
problem to address it in a more precise way.

We know that if we consider a stack of N D3-branes away from any singularities we
obtain a worldvolume theory which is N = 4 SYM with gauge group SU(N), together with
a free N = 4 vector multiplet. The complexified coupling constant τYM of the gauge theory
is identified with the constant value of the type IIB dilaton τ throughout 10d spacetime.
Morevoer, the six transverse directions to the D3-brane stack encode the SO(6) R-symmetry
bundle of the 4d worldvolume theory. Let us now consider a situation in which we turn on a
non-trivial background profile for τ along the worldvolume W4 of the D3-branes. We expect
to obtain N = 4 SYM with varying complexified coupling constant τYM, as studied in [17].
We do not activate a non-trivial τ profile in the directions transverse to the D3-branes. As a
result, we can write

p1(TM12) = p1(TW6) + p1(SO(6)) ,

p2(TM12) = p2(TW6) + p2(SO(6)) + p1(TW6) p1(SO(6)) . (5.5)

In the previous expressions, we have separated the contributions of the SO(6) vector bundle
that is associated to the R-symmetry of the worldvolume theory. The space W6 encodes the
external spacetime W4 together with its non-trivial τ profile. More precisely, we Wick rotate
to Euclidean signature and take W4 to be a (not necessarily compact) complex surface. The
total space W6 has the form7

Eτ ↪→W6
π−→W4 , (5.6)

and is an elliptic fibration with a section, described by a Weierstrass model. The latter is
specified by a holomorphic line bundle L on W4, together with a section f of L4 and a section
g of L6. The elliptic fibration is then described by the Weierstrass equation

y2 = x3 + f x+ g . (5.7)

To evaluate the new term (5.3) in this background we need the quantity

π∗X8[M12] =
1

192
π∗

[
p1(TW6)2 − 4 p2(TW6)

]
− 1

96
p1(SO(6))π∗p1(TW6) , (5.8)

where αp is an arbitrary compactly supported smooth p-form on M12, β12−p is an arbitrary compactly sup-
ported smooth (12− p)-form on the base M10, and π∗ is the standard pullback of differential forms. Since the
fibration (5.2) is necessarily singular in the presence of 7-branes, we need a refined notion of π∗. We can still
think intuitively of π∗ as integration along the Eτ fiber directions.

7By slight abuse of notation, we are using π for the projection map of W6, and not of the total 12d space
M12. This is not problematic because Eτ varies only over W4.
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where we have ignored terms with p1(SO(6))2 and p2(SO(6)), because they are 8-form on
external spacetime W4. Notice that (5.8) does not have any legs along the directions of the
S5 that surrounds the D3-brane stack. The integration over this S5 is saturated by the E5

factor in ∆I11, yielding a factor N . In summary, the new contribution to the inflow anomaly
polynomial reads

−∆I inflow
6 =

∫
S5

E5 π∗X8[M12]

=
N

48

[
π∗

(
− p2(TW6) +

1

4
p1(TW6)2

)
− 1

2
p1(SO(6))π∗p1(TW6)

]
. (5.9)

This expression agrees exactly with (5.5) in [17], which gives the anomaly polynomial for 4d
N = 4 SYM with varying τ , as described by the elliptic fibration W6.

The analysis of [17] demonstrates how to perform the pushforwards π∗ in (5.9). The result
is written in terms of the first Chern class of the Weierstrass line bundle L. We recall some
well-known facts about this object in appendix F. The pushforwards in (5.9) take the form

π∗p1(TW6) = −24 c1(L) ,

π∗

(
− p2(TW6) +

1

4
p1(TW6)2

)
= 12 c1(L) p1(TW4) + (non-universal terms) . (5.10)

The terms displayed explicitly on the RHSs of the previous expressions are universal, in the
sense that they only depend on the choice of Weierstrass line bundle L, but not on the details
of the singularities of the fibration. In contrast, the non-universal terms are indeed sensitive
to these details. We refer the reader to [17] for a thorough analysis of this point.

A further generalization of I11

Let us conclude this section by suggesting a further generalization of I11, which combines the
fluxes F3, H3 with a non-trivial axio-dilaton profile. The suggested form of I11 is

I11 =
1

2
E5 dE5 − E5 π∗

[
X8[M12] +

1

2
E2

4

]
. (5.11)

The 4-form E4 is defined on the auxiliary 12d geometry (5.2). The object E4 combines the
type IIB fluxes F3, H3 discussed in section 2.3. In the case of a trivial fibration, i.e. a direct
product M12 = Eτ ×M10, the relation between E4, F3, H3 is simply

E4 = F3 dx+H3 dy , (5.12)

where dx, dy are the 1-forms on the elliptic curve Eτ corresponding to usual basis of A and
B 1-cycles. The 4-form E4 is invariant under SL(2,Z) transformations (which are simply
diffeomorphisms in M12). It follows from (5.12) that F3, H3 transform as a doublet under
SL(2,Z), as expected.

In the case of a non-trivial fibration of Eτ over M10, the relation (5.12) is only schematic,
because the 1-forms dx and dy are no longer well-defined. To define E4 more precisely, we need
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to study well-defined cycles in the elliptic fibration M12, and restrict to those cycles which
have “one leg along the elliptic fiber.” Interestingly, this condition is the same condition that
a G4 flux configuration for M-theory on an elliptically fibered Calabi-Yau four-fold has to
satisfy in order to be compatible with 4d Lorentz invariance in the F-theory dual [39–41]. Our
proposal (5.11) makes therefore natural contact with the subject of G4 flux configurations in
F-theory. A detailed analysis of this problem goes beyond the scope of this work, but we hope
to return to it in the future.

6 Discussion

In this work we studied anomaly inflow for field theories engineered on the worldvolume of a
stack of D3-branes in type IIB string theory. Our main proposal can be summarized as

I inflow
d+2 =

∫
M9−d

I11 , I11 =
1

2
E5 dE5 , (6.1)

where d is the spacetime dimension of the field theory and I inflow
d+2 is its inflow anomaly poly-

nomial, equal to minus the total anomaly of all degrees of freedom on the worldvolume theory
(including modes that decouple in the IR). The compact (9 − d)-dimensional space M9−d
encodes the geometry of the directions transverse to external spacetime. The 11-form I11 is
constructed in terms of the 5-form, which encodes the boundary conditions near the D3-brane
stack for the type IIB field strengths F5. Our approach applies both to “mesonic” symme-
tries, i.e. symmetries associated to isometries of the internal space M9−d, and to “baryonic”
symmetries, i.e. symmetries associated to expansion of the type IIB 4-form C4 onto harmonic
3-forms on M9−d.

We have tested our proposal in the case of 4dN = 1 field theories engineered by D3-branes
at the tip of a Calabi-Yau cone, as well as 4d N = 2 field theories originating from D3-branes
probing a C2/Γ singularity, with Γ an ADE subgroup of SU(2). In all these scenarios we
get a perfect match with the field theory results, provided decoupling modes and accidental
symmetries in the IR are taken into account properly.

Moreover, we have checked our formula for 2d N = (0, 2) theories obtained from putting
D3-branes at the tip of a Calabi-Yau cone and further wrapping their worldvolume on a smooth
genus-g Riemann surface. Our results confirm the expectation that the inflow anomaly poly-
nomial I inflow

4 of the 2d N = (0, 2) theory can be obtained by integrating the inflow anomaly
polynomial I inflow

6 of the parent 4d N = 1 theory over the Riemann surface. In performing
the integration, however, one has to identify the correct relation between 2d background con-
nections and 4d background connections. Our geometric formalism makes it manifest that
there is a non-trivial interplay between 2d mesonic symmetries and 4d baryonic symmetries,
encoded in (4.11) and (4.12), and first observed in [33].

We applied (6.1) to a class of 2d N = (2, 2) theories obtained by compactification of 4d
N = 2 SYM theory with gauge group SU(N) on a Riemann surface with half-BPS punctures.
The latter are labelled by partitions of N . Following the approach of [9, 10] for the geometry
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and flux configuration near the punctures, we computed the contributions of punctures to the
2d inflow anomaly polynomial.

We have also outlined a proposal to generalize I11 to include the contributions of the type
IIB field strengths F3, H3, as well as a generalization to F-theory backgrounds. We performed
a preliminary check of the latter against the constructions studied in [17].

There are several future directions to explore. Firstly, it would be desirable to have a
first principle derivation of the inflow formula (6.1). Moreover, it is interesting to study the
interplay between (6.1) and the analogous formula in M-theory, also in connection with the
duality between F-theory and M-theory.

Our approach can be applied to holographic solutions of type IIB supergravity supported
by F5 and/or F3, H3 background fluxes. An example of regular solution with non-zero F5,
F3, and H3 is the AdS5 Pilch-Warner solution [42]. Other solutions with non-zero F3, H3

fluxes are known, including solutions with F5 = 0, but they are singular [43, 44]. It would be
interesting to investigate whether they might still allow for a field theory interpretation, and
what anomaly inflow would predict for such field theories.

The compactification of 4d gauge theories on a Riemann surface with punctures is an
interesting problem that is still eluding a fully systematic understanding and is recently at-
tracting renewed attention, see e.g. [45]. It would be beneficial to further study punctures
from the perspective of the anomaly inflow formula (6.1), in combination with insights from
holography and purely field theoretic analysis.

The proposed F-theoretic generalization of (6.1) can be further studied in relation to
the constructions analyzed in [46–50]. A more complete understanding of anomaly inflow in
F-theory would be useful, for instance in relation to the vast class of 6d N = (1, 0) SCFTs
realized in F-theory [51].

Finally, we expect to be able to generalize the anomaly inflow formalism based on the
class I11 to include also higher-form and/or discrete symmetries and compute their ’t Hooft
anomalies geometrically.
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A Type IIB on a circle and I11

In this appendix we provide indirect evidence for (2.23) by considering type IIB supergravity
reduced on a circle to nine dimensions. The starting point is the 10d bosonic pseudo-action
in Einstein frame,

S10d =
1

2κ2
10

∫ [
R ∗ 1− 1

2
dφ ∗ dφ− 1

2
e2φ F1 ∗ F1 −

1

2
e−φH3 ∗H3 −

1

2
eφ F3 ∗ F3

− 1

4
F5 ∗ F5 −

1

2
C4H3 F3

]
, (A.1)

where the field strengths are given in terms of the potentials according to

H3 = dB2 , F1 = dC0 , F3 = dC2 − C0 dB2 ,

F5 = dC4 −
1

2
C2 dB2 +

1

2
B2 dC2 . (A.2)

Our convention for the Hodge star of a p-form αp is

(∗αp)M1...Mq =
1

p!
αN1...Np εN1...NpM1...Mq , p+ q = 10 , (A.3)

with ε0123456789 = +1 in an orthonormal frame.
The metric ansatz for the reduction to nine dimensions reads

ds2
10 = g̃µν dx

µ dxν + e2σ̃Dθ2 , Dθ = dθ + Ṽ , θ ∼ θ + L , (A.4)

where θ is the coordinate on the circle of circumference L, g̃µν is the 9d metric, Ṽ is the
Kaluza-Klein vector, and σ̃ is the radion field. Throughout this appendix we use a tilde to
denote 9d fields. The reduction ansatz for the p-forms of type IIB is

B2 = B̃2 + B̃1Dθ , C0 = C̃0 , C2 = C̃2 + C̃1Dθ , C4 = C̃4 + C̃3Dθ . (A.5)

In a similar way, the field strengths in 10d dimensions are reduced as

H3 = H̃3 + H̃2Dθ , F1 = F̃1 , F3 = F̃3 + F̃2Dθ , F5 = F̃5 + F̃4Dθ . (A.6)

The expressions for the 9d field strengths H̃3, . . . , F̃4 in terms of the 9d potentials are readily
extracted from (A.2), (A.5), if needed.

In ten dimensions, the self-duality constraint

F5 = ∗F5 (A.7)

must be imposed by hand after deriving the equations of motion. We identify θ with the 9-th
direction, and we use the orientation convention ε0123456789 = ε012345678 = 1 in an orthonormal
frame. As a result, (A.7) implies

F̃5 = −e−σ̃ ∗̃F̃4 , (A.8)
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where ∗̃ is the Hodge star computed with the 9d metric g̃µν , using conventions analogous to
(A.3). In nine dimensions we can write a proper action, which contains F̃4 but does not contain
F̃5. A convenient way to obtain it is as follows. One first reduces the 10d pseudo-action on
the θ circle, and then adds a total derivative in nine dimensions of the form

∫
dC̃3 dC̃4. The

coefficient of this term is selected in such a way that, after some integration by parts, the 9d
action depends on C̃4 via F̃5 only, and the equation of motion for F̃5 coincides with (A.8). We
may then treat F̃5 as an independent variable, and integrate it out using its algebraic equation
of motion.8 The outcome of this procedure is the following 9d action,

S9d =
L

2κ2
10

∫ [
eσ̃ R ∗ 1− 1

2
e3σ̃ W̃2 ∗ W̃2 −

1

2
eσ̃ dφ ∗ dφ− 1

2
e2φ eσ̃ F̃1 ∗ F̃1

− 1

2
e−φ eσ̃ H̃3 ∗ H̃3 −

1

2
e−φ e−σ̃ H̃2 ∗ H̃2 −

1

2
eφ eσ̃ F̃3 ∗ F̃3

− 1

2
eφ e−σ̃ F̃2 ∗ F̃2 −

1

2
e−σ̃ F̃4 ∗ F̃4 + Ω̃9

]
. (A.9)

In the above expression, W̃2 = dṼ is the field strength of the Kaluza-Klein vector and the
Chern-Simons 9-form Ω̃9 reads

Ω̃9 = −1

4
B̃2 F̃3 F̃4 +

1

4
C̃2 F̃4 H̃3 +

1

2
C̃3 F̃3 H̃3 +

1

2
C̃3 F̃4 W̃2 −

1

4
B̃2 F̃4 H̃3C0 ,

dΩ̃9 =
1

2
F̃4 F̃4 W̃2 + F̃4 F̃3 H̃3 . (A.10)

Let us stress that (A.9) is not written in the 9d Einstein frame, which could be reached with
a Weyl rescaling of 9d the metric.

We are mainly interested in the structure of the Chern-Simons term Ω̃9. While the term
F̃4 F̃3 H̃3 is the straightforward reduction of its 10d counterpart F5 F3H3, the term F̃4 F̃4 W̃2

is generated by the self-duality of F5 in ten dimensions. The structure of dΩ̃9 provides indirect
support for the relative weight of the two terms in (2.23). To see this, we observe that

I11 = 1
2 E5 dE5 + E5F3H3

E5 = F̃4Dθ

F3 = F̃3 + F̃2Dθ

H3 = H̃3 + H̃2Dθ

⇒ L−1

∫
S1
θ

I11 =
1

2
F̃4 F̃4 W̃2 + F̃4 F̃3 H̃3 . (A.11)

The above argument is only schematic and we have ignored the factors 2π and the bump
function ρ that enter the relation between F5 and E5, F3 and F3, and H3 and H3.

As a side remark, the same effective action in nine dimensions should be equivalently
obtained by reducing M-theory on a T 2. In the process, the G4X8 term in eleven dimensions
generates a correction to Ω̃9, in such a way that dΩ̃9 is shifted by a term X8 W̃2. From a type

8Treating F̃5 as an independent variable means that the 9d Bianchi identity for F̃5 does not hold off-shell,
but one verifies that it still holds on-shell.
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IIB perspective, this higher-derivative coupling in nine dimensions originates from winding
modes of fundamental strings [52, 53]. As a result, while this coupling is present in nine
dimensions for any finite circumference L, it does not uplift to a 10d Lorentz invariant higher-
derivative correction to the 10d type IIB effective action. This observation is consistent with
the argument in section 2.3 that rules out corrections to I11 (for dC0 = 0 = dφ).

B Remarks on E5

This appendix contains remarks and observation on E5 that complement the discussion given
in section 3.1 and provide derivations for some of the results stated there.

B.1 The form E5 and closure of F5

We consider type IIB setups with D3-brane charge only, preserving N = 1 superconformal
symmetry in 4d. Before turning on external connections, the only non-zero flux in the back-
ground is F5 and the internal space is a Sasaki-Einstein manifold SE5. We assume that, even
after turning on external connections, the fluxes F3 and H3 and the axion remain identically
zero, and the dilaton remains constant. This assumption is motivated by the observation that,
in the 10d type IIB equations of motions, it is consistent to set F3 and H3 to zero, and the
axiodilaton to a constant.

The boundary condition for F5 near the D3-brane source is parametrized in terms of the
form E5, in such a way that F5 is manifestly self-dual,

F5 = E5 + ∗10E5 . (B.1)

The on-shell condition for F5, in the absence of F3, H3, amounts simply to dF5 = 0. The form
E5 is as in (3.8), repeated here for convenience

E5 = N

(
V g

5 +
F I

2π
ωg
I +

Fα

2π
ωg
α

)
. (B.2)

Recall that the superscript “g” signals the gauging of internal forms, defined in (3.5). The
5-form V5 is the volume form on SE5, normalized to integrate to 1. The 3-forms ωα are a
basis of harmonic 3-forms on SE5. In this appendix, we regard ωI as unspecified 3-forms on
SE5. The importance of ωI for achieving dF5 = 0 will be clear momentarily. All terms in
E5 contain at least three internal gauged legs; terms with fewer internal gauged legs in F5

originate from ∗10E5. We do not include terms in E5 with four internal gauged legs, because
there are no harmonic 4-forms on SE5.
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Let us now impose dF5 = 0. Our analysis is similar to the one in [21]. We can compute
dF5 with the help of (3.7) and the Bianchi identity for F I . The result reads9

dF5 = N F I
(
ιIV5 +

dωI
2π

)g

+N dFα
ωg
α

2π
+N (∗F I) (d ∗ ωI)g

2π

+N F I F J
(ιIωJ)g

2π
+N F I Fα

(ιIωα)g

2π
−N (D ∗ F I) (∗ωI)g

2π
−N (d ∗ Fα)

(∗ωα)g

2π

+N (∗F I)F J (ιJ ∗ ωI)g

2π
+N (∗Fα)F J

(ιJ ∗ ωα)g

2π
. (B.3)

The Hodge star is understood to be computed with the external 5d metric if it acts on an
external forms, and to be computed with the metric on SE5 if it acts on an internal form. The
symbol D denotes exterior covariant differentiation with respect to the isometries of SE5, and
is defined by the LHS of identity (3.7). For the sake of argument, we have not yet imposed
the Bianchi identity for Fα. Each line in the expression (B.3) for dF5 has a different number
of external legs and gauged internal legs. Hence, each line must vanish separately.

The first line of (B.3) implies that the 3-forms ωI must be chosen in such a way that
(3.10) holds, an anticipated in the main text. As explained there, the existence of ωI with the
desired property is guaranteed by the absence of harmonic 4-forms on SE5.

On the second line of (B.3), the first term contains an internal harmonic 3-form, while
the second contains an internal exact 3-form. Such terms must vanish independently, from
which we recover the expected Bianchi identity for Fα, as well as co-closure of ωI ,

dFα = 0 , d ∗ ωI = 0 . (B.4)

On a Sasaki-Einstein manifold, (3.10) can be solved explicitly by ωI ∝ ∗dkI , where kI are the
1-forms dual to the Killing vectors. Co-closure of ωI is then automatically satisfied.

The third and fourth lines of (B.3) contain terms that are zero by virtue of the 5d equations
of motion in the 5d supergravity theory obtained from reduction of type IIB supergravity on
SE5.10 These terms in dF5 do not impose new constraints on the form of E5. Therefore, they
are not directly relevant for anomaly inflow, and will not be discussed further.

B.2 Non-minimal terms in E5

In this subsection, we make use of the collective notation introduced in (3.15). Let us add
terms to E5 in (3.8) built using external 4-forms,

E′5 = E5 + ∆E5 , ∆E5 = FX F Y λg
XY + p1(TW4)λg , λXY =

(
λIJ λIβ
λJα λαβ

)
, (B.5)

9Our conventions for the Hodge star are such that ∗10[αext,p (βint,q)
g] = (−)(5−p)q (∗αext,p) (∗βint,q)

g, where
αext,p is a p-form in the external 5d spacetime, and βint,q is a q-form on SE5.

10The relevant 5d equations of motion are those of the vector modes, but also of their scalar superpartners,
which are implicitly frozen to zero in our discussion.
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where p1(TW4) is the first Pontryagin class of the tangent bundle to external spacetime and
λXY are 1-forms on SE5. The form E′5 is the most general polynomial in FX , p1(TW4) with
coefficients given by gauged internal forms on SE5. In order for E′5 to be invariant under
gauge transformations of the connections AI , we must demand

£IλJ1J2 = fIJ1
K λKJ2 +fIJ2

K λJ1K , £IλIα = fIJ
K λKα , £Iλαβ = 0 = £Iλ . (B.6)

The 1-forms λXY are otherwise arbitrary.
The claim we want to verify is∫

SE5

E′5 dE
′
5 =

∫
SE5

E5 dE5 . (B.7)

As a first step, we compute

dE′5 = FX F Y
(
dλXY +

N

2π
ιXωY

)g

+ p1(TW4) (dλ)g

+ FX F Y FZ ιXλY Z + p1(TW4)FX ιXλ . (B.8)

We can now collect all terms in E′5 dE′5 that give a non-zero result upon integration on SE5,∫
SE5

E′5 dE
′
5 = FX F Y FZ

∫
SE5

[
N2

(2π)2
ωX ιY ωZ +N V5 ιXλY Z +

N

2π
ωX dλY Z

]
+ FX p1(TW4)

∫
SE5

[
N V5 ιXλ+

N

2π
ωX dλ

]
. (B.9)

The integrals over SE5 can be manipulated by adding total derivatives d(. . . ) and total interior
products ιX(. . . ) without changing the result. We then see that, by virtue of the condition
(3.17), all dependence on λXY and λ drops away. We thus establish (B.7).

B.3 Obstruction to horizontality of dE5

Let us inspect dE′5 in (B.8). In order to achieve horizontality of dE′5 we must eliminate all
terms in the first line of (B.8). Setting dλ = 0 eliminates the term with p1(TW4). In order to
eliminate the remaining term, we would need

N ι(XωY ) + 2π dλXY = 0 . (B.10)

The 2-form ι(XωY ) is closed for any X, Y ,

dι(XωY ) = £(XωY ) − ι(XdωY ) = f(XY )
K ωK + (2π)−1 ι(XιY )V5 = 0 . (B.11)

In the collective notation, £α := 0, and the only non-zero components of fXY K are the Lie
algebra structure constants fIJK , antisymmetric in IJ .
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If SE5 admits harmonic 3-forms, it also admits harmonic 2-forms and therefore there is
no guarantee that ι(XωY ) is exact and that λXY solving (B.10) exists. The obstruction to
exactness of ι(XωY ) is measured by the integrals11

2

∫
SE5

ωα ι(XωY ) = 3

∫
SE5

ω(α ιXωY ) . (B.12)

The quantity on the RHS is proportional to the ’t Hooft anomaly coefficient cαXY in the term
cαXY F

α FX F Y in the inflow anomaly polynomial, see (3.19). We conclude that, as soon as
the anomaly polynomial contains any term with Fα, we have an obstruction to horizontality
of dE′5.

B.4 Shifts of ωI

The 3-forms ωI are not uniquely determined by the relation (3.10). In fact, we can shift ωI
with a closed 3-form, which we may parametrize as an exact part, plus a linear combination
of the harmonic 3-forms ωα,

ω̂I := ωI + dΩ2
I + CIα ωα . (B.13)

We use the symbol Ê5 to denote E5 as in (B.2) with ωI replaced by ω̂I . Gauge invariance of
Ê5 requires that the 2-forms Ω2

I and the constants CIα satisfy12

d£IΩ
2
J = fIJ

K dΩ2
K , £ICJα = fIJ

K CKα . (B.14)

By shifting Ω2
I by a closed 2-form if necessary, we can achieve

£IΩ
2
J = fIJ

K Ω2
K . (B.15)

As a result, the following 4-form is gauge invariant,

Ω4 = −N F I

2π
(Ω2

I)
g . (B.16)

On the one hand, making use of dω̂I+2π ιIV5 = 0, we verify that
∫

SE5
(Ê5+dΩ4) d(Ê5+dΩ4) =∫

SE5
Ê5 dÊ5. On the other hand, we compute

Ê5 + dΩ4 = N

(
V g

5 +
F I

2π
ωg
I +

Fα + F I CIα
2π

ωg
α

)
− N

2π
F I F J (ιIΩ

2
J)g . (B.17)

The quantity on the RHS differs from E5 in (B.2) in two respects: the non-minimal term
quadratic in F , and the fact that Fα in (B.2) is replaced by Fα + F I CIα in (B.17). We have
already argued that non-minimal terms can be safely ignored for the purposes of anomaly

11To check the equality in (B.12), use ια = 0 and the symmetry property
∫

SE5
ωXιY ωX =

∫
SE5

ωZιY ωX ,
which follows from integrating 0 = ιY (ωXωZ).

12Notice that, since CIα are constants, £ICJα = 0, and therefore the condition on CIα translates to the
requirement that CIα be an invariant tensor of the Lie algebra of isometries of SE5. As a result, CIα can only
be non-zero if the index I is associated to a generator of an Abelian subgroup of the isometry group.
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inflow. The fact that Fα is replaced by Fα + F I CIα can be undone by a redefinition of the
external connections, of the form Fα + F I CIα = Fαnew.

In conclusion, if we shift from ωI to ω̂I as in (B.13), the inflow anomaly polynomial is not
affected, up to a redefinition of the external connections Aα. The latter is merely a change of
basis and does not change the physics of the system.

C Inflow derivation for D3-branes probing C2/Γ

In this appendix we use E5 in (3.30) to compute the inflow anomaly polynomial for a stack
of D3-branes probing a C2/Γ singularity. First of all, let us record the explicit expression of
eS

5

5 in (3.30). It is given by

eS
5

5 = (V5)g + FAB (ωAB)g + FAB FCD (λAB,CD)g , (C.1)

(V5)g =
1

π3
· 1

5!
εABCDEF y

ADyB DyC DyDDyE DyF , (C.2)

(ωAB)g =
1

π3
· −1

48
εABCDEF y

C DyDDyE DyF , DyA = dyA −AAB yB . (C.3)

The indices A, . . . , F = 1, . . . 6 are vector indices of SO(6), and yA are constrained coordinates
on S5. The above expression is manifestly SO(6) covariant. It is understood, however, that
the background field strength FAB is only non-zero along the generators of the subgroup
GL × SU(2)R × U(1)φ ⊂ SO(6). The 3-forms ωAB are such that13

ιABV5 + dωAB = 0 . (C.4)

The 1-forms λAB,CD can be left arbitrary, since we verify below that the anomaly does not
depend on them. If we make the choice

(λAB,CD)g =
1

π3
· 1

64
εABCDEF y

E DyF , (C.5)

the 5-form eS
5

5 reduces exactly to the global angular form of SO(6), as stated in the main
text. In this situation, the 6-form deS

5

5 is purely external (or horizontal),

deS
5

5 =
1

(2π)3

1

48
εABCDEF F

AB FCD FEF =: −χ6(SO(6)) . (C.6)

13Compared with (3.17), the normalization of ωAB differs from that of ωX by a factor 2π. While the latter
is convenient in comparing our results with [21], in this section we prefer not to include this 2π factor.
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We can now make use of (3.30), (C.1), and (3.31) and compute∫
S5/Γ

E5 dE5 = N2 |Γ|2 FAB FCD FEF
∫
S5/Γ

[
ωAB ιCDωEF + V5 ιABλCD,EF + ωAB dλCD,EF

]
+N |Γ| F

α

2π
FAB FCD

∫
S5/Γ

[
V5 ιABλCDα + ωAB dλCDα

]
+
Fα

2π
FAB FCD

∫
S5/Γ

[
ω̃α

dφ

2π
ιABωCD + ω̃α

dφ

2π
dλAB,CD

]
−N |Γ| F

α

2π

Fφ
2π

FAB
∫
S5/Γ

ωAB ω̃α −
Fα

2π

F β

2π

Fφ
2π

∫
S5/Γ

ω̃α ω̃β
dφ

2π

+
Fα

2π

F β

2π
FAB

∫
S5/Γ

ω̃α
dφ

2π
dλABα . (C.7)

Making use of (C.4) and of the fact that ω̃α dφ is closed, we see that all dependence on λAB,CD
and λABα drops away, as anticipated. Moreover, we have∫

S5/Γ
ωAB ω̃α = 0 ,

∫
S5/Γ

ω̃α
dφ

2π
ιABωCD = 0 . (C.8)

These relations follow from the fact that ω̃α is supported on the locus y1 = · · · = y4 = 0.
Using (C.3), we see that both ωAB and dφ ιABωCD are zero on this locus. To proceed, we use
the relation ∫

S5/Γ
ωAB ιCDωEF =

1

|Γ|

∫
S5

ωAB ιCDωEF =
1

(2π)3

1

48 |Γ| εABCDEF . (C.9)

We also need the integral ∫
S5/Γ

ω̃α ω̃β
dφ

2π
=

∫
C2/Γ

ω̃α ω̃β = −Cαβ , (C.10)

where we recalled (3.28).
In summary, the integral of E5 dE5 yields∫

S5/Γ
E5 dE5 = − 1

(2π)3
N2 |Γ|χ6(SO(6)) + Cαβ

Fα

2π

F β

2π

Fφ
2π

. (C.11)

Since only a subgroup of SO(6) is a symmetry of the system, we decompose χ6(SO(6)) as14

χ6(SO(6)) = −χ4(SO(4))
F 56

2π
= χ4(SO(4))

Fφ
2π

=
[
c2(GL)− c2(SU(2)R)

] Fφ
2π

. (C.12)

We have used the notation c2(GL) defined in (3.34). The final result (3.32) quoted in the
main text is obtained from (C.11) using (C.12) and recalling the identifications (3.33).

14Following [54], we define the Euler classes of SO(6) and SO(4) vector bundles as

χ6(SO(6)) = − 1

(2π)3

1

48
εABCDEF F

AB FCD FEF , χ4(SO(4)) = +
1

(2π)2

1

8
εABCD F

AB FCD ,

where A, B, . . . , are vector indices of SO(6), SO(4) respectively.
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D Inflow derivation for smooth SE5 fibrations over Σg

In this appendix we compute the inflow anomaly polynomial for the 2d theories considered in
section 4.1. Recall that the relevant 7d internal space is

SE5 ↪→M7 → Σg , (D.1)

and that we use a bar to distinguish quantities and indices relative to the SE5 fiber. The
fibration is specified by the background flux (4.2).

The form V5

Because of the fact that the fiber SE5 is non-trivially twisted over the base Σg, p-forms on SE5

are generically no longer well-defined on the total space M7. We must instead consider their
twisted counterparts, denoted with a superscript ‘t’. Twisting here means gauging with the
background connections. For example, the volume form V5 on SE5 is promoted to its twisted
version V t

5, which is no longer closed,

d(V
t
5) = F ĪΣ (ιĪ V 5)t = VΣ p

Ī (ιĪ V 5)t . (D.2)

Even though V
t
5 is not closed, we can restore closure by adding terms linear in F ĪΣ. More

precisely, we define the quantity

V5 = V
t
5 + pĪ

VΣ

2π
ωt
Ī , (D.3)

which is well-defined on M7 and closed, thanks to (4.7) and VΣ VΣ = 0.

The 3-forms ωI

In order to implement anomaly inflow, for each generator tI of the preserved isometry group
of SE5 we must find a 3-form ωI on M7 such that

dωI + 2π ιIV5 = 0 , (D.4)

with V5 given by (D.3). While it is always true that d(ιIV5) = 0, the space M7 generically has
non-trivial harmonic 4-forms. It follows that the existence of a globally well-defined 3-form
ωI such that (D.4) holds is not guaranteed a priori, and should be rather considered to be a
restriction on the allowed choices of twist. This point is addressed in greater detail later.

Assuming that a solution for ωI in (D.4) exists, it can be written in the form

ωI = sI
Ī ωt

Ī + sI
ᾱ ωt

ᾱ + VΣ Λ
t
I . (D.5)

Recall that the 3-forms ωĪ on SE5 satisfy (4.7), while ωᾱ is a basis of harmonic 3-forms on
SE5. The quantities ΛI are 1-forms on SE5 and must be such that

dΛI + sI
ᾱ pK̄ ιK̄ωᾱ + 2 sI

J̄ pK̄ ι(K̄ωJ̄) = 0 . (D.6)
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Finally, the constants sI ᾱ are determined by the condition

pK̄ cK̄ᾱβ̄ sI
β̄ = −sI J̄ pK̄ cJ̄K̄ᾱ . (D.7)

The interpretation of the above statements is the following. The equation (D.4) sets a closed
4-form on M4 to zero. Its harmonic and exact parts have to vanish separately. The equation
(D.7) for the constants sI ᾱ ensures that the harmonic part vanishes, while the condition (D.6)
on ΛI takes care of the exact piece. In reference to the last statement, it should be noted that
the 2-form sI

ᾱ pK̄ ιK̄ωᾱ + 2 sI
J̄ pK̄ ι(K̄ωJ̄) is not only closed, but also exact. Indeed, it cannot

have any harmonic part, because its pairing with any harmonic 3-form on SE5 is zero,

2π

∫
SE5

ωβ̄

[
sI
ᾱ pK̄ ιK̄ωᾱ + 2 sI

J̄ pK̄ ι(K̄ωJ̄)

]
=

1

N2

[
sI
ᾱ pK̄ cK̄ᾱβ̄ + sI

J̄ pK̄ cJ̄K̄ᾱ

]
= 0 , (D.8)

where we recalled the expressions (4.9) for the c coefficients and we used (D.7). As a result,
the existence of ΛI solving (D.6) is guaranteed.

The 5-form E5 and inflow anomaly polynomial

In the previous subsections we have determined V5 and ωI . This data is all we need to
perform anomaly inflow for symmetries related to the isometries of the fiber SE5 of M7.
Let us stress that there are additional sources of symmetries for the 2d theory, including:
additional isometries of M7 originating from isometries of the Riemann surface, when the
latter is a 2-sphere; harmonic 3-forms on M7. We do not investigate these symmetries of the
2d theory in this work. With this caveat in mind, the 5-form E5 is given by

E5 = N V g
5 +N

F I

2π
ωg
I + F I F J λg

IJ + p1(TW2)λg . (D.9)

The superscript ‘g’ stands for gauged, and refers to gauging with the 2d external connections
F I . The quantities λ, λIJ are arbitrary 1-forms on M7. Indeed, we find∫

M7

E5 dE5 =
N2

2π
F I F J

∫
M7

V5 ιIωJ , (D.10)

with the 1-forms λ, λIJ dropping out by virtue of (D.4). Making use of (D.3), (4.7), (D.5),
and (D.6) we compute∫

M7

E5 dE5 =
F I

2π

F J

2π

[
sI
Ī sJ

J̄ pK̄ cĪJ̄K̄ + sI
Ī sJ

ᾱ pK̄ cĪK̄ᾱ

]
, (D.11)

with a 2π factor being generated from the integral of VΣ over Σg. The result (D.11) can be
cast in a more suggestive form,

I inflow
4 =

1

2

∫
M7

E5 dE5 = (2π)−2 pK̄
[1

2
cK̄ĪJ̄ (F I sI

Ī) (F J sJ
J̄) + cK̄Īᾱ (F I sI

Ī) (F J sJ
ᾱ)

+
1

2
cK̄ᾱβ̄ (F I sI

ᾱ) (F J sJ
β̄)
]
. (D.12)
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The equivalence of (D.11) and (D.12) relies on the condition (D.7) on the sI ᾱ coefficients. The
form (D.12) makes it easy to see that I inflow

4 is obtained from the integral of the 4d anomaly
polynomial

I inflow
6 =

1

6
cĪJ̄K̄

F Ī4d

2π

F J̄4d

2π

F K̄4d

2π
+

1

2
cĪJ̄ ᾱ

F Ī4d

2π

F J̄4d

2π

F ᾱ4d

2π
+

1

2
cĪᾱβ̄

F Ī4d

2π

F ᾱ4d

2π

F β̄4d

2π
, (D.13)

with the identifications

F Ī4d = F I sI
Ī + pĪ VΣ , F ᾱ4d = F I sI

ᾱ . (D.14)

We have thus verified the claim made in the main text.

E Punctures in 4d N = 4 SYM

This appendix collects further details and derivations about the setup studied in section 4.2.
We begin collecting useful background material for the discussion of punctures.

E.1 Inclusion of punctures: generalities

The strategy of [9, 10] for the study of regular punctures in 4d N = 2 class S theories from
M-theory can be directly generalized to study a class of punctures in 4d N = 4 SYM.

Our starting point is the internal space Mn=0
7 for 4d N = 4 SYM compactified on a

genus-g Riemann surface without punctures Σg,0. The 7d space Mn=0
7 is of the form

S5 ↪→Mn=0
7 → Σg,0 . (E.1)

The topology of this S5 fibration over Σg,0 depends on the choice of topological twist. In this
work, we consider the Maldacena-Nuñez twist [29], which we describe in more detail below.
Let us now select n distinct points on Σg,0, labeled by the index α = 1, . . . , n. Let Dα denote
a small disk on Σg,0 centered at the α-th point. The space Mn=0

7 can be presented as

Mn=0
7 = Mbulk

7 ∪
n⋃

α=1

(Dα × S5) , (E.2)

where Mbulk
7 is the space obtained from Mn=0

7 by removing the small disks Dα and the S5

fibers on top of them. The 7d space that is relevant for a configuration with punctures is
obtained from (E.2) by replacing each Dα × S5 term with a puncture geometry Xα

7 ,

M7 = Mbulk
7 ∪

n⋃
α=1

Xα
7 . (E.3)

This decomposition of the internal spaceM7 implies an analogous decomposition of the inflow
anomaly polynomial into a bulk piece plus puncture pieces, as stated in (4.19). The task at
hand is the description of the topology and isometries of the bulk geometry Mbulk

7 and the
puncture geometries Xα

7 , and the construction of the 5-form E5 for Mbulk
7 and Xα

7 .
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E.2 The bulk of the Riemann surface

The topology of the S5 fibration (E.1) is chosen in such a way that the isometry group SO(6)

of S5 is broken as
SO(6)→ SO(4)× SO(2) , (E.4)

and the twist is performed by turning on a background field strength for the SO(2) connection.
To describe the setup more precisely we need some additional notation. Let us describe

S5 as the locus Y A YA = 1, where Y A, A = 1, . . . , 6 are Cartesian coordinates on R6, and the
A index is raised/lowered with δ. With reference to (E.4), it is convenient to parametrize the
coordinates Y A subject to Y A YA = 1 as

Y a = µ ya , a = 1, 2, 3, 4 , Y 5 =
√

1− µ2 cosφ , Y 6 =
√

1− µ2 sinφ , (E.5)

where the four quantities ya obey the constrain ya ya = 1, with the a index raised/lowered with
δ. The coordinate µ has range [0, 1], and the angle φ has periodicity 2π. The parametrization
(E.4) shows that we can regard S5 as an S1

φ × S3
Ω fibration over the µ-interval, where S1

φ

is the circle parametrized by φ and S3
Ω is the round 3-sphere described by ya ya = 1. The

SO(4) factor in (E.4) is identified with the isometry group of S3
Ω, while the SO(2) factor is

the isometry group of S1
φ. We also see from (E.5) that S1

φ shrinks at µ = 1, while S3
Ω shrinks

at µ = 0.
The total SO(2) connection contains an internal contribution with legs on the Riemann

surface, corresponding to the topological twist, and an external contribution, corresponding
to gauging the SO(2) isometry. We then write

Dφ = dφ−A , A = Aφ +AΣ , F = dA = pφ VΣ + F φ , (E.6)

where VΣ is the volume form on the Riemann surface, normalized as in (4.2). The twist
parameter pφ is fixed by supersymmetry,

pφ = −χ(Σg,n) , χ(Σg,n) = −2 (g − 1)− n . (E.7)

In contrast, the SO(4) connection is purely external. In our conventions, the constrained
coordinates ya on S3

Ω couple to the SO(4) background connection Aab according to

Dya = dya −Aab yb . (E.8)

E.3 The form E5 in the bulk of the Riemann surface

As a warm-up exercise for the discussion of E5 for a puncture, we first reconsider E5 for the
bulk of the Riemann surface. Instead of applying the recipe of section 4.1 and appendix D,
we proceed by writing down the most general ansatz for E5 compatible with the topology and
isometries of the bulk geometry. Next, we impose that each term in dE5 has at most two legs
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along the internal space. The outcome of this analysis is the following E5,

E5 = N

[
dγ

Dφ

2π
− γ F

2π

]
e
SO(4)
3

+

[
du1

Dφ

2π
− u1

F
2π

]
εabcd F

ab ycDyd

(2π)2
− u1

Dφ

2π

εabcd F
abDycDyd

(2π)2

+ u2
F φ

2π

εabcd F
ab ycDyd

(2π)2
+ u3

Dφ

2π

εabcd F
ab F cd

(2π)2
. (E.9)

In the above expression, we recalled F = F φ + pφ VΣ = −dDφ, we used the global angular
form of SO(4) given in (E.28), and we introduced the quantities γ, u1, u2, u3, which are
functions of µ only. The function γ satisfies

γ(0) = 0 , γ(1) = 1 . (E.10)

Indeed, γ must vanish at µ = 0 to have a regular E5, since S3
Ω shrinks at µ = 0. The difference

γ(1)− γ(0) is fixed to be 1 from the flux quantization condition

N =

∫
S5

E5 . (E.11)

The function γ in the interior of the µ interval is smooth, but otherwise arbitrary. By a similar
token, the functions u1, u2, u3 are smooth and arbitrary, up to the requirements

u1(0) = u1(1) = 0 , u2(0) = 0 , u3(1) = 0 , (E.12)

which follow from regularity of E5. (Recall that S1
φ shrinks at µ = 1.)

Recall that the 5-form E5 for N = 4 SYM is the global angular form of SO(6), given
in (C.1). If we take the global angular form of SO(6), and we only activate the background
connections AAB along the generators of the subgroup SO(4)× SO(2), we get a 5-form that
is of the form (E.9). In this special case, the functions γ, u1, u2, u3 are given by

γ = µ4 , u1 = −1

2
N µ2 (1− µ2) , u2 = 0 , u3 = −1

8
N (1− µ2) . (E.13)

Next, let us evaluate the integral of E5 dE5 over the internal space. The integration over
S3

Ω is conveniently performed using the identity∫
S3

Ω

yaDybDycDyd =
π2

2
εabcd . (E.14)

Moreover, we recall that φ has period 2π, that
∫

Σg,n
F = −2π χ(Σg,n), and we choose a

convention that gives positive orientation to dµ dφ volS3
Ω
. We then obtain∫

Mbulk
7

E5 dE5 =
εabcd F

ab F cd

(2π)2
χ(Σg,n)

[
− 1

8
N2 γ2 +

1

4
N γ u1 +N γ u3

]µ=1

µ=0

. (E.15)
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As we can see, the arbitrary function u2 completely drops from the result. Moreover, u1 and
u3 drop out as well, thanks to the regularity conditions (E.10), (E.12). In conclusion,∫

Mbulk
7

E5 dE5 = −1

8
N2 χ(Σg,n)

εabcd F
ab F cd

(2π)2
. (E.16)

Since the result is independent of u1, u3, u2, a viable choice of E5 is given simply by the
first line of (E.9), which exhibits a simple factorized structure and is the direct analog of the
4-form E4 in the bulk of the Riemann surface in the M-theory analysis of [9, 10].

E.4 The puncture geometry

Let us now turn to a description of the puncture geometry Xα
7 . Since each puncture can be

analyzed in isolation, for the sake of brevity we omit the puncture label α for the remainder of
this section. The analogous problem in M-theory has been studied in [9, 10]. The arguments
presented there can be repeated with minimal modifications in the present context. The only
difference is that the 2-sphere S2

Ω of the M-theory analysis is replaced by the 3-sphere S3
Ω in

our type IIB setup. For this reason, we proceed with a description of the puncture geometry
without derivations.

Before discussing the puncture geometry X7, we need to introduce an auxiliary 4d space
X4. The latter can be described as a circle fibration over R3,

S1
β ↪→ X4 → R3 . (E.17)

Let us introduce cylindrical coordinates (ρ, χ, η) in R3, where η ∈ R is the coordinate along
the cylindrical axis of symmetry, ρ ≥ 0 is the distance from the axis, and χ is the azimuthal
angle around the axis, with periodicity 2π. Axial symmetry restricts the fibration of the β
circle, which is described by

Dβ = dβ − Ldχ , (E.18)

where L is a function of ρ and η, independent of χ. The function L encodes the fact that the
S1
β fibration has p monopole sources. The latter are located along the positive η semiaxis at
ρ = 0 at positions ηa, a = 1, . . . , p (ordered as 0 < η1 < η2 < · · · < ηp). The function L is
piecewise constant along the η axis, with jumps at the location of each monopole. The value
of L in the interval (ηa−1, ηa) is an integer, which we denote `a,

L(0, η) = `a for ηa−1 < η < ηa , a = 1, . . . , p , (E.19)

with the convention η0 = 0. The value of L on the η axis past the last monopole is zero,

L(0, η) = 0 for η > ηp . (E.20)

The charge ka of the monopole at η = ηa is a positive integer and is measured by the discon-
tinuity in L across η = ηa,

ka = `a − `a+1 , (E.21)
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which holds for all a = 1, . . . , p with the understanding that `p+1 = 0. Notice that the circle
S1
β shrinks at the location of the monopoles.

Having described the salient features of the space X4, we can now describe the puncture
geometry X7. It is obtained by fibering S3

Ω over X4,

S3
Ω ↪→ X7 → X4 . (E.22)

The 3-sphere S3
Ω shrinks at η = 0. This ensures that the total space X7 caps off smoothly at

η = 0, and therefore we only consider the half space in R3 with η ≥ 0. In the fibration (E.22),
we do not turn on any SO(4) background field strength with legs along X4.

E.5 Compatibility between puncture and bulk

According to the general strategy outlined in section E.1, inserting a puncture means replacing
D × S5 with a new geometry. The latter is a portion of the full space X7 described in the
previous section. More precisely, the relevant portion of X7 is the one that is obtained by
restricting the coordinates (ρ, η) to lie in the shaded region R depicted in figure 1 on the right.
The gluing of the puncture geometry to the bulk is performed along the PQ arc.

To discuss this more precisely, let us introduce polar coordinates (rΣ, β) on the small
disk D on the Riemann surface. As our notation anticipates, the polar angle β on the disk
D is identified with the angle β in the puncture geometry. The relation between the bulk
coordinates (rΣ, µ) and the puncture coordinates (ρ, η) is more involved. Figure 1 includes
a schematic depiction of lines of constant rΣ and µ in the (ρ, η) plane. In particular, in the
gluing we identify the vertical line at rΣ = r̄Σ on the left with the PQ arc on the right.

In performing the gluing of puncture geometry and bulk geometry, the angular coordinate
χ in the puncture geometry is given in terms of bulk coordinates by

χ = φ+ β . (E.23)

In particular, this relation implies that the angle χ is gauged by the external connection for
the angle φ,

Dχ = dχ−Aφ , F φ = dAφ , (E.24)

where Aφ, F φ are the same as in (E.6). As soon as the external connection Aφ is activated,
the 1-form Dβ in (E.18) has to be improved to

D̃β = dβ − LDχ . (E.25)

For later applications, we also need to point out that the internal part of the φ connection
on the disk D on the Riemann surface is conveniently parametrized as

Dφ = dφ−Aφ −AΣ , AΣ = U(rΣ) dβ , (E.26)

where the function U vanishes at rΣ = 0 in order to ensure regularity of AΣ. Since U is a
function of rΣ only, it is constant on the locus rΣ = r̄Σ. Let us therefore write U = U(r̄Σ).
Recall that the gluing is implicitly performed in the limit of small disk, r̄Σ → 0. In this limit,
we have U → 0.
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Figure 1: On the left we depict the (rΣ, µ) plane. The relevant region is the strip rΣ ≥ 0,
0 ≤ µ ≤ 1. The shaded area corresponds to the portion D × S5 that is excised to make room
for the puncture. The value r̄Σ is the radius of the disk D. We also include lines of constant rΣ

and lines of constant µ. On the right we depict the (ρ, η) plane. The region R corresponds to
the relevant portion of the puncture geometry X7. The portion of the (ρ, η) plane outside the
region R corresponds to the bulk of the Riemann surface. We depict the qualitative behavior
of lines of constant rΣ and µ as they appear in (ρ, η) coordinates.

The form E5 for the puncture geometry

Our next task is to write down the most general E5 compatible with the topology and isome-
tries of the puncture geometry, and impose that each term in dE5 has at most two internal
legs. The most general allowed E5 is found to be

E5 =

[
d

(
Y
Dχ

2π
−W D̃β

2π

)
+ Λ dρ dη

]
e
SO(4)
3

+

[
σ1
Dχ

2π
+ σ2

D̃β

2π
+ λ1

]
εabcd F

ab F cd

(2π)2

+

[
σ3
Dχ

2π
+ σ4

D̃β

2π
+ λ2

]
εabcd F

abDycDyd

(2π)2

+

[
σ0
F φ

2π
− d
(
σ3
Dχ

2π

)
− d
(
σ4
D̃β

2π

)
− dλ2

] εabcd F ab ycDyd
(2π)2

. (E.27)

In the above expression, the 3-form e
SO(4)
3 is the global angular form of SO(4),

e
SO(4)
3 =

1

2π2

[
1

3!
εabcd y

aDybDycDyd − 1

4
εabcd F

ab ycDyd
]
. (E.28)
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It satisfies ∫
S3

Ω

e
SO(4)
3 = 1 , de

SO(4)
3 = −1

8

εabcd F
ab F cd

(2π)2
= −χ4(SO(4)) . (E.29)

The quantities Y , W , σ0,1,2,3, Λ are functions of ρ, η, while λ1,2 are 1-forms in the (ρ, η) plane.
These objects are not uniquely determined, but are constrained by regularity of E5 and flux
quantization.15

Let us first focus on the functions Y , W . They enter E5 via the closed 2-form

E2 = d

[
Y
Dχ

2π
−W D̃β

2π

]
= (dY +W dL)

Dχ

2π
− dW D̃β

2π
− (Y +W L)

F φ

2π
. (E.30)

This 2-form is exactly the same as the one that appears in the M-theory setup of [9, 10]. This
means that we can repeat the flux quantization analysis of [9, 10] almost verbatim, keeping in
mind that the role of S2

Ω in M-theory is now played by S3
Ω. It follows that the conditions on Y ,

W that were derived in [9, 10] are also true in the present context. They can be summarized
as follows:

• The function W = W (ρ, η) is smooth for ρ ≥ 0, η ≥ 0, and vanishes for η = 0 for any ρ,

W (ρ, 0) = 0 . (E.31)

The values of W at the locations of the monopoles along the η axis at ρ = 0 satisfy

W (0, ηa) = wa , (E.32)

where {wa}pa=1 is an increasing sequence of positive integers.

• The function Y = Y (ρ, η) is smooth away from the η axis at ρ = 0, and vanishes at
η = 0 for any ρ,

Y (ρ, 0) = 0 . (E.33)

Moreover, Y is piecewise constant (hence discontinuous) along the η axis,

Y (0, η) = ya for ηa < η < ηa+1 , a = 1, . . . , p− 1 ,

Y (0, η) = yp := N for η > ηp . (E.34)

The quantities ya are all positive integers.

• Even though L and Y are both discontinuous along the η axis at ρ = 0, the form E2 is
free from discontinuities, thanks to the “sum rule”

ya =
a∑
b=1

wb kb . (E.35)

15While E5 is not closed, it does yield a closed 5-form E5 if we turn off all external connections. It is
therefore meaningful to impose integrality of the periods of the 5-form E5 over 5-cycles in X7.
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In particular, selecting a = p and using yp = N , we get the relation

N =

p∑
a=1

waka , (E.36)

which defines a partition of N .

In direct analogy with the M-theory analysis, we observe that regularity and flux quantization
of E5 imply that the class of punctures we are studying are labelled by partitions of N . It
would be interesting to have a purely field-theoretic understanding of this feature of punctures
in 4d N = 4 SYM theory.

When the puncture geometry is glued to the bulk geometry, the functions Y , W are
related to the function γ in (E.9) and U in (E.26). The analysis of [10] shows that the gluing
condition is

Y +W L = N γ , W = N γ (1 + U) along the PQ arc . (E.37)

We have recalled that the PQ arc sits at rΣ = r̄Σ, hence U = U constant along the PQ arc.
Finally, let us collect some conditions on the functions σ1,2,3,4 that stem from regularity

of E5 and smooth gluing onto the bulk geometry. The χ circle in R3 shrinks along the η axis.
This implies the regularity conditions

σ1

∣∣∣
ρ=0

= σ3

∣∣∣
ρ=0

= 0 . (E.38)

We also know that the circle S1
β shrinks at the location of the monopoles. This gives the

regularity conditions

σ2(0, ηa) = σ4(0, ηa) = 0 , a = 1, . . . , p . (E.39)

Next, let us compare the terms with εabcd F ab F cd in the expressions (E.9) and (E.27) for E5

in the bulk and for a puncture. In (E.9) the prefactor of εabcd F ab F cd has only legs along
Dφ, while in (E.27) it is a combination of Dχ and D̃β. These different prefactors must agree
along the PQ arc. In particular, on this arc there should be no dβ term in the prefactor of
εabcd F

ab F cd in (E.27). This implies

σ1 + σ2 − Lσ2 = 0 along the PQ arc . (E.40)

In a similar way, matching terms with εabcd F
abDydDyd in (E.9) and (E.27) leads to the

condition
σ3 + σ4 − Lσ4 = 0 along the PQ arc . (E.41)

Let us point out that, by arguments similar to those of the previous paragraphs, one can
also argue that λ1,2 and Λ should be zero in order to ensure a smooth gluing between puncture
and bulk E5 forms. We will not make direct use of this observation, however, because the
anomaly inflow result turns out to be automatically independent of λ1,2, Λ.
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E.6 The integral of E5 dE5 in the puncture geometry

We may use again (E.14) for the integration over S3
Ω. Both the χ and the β circles have

periodicity 2π. The orientation convention that fits with the orientation of the bulk is the one
that assigns a positive orientation to dρ dη dχ dβ volS3

Ω
. One finds∫

X7

E5 dE5 =
εabcd F

ab F cd

(2π)2

∫
R2

S2 , (E.42)

where R2 is the region in the (ρ, η) plane depicted in figure 1, and S2 is the following 2-form
in the (ρ, η) plane,

S2 = −1

4
d(Y +W L) dW

−
[
dW d(σ1 + σ2 − Lσ2) + d(Y +W L) dσ2 − dW dσ2

]
+

1

4

[
dW d(σ3 + σ4 − Lσ4) + d(Y +W L) dσ4 − dW dσ4

]
. (E.43)

As we can see, the result seems to depend on the unspecified functions σ1,2,3,4. We now
demonstrate, however, that all dependence on σ1,2,3,4 drops away after integrating on the
region R2. To this end, it is convenient to write

S2 = dS1 , S1 =
1

4
W d(Y +W L)

−
[
W d(σ1 + σ2 − Lσ2) + (Y +W L) dσ2 −W dσ2

]
+

1

4

[
W d(σ3 + σ4 − Lσ4) + (Y +W L) dσ4 −W dσ4

]
. (E.44)

By Stokes’ theorem, ∫
R2

S2 =

∫
∂R2

S1 . (E.45)

The boundary ∂R2 consists of a horizontal segment along the ρ axis, the PQ arc, and a
collection of intervals along the η axis, connected by small semicircles around the monopole
sources, as shown in figure 1. We discuss these boundary components in turn.

The horizontal segment along the ρ axis. We know that W and Y vanish along the ρ
axis at η = 0. It follows that S1 is zero along the horizontal segment of ∂R2.

The PQ arc. The integral of the term 1
4 W d(Y +W L) in S1 along the PQ arc is non-zero.

As in appendix B of [10], this term is interpreted as a bulk contribution, rather than as a
puncture contribution.16 Next, we argue that all terms in S1 with σ1,2,3,4 integrate to zero

16More precisely, we can imagine to perform the integral of E5 dE5 in the bulk geometry using the Euler
characteristic χ(Σg,0) of the unpunctured Riemann surface. The contribution of S1 ⊃ 1

4
W d(Y + W L) from

the PQ arc is computed using the gluing conditions (E.37) between puncture and bulk, and is found to be
independent on the details of the puncture. The net effect of these terms is to shift the Euler characteristic
from χ(Σg,0) to the correct value χ(Σg,n) for the punctured Riemann surface.
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along the PQ arc. To see this, we use (E.40) and (E.37) to write

W d(σ1 + σ2 − Lσ2) + (Y +W L) dσ2 −W dσ2 =

= −N U γ dσ2 along the PQ arc . (E.46)

The gluing is performed in the limit of small disk radius, which implies U → 0. As a result,
the terms in S1 with σ1,2 do not yield any contribution from integration along the PQ arc.
The terms with σ3,4 are treated in a completely analogous way, making use of (E.41).

The intervals along the η axis. We consider each interval (ηa−1, ηa), a = 1, . . . , p, together
with the interval that connects the last monopole at η = ηp with the point Q, which we denote
schematically as (ηp,Q). First of all, we compute∫

(ηa−1,ηa)

1

4
W d(Y +W L) =

∫
(ηa−1,ηa)

d

[
1

8
`aW

2

]
=

1

8
`a (w2

a − w2
a−1) , (E.47)

where we used the fact that Y = ya−1 constant and L = `a constant in the interval (ηa−1, ηa).
If we consider the last interval (ηp,Q), we have L = 0 and therefore we get no contribution.

Next, we argue that the terms with σ1,2,3,4 in S1 drop away from all integrals over (ηa−1, ηa)

and (ηp,Q). If we consider the interval (ηa−1, ηa), we can use L = `a, Y = ya−1, and the
regularity condition (E.38) on σ1 to observe that

W d(σ1 + σ2 − Lσ2) + (Y +W L) dσ2 −W dσ2 = (E.48)

= ya−1 dσ2 along the interval (ηa−1, ηa) .

When this 1-form is integrated on (ηa−1, ηa), the result is proportional to the difference
σ2(0, ηa) − σ2(0, ηa−1), which is zero thanks to the regularity condition (E.39). In a simi-
lar way, if we consider the last interval (ηp,Q), we can use L = 0, Y = N , and get

W d(σ1 + σ2 − Lσ2) + (Y +W L) dσ2 −W dσ2 = (E.49)

= N dσ2 along the interval (ηp,Q) .

To show that this integrates to zero we must argue that σ2 vanishes at point Q. This is indeed
the case, because Q lies at the intersection of the η axis with the PQ arc, and therefore we
can combine (E.38) and (E.40) and infer that σ2 is zero at Q.

The fact that all terms in S1 with σ1,3 do not contribute to integrals over (ηa−1, ηa) and
(ηp,Q) is shown in a completely analogous way.

Small semicircles around the monopole sources. The small semicircles do not give
any non-zero contribution in the limit in which their radius goes to zero. To see this, let us
introduce coordinates (Ra, τa) in the vicinity of the a-th monopole, as

η = ηa +Ra τa , ρ = Ra
√

1− τa1 , (E.50)
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with the range of τa being [−1, 1]. The small semicircle is described by Ra = const → 0. To
argue that the term W d(Y + W L) in S1 does not contribute when integrated on the small
semicircle around the a-th monopole, we recall that bothW and the combination Y +W L are
continuous along the η axis (while Y and L separately are piecewise constant). As a result,
for small constant Ra, we have∫

semicircle
W d(Y +W L) ≈ wa

∫ 1

−1
dτa ∂τa(Y +W L) = wa

[
Y +W L

]η=ηa+Ra

η=ηa−Ra
→ 0 . (E.51)

In the first step we used the fact that, to leading order as Ra → 0, W is approximated by its
value wa at (ρ, η) = (0, ηa) because it is continuous near that point. In the last step we get
zero because Y + W L tends to the same value as we approach ηa from below or above. All
other terms in S1 are treated in a similar way. We need to recall that σ1 and σ3 vanish along
the η axis, and that σ2 and σ4 vanish at the location of the monopoles.

Summary. There is only one non-zero contribution to the puncture anomaly, given by
summing terms of the form (E.47). Notice that the boundary ∂R2 must be traversed in
counterclockwise orientation, which means that each interval on the η axis is considered with
a negative orientation. As a result, we arrive at∫

X7

E5 dE5 = −1

8

εabcd F
ab F cd

(2π)2

p∑
a=1

`a (w2
a − w2

a−1) . (E.52)

F Remarks on c1(L)

In this appendix we recall some well-known facts about the Weierstrass line bundle L intro-
duced in section 5. These remarks are useful in elucidating the physical interpretation of the
new term (5.3). We follow the exposition of [38, 55].

Classical type IIB supergravity has a rigid SL(2,R) symmetry. In the quantum theory,
this is broken by non-perturbative effects. A discrete SL(2,Z) subgroup is preserved, and is
a local symmetry of the theory.17 In F-theory constructions, we imagine to cover spacetime
with overlapping patches and we allow non-trivial SL(2,Z) transformations in the transition
functions. Let U , U ′ be a generic pair of overlapping patches. The local expressions τ and τ ′

for the axio-dilaton on U , U ′ are related on U ∩ U ′ by (5.1) for some
(
a b
c d

)
∈ SL(2,Z). Using

the τ profile and the same transition matrix
(
a b
c d

)
∈ SL(2,Z), we can define a complex line

bundle by the following gluing condition on U ∩ U ′,

s′ = eiθ s , eiθ :=
c τ + d

|c τ + d| . (F.1)

In the previous expression, s, s′ are local trivializations of a section of the complex line bundle
on U , U ′ respectively. There is a simple local expression for a connection Q on this bundle.

17More precisely, the quantum symmetry group is the metaplectic group Mp(2,Z), which is the unique
non-trivial Z2 central extension of SL(2,Z) [56].
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It is given by

Q = − 1

2 τ2
dτ1 . (F.2)

Indeed, if τ and τ ′ are related by (5.1), the expression (F.2) implies

Q′ = Q− dθ , (F.3)

which is the expected gluing condition for a connection on the bundle satisfying (F.1). The
field strength of Q reads

FD = dQ =
dτ dτ̄

4 i τ2
2

. (F.4)

In a setup described by a Weierstrass model (5.7), τ varies holomorphically over W4 and
the field strength FD is of (1, 1) type. In this situation, there is a canonical way to turn the
complex line bundle defined by (F.1) into a holomorphic line bundle, defined by the gluing
condition

ŝ′ = (cτ + d) ŝ , (F.5)

where ŝ, ŝ′ are local trivializations on U , U ′ of a section of the holomorphic line bundle. The
relation between ŝ and s in each patch is

ŝ = (τ2)−1/2 s . (F.6)

In fact, (5.1) and (F.1) imply (F.5). But the gluing condition (F.5) is exactly the one that
corresponds to the Weierstrass line bundle L.18 As a result, we may identify the first Chern
class of L with the field strength FD,

c1(L) =
FD
2π

. (F.7)

The non-triviality of c1(L) is thus a precise measure of a non-zero gradient for the axio-dilaton.
This fits with our intuition of the new term (5.3) as being built with derivatives of τ .

It should be stressed that the expression for FD in terms of dτ , dτ̄ must be taken with
a grain of salt. In the presence of 7-branes, τ is multivalued and dτ is not a good 1-form.
In particular, despite what the form (F.4) suggests, we have in general F 2

D 6= 0. Indeed, in
many examples the non-universal terms in (5.10) contain c1(L)2 and c1(L)3 terms [17]. By a
similar token, higher powers of c1(L) are encountered in the analysis of discrete anomalies in
supergravities of [57].

18Indeed, as explained for instance in [38], the transformation properties of f and g under (5.1) are

f ′ = (c τ + d)4 f , g′ = (c τ + d)6 g ,

and f (resp. g) is a section of L4 (resp. L6).
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