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Abstract—This paper focuses on the algebraic theory under-
lying the study of the complexity and the algorithms for the
Constraint Satisfaction Problem (CSP). We unify, simplify, and
extend parts of the three approaches that have been developed to
study the CSP over finite templates – absorption theory that was
used to characterize CSPs solvable by local consistency methods
(JACM’14), and Bulatov’s and Zhuk’s theories that were used
for two independent proofs of the CSP Dichotomy Theorem
(FOCS’17, JACM’20).

As the first contribution we present an elementary theorem
about primitive positive definability and use it to obtain the
starting points of Bulatov’s and Zhuk’s proofs as corollaries.
As the second contribution we propose and initiate a systematic
study of minimal Taylor algebras. This class of algebras is broad
enough so that it suffices to verify the CSP Dichotomy Theorem
on this class only, but still is unusually well behaved. In particular,
many concepts from the three approaches coincide in the class,
which is in striking contrast with the general setting.

We believe that the theory initiated in this paper will eventually
result in a simple and more natural proof of the Dichotomy
Theorem that employs a simpler and more efficient algorithm,
and will help in attacking complexity questions in other CSP-
related problems.

I. INTRODUCTION

The Constraint Satisfaction Problem (CSP) has attracted

much attention from researchers in various disciplines. One

direction of the CSP research has been greatly motivated

by the so-called Dichotomy Conjecture of Feder and Vardi

[1], [2] that concerns the computational complexity of CSPs

over finite relational structures. The Constraint Satisfaction

Problem over a finite relational structure A of finite signature

(also called a template), in its logical formulation, is the

problem to decide the validity of a given primitive positive

sentence (pp-sentence), i.e., a sentence that is an existen-

tially quantified conjunction of atomic formulas over A –
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the constraints. Examples of problems in this class include

satisfiability problems, graph coloring problems, and solving

systems of equations over finite algebraic structures (see [3],

[4], [5], [6]), the CSP is also ubiquitous in artificial intelligence

[7].
A classic result in the field is a theorem by Schaefer [8]

that completely classifies the complexity of CSPs over rela-

tional structures with a two-element domain, so-called Boolean

structures, by providing a dichotomy theorem: each such a

CSP is either solvable in polynomial time or is NP-complete.

The Dichotomy Conjecture of Feder and Vardi then states

that Schaefer’s result extends to arbitrary finite domains. This

conjecture inspired a very active research program in the last

20 years, culminating in a positive resolution independently

obtained by Bulatov [9] and Zhuk [10], [11]. The exact

borderline between tractability and hardness can be formulated

as follows [12], [13], [5].

Theorem I.1. Let A be a finite relational structure over a

finite signature.

• If every finite structure is homomorphically equivalent to

a finite structure pp-interpretable in A, then the CSP over

A is NP-hard,

• otherwise it is solvable in polynomial time.

It was already recognized in Schaefer’s work (in fact, it

was the basis of his approach) that the complexity of a CSP

depends only on the set of relations that are pp-definable

(i.e., definable by a primitive positive formula) from the

template. Such sets of relations are now usually referred to

as relational clones. The impetus of rapid development in the

area after Feder and Vardi’s seminal work [2] was a series

of papers [4], [14] that brought to attention and applied a

Galois connection between operations and relations studied in

the sixties [15], [16], which gives a bijective correspondence

between relational clones and clones – sets of term operations

of algebras.
One way to phrase this core fact is as follows: for any finite

algebra A, its set of invariant relations (subuniverses of powers

or subpowers in algebraic terminology) is always a relational

clone; every relational clone is of this form; and two algebras

have the same relational clone of subpowers if and only if they978-1-6654-4895-6/21/$31.00 ©2021 IEEE



have the same set of term operations. For instance, a Boolean

CSP, say over the domain {0, 1}, is solvable in polynomial

time if and only if the relations of the template are subpowers

of one of four types of algebras – an algebra with a single

constant operation, a semilattice, the majority algebra, or the

affine Mal’cev algebra of Z/2 (see Subsection III-A).

This connection between relations and operations allowed

researchers to apply techniques from Universal Algebra. Ap-

plication of these techniques became known as the algebraic

approach to the CSP, although one may argue that the term

misses the point a little – the success of the approach lies

mostly in combining and moving back and forth between the

relational and algebraic side, and this is the case for this

paper as well. The general theory of the CSP was further

refined in subsequent papers [12], [13] and turned out to be an

efficient tool in other types of constraint problems including

the Quantified CSP [17], [18], [19], the Counting CSP [20],

[21], some optimization problems, e.g. the Valued CSP [22]

and robust approximability [23], infinite-domain CSPs [24],

and related promise problems such as “approximate coloring”

and the Promise CSP [25], [26], and many others.

One useful technical finding of [12] is that every CSP is

equivalent to a CSP over an idempotent template, i.e. a tem-

plate that contains all the singleton unary relations. This allows

us to use parameters in pp-definitions and omit homomorphic

equivalence in the first item of Theorem I.1. On the algebraic

side, this allows us to concentrate on so-called idempotent

algebras (see Subsection II-A). Another important contribution

of that paper was a conjecture postulating, for idempotent

structures, the exact borderline between polynomial solvability

and NP-hardness, which coincides with the borderline stated in

Theorem I.1. The hardness part was already dealt with in the

same paper and what was left was the tractability part. Within

the realm of idempotent structures, the algebras corresponding

to the second item of Theorem I.1 are so-called Taylor algebras

(see Subsection III-A). The following theorem is therefore the

core of the two proofs of the Dichotomy Conjecture.

Theorem I.2 ([9], [10], [11]). Let A be an idempotent

structure. If there exists an idempotent Taylor algebra A such

that all relations in A are subpowers of A, then the CSP over

A is solvable in polynomial time.

Partial results toward Theorem I.2 include dichotomies for

various classes of relational structures and algebras (e.g. the

class of 3-element algebras [27] and the class of structures

containing all unary relations [28]), understanding of the limits

of algorithmic techniques (e.g. local consistency methods [29]

and describing generating sets of solutions [30]), and finding

potentially useful characterizations of Taylor algebras (e.g. by

means of weak near-unanimity operations [31] and by means

of cyclic operations [32]). The papers [29] and [32] initiated a

technique, now referred to as the absorption theory [33]. It is

one of the fruits of CSP-motivated research that impacted also

other CSP-related problems as well as universal algebra (e.g.

[34]) and it is one of the three theories this paper is concerned

with.

Bulatov and Zhuk in their resolution of the Dichotomy

Conjecture (and their prior and subsequent work) developed

novel techniques, which we refer to as Bulatov’s theory and

Zhuk’s theory in this paper. These theories are (understand-

ably) mostly focused on the task at hand, to prove Theorem I.2,

and as such have several shortcomings. First, some of the

new concepts are still evolving as the need arises and they do

not yet feel quite elegant and settled. Moreover, the theories

are technically complex which makes it difficult to master

them and to apply them in different contexts. This is best

witnessed by the absence of results from different authors that

would employ the theories (needless to say they have already

clearly witnessed their potential). Second, they both employ

the following trick. Instead of studying a general, possibly

wild Taylor algebra, one can first tame it by taking a certain

Taylor reduct – an algebra whose operations are only some of

the term operations but which is still Taylor. Taking reducts

does not result in any loss of generality in Theorem I.2, since

reducts keep all the original invariant relations, so proving

tractability for a reduct is sufficient for tractability for the

original problem. However, taking reducts does result in loss

of generality of the theory and it is not yet clear to which

natural classes of algebras the theories apply. Moreover, these

reducts are different in the two approaches. Third, connections

between Bulatov’s and Zhuk’s theories were not understood

at all. While Zhuk’s theory and absorption theory at least

had some concepts in common, Bulatov’s theory seemed quite

orthogonal to the rest.

The contributions of this paper unify, simplify, and extend

parts of these three theories, making them, we hope, more

accessible and reducing the prerequisites for the dichotomy

proofs. In particular, we initiate a systematic study of minimal

Taylor algebras, i.e., those algebras that are Taylor but such

that none of their proper reducts is Taylor. Thus, we employ

the above trick to the extreme and study, in a sense, the tamest

algebras or, in other words, “hardest” tractable CSPs. This

restriction, on the one hand, limits the scope of the theory

but, on the other hand, gives us a framework in which the

three theories do not look separate at all anymore, as we shall

see.

Even though our unifications, simplifications, and exten-

sions do not cover some advanced parts of the three theories

(more on this in due course and Section VII), we believe that

they have the potential to evolve into one coherent theory of

finite algebras that would make the CSP Dichotomy Theorem

an exercise (albeit hard) and that would have applications well

beyond constraint problems.

The contributions can be divided into two groups, results

for (all finite) Taylor algebras stated in Section IV and results

for minimal Taylor algebras in Sections V and VI. We now

describe them in more detail together with more background.

A. Taylor algebras

The central concept in absorption theory is that of absorbing

subuniverses introduced formally in Subsection III-C. These

are invariant subsets of algebras with an additional property



resembling ideals in rings. A fundamental theorem, the absorp-

tion theorem, shows that nontrivial absorbing subuniverses in

Taylor algebras exist under rather mild conditions and this fact

makes the theory applicable in many situations. For instance,

the strategy in [29] to provide a global solution to a locally

consistent instance is to propagate local consistency into

proper absorbing subuniverses. The abundance of absorption

provided by absorption theorem makes this propagation often

possible, and if it is not, gives us sufficient structural and

algebraic information about the instance which makes the

propagation possible nevertheless, until the instance becomes

trivially solvable.

Zhuk’s starting point is a theorem stating that every Taylor

algebra has a proper subuniverse of one of four special types

(see Subsections III-C and IV-C). Zhuk derives the four types

theorem from a complicated result in clone theory, Rosenberg’s

classification of maximal clones [35] (the dependence of this

approach on Rosenberg’s result is removed in [36]). Given

the four types theorem, the overall strategy for the polynomial

algorithm for Theorem I.2 is natural and similar in spirit

to the absorption technique – to keep reducing to one of

such subuniverses until the problem becomes trivial. Although

Zhuk’s theory has a nontrivial intersection with the absorption

theory, these connections were not properly explored and

verbalized.

Bulatov’s algorithm in his proof of Theorem I.2 employs

a similar general idea, he reduces the instance to certain

subuniverses. However, these special subuniverses are defined,

as opposed to absorption and Zhuk’s theories, in a very local

way. They are sets that are, in a sense, closed under edges

(e.g. strong components) of a labeled directed graph whose

vertices are the elements of the algebra. Bulatov introduces

three basic kinds of edges (see Subsection III-D), whose

presence indicates that the local structure around the adjacent

vertices, namely the subuniverse generated by the two vertices,

somewhat resembles the three interesting tractable cases in

Schaefer’s Boolean dichotomy. What makes this approach

work is a fundamental theorem (Theorem 1 [37], see also

[38]), which says that the edges sufficiently approximate the

algebra in the sense that the directed graph is connected.

The proof uses rather technically challenging constructions

involving operations in the algebra.

In Section IV we first describe some of the connections

between absorption theory and Zhuk’s theory, and explain

simplifications and refinements that were scattered across

literature, including a refinement of the absorption theorem

that follows from [10], [11]. We also give two new results

improving pieces of the two theories. The major novel con-

tribution of Section IV is Theorem IV.7, a purely relational

fact which roughly states that each “interesting” relation that

uses all the domain elements in every coordinate pp-defines a

binary relation with the same properties or a ternary relation of

a very particular shape. Although the proof is elementary and

not very long, it enables us to derive both Zhuk’s four types

theorem and Bulatov’s connectivity theorems as corollaries. It

may be also of interest for some readers to note that theorems

in this section often even do not require the algebra to be

Taylor – they concern all finite idempotent algebras.

B. Minimal Taylor algebras

The advantage of studying minimal reducts within a class of

interest was clearly demonstrated in the work of Brady [39].

He concentrated on so-called bounded width algebras – these

are algebras that play the same role in solvability of CSPs

by local consistency methods [29] as Taylor algebras do for

polynomial time solvability. The theory he developed enabled

him to classify all the minimal bounded width algebras on

small domains. Our first contributions in Section V show

that the basic facts for minimal bounded width algebras have

their counterparts for minimal Taylor algebras. For instance,

Proposition V.2 shows that every Taylor algebra does have a

minimal Taylor reduct, and so minimal Taylor algebras are

indeed sufficiently general, e.g., in the CSP context.

The authors find the extent, to which the notions of the three

theories simplify and unify in minimal Taylor algebras, truly

striking. Our major results in this direction are Theorems V.7,

V.9, V.12, V.18, V.20, V.22, V.23 in Section V and their

consequences stated in Section VI, where various classes of

algebras are characterized in terms of types of edges, types

of operations, and types of absorption present in the algebras.

We now discuss a sample of the obtained results.

Edges, as we already mentioned, are pairs of elements for

which the local structure around the pair resembles one of

the three interesting polynomially solvable cases in Schaefer’s

Boolean dichotomy [8]. More precisely, and specializing to

one kind of edges, we say that (a, b) is a majority edge if the

subalgebra E generated by a and b has a proper congruence

(i.e., invariant equivalence relation) θ and a term operation t
that acts as the majority operation on the blocks a/θ and b/θ.

The resemblance of the two-element majority algebra is in

general quite loose – the equivalence θ can have many more

blocks and there may be many more operations in E other

than t. However, in minimal Taylor algebras, E modulo θ is

always term equivalent to the two element majority algebra.

The second sample concerns the simplest absorbing sub-

universes, the 2-absorbing ones, which constitute one of the

four types of Zhuk’s fundamental theorem. The 2-absorption

of a subuniverse B is a relatively strong property that requires

the existence of some binary term operation t whose result

is always in B provided at least one of the arguments is in

B. An extreme further strengthening is as follows: the result

of applying any operation f to an argument that contains

an element in B in any essential coordinate is in B. It

turns out that these notions actually coincide for minimal

Taylor algebras. What is perhaps even more surprising is the

connection to Bulatov’s theory: 2-absorbing sets are exactly

subsets stable (in a certain sense) under all the three kinds of

edges.

Finally, we mention that the clone of any minimal Taylor

algebra is generated by a single ternary operation. This,

together with other structural results in this paper, may help in

enumerating Taylor algebras – at the very least we know that



there are at most nn3

of them over a domain of size n. Such

a catalogue could be a valuable source of examples for CSP-

related problems as well as universal algebra. Additionally,

having a complete catalogue of minimal Taylor algebras for a

given domain allows you to write down an explicit, concrete

generalization of Schaefer’s Dichotomy Theorem [8] for a

domain of that size, with as few cases as possible.

Brady has already initiated this project and has found all the

three-element minimal Taylor algebras in unpublished work

based on the results of this paper. Up to term-equivalence

and permutations of the domain, there are exactly 24 minimal

Taylor algebras on a domain of size 3. This gives us a concrete

list of the hardest tractable CSPs on the 3-element domain,

refining the main result of [27].

The full version of this paper, which contains all the proofs,

is [40].

II. PRELIMINARIES

A. Algebras

Algebras, i.e. structures with purely functional signature,

will be denoted by boldface capital letters (e.g., A) and

their universes (also called domains) typically by the same

letter in the plain font (e.g., A). The basic general algebraic

concepts, such as subuniverses, subalgebras, products, and

quotients modulo congruences are used in the standard way

(see, e.g. [41]). An algebra is nontrivial if it has more than two

elements, otherwise it is trivial. We use B ≤ A to mean that B
is a subuniverse of A. By a subpower we mean a subuniverse

(or a subalgebra) of a finite power. Recall that subpowers are

the same as invariant relations and we may also call them

compatible relations. The set of all subpowers is denoted

Inv(A). The subuniverse (or the subalgebra) of A generated

by a set X ⊆ A is denoted SgA(X) or SgA(x1, . . . , xn) when

X = {x1, . . . , xn}.

All theorems in this paper concern algebras that are

finite and idempotent, that is, f(x, x, . . . , x) = x for every

operation f in the algebra and every element x of the universe.

Recall that this is not a severe restriction, at least in the area

of finite-template CSPs. We do not explicitly mention this

assumption in the statements of theorems or definitions.

A (function) clone is a set of operations C on a set A
which contains all the projections projni (the n-ary projection

to the i-th coordinate) and is closed under composition, i.e.,

f(g1, . . . , gn) ∈ C whenever f ∈ C is n-ary and g1, . . . ,

gn ∈ C are all m-ary, where f(g1, . . . , gn) denotes the

operation defined by f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)).
By Clo(A) (Clon(A), respectively), we denote the clone

of all term operations (the set of all n-ary term operations,

respectively) of A. An algebra B is a reduct of A if they have

the same universe A = B and Clo(B) ⊆ Clo(A). Algebras

A and B are term-equivalent if each of them is a reduct of

the other, i.e., Clo(A) = Clo(B).
A coordinate i of an operation f : An → A is essential if

f depends on the ith coordinate, i.e., f(a) 6= f(b) of some

tuples a,b ∈ An that differ only at the ith coordinate.

B. Relations

A relation on A is a subset of An, but we often work with

more general “multisorted” relations R ⊆ A1×A2×· · ·×An.

We call such an R proper if R 6= A1×· · ·×An and nontrivial

if it is nonempty and proper. Tuples are written in boldface

and components of x ∈ A1×· · ·×An are denoted x1, x2, . . . .

Both x ∈ R and R(x) are used to denote the fact that x is

in R. The projection of R onto the coordinates i1, . . . , ik is

denoted proji1,...,ik(R). The relation R is subdirect, denoted

R ⊆sd A1 × · · · × An, if proji(R) = Ai for each i. We

call R redundant, if there exist coordinates i 6= j such that

projij(R) is a graph of bijection from Ai to Aj ; otherwise R
is irredundant.

We say that a set of relations R pp-defines S if S can

be defined from R by a primitive positive formula with

parameters, that is, using the existential quantifier, relations

from R, the equality relation, and the singleton unary

relations. Recall that the set of subpowers of an algebra is

closed under pp-definitions.

For binary relations we write −R instead of R−1 and R+S
for the relational composition of R and S, that is R + S =
{(a, c) : (∃b)R(a, b) ∧ R(b, c)}. For a unary relation B we

write B + S to denote the set {c : (∃b)B(b) ∧ S(b, c)} and

if B is a singleton we often write b + S instead of {b} + S.

Also, we set R − S = R + (−S) = R ◦ S−1. A relation

R ⊆ A×B is linked if (R−R) + (R−R) + · · ·+ (R−R)
is equal to (proj1(R))2 for some number of summands. In

other words, R is connected when viewed as a bipartite graph

between A and B (with possible isolated vertices). The left

center of R ⊆ A × B is the set {a ∈ A : a + R = B}. If

R has a nonempty left center, it is called left central. Right

center and right central relations are defined analogically. A

relation is central if it is left central and right central. Note that

R + S, −R, and the left (right) center of R are pp-definable

from {R,S}.

III. BASIC CONCEPTS

A. Taylor algebras

First we define the central concept of the algebraic theory of

the CSP, Taylor algebra. From the many equivalent definitions

(e.g., the one using so-called Taylor operations – that’s where

the name comes from) we present a direct algebraic counter-

part of the first item in Theorem I.1 specialized to idempotent

structures.

Definition III.1. An (idempotent, finite) algebra A is a Taylor

algebra if no quotient of a subpower of A is a two-element

algebra whose every operation is a projection.

We will often take advantage of the characterization by

means of cyclic operation. Its original proof is via the ab-

sorption theory, an alternative proof is now available using

Zhuk’s approach [36].

Theorem III.2 ([32]). The following are equivalent for any

algebra.

• A is Taylor.



• There exists n > 1 such that A has a term operation

t of arity n which is cyclic, that is, for any x ∈ An,

t(x1, x2, . . . , xn) = t(x2, . . . , xn, x1).
• For every prime p > |A|, A has a term operation t of

arity p which is cyclic.

Several further types of operations are significant for this

paper:

• Semilattice operation is a binary operation ∨ which is

commutative, idempotent, and associative.

• Majority operation is a ternary operation m satisfying

m(x, x, y) = m(x, y, x) = m(y, x, x) = x (for any x, y
in the universe).

• Mal’cev operation is a ternary operation p satisfying

p(y, x, x) = p(x, x, y) = y.

Any algebra with a semilattice, or majority, or Mal’cev

operation is Taylor. The following algebras are particularly

important for our purposes (recall also the discussion about

Schaefer’s result in the introduction):

• Two-element semillatice: a two-element set together with

one of the two semilattice operations, e.g., ({0, 1};∨)
where ∨ is the maximum operation,

• Two-element majority algebra: a two element set together

with the unique majority operation, e.g., ({0, 1}; maj).
We also use majp, for odd p, to denote the p-ary majority

operation on {0, 1}, that is, maj(a) = 1 iff the majority

of the ai is 1.

• Affine Mal’cev algebra: a set together with the Mal’cev

operation x − y + z, where + and − is computed

with respect to a fixed abelian group structure on the

universe, e.g., ({0, 1, . . . , p − 1};x − y + z (mod p)).
More generally, an affine module is an algebra whose term

operations are exactly the idempotent term operations of

a module over a unital ring.

B. Abelian algebras

The last example falls into a larger class of algebras,

which is also significant in the algebraic theory of CSPs and

Universal Algebra in general, so-called abelian algebras.

Definition III.3. An algebra A is abelian if the diagonal

∆A = {(a, a) : a ∈ A} is a block of a congruence of A2.

As an example, for an affine Mal’cev algebra, a congru-

ence satisfying the definition is the congruence α defined

by ((x1, x2), (y1, y2)) ∈ α iff x1 − x2 = y1 − y2. Note

that an abelian algebra does not need to be Taylor, e.g., an

algebra with no operations is such (except in the pathological,

one-element case). However, for (finite, idempotent) Taylor

algebras, abelian algebras admit a complete description up to

term equivalence. The original proof of this result is using the

tame congruence theory (a developed theory of finite algebras

that we have not mentioned yet), an alternative proof using

absorption is available [32].

Theorem III.4 ([42]). Every (finite, idempotent) abelian Tay-

lor algebra is an affine module.

In light of this theorem, readers interested solely in Taylor

algebras may safely replace the phrase “abelian algebra” with

“affine module”. In fact, it follows from our results that

in minimal Taylor algebras “affine module” can be further

simplified to “affine Mal’cev algebra”, up to term equivalence.

C. Absorption

Now we introduce absorbing subuniverses, centers, and

projective subuniverses, central concepts in the absorption

theory and Zhuk’s theory.

Definition III.5. Let A be an algebra and B ⊆ A. We call

B an n-absorbing set of A if there is a term operation t ∈
Clon(A) such that t(a) ∈ B whenever a ∈ An and |{i : ai ∈
B}| ≥ n− 1.

If, additionally, B is a subuniverse of A, we write B En A,

or B E A when the arity is not important.

We also say “B absorbs A (by t)” in the situation of Defini-

tion III.5. Of particular interest for us are n-absorbing subuni-

verse with n = 2, e.g., {1} in the semilattice ({0, 1};∨)), or

n = 3, e.g., {0} and {1} in the two-element majority algebra.

The concept of a center is still evolving and it is not yet

clear what the best version would be for general algebras.

Our definition follows [11], although a more recent paper [36]

made an adjustment motivated by this work. As we shall see

in Theorem V.9, the situation is much cleaner for minimal

Taylor algebras.

Definition III.6. A subset B ⊆ A is a center of A if there

exists an algebra C (of the same signature) with no nontrivial

2-absorbing subuniverse and R ≤sd A×C such that B is the

left center of R. The relation R is called a witnessing relation.

If C can be chosen Taylor, we call B a Taylor center of A.

The final concept that we introduce in this section is a

projective subuniverse. It appeared in [43] in connection with

so-called cube operations, which characterize the limit of

the few subpowers algorithm that finds generating set of all

solutions to a CSP [30]. These subuniverses were called cube

term blockers in [43] but it became clear that the concept is

significant beyond this context [44], [36] and for this reason

we prefer the terminology from the latter paper.

Definition III.7. Let A be an algebra and B ⊆ A. We say

that B is a projective subuniverse if for every f ∈ Clon(A)
there exists a coordinate i of f such that f(a) ∈ B whenever

a ∈ An is such that ai ∈ B.

Note that a projective subuniverse of A is, indeed, a subuni-

verse. Also note that centers are automatically subuniverses as

well.

Many of the algebraic concepts that we introduce (such

as absorbing subuniverses or strongly projective subuniverses

from Section V) have a useful equivalent characterizations

in terms of relations. Such a characterization for projective

subuniverses is especially elegant and we state it here for

reference.



Proposition III.8 (Lemma 3.2 in [43]). Let A be an algebra

and B ⊆ A. Then B is a projective subuniverse of A if and

only if, for every n, the relation B(x1)∨B(x2)∨ · · · ∨B(xn)
is a subpower of A.

D. Edges

Finally we introduce the three types of edges used in

Bulatov’s approach to the CSP.

Definition III.9. Let A be an algebra. A pair (a, b) ∈ A2 is

an edge if there exists a proper congruence θ on SgA(a, b) (a

witness for the edge) such that one of the following happens:

• (semilattice edge) There is a term operation f ∈ Clo2(A)
acting as a join semilattice operation on {a/θ, b/θ} with

top element b/θ.

• (majority edge) There is a term operation m ∈ Clo3(A)
acting as a majority operation on {a/θ, b/θ}.

• (abelian edge) The algebra SgA(a, b)/θ is abelian.

An edge (a, b) is called minimal if for some maximal con-

gruence θ witnessing the edge and every a′, b′ ∈ A such that

(a, a′), (b, b′) ∈ θ, we have SgA(a′, b′) = SgA(a, b).

A witnessing congruence θ for an edge (a, b) necessarily

separates a and b, i.e., (a, b) 6∈ θ, since each congruence block

of an idempotent algebra is a subuniverse. Moreover, if θ is

a witness for an edge (a, b), then any proper congruence of

SgA(a, b) containing θ witnesses the same edge.

Note that if (a, b) is an edge of majority or abelian type,

then so is (b, a). If (a, b) is a semilattice edge it can happen

that (b, a) is not an edge at all, in fact this is always the case

for minimal edges in a minimal Taylor algebra.

In order to make the concepts in this paper elegant and

theorems more general, we deviate from the definition given

in e.g. [38], [45]. There, majority edges have an additional

requirement that the same congruence does not witness the

semilattice type, and abelian edges (called affine) required the

quotient to be an affine module. Also note that the definition

of abelian edges (as well as the original affine edges) is of a

different type: it restricts the set of term operations from above,

as opposed to semillatice and majority edges that restrict

them from below. We shall see in Theorem V.12 that these

differences disappear in minimal Taylor algebras.

Minimal edges do not appear in Bulatov’s theory in this

form. Somewhat related are thin edges, which at present

have rather technical definitions with the exception of thin

semilattice edges. We show in Proposition V.14 that minimal

semilattice edges and thin semilattice edges coincide in mini-

mal Taylor algebras.

IV. TAYLOR ALGEBRAS

This section presents unifications, simplifications, and re-

finements of the three algebraic theories in the setting of Taylor

algebras (still finite and idempotent) that are not necessarily

minimal. In Subsection IV-A we discuss the already existing

refinements to the proof of the absorption theorem (and

provide two additional new refinements in Proposition IV.2

and Proposition IV.4). This gives tight links to Zhuk’s theory,

in particular, centers and projective subuniverses. Subsec-

tion IV-B contains the main contribution of this section,

Theorem IV.7. This theorem together with additional technical

contributions, Theorems IV.10 and IV.11, directly imply the

fundamental facts in the two proofs of the CSP Dichotomy

Theorem – the four types theorem and the connectivity theo-

rem, discussed in Subsection IV-C.

A. Absorption theorem

We phrase the absorption theorem in a slightly simplified

form to keep the presentation compact.

Theorem IV.1 (Absorption Theorem). [32] If A is Taylor

and R ≤sd A
2 is proper and linked, then A has a nontrivial

absorbing subuniverse.

The original proof can be divided into 3 steps.

(1) From A being Taylor it is derived that A either has a

nontrivial binary absorbing subuniverse or a transitive

term operation t of some arity n, i.e., for each b, c ∈ A
and every coordinate i of t, there exists a tuple a ∈ An

with ai = b such that t(a) = c.
(2) Using the transitive operation, it is proved that if A has

no nontrivial absorbing subuniverses, then R is left or

right central.

(3) It is shown that the transitive operation witnesses that the

left (right) center absorbs A.

We now comment on subsequent improvements and simplifi-

cations.

The first step was explored in more detail in [44]. Lemma

2.7. in [44] shows that each algebra has a nontrivial projective

subuniverse or a transitive term operation. A simple argument

then shows that every projective subuniverse in a Taylor

algebra is 2-absorbing, a witness is, e.g., any operation of the

form t(x, . . . , x, y, . . . , y) where t is cyclic.

As for the second step, it has turned out that left (or

right) central relations can be very easily obtained from linked

relations by means of pp-definitions, avoiding algebraic con-

siderations altogether. We give a refined version that derives

central relations with further properties.

Proposition IV.2. Let R ⊆sd A2 be linked and proper. Then

R pp-defines a subdirect proper central relation on A which

is symmetric or transitive.

The third step, that a transitive operation witnesses absorption

of left centers, is straightforward. A significant refinement,

Corollary 7.10.2 in [11] shows that left centers are, in fact,

ternary absorbing. An adjustment of the proof will also help

us in proving Theorem V.9.

Proposition IV.3. [11] If B is a Taylor center of an algebra

A, then B E3 A.

Note that, in the previous theorem A need not be a Taylor

algebra, but C (where the witnessing relation is R ≤sd A×C)

must be. The following proposition states that we can switch

the condition:



Proposition IV.4. If B is a center of a Taylor algebra A, then

B E3 A.

In the remainder of the paper, the assumptions of the latter

proposition are easier to satisfy — the algebra A is usually

Taylor by default.

Altogether, either of the propositions above provides the

following improvement of the absorption theorem, which does

not seem to be explicitly stated in the literature.

Corollary IV.5. If A is Taylor and R ≤sd A
2 proper and

linked, then A has a nontrivial 3-absorbing subuniverse.

B. Subdirect irredundant subpowers

We now present the unification result. It says that any

“interesting” (subdirect irredundant proper) relation either pp-

defines an interesting binary relation or pp-defines (it is even

inter-pp-definable with) ternary relations of very particular

shape – they are graphs of quasigroup operations.

Definition IV.6. A relation R ⊆ A3 is called strongly

functional if

• binary projections of Ri are equal to A2, and

• a tuple in Ri is determined by values on any two

coordinates.

Theorem IV.7. Let R ⊆sd An be an irredundant proper

relation. Then either

• R pp-defines an irredundant and proper R′ ⊆sd A2, or

• there exist strongly functional ternary relations

R1, . . . , Rn ⊆sd A3 such that the set {R1, . . . , Rm} is

inter-pp-definable with R (i.e., the Ri’s pp-define R and,

conversely, R pp-defines all the Ri’s).

Theorem IV.7 implies that every algebra A has at least one of

the following properties of its invariant relations.

(1) A has no proper irredundant subdirect subpowers.

(2) A has a proper irredundant binary subdirect subpower.

(3) A has a ternary strongly functional subpower.

In the last case, it is easy to pp-define a congruence on A
2

such that the diagonal is one of its blocks, so A is abelian

in this case. If A is Taylor, Theorem III.4 then gives a good

understanding of A – it is an affine module.

Proposition IV.8. If R ≤ A
3 is a strongly functional relation,

then A is abelian.

In case (1), subdirect relations have a very simple structure; for

instance, any constraint R(x1, . . . , xn) with subdirect R is ef-

fectively a conjunction of bijective dependencies xi = f(xj).
It is also immediate that A is polynomially complete, that is,

every operation on A is in the clone generated by A together

with the constant operations. Indeed, polynomial completeness

is equivalent to having no proper reflexive (that is, contain-

ing all the tuples (a, a, . . . , a)) irredundant subpowers. Less

trivially, case (1) often leads to majority edges, as we show

in Theorem IV.10 below. However, we require the following

definition first.

Definition IV.9. Let A be an algebra. By the connected-by-

subuniverses equivalence, denoted µA, we mean the small-

est equivalence containing all the pairs (a, b) such that

SgA(a, b) 6= A.

We remark that the equivalence µA is not, in general, a con-

gruence of A, so this concept may seem somewhat unnatural

from the algebraic perspective.

Theorem IV.10. Suppose that A is simple and has no

subdirect proper irredundant subpowers. Then there exists a

term operation t ∈ Clo3(A) such that for any (a, b) /∈ µA,

t(a, a, b) = t(a, b, a) = t(b, a, a) = a.

In case (2) and when A is simple, a binary irredundant relation

is necessarily linked. Then we get a central relation, e.g., by

Proposition IV.2, and often also semilattice edges (please note

the important, but easy-to-miss condition on the size of the

algebra).

Theorem IV.11. Suppose A with |A| > 2 is simple and there

exists a proper irredundant subdirect binary subpower. Then

there exists µA-class B such that, for every b ∈ B, a /∈ B,

the pair (a, b) is a semilattice edge witnessed by the identity

congruence.

C. Fundamental theorems of dichotomy proofs

Zhuk’s four types theorem is now a consequence of The-

orem IV.7, Proposition IV.8, and Proposition IV.2. Indeed,

one simply applies these facts to A factored by a maximal

congruence, which is a simple algebra, and then lifts 2-

absorbing subuniverses and centers back to A.

Corollary IV.12. [The Four Types Theorem] Let A be an

algebra, then

(a) A has a nontrivial 2-absorbing subuniverse, or

(b) A has a nontrivial center, (which is a Taylor center in

the case that A is a Taylor algebra), or

(c) A/α is abelian for some proper congruence α of A, or

(d) A/α is polynomially complete for some proper congru-

ence α of A.

In the introduction we referred to four types of subuniverses

whereas cases (c) and (d) talk about congruences – the

subuniverses used in [11] are obtained from blocks of such

congruences.

Examples of simple Taylor algebras, for which one of the

cases takes place and no other, are (a) a two-element semilat-

tice, (b) a two-element majority algebra, (c) an affine Mal’cev

algebra, and (d) the three element rock-paper-scissors algebra

({paper, rock, scissors}; winner(x, y)). Note, however, that

Corollary IV.12 does not require that A is Taylor. If it is,

then we get additional properties: centers are 3-absorbing by

Proposition IV.3 and abelian algebras are term equivalent to

affine modules by Theorem III.4. For non-Taylor idempotent

algebras, [36] suggests a similar five type theorem, which also

follows immediately from the presented results.

The connectivity theorem of Bulatov is also a straight-

forward consequence of the obtained results, Theorem IV.7,



Proposition IV.8, Theorem IV.10, and Theorem IV.11. In fact, a

little additional effort gives a stronger statement – for minimal

edges instead of edges.

Corollary IV.13. [The Connectivity Theorem] The directed

graph formed by the minimal edges of any algebra is con-

nected.

Notice that the last theorem also does not require the algebra to

be Taylor. Outside Taylor algebras, it makes sense to separate

abelian edges into two types: affine that are the same as abelian

edges in the Taylor case, and sets whose only term operations

are projections, as is done in [45].

V. MINIMAL TAYLOR ALGEBRAS

We start this section by recalling the central definition and

giving some examples.

Definition V.1. An algebra A is called a minimal Taylor

algebra if it is Taylor but no proper reduct of A is.

Examples of minimal Taylor algebras include two-

element semilattices, two-element majority algebras, and affine

Mal’cev algebras. This follows from the description of their

term operations: the term operations of the two-element

semilattice ({0, 1};∨) are exactly the operations of the form

xi1 ∨ xi2 ∨ · · · ∨ xik ; the term operations of the two-element

majority algebra ({0, 1}; maj) are exactly the idempotent,

monotone (i.e., compatible with the inequality relation ≤),

and self-dual (i.e., compatible with the disequality relation 6=)

operations; the term operations of an affine Mal’cev algebra

over an abelian group are exactly the operations of the form

a1x1 + a2x2 + · · · + anxn, where ai are integers that sum

up to one. (Each of the mentioned facts is either simple or

follows from [46].) In fact, there are exactly four minimal

Taylor algebras on a two-element set: the two semilattices, the

majority algebra and the two-element affine Mal’cev algebra.

A nice example of a minimal Taylor algebra on a three-

element domain is the rock-paper-scissors algebra mentioned

after The Four Types Theorem. To see that this algebra is

minimal Taylor observe that any term operation behaves on

any two-element set like the term operation of a two-element

semilattice with the same set of essential coordinates. There-

fore, the original operation can be obtained by identifying

variables in any term operation having at least two essential

coordinates. The same argument shows that any semilattice,

not necessarily two-element, is minimal Taylor.

In Subsection V-A we give the basic general theorems

that were proved in [39] in the context of minimal bounded

width algebras. Subsection V-B concentrates on absorption and

related concepts in Zhuk’s theory. It turns out that 2-absorbing

sets are exactly projective subuniverses (Theorem V.7) and

3-absorbing sets are exactly centers (Theorem V.9). Subsec-

tion V-C shows that edges substantially simplify in minimal

Taylor algebras (Theorem V.12) and gives additional infor-

mation for minimal edges; in particular, minimal semilat-

tice edges coincide with thin semilattice edges as defined

in [37], [45] (Proposition V.14). Finally, in Subsection V-D,

we demonstrate a strong interaction between absorption and

edges. We show that 2-absorbing subuniverses are exactly

subsets that are, in some sense, stable under all the edges

(Theorem V.18), we provide somewhat weaker interaction

between absorbing subuniverses and subsets stable under semi-

lattice and abelian edges (Theorem V.20), we give a common

witnessing operation for all the edges as well as all the 2- and

3-absorbing subuniverses (Theorem V.22), and we show that

each such a witnessing operation generates the whole clone of

term operations (Theorem V.23).

A. General facts

It is not immediate from the definitions that each Taylor

algebra has a minimal Taylor reduct. Nevertheless, this fact

easily follows from the characterization of Taylor algebras by

means of cyclic operations.

Proposition V.2. Every Taylor algebra has a minimal Taylor

reduct.

Another simple, but important consequence of cyclic opera-

tions is the following proposition. The result is slightly more

technical than most of the others, but it is in the core of many

strong properties of minimal Taylor algebras.

Proposition V.3. Let A be a minimal Taylor algebra and B ⊆
A be closed under an operation f ∈ Clo(A) such that B
together with the restriction of f to B forms a Taylor algebra.

Then B is a subuniverse of A.

A similar method based on cyclic operations prove that the

class of minimal Taylor algebras is closed under the standard

constructions.

Proposition V.4. Any subalgebra, finite power, or quotient of

a minimal Taylor algebra is a minimal Taylor algebra.

B. Absorption

The goal of this section is to show that absorbing subsets,

which are abundant in general Taylor algebras by Corol-

lary IV.12 and Proposition IV.4, have strong properties in

minimal Taylor algebras. We start with a surprising fact, which

clearly fails in general Taylor algebras.

Theorem V.5. Let A be a minimal Taylor algebra and B an

absorbing set of A. Then B is a subuniverse of A.

Now we move on to 2-absorption. We have already men-

tioned in Subsection IV-A that projectivity is a stronger form

of absorption in Taylor algebras, but we can go even further.

Definition V.6. Let A be an algebra and B ⊆ A. The

set B is a strongly projective subuniverse of A if for every

f ∈ Clon(A) and every essential coordinate i of f , we have

f(a) ∈ B whenever a ∈ An is such that ai ∈ B.

The property of being a strong projective subuniverse is

indeed very strong. For example, in any non-trivial clone,

strong projective subuniverse is 2-absorbing and every binary

operation of the clone, except for projections, witnesses the

absorption. The next theorem states that strong projectivity in



minimal Taylor algebras is equivalent to 2-absorption, which

in general is a much weaker concept.

Theorem V.7. The following are equivalent for any minimal

Taylor algebra A and a set B ⊆ A.

(a) B 2-absorbs A.

(b) R(x, y, z) = B(x) ∨ B(y) ∨ B(z) is a subuniverse of

A
3.

(c) B is a projective subuniverse of A

(d) B is a strongly projective subuniverse of A.

The main value of this theorem is the implication showing

that, in minimal Taylor algebras, every 2-absorption, i.e. (a),

is as strong as possible (d). Moreover (c) provides a nice

relational description of 2-absorption, which collapses the

general condition from Proposition III.8 for projectivity to

arity 3. We note that none of the conditions are equivalent

in Taylor algebras without the minimality assumption.

The following proposition collects some strong and unusual

properties of 2-absorbing subuniverses in minimal Taylor

algebras. Already the first item might be surprising since the

union of two subuniverses is rarely a subuniverse.

Proposition V.8. Let A be a minimal Taylor algebra and

B E2 A.

1) If C ≤ A then B ∪ C ≤ A.

2) If C is proper and C E A by f , then

a) B ∪ C E A by f , and

b) B ∩ C 6= ∅ and B ∩ C E A by f .

3) Every minimal Taylor algebra A has a unique minimal

2-absorbing subalgebra B. Moreover, this algebra B

does not have any nontrivial 2-absorbing subuniverse.

As for absorption of higher arity, we have already shown

in Proposition IV.4 that centers are 3-absorbing. Next theorem

says that, in minimal Taylor algebras, the converse is true as

well.

Theorem V.9. The following are equivalent for any minimal

Taylor algebra A and a set B ⊆ A.

(a) B 3-absorbs A.

(b) R(x, y) = B(x) ∨B(y) is a subuniverse of A2.

(c) B is a (Taylor) center of A.

(d) there exists C with Clo(C) ⊆ Clo({0, 1}; maj) such

that R(x, y) = B(x) ∨ (y = 0) is a centrality witness.

Moreover, if B = {b}, then these items are equivalent to

(e) B absorbs A.

Just like in Theorem V.7 we have that a relatively weak

notion of 3-absorption implies a very strong type of centrality

which is (d). Let us investigate (d) in greater detail. To

every operation of A, say f , we associate an operation f ′ ∈
Clo({0, 1},maj) such that f(a) ∈ B whenever f ′(x) = 1
and x is the characteristic tuple of a with respect to B (i.e.

xi = 1 if and only if ai ∈ B). That is, from the viewpoint

of “being outside B” vs. “being inside B” every operation

outputs “inside B” every time the corresponding operation of

Clo({0, 1}; maj) outputs 1.

In fact, there exists a cyclic t in A (say, p-ary) such that

R(x, y) = B(x) ∨ (y = 0) is a subuniverse of (A; t) ×
({0, 1}; majp) for every 3-absorbing B, where majp denotes

the p-ary majority function. This translates to a simpler state-

ment: for every 3-absorbing B we have t(a) ∈ B whenever

majority of the ai belong to B, and we cannot expect more,

as witnessed by the 2-element majority algebra. Since t is

cyclic it generates the whole clone and, for example, 3) in

Proposition V.11 below becomes obvious.

Item (b) provides a relational description of 3-absorption,

while item (c) provides a connection with the notion of

center (whether it is Taylor or not). We now give an example

that (e) and (a) are not equivalent even in minimal Taylor

algebras if B has more than one element.

Example V.10. Consider the algebra A = ({0, 1, 2},m)
where m is the majority operation such that m(a, b, c) = a
whenever |{a, b, c}| = 3. This algebra is minimal Taylor and

the set C = {0, 1} is an absorbing subuniverse of A. However,

C is not a center of A.

Finally, we list some strong and unusual properties of 3-

absorbing subuniverses. They are not as strong as in the case of

2-absorbing subuniverses, which is to be expected since every

2-absorbing subuniverse is 3-absorbing but not vice versa.

Proposition V.11. Let A be a minimal Taylor algebra and

B,C E3 A.

1) B ∪ C ≤ A

2) If B ∩ C 6= ∅ then B ∩ C E3 A.

3) If B ∩ C = ∅ then B2 ∪ C2 is a congruence on the

algebra with universe B ∪ C and the quotient is term-

equivalent to a two-element majority algebra.

C. Edges

The next theorem says that, in minimal Taylor algebras,

every “thick” edge, in the terminology of [37], [47], is

automatically a subuniverse. This property is a simple con-

sequence of the result we have already stated, whereas it was

relatively painful to achieve using the original approach. We

additionally obtain that semilattice and majority edges have

unique witnessing congruences.

Theorem V.12. Let (a, b) be an edge (semilattice, majority,

or abelian) of a minimal Taylor algebra A and θ a witnessing

congruence of E = SgA(a, b).

(a) If (a, b) is a semilattice edge, then E/θ is term equiva-

lent to a two-element semilattice with absorbing element

b/θ.

(b) If (a, b) is a majority edge, then E/θ is term equivalent

to a two-element majority algebra.

(c) if (a, b) is an abelian edge, then E/θ is term equiva-

lent to an affine Mal’cev algebra of an abelian group

isomorphic to Z/pk1

1 × · · · × Z/pki

i for distinct primes

p1, . . . , pi and positive integers k1, . . . , ki, where Z/m
denotes the group of integers modulo m.



Moreover a semillatice edge is witnessed by exactly one

congruence of E, and that congruence is maximal. The same

holds for majority edges.

For minimal edges we can say a bit more. If (a, b) is a minimal

edge witnessed by θ, a congruence on E = SgA(a, b), then

E/θ is simple. In particular, for abelian edges, E/θ is an affine

Mal’cev algebra of a group isomorphic to Z/p. Moreover, such

an E has a unique maximal congruence as shown in the next

proposition. This implies that the type of a minimal edge is

unique and so is the direction of a semilattice minimal edge

and the prime p associated to an abelian minimal edge.

Proposition V.13. Let (a, b) be a minimal edge in a minimal

Taylor algebra. Then E = SgA(a, b) has a unique maximal

congruence equal to µE. In particular, minimal edges have

unique types.

The structure of minimal semilattice edges is especially sim-

ple.

Proposition V.14. Let (a, b) be a minimal semilattice edge in

a minimal Taylor algebra. Then {a, b} is a subuniverse of A,

so SgA(a, b) = {a, b} and the witnessing congruence is the

equality.

Unfortunately, majority and abelian edges do not simplify

in a similar way; see Example V.15 and Example V.16.

Weaker versions of Proposition V.14 have been developed by

Bulatov (comp. Lemma 12 and Corollary 13 in [37]) to deal

with this problem.

Example V.15. Let A = {0, 1, 2, 3} and α the equivalence

relation on A with blocks {0, 2} and {1, 3}. Define a sym-

metric ternary operation g on A as follows. When two of

the inputs to g are equal, g is given by g(a, a, a + 1) = a,

g(a, a, a+2) = g(a, a, a+3) = a+2 (all modulo 4) and when

all three inputs to g are distinct, g is given by g(a, b, c) = d−1
(mod 4) where a, b, c, d are any permutation of 0, 1, 2, 3. Then

A = (A; g) is a minimal Taylor algebra, α is a congruence

on A, and each of pair of elements in different α-blocks is a

minimal majority edge with witnessing congruence α.

Example V.16. Let A = ({a, b, c, d}, p), where p is a

Mal’cev operation with the following properties. The operation

p commutes with the permutations σ = (a c) and τ = (b d).
The polynomials +a = p(·, a, ·),+b = p(·, b, ·) define abelian

groups:

+a a b c d
a a b c d
b b c d a
c c d a b
d d a b c

+b a b c d
a b a d c
b a b c d
c d c b a
d c d a b

Then A is a minimal Taylor algebra, with a unique maximal

congruence θ whose congruence classes are {a, c} and {b, d}.

Each pair of elements of A in different congruence classes of

θ is a minimal abelian edge of A with witnessing congruence

θ.

We can also provide nontrivial information about Sg(a, b) in

case that (a, b) is not necessarily an edge, and this information

helps in proving Theorem V.23 in the next subsection (and

shows that case (d) in Corollary IV.12 is never necessary for

two-generated algebras). However, the following fundamental

question remains open: Is there a minimal Taylor algebra such

that, for some a, b, neither (a, b) nor (b, a) is an edge?

D. Absorption and edges

We start this subsection with a definition that will connect

absorption with edges.

Definition V.17. Let A be an algebra, let B ⊆ A and let (b, a)
be an edge. We say that B is stable under (b, a) if, for every

witnessing congruence θ of SgA(b, a) such that b/θ intersects

B, each θ-block intersects B.

As the next theorem states, stability under every edge can be

added as a next item to Theorem V.7. This direct connection

of absorption, which is a global property, to local concepts

in Bulatov’s theory is among the most surprising phenomena

that the authors have encountered in this work.

Theorem V.18. The following are equivalent for any minimal

Taylor algebra A and a set B ⊆ A.

(a) B 2-absorbs A.

(b) B is stable under all the edges.

The implication from (b) to (a) does not require the full

strength of stability for semilattice and majority edges. It is

enough to require that for a minimal semilattice or a majority

edge (b, a) it is never the case that b/θ ⊆ B and a/θ∩B = ∅,

where θ is the edge-witnessing congruence of Sg(b, a) (which

is the equality relation on {a, b} in case of semilattice edges).

The following example shows that stability under abelian

edges cannot be significantly weakened.

Example V.19. We consider the four-element algebra A =
({0, 1, 2, ∗}, ·) with binary operation · given by

· 0 1 2 ∗
0 0 2 1 ∗
1 2 1 0 2
2 1 0 2 1
∗ ∗ 2 1 ∗

Then A is a minimal Taylor algebra, with a semilattice

edge (0, ∗), with {0, 1, 2} an affine subalgebra, and with a

congruence θ corresponding to the partition {0, ∗}, {1}, {2}
such that A/θ is affine. The set {∗} is stable under semilattice

and majority edges and there is no minimal abelian edge (∗, a)
with a 6= ∗. But {∗} is not an absorbing subalgebra of A.

For absorption of higher arity the connection to edges is not

as tight as for 2-absorption. Nevertheless, one direction still

works and both directions work for singletons.

Theorem V.20. Any absorbing set of a minimal Taylor algebra

A is stable under semilattice and abelian edges. Moreover, for

any b ∈ A the following are equivalent.



(a) {b} absorbs A

(b) {b} is stable under semilattice and abelian edges.

Stability under semilattice edges for the implication from

(b) to (a) can be again replaced by the requirement that there

is no minimal semilattice edge (b, a) with b ∈ B and a 6∈ B.

Example V.19 shows that this is not the case for abelian edges.
The following example shows that the implication from (b)

to (a) does not hold for non-singleton subuniverses.

Example V.21. Consider the algebra A = ({0, 1, 2},m)
where m is the majority operation such that m(a, b, c) = 2
whenever |{a, b, c}| = 3. This algebra is minimal Taylor, every

pair of distinct elements forms a subuniverse, and every pair is

a minimal majority edge. So there are no semilattice or abelian

edges. However, the subuniverse {0, 1} is not absorbing.

An important fact for the edge approach is that semilattice,

majority, and Mal’cev operations coming from edges can be

unified, see Theorem 7 in [37]. In minimal Taylor algebras,

a simple consequence of the already stated results is that we

not only have a common ternary witness for all the edges but

also for all the binary and ternary absorptions.

Theorem V.22. Every minimal Taylor algebra A has a ternary

term operation f such that if (a, b) is an edge witnessed by θ
on E = SgA(a, b), then

• if (a, b) is a semilattice edge, then f(x, y, z) = x∨ y ∨ z
on E/θ (where b/θ is the top);

• if (a, b) is a majority edge, then f is the majority

operation on E/θ (which has two elements);

• if (a, b) is an abelian edge, then f(x, y, z) = x − y + z
on E/θ;

• f witnesses all the ternary absorptions B E3 A;

• any binary operation obtained from f by identifying two

arguments witnesses all the binary absorptions B E2 A.

In fact, any ternary operation f defined from a cyclic term

operation t of odd arity p ≥ 3 by

f(x, y, z) = t(x, x, . . . , x
︸ ︷︷ ︸

k×

, y, y, . . . , y
︸ ︷︷ ︸

l×

, z, z, . . . , z
︸ ︷︷ ︸

m×

),

where k + l, l + m, k + m > p/2, satisfies all the items in

Theorem V.22 except possibly the third one (which can be

obtained by picking k, l, and m a bit more carefully).
We finish this section with a theorem stating that any ternary

witness of edges generates the whole clone of the algebra. In

particular, the number of minimal Taylor clones on a domain

of size n is at most nn3

.

Theorem V.23. If A is a minimal Taylor algebra, then

Clo(A; f) = Clo(A) for any operation f satisfying the first

three items in Theorem V.22.

VI. OMITTING TYPES

In this section we consider classes of algebras whose graph

only contains edges of certain types. We say that an algebra

is a-free if it has no abelian edges. More generally, an algebra

is x-free or is xy-free, where x, y ∈ {(a)belian, (m)ajority,

(s)emilattice} if it has no edges of type x (of types x, y).

It turns out that within minimal Taylor algebras these

“omitting types” conditions are often equivalent to important

properties of algebras. In the theorems below we prove the

equivalence of the following four types of conditions: (i) the

absence of edges of a certain type (equivalently, minimal

edges of the same type); (ii) properties of absorption and the

four types in Zhuk’s approach; (iii) the existence of a certain

special term operations; (iv) algorithmic properties of the CSP.

Here recall that the properties of “having bounded width” and

“having few subpowers” characterize the applicability of the

two basic algorithmic ideas in the CSP – local propagation

algorithms [48], [29] and finding a generating set of all

solutions [49], [30]. Theorems in this section are consequences

of the theory we have already built in the previous section and

known results (see [5]).

The first theorem concerns the class of algebras omitting

abelian edges. Numerous characterizations of this class are

known for general algebras and we do not add a new one, but

we state the characterization for comparison with the other

classes. In order to state a characterization in terms of iden-

tities we recall that an operation f is a weak near unanimity

operation (or wnu for short) if it satisfies f(y, x, . . . , x) =
f(x, y, x, . . . , x) = · · · = f(x, . . . , x, y) for every x, y in the

algebra.

Theorem VI.1. The following are equivalent for any algebra

A.

(i) A is a-free.

(ii) No subalgebra of A falls into case (c) in Corollary IV.12,

i.e., no subalgebra of A has a nontrivial affine quotient.

(iii) A has a wnu term operation of every arity n ≥ 3.

(iv) A has bounded width.

Minimal Taylor algebras omitting other types of edges do have

significantly stronger properties than general Taylor algebras

omitting those edges. Minimal s-free algebras are exactly

those for which option (a) in Corollary IV.12 does not hold,

and that have the few subpowers property [47]. The few

subpowers property, i.e., that the number of subuniverses of

A
n is 2O(n), can be characterized by the existence of an edge

term operation [49] in general. In minimal Taylor algebras, the

second strongest edge operation always exists – the 3-edge op-

eration defined by the identities e(y, y, x, x) = e(y, x, y, x) =
e(x, x, x, y) = x. This is significant, because the exponent in

the running time of the few subpowers algorithm depends on

the least k such that the algebra has a k-edge term operation.

The number 3 here is best possible: a 2-edge operation is the

same as a Mal’cev operation appearing in Theorem VI.6.

Theorem VI.2. The following are equivalent for any minimal

Taylor algebra A.

(i) A is s-free.

(ii) Case (a) in Corollary IV.12 does not hold, that is, no

subalgebra of A has a nontrivial 2-absorbing subuni-

verse.

(iii) A has a 3-edge term operation.

(iv) A has few subpowers.



For the remaining omitting-single-type condition, m-freeness,

we do not provide a natural condition in terms of identities,

and we are not aware of algorithmic implications of this

condition. Nevertheless, it can be characterized by means of

absorption.

Theorem VI.3. The following are equivalent for any minimal

Taylor algebra A.

(i) A is m-free.

(ii) Every center (3-absorbing subuniverse of) B ≤ A 2-

absorbs B, i.e., (b) implies (a) in Corollary IV.12 in all

the subalgebras of A.

(ii’) Every subalgebra of A has a unique minimal 3-

absorbing subuniverse

Surprisingly, if along with m-freeness we also limit the type of

abelian edges allowed in an algebra, the resulting condition is

equivalent to the existence of a binary commutative term oper-

ation. This is interesting, since the existence of a commutative

term operation was not considered to be a natural requirement

for the CSP (see the discussion in [5]) or in Universal Algebra.

We call an abelian edge (a, b) a Z/2-edge if the corresponding

affine Mal’cev algebra Sg(a, b)/θ is isomorphic to the affine

Mal’cev algebra of Z/2.

Theorem VI.4. The following are equivalent for any minimal

Taylor algebra A.

(i) A is m-free and has no Z/2-edges.

(iii) A has a binary commutative term operation

(iii’) Clo(A) can be generated by a collection of binary

operations.

Properties of minimal Taylor algebras having edges of only

one type can be derived as conjunctions of the properties stated

above. For two of these cases, sm-free and as-free, we provide

additional information.

Minimal Taylor am-free algebras are exactly those which

have wnu operations of every arity n ≥ 2. These are exactly

the minimal spirals in the terminology of [39] and a significant

property is that for every (a, b) such that neither (a, b) nor

(b, a) is a minimal semilattice edge, there is a surjective

homomorphism from Sg{a, b} onto the (three-element) free

semilattice on two generators.

The sm-free minimal Taylor algebras are those where cases

(a) and (b) in Corollary IV.12 do not occur. Additionally, these

are exactly the hereditarily absorption free algebras studied

in [5] and, also, the algebras with a Mal’cev term operation – a

type of operation that played a significant role in the CSP [50].

Theorem VI.5. The following are equivalent for any minimal

Taylor algebra A.

(i) A is sm-free.

(ii) No subalgebra of A has a nontrivial absorbing subuni-

verse.

(iii) A has a Mal’cev term operation.

Finally, the as-free algebras are those where cases (a) and (c)

in Corollary IV.12 do not occur and those that have bounded

width and few subpowers. It is known [42], [49] that the

latter property in general implies having a near-unanimity term

operation of some arity. Surprisingly, in minimal Taylor alge-

bras, the arity goes down directly to three. In the algorithmic

language, these algebras have strict width two [2], [5].

Theorem VI.6. The following are equivalent for any minimal

Taylor algebra A.

(i) A is as-free.

(iii) A has a near unanimity term operation.

(iii’) A has a majority term operation.

VII. CONCLUSION

We have introduced the concept of minimal Taylor algebras

and used it to significantly unify, simplify, and extend the three

main algebraic approaches to the CSP – via absorption, via

four types, and via edges. We believe that the theory started

in this paper will help in attacking further open problems

in computational complexity of CSP-related problems and

Universal Algebra. There are, however, many directions which

call for further exploration.

First, several technical questions naturally arise from the

presented results: Do every two elements of a minimal Taylor

algebra form an edge? How to characterize sets stable under

affine and semilattice edges in a global way? Is it possible to

characterize (3-)absorption in terms of edges? Does stability

under other edge-types correspond to a global property? Is ev-

ery minimal bounded width algebra a minimal Taylor algebra?

Are the equivalent characterizations in Theorem VI.3 equiv-

alent to “every subalgebra has a unique minimal absorbing

(rather than 3-absorbing) subuniverse”?

Second, both CSP dichotomy proofs [9], [11] require and

develop more advanced Commutator Theory [51], [52] con-

cepts and results, while in this paper we have merely used

some fundamental facts about the basic concept, the abelian

algebra. Is it possible to develop our theory in this direction as

well, potentially providing sufficient tools for the dichotomy

result? Also, is there a natural concept that would replace thin

edges in Bulatov’s approach?

Third, Brady in [39] provided a complete classification of

minimal bounded width algebras of small size. Can such a

detailed analysis be made also for minimal Taylor algebras? Is

it possible to develop a strong theory or even full classification

for minimal algebras in other classes, such as the algebras con-

jectured to characterize CSPs in log-space or nondeterministic

log-space?

Fourth, which of the facts presented in the paper have their

counterpart for non-minimal Taylor algebras or even general

finite idempotent algebras? Here we would like to mention

Ross Willard’s work (unpublished) that provides a generaliza-

tion for some of the advanced facts in Zhuk’s approach.

Finally, there is yet another, older, and highly developed

theory of finite algebras, the Tame Congruence Theory started

in [42]. What are the connections to the theory initiated in this

paper?
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