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Abstract—This paper focuses on the algebraic theory under-
lying the study of the complexity and the algorithms for the
Constraint Satisfaction Problem (CSP). We unify, simplify, and
extend parts of the three approaches that have been developed to
study the CSP over finite templates — absorption theory that was
used to characterize CSPs solvable by local consistency methods
(JACM’14), and Bulatov’s and Zhuk’s theories that were used
for two independent proofs of the CSP Dichotomy Theorem
(FOCS’17, JACM’20).

As the first contribution we present an elementary theorem
about primitive positive definability and use it to obtain the
starting points of Bulatov’s and Zhuk’s proofs as corollaries.
As the second contribution we propose and initiate a systematic
study of minimal Taylor algebras. This class of algebras is broad
enough so that it suffices to verify the CSP Dichotomy Theorem
on this class only, but still is unusually well behaved. In particular,
many concepts from the three approaches coincide in the class,
which is in striking contrast with the general setting.

We believe that the theory initiated in this paper will eventually
result in a simple and more natural proof of the Dichotomy
Theorem that employs a simpler and more efficient algorithm,
and will help in attacking complexity questions in other CSP-
related problems.

I. INTRODUCTION

The Constraint Satisfaction Problem (CSP) has attracted
much attention from researchers in various disciplines. One
direction of the CSP research has been greatly motivated
by the so-called Dichotomy Conjecture of Feder and Vardi
[1], [2] that concerns the computational complexity of CSPs
over finite relational structures. The Constraint Satisfaction
Problem over a finite relational structure A of finite signature
(also called a template), in its logical formulation, is the
problem to decide the validity of a given primitive positive
sentence (pp-sentence), i.e., a sentence that is an existen-
tially quantified conjunction of atomic formulas over A —
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the constraints. Examples of problems in this class include
satisfiability problems, graph coloring problems, and solving
systems of equations over finite algebraic structures (see [3],
[4], [5], [6]), the CSP is also ubiquitous in artificial intelligence
[7].

A classic result in the field is a theorem by Schaefer [8]
that completely classifies the complexity of CSPs over rela-
tional structures with a two-element domain, so-called Boolean
structures, by providing a dichotomy theorem: each such a
CSP is either solvable in polynomial time or is NP-complete.
The Dichotomy Conjecture of Feder and Vardi then states
that Schaefer’s result extends to arbitrary finite domains. This
conjecture inspired a very active research program in the last
20 years, culminating in a positive resolution independently
obtained by Bulatov [9] and Zhuk [10], [11]. The exact
borderline between tractability and hardness can be formulated
as follows [12], [13], [5].

Theorem 1.1. Let A be a finite relational structure over a
finite signature.
o If every finite structure is homomorphically equivalent to
a finite structure pp-interpretable in A, then the CSP over
A is NP-hard,
o otherwise it is solvable in polynomial time.

It was already recognized in Schaefer’s work (in fact, it
was the basis of his approach) that the complexity of a CSP
depends only on the set of relations that are pp-definable
(i.e., definable by a primitive positive formula) from the
template. Such sets of relations are now usually referred to
as relational clones. The impetus of rapid development in the
area after Feder and Vardi’s seminal work [2] was a series
of papers [4], [14] that brought to attention and applied a
Galois connection between operations and relations studied in
the sixties [15], [16], which gives a bijective correspondence
between relational clones and clones — sets of term operations
of algebras.

One way to phrase this core fact is as follows: for any finite
algebra A, its set of invariant relations (subuniverses of powers
or subpowers in algebraic terminology) is always a relational
clone; every relational clone is of this form; and two algebras
have the same relational clone of subpowers if and only if they



have the same set of term operations. For instance, a Boolean
CSP, say over the domain {0, 1}, is solvable in polynomial
time if and only if the relations of the template are subpowers
of one of four types of algebras — an algebra with a single
constant operation, a semilattice, the majority algebra, or the
affine Mal’cev algebra of Z/2 (see Subsection III-A).

This connection between relations and operations allowed
researchers to apply techniques from Universal Algebra. Ap-
plication of these techniques became known as the algebraic
approach to the CSP, although one may argue that the term
misses the point a little — the success of the approach lies
mostly in combining and moving back and forth between the
relational and algebraic side, and this is the case for this
paper as well. The general theory of the CSP was further
refined in subsequent papers [12], [13] and turned out to be an
efficient tool in other types of constraint problems including
the Quantified CSP [17], [18], [19], the Counting CSP [20],
[21], some optimization problems, e.g. the Valued CSP [22]
and robust approximability [23], infinite-domain CSPs [24],
and related promise problems such as “approximate coloring”
and the Promise CSP [25], [26], and many others.

One useful technical finding of [12] is that every CSP is
equivalent to a CSP over an idempotent template, i.e. a tem-
plate that contains all the singleton unary relations. This allows
us to use parameters in pp-definitions and omit homomorphic
equivalence in the first item of Theorem I.1. On the algebraic
side, this allows us to concentrate on so-called idempotent
algebras (see Subsection II-A). Another important contribution
of that paper was a conjecture postulating, for idempotent
structures, the exact borderline between polynomial solvability
and NP-hardness, which coincides with the borderline stated in
Theorem I.1. The hardness part was already dealt with in the
same paper and what was left was the tractability part. Within
the realm of idempotent structures, the algebras corresponding
to the second item of Theorem I.1 are so-called Taylor algebras
(see Subsection III-A). The following theorem is therefore the
core of the two proofs of the Dichotomy Conjecture.

Theorem L2 ([9], [10], [11]). Let A be an idempotent
structure. If there exists an idempotent Taylor algebra A such
that all relations in A are subpowers of A, then the CSP over
A is solvable in polynomial time.

Partial results toward Theorem 1.2 include dichotomies for
various classes of relational structures and algebras (e.g. the
class of 3-element algebras [27] and the class of structures
containing all unary relations [28]), understanding of the limits
of algorithmic techniques (e.g. local consistency methods [29]
and describing generating sets of solutions [30]), and finding
potentially useful characterizations of Taylor algebras (e.g. by
means of weak near-unanimity operations [31] and by means
of cyclic operations [32]). The papers [29] and [32] initiated a
technique, now referred to as the absorption theory [33]. It is
one of the fruits of CSP-motivated research that impacted also
other CSP-related problems as well as universal algebra (e.g.
[34]) and it is one of the three theories this paper is concerned
with.

Bulatov and Zhuk in their resolution of the Dichotomy
Conjecture (and their prior and subsequent work) developed
novel techniques, which we refer to as Bulatov’s theory and
Zhuk’s theory in this paper. These theories are (understand-
ably) mostly focused on the task at hand, to prove Theorem 1.2,
and as such have several shortcomings. First, some of the
new concepts are still evolving as the need arises and they do
not yet feel quite elegant and settled. Moreover, the theories
are technically complex which makes it difficult to master
them and to apply them in different contexts. This is best
witnessed by the absence of results from different authors that
would employ the theories (needless to say they have already
clearly witnessed their potential). Second, they both employ
the following trick. Instead of studying a general, possibly
wild Taylor algebra, one can first tame it by taking a certain
Taylor reduct — an algebra whose operations are only some of
the term operations but which is still Taylor. Taking reducts
does not result in any loss of generality in Theorem 1.2, since
reducts keep all the original invariant relations, so proving
tractability for a reduct is sufficient for tractability for the
original problem. However, taking reducts does result in loss
of generality of the theory and it is not yet clear to which
natural classes of algebras the theories apply. Moreover, these
reducts are different in the two approaches. Third, connections
between Bulatov’s and Zhuk’s theories were not understood
at all. While Zhuk’s theory and absorption theory at least
had some concepts in common, Bulatov’s theory seemed quite
orthogonal to the rest.

The contributions of this paper unify, simplify, and extend
parts of these three theories, making them, we hope, more
accessible and reducing the prerequisites for the dichotomy
proofs. In particular, we initiate a systematic study of minimal
Taylor algebras, i.e., those algebras that are Taylor but such
that none of their proper reducts is Taylor. Thus, we employ
the above trick to the extreme and study, in a sense, the tamest
algebras or, in other words, “hardest” tractable CSPs. This
restriction, on the one hand, limits the scope of the theory
but, on the other hand, gives us a framework in which the
three theories do not look separate at all anymore, as we shall
see.

Even though our unifications, simplifications, and exten-
sions do not cover some advanced parts of the three theories
(more on this in due course and Section VII), we believe that
they have the potential to evolve into one coherent theory of
finite algebras that would make the CSP Dichotomy Theorem
an exercise (albeit hard) and that would have applications well
beyond constraint problems.

The contributions can be divided into two groups, results
for (all finite) Taylor algebras stated in Section IV and results
for minimal Taylor algebras in Sections V and VI. We now
describe them in more detail together with more background.

A. Taylor algebras

The central concept in absorption theory is that of absorbing
subuniverses introduced formally in Subsection III-C. These
are invariant subsets of algebras with an additional property



resembling ideals in rings. A fundamental theorem, the absorp-
tion theorem, shows that nontrivial absorbing subuniverses in
Taylor algebras exist under rather mild conditions and this fact
makes the theory applicable in many situations. For instance,
the strategy in [29] to provide a global solution to a locally
consistent instance is to propagate local consistency into
proper absorbing subuniverses. The abundance of absorption
provided by absorption theorem makes this propagation often
possible, and if it is not, gives us sufficient structural and
algebraic information about the instance which makes the
propagation possible nevertheless, until the instance becomes
trivially solvable.

Zhuk’s starting point is a theorem stating that every Taylor
algebra has a proper subuniverse of one of four special types
(see Subsections III-C and IV-C). Zhuk derives the four types
theorem from a complicated result in clone theory, Rosenberg’s
classification of maximal clones [35] (the dependence of this
approach on Rosenberg’s result is removed in [36]). Given
the four types theorem, the overall strategy for the polynomial
algorithm for Theorem 1.2 is natural and similar in spirit
to the absorption technique — to keep reducing to one of
such subuniverses until the problem becomes trivial. Although
Zhuk’s theory has a nontrivial intersection with the absorption
theory, these connections were not properly explored and
verbalized.

Bulatov’s algorithm in his proof of Theorem 1.2 employs
a similar general idea, he reduces the instance to certain
subuniverses. However, these special subuniverses are defined,
as opposed to absorption and Zhuk’s theories, in a very local
way. They are sets that are, in a sense, closed under edges
(e.g. strong components) of a labeled directed graph whose
vertices are the elements of the algebra. Bulatov introduces
three basic kinds of edges (see Subsection III-D), whose
presence indicates that the local structure around the adjacent
vertices, namely the subuniverse generated by the two vertices,
somewhat resembles the three interesting tractable cases in
Schaefer’s Boolean dichotomy. What makes this approach
work is a fundamental theorem (Theorem 1 [37], see also
[38]), which says that the edges sufficiently approximate the
algebra in the sense that the directed graph is connected.
The proof uses rather technically challenging constructions
involving operations in the algebra.

In Section IV we first describe some of the connections
between absorption theory and Zhuk’s theory, and explain
simplifications and refinements that were scattered across
literature, including a refinement of the absorption theorem
that follows from [10], [11]. We also give two new results
improving pieces of the two theories. The major novel con-
tribution of Section IV is Theorem IV.7, a purely relational
fact which roughly states that each “interesting” relation that
uses all the domain elements in every coordinate pp-defines a
binary relation with the same properties or a ternary relation of
a very particular shape. Although the proof is elementary and
not very long, it enables us to derive both Zhuk’s four types
theorem and Bulatov’s connectivity theorems as corollaries. It
may be also of interest for some readers to note that theorems

in this section often even do not require the algebra to be
Taylor — they concern all finite idempotent algebras.

B. Minimal Taylor algebras

The advantage of studying minimal reducts within a class of
interest was clearly demonstrated in the work of Brady [39].
He concentrated on so-called bounded width algebras — these
are algebras that play the same role in solvability of CSPs
by local consistency methods [29] as Taylor algebras do for
polynomial time solvability. The theory he developed enabled
him to classify all the minimal bounded width algebras on
small domains. Our first contributions in Section V show
that the basic facts for minimal bounded width algebras have
their counterparts for minimal Taylor algebras. For instance,
Proposition V.2 shows that every Taylor algebra does have a
minimal Taylor reduct, and so minimal Taylor algebras are
indeed sufficiently general, e.g., in the CSP context.

The authors find the extent, to which the notions of the three
theories simplify and unify in minimal Taylor algebras, truly
striking. Our major results in this direction are Theorems V.7,
V.9, V.12, V.18, V.20, V.22, V.23 in Section V and their
consequences stated in Section VI, where various classes of
algebras are characterized in terms of types of edges, types
of operations, and types of absorption present in the algebras.
We now discuss a sample of the obtained results.

Edges, as we already mentioned, are pairs of elements for
which the local structure around the pair resembles one of
the three interesting polynomially solvable cases in Schaefer’s
Boolean dichotomy [8]. More precisely, and specializing to
one kind of edges, we say that (a, b) is a majority edge if the
subalgebra E generated by a and b has a proper congruence
(i.e., invariant equivalence relation) 6 and a term operation ¢
that acts as the majority operation on the blocks a/6 and b/6.
The resemblance of the two-element majority algebra is in
general quite loose — the equivalence 6 can have many more
blocks and there may be many more operations in E other
than t. However, in minimal Taylor algebras, E modulo 6 is
always term equivalent to the two element majority algebra.

The second sample concerns the simplest absorbing sub-
universes, the 2-absorbing ones, which constitute one of the
four types of Zhuk’s fundamental theorem. The 2-absorption
of a subuniverse B is a relatively strong property that requires
the existence of some binary term operation ¢ whose result
is always in B provided at least one of the arguments is in
B. An extreme further strengthening is as follows: the result
of applying any operation f to an argument that contains
an element in B in any essential coordinate is in B. It
turns out that these notions actually coincide for minimal
Taylor algebras. What is perhaps even more surprising is the
connection to Bulatov’s theory: 2-absorbing sets are exactly
subsets stable (in a certain sense) under all the three kinds of
edges.

Finally, we mention that the clone of any minimal Taylor
algebra is generated by a single ternary operation. This,
together with other structural results in this paper, may help in
enumerating Taylor algebras — at the very least we know that



there are at most n™" of them over a domain of size n. Such
a catalogue could be a valuable source of examples for CSP-
related problems as well as universal algebra. Additionally,
having a complete catalogue of minimal Taylor algebras for a
given domain allows you to write down an explicit, concrete
generalization of Schaefer’s Dichotomy Theorem [8] for a
domain of that size, with as few cases as possible.

Brady has already initiated this project and has found all the
three-element minimal Taylor algebras in unpublished work
based on the results of this paper. Up to term-equivalence
and permutations of the domain, there are exactly 24 minimal
Taylor algebras on a domain of size 3. This gives us a concrete
list of the hardest tractable CSPs on the 3-element domain,
refining the main result of [27].

The full version of this paper, which contains all the proofs,
is [40].

II. PRELIMINARIES
A. Algebras

Algebras, i.e. structures with purely functional signature,
will be denoted by boldface capital letters (e.g., A) and
their universes (also called domains) typically by the same
letter in the plain font (e.g., A). The basic general algebraic
concepts, such as subuniverses, subalgebras, products, and
quotients modulo congruences are used in the standard way
(see, e.g. [41]). An algebra is nontrivial if it has more than two
elements, otherwise it is trivial. We use B < A to mean that B
is a subuniverse of A. By a subpower we mean a subuniverse
(or a subalgebra) of a finite power. Recall that subpowers are
the same as invariant relations and we may also call them
compatible relations. The set of all subpowers is denoted
Inv(A). The subuniverse (or the subalgebra) of A generated

by aset X C A is denoted Sgu (X) or Sga (1, - .., x,) wWhen
X = {xl,...,xn}.

All theorems in this paper concern algebras that are
finite and idempotent, that is, f(z,x,...,z) = x for every

operation f in the algebra and every element x of the universe.
Recall that this is not a severe restriction, at least in the area
of finite-template CSPs. We do not explicitly mention this
assumption in the statements of theorems or definitions.

A (function) clone is a set of operations 4 on a set A
which contains all the projections proj;' (the n-ary projection
to the i-th coordinate) and is closed under composition, i.e.,
flg1,...,9n) € € whenever f € € is n-ary and g, ...,
gn € € are all m-ary, where f(gi,...,9,) denotes the
operation defined by f(g1(x1,...,Zm)y- s gn(T1, -, Tm))-
By Clo(A) (Clo,(A), respectively), we denote the clone
of all term operations (the set of all n-ary term operations,
respectively) of A. An algebra B is a reduct of A if they have
the same universe A = B and Clo(B) C Clo(A). Algebras
A and B are term-equivalent if each of them is a reduct of
the other, i.e., Clo(A) = Clo(B).

A coordinate i of an operation f : A" — A is essential if
f depends on the ith coordinate, i.e., f(a) # f(b) of some
tuples a,b € A" that differ only at the ith coordinate.

B. Relations

A relation on A is a subset of A™, but we often work with
more general “multisorted” relations R C A; X Ag X -+ X A,,.
We call such an R proper if R # A; X - - - x A, and nontrivial
if it is nonempty and proper. Tuples are written in boldface
and components of x € Aj X --- X A,, are denoted z1, x2,.. ..
Both x € R and R(x) are used to denote the fact that x is
in R. The projection of R onto the coordinates iy, ...,% iS
denoted proj;, ; (R). The relation R is subdirect, denoted
R Cyqqg A1 X -+ x A, if proj;(R) = A; for each i. We
call R redundant, if there exist coordinates i # j such that
proj;;(R) is a graph of bijection from A; to Aj;; otherwise R
is irredundant.

We say that a set of relations R pp-defines S if S can
be defined from R by a primitive positive formula with
parameters, that is, using the existential quantifier, relations
from R, the equality relation, and the singleton unary
relations. Recall that the set of subpowers of an algebra is
closed under pp-definitions.

For binary relations we write — R instead of R~! and R+ .S
for the relational composition of R and S, that is R + S =
{(a,c) : (3b) R(a,b) A R(b,c)}. For a unary relation B we
write B 4+ S to denote the set {c : (3b) B(b) A S(b,c)} and
if B is a singleton we often write b + .S instead of {b} + S.
Also, we set R— S = R+ (—S) = Ro S™'. A relation
R C Ax B is linked if (R—R)+(R—R)+---+(R—R)
is equal to (proj;(R))? for some number of summands. In
other words, R is connected when viewed as a bipartite graph
between A and B (with possible isolated vertices). The left
center of R C Ax Bisthe set {a € A:a+ R = B}. If
R has a nonempty left center, it is called left central. Right
center and right central relations are defined analogically. A
relation is central if it is left central and right central. Note that
R+ S, —R, and the left (right) center of R are pp-definable
from {R, S}.

ITI. BASIC CONCEPTS
A. Taylor algebras

First we define the central concept of the algebraic theory of
the CSP, Taylor algebra. From the many equivalent definitions
(e.g., the one using so-called Taylor operations — that’s where
the name comes from) we present a direct algebraic counter-
part of the first item in Theorem 1.1 specialized to idempotent
structures.

Definition II1.1. An (idempotent, finite) algebra A is a Taylor
algebra if no quotient of a subpower of A is a two-element
algebra whose every operation is a projection.

We will often take advantage of the characterization by
means of cyclic operation. Its original proof is via the ab-
sorption theory, an alternative proof is now available using
Zhuk’s approach [36].

Theorem IIL.2 ([32]). The following are equivalent for any
algebra.

e A is Taylor.



o There exists n > 1 such that A has a term operation
t of arity m which is cyclic, that is, for any x € A",
t(z1, T2, ..., xn) = t(x2, ..., Ty, x1).

o For every prime p > |A|, A has a term operation t of
arity p which is cyclic.

Several further types of operations are significant for this
paper:

e Semilattice operation is a binary operation V which is

commutative, idempotent, and associative.

e Majority operation is a ternary operation m satisfying
m(z,z,y) = m(x,y,z) = m(y,x,z) = = (for any z,y
in the universe).

e Mal’cev operation is a ternary operation p satisfying
p(y,z,x) =p(z,2,y) = y.

Any algebra with a semilattice, or majority, or Mal’cev
operation is Taylor. The following algebras are particularly
important for our purposes (recall also the discussion about
Schaefer’s result in the introduction):

o Two-element semillatice: a two-element set together with
one of the two semilattice operations, e.g., ({0,1};V)
where V is the maximum operation,

o Two-element majority algebra: a two element set together
with the unique majority operation, e.g., ({0, 1};maj).
We also use maj,, for odd p, to denote the p-ary majority
operation on {0, 1}, that is, maj(a) = 1 iff the majority
of the a; is 1.

o Affine Mal’cev algebra: a set together with the Mal’cev
operation * — y + 2z, where + and — is computed
with respect to a fixed abelian group structure on the
universe, e.g., ({0,1,...,p — 1}z — y + 2z (mod p)).
More generally, an affine module is an algebra whose term
operations are exactly the idempotent term operations of
a module over a unital ring.

B. Abelian algebras

The last example falls into a larger class of algebras,
which is also significant in the algebraic theory of CSPs and
Universal Algebra in general, so-called abelian algebras.

Definition IIL3. An algebra A is abelian if the diagonal
Aa ={(a,a):a € A} is a block of a congruence of A2.

As an example, for an affine Mal’cev algebra, a congru-
ence satisfying the definition is the congruence « defined
by ((z1,z2), (y1,¥2)) € a iff x1 — 2 = y; — y2. Note
that an abelian algebra does not need to be Taylor, e.g., an
algebra with no operations is such (except in the pathological,
one-element case). However, for (finite, idempotent) Taylor
algebras, abelian algebras admit a complete description up to
term equivalence. The original proof of this result is using the
tame congruence theory (a developed theory of finite algebras
that we have not mentioned yet), an alternative proof using
absorption is available [32].

Theorem II1.4 ([42]). Every (finite, idempotent) abelian Tay-
lor algebra is an affine module.

In light of this theorem, readers interested solely in Taylor
algebras may safely replace the phrase “abelian algebra” with
“affine module”. In fact, it follows from our results that
in minimal Taylor algebras “affine module” can be further
simplified to “affine Mal’cev algebra”, up to term equivalence.

C. Absorption

Now we introduce absorbing subuniverses, centers, and
projective subuniverses, central concepts in the absorption
theory and Zhuk’s theory.

Definition IIL5. Let A be an algebra and B C A. We call
B an n-absorbing set of A if there is a term operation t €
Clo, (A) such that t(a) € B whenever a € A™ and |{i : a; €
B} >n—1

If, additionally, B is a subuniverse of A, we write B <,, A,
or B < A when the arity is not important.

We also say “B absorbs A (by t)” in the situation of Defini-
tion IIL.5. Of particular interest for us are n-absorbing subuni-
verse with n = 2, e.g., {1} in the semilattice ({0,1};V)), or
n =3, e.g., {0} and {1} in the two-element majority algebra.

The concept of a center is still evolving and it is not yet
clear what the best version would be for general algebras.
Our definition follows [11], although a more recent paper [36]
made an adjustment motivated by this work. As we shall see
in Theorem V.9, the situation is much cleaner for minimal
Taylor algebras.

Definition IIL.6. A subset B C A is a center of A if there
exists an algebra C (of the same signature) with no nontrivial
2-absorbing subuniverse and R <;q A X C such that B is the
left center of R. The relation R is called a witnessing relation.
If C can be chosen Taylor, we call B a Taylor center of A.

The final concept that we introduce in this section is a
projective subuniverse. It appeared in [43] in connection with
so-called cube operations, which characterize the limit of
the few subpowers algorithm that finds generating set of all
solutions to a CSP [30]. These subuniverses were called cube
term blockers in [43] but it became clear that the concept is
significant beyond this context [44], [36] and for this reason
we prefer the terminology from the latter paper.

Definition IIL7. Let A be an algebra and B C A. We say
that B is a projective subuniverse if for every f € Clo,(A)
there exists a coordinate i of f such that f(a) € B whenever
a € A" is such that a; € B.

Note that a projective subuniverse of A is, indeed, a subuni-
verse. Also note that centers are automatically subuniverses as
well.

Many of the algebraic concepts that we introduce (such
as absorbing subuniverses or strongly projective subuniverses
from Section V) have a useful equivalent characterizations
in terms of relations. Such a characterization for projective
subuniverses is especially elegant and we state it here for
reference.



Proposition IIL.8 (Lemma 3.2 in [43]). Let A be an algebra
and B C A. Then B is a projective subuniverse of A if and
only if, for every n, the relation B(x1)V B(xa)V---V B(xy,)
is a subpower of A.

D. Edges

Finally we introduce the three types of edges used in
Bulatov’s approach to the CSP.

Definition IILY. Let A be an algebra. A pair (a,b) € A? is
an edge if there exists a proper congruence 0 on Sg (a,b) (a
witness for the edge) such that one of the following happens:

o (semilattice edge) There is a term operation f € Cloa(A)
acting as a join semilattice operation on {a/0,b/0} with
top element b/0.
o (majority edge) There is a term operation m € Cloz(A)
acting as a majority operation on {a/6,b/0}.
o (abelian edge) The algebra Sg, (a,b)/0 is abelian.
An edge (a,b) is called minimal if for some maximal con-

gruence 0 witnessing the edge and every a',b' € A such that
(a,a’), (b,b") € 6, we have Sga (a’,b") = Sga (a,b).

A witnessing congruence 6 for an edge (a,b) necessarily
separates a and b, i.e., (a,b) € 0, since each congruence block
of an idempotent algebra is a subuniverse. Moreover, if 6 is
a witness for an edge (a,b), then any proper congruence of
Sga (a,b) containing # witnesses the same edge.

Note that if (a,b) is an edge of majority or abelian type,
then so is (b,a). If (a,b) is a semilattice edge it can happen
that (b, a) is not an edge at all, in fact this is always the case
for minimal edges in a minimal Taylor algebra.

In order to make the concepts in this paper elegant and
theorems more general, we deviate from the definition given
in e.g. [38], [45]. There, majority edges have an additional
requirement that the same congruence does not witness the
semilattice type, and abelian edges (called affine) required the
quotient to be an affine module. Also note that the definition
of abelian edges (as well as the original affine edges) is of a
different type: it restricts the set of term operations from above,
as opposed to semillatice and majority edges that restrict
them from below. We shall see in Theorem V.12 that these
differences disappear in minimal Taylor algebras.

Minimal edges do not appear in Bulatov’s theory in this
form. Somewhat related are thin edges, which at present
have rather technical definitions with the exception of thin
semilattice edges. We show in Proposition V.14 that minimal
semilattice edges and thin semilattice edges coincide in mini-
mal Taylor algebras.

IV. TAYLOR ALGEBRAS

This section presents unifications, simplifications, and re-
finements of the three algebraic theories in the setting of Taylor
algebras (still finite and idempotent) that are not necessarily
minimal. In Subsection IV-A we discuss the already existing
refinements to the proof of the absorption theorem (and
provide two additional new refinements in Proposition IV.2
and Proposition IV.4). This gives tight links to Zhuk’s theory,

in particular, centers and projective subuniverses. Subsec-
tion IV-B contains the main contribution of this section,
Theorem IV.7. This theorem together with additional technical
contributions, Theorems IV.10 and IV.11, directly imply the
fundamental facts in the two proofs of the CSP Dichotomy
Theorem — the four types theorem and the connectivity theo-
rem, discussed in Subsection IV-C.

A. Absorption theorem

We phrase the absorption theorem in a slightly simplified
form to keep the presentation compact.

Theorem IV.1 (Absorption Theorem). [32] If A is Taylor
and R <,q A? is proper and linked, then A has a nontrivial
absorbing subuniverse.

The original proof can be divided into 3 steps.

(1) From A being Taylor it is derived that A either has a
nontrivial binary absorbing subuniverse or a transitive
term operation ¢ of some arity n, i.e., for each b,c € A
and every coordinate ¢ of ¢, there exists a tuple a € A"
with a; = b such that ¢(a) = c.

(2) Using the transitive operation, it is proved that if A has
no nontrivial absorbing subuniverses, then R is left or
right central.

(3) It is shown that the transitive operation witnesses that the
left (right) center absorbs A.

We now comment on subsequent improvements and simplifi-
cations.

The first step was explored in more detail in [44]. Lemma
2.7. in [44] shows that each algebra has a nontrivial projective
subuniverse or a transitive term operation. A simple argument
then shows that every projective subuniverse in a Taylor
algebra is 2-absorbing, a witness is, e.g., any operation of the
form t(z,...,x, y,...,y) where ¢ is cyclic.

As for the second step, it has turned out that left (or
right) central relations can be very easily obtained from linked
relations by means of pp-definitions, avoiding algebraic con-
siderations altogether. We give a refined version that derives
central relations with further properties.

Proposition IV.2. Let R C,q A? be linked and proper. Then
R pp-defines a subdirect proper central relation on A which
is symmetric or transitive.

The third step, that a transitive operation witnesses absorption
of left centers, is straightforward. A significant refinement,
Corollary 7.10.2 in [11] shows that left centers are, in fact,
ternary absorbing. An adjustment of the proof will also help
us in proving Theorem V.9.

Proposition IV.3. [11] If B is a Taylor center of an algebra
A, then B <3 A.

Note that, in the previous theorem A need not be a Taylor
algebra, but C (where the witnessing relation is R <4 A x C)
must be. The following proposition states that we can switch
the condition:



Proposition IV.4. If B is a center of a Taylor algebra A, then
B <35 Al

In the remainder of the paper, the assumptions of the latter
proposition are easier to satisfy — the algebra A is usually
Taylor by default.

Altogether, either of the propositions above provides the
following improvement of the absorption theorem, which does
not seem to be explicitly stated in the literature.

Corollary IV.5. If A is Taylor and R <,q A? proper and
linked, then A has a nontrivial 3-absorbing subuniverse.

B. Subdirect irredundant subpowers

We now present the unification result. It says that any
“interesting” (subdirect irredundant proper) relation either pp-
defines an interesting binary relation or pp-defines (it is even
inter-pp-definable with) ternary relations of very particular
shape — they are graphs of quasigroup operations.

Definition 1V.6. A relation R C A3 is called strongly
functional if

e binary projections of R; are equal to A?, and
e a tuple in R; is determined by values on any two
coordinates.

Theorem IV.7. Let R C,qy A™ be an irredundant proper
relation. Then either

o R pp-defines an irredundant and proper R' C,q A2, or

o there exist strongly functional ternary relations
Ry,..., R, Cyq A® such that the set {Ry,..., Ry} is
inter-pp-definable with R (i.e., the R;’s pp-define R and,
conversely, R pp-defines all the R;’s).

Theorem IV.7 implies that every algebra A has at least one of
the following properties of its invariant relations.

(1) A has no proper irredundant subdirect subpowers.
(2) A has a proper irredundant binary subdirect subpower.
(3) A has a ternary strongly functional subpower.

In the last case, it is easy to pp-define a congruence on A2
such that the diagonal is one of its blocks, so A is abelian
in this case. If A is Taylor, Theorem III.4 then gives a good
understanding of A — it is an affine module.

Proposition IV.8. If R < A3 is a strongly functional relation,
then A is abelian.

In case (1), subdirect relations have a very simple structure; for
instance, any constraint R(x1, ..., ,) with subdirect R is ef-
fectively a conjunction of bijective dependencies z; = f(x;).
It is also immediate that A is polynomially complete, that is,
every operation on A is in the clone generated by A together
with the constant operations. Indeed, polynomial completeness
is equivalent to having no proper reflexive (that is, contain-
ing all the tuples (a,aq,...,a)) irredundant subpowers. Less
trivially, case (1) often leads to majority edges, as we show
in Theorem IV.10 below. However, we require the following
definition first.

Definition IV.9. Let A be an algebra. By the connected-by-
subuniverses equivalence, denoted pa, we mean the small-
est equivalence containing all the pairs (a,b) such that

SgA(av b) 7& A

We remark that the equivalence 114 is not, in general, a con-
gruence of A, so this concept may seem somewhat unnatural
from the algebraic perspective.

Theorem IV.10. Suppose that A is simple and has no
subdirect proper irredundant subpowers. Then there exists a
term operation t € Clog(A) such that for any (a,b) ¢ pa,
t(a,a,b) = t(a,b,a) = t(b,a,a) = a.

In case (2) and when A is simple, a binary irredundant relation
is necessarily linked. Then we get a central relation, e.g., by
Proposition IV.2, and often also semilattice edges (please note
the important, but easy-to-miss condition on the size of the
algebra).

Theorem IV.11. Suppose A with |A| > 2 is simple and there
exists a proper irredundant subdirect binary subpower. Then
there exists pa-class B such that, for every b € B,a ¢ B,
the pair (a,b) is a semilattice edge witnessed by the identity
congruence.

C. Fundamental theorems of dichotomy proofs

Zhuk’s four types theorem is now a consequence of The-
orem IV.7, Proposition IV.8, and Proposition IV.2. Indeed,
one simply applies these facts to A factored by a maximal
congruence, which is a simple algebra, and then lifts 2-
absorbing subuniverses and centers back to A.

Corollary IV.12. [The Four Types Theorem] Let A be an
algebra, then
(@) A has a nontrivial 2-absorbing subuniverse, or
(b) A has a nontrivial center, (which is a Taylor center in
the case that A is a Taylor algebra), or
(¢) A/« is abelian for some proper congruence « of A, or
(d) A/« is polynomially complete for some proper congru-
ence a of A.

In the introduction we referred to four types of subuniverses
whereas cases (c) and (d) talk about congruences — the
subuniverses used in [11] are obtained from blocks of such
congruences.

Examples of simple Taylor algebras, for which one of the
cases takes place and no other, are (a) a two-element semilat-
tice, (b) a two-element majority algebra, (c) an affine Mal’cev
algebra, and (d) the three element rock-paper-scissors algebra
({paper, rock, scissors}; winner(z,y)). Note, however, that
Corollary IV.12 does not require that A is Taylor. If it is,
then we get additional properties: centers are 3-absorbing by
Proposition IV.3 and abelian algebras are term equivalent to
affine modules by Theorem III.4. For non-Taylor idempotent
algebras, [36] suggests a similar five type theorem, which also
follows immediately from the presented results.

The connectivity theorem of Bulatov is also a straight-
forward consequence of the obtained results, Theorem IV.7,



Proposition IV.8, Theorem IV.10, and Theorem IV.11. In fact, a
little additional effort gives a stronger statement — for minimal
edges instead of edges.

Corollary IV.13. [The Connectivity Theorem] The directed
graph formed by the minimal edges of any algebra is con-
nected.

Notice that the last theorem also does not require the algebra to
be Taylor. Outside Taylor algebras, it makes sense to separate
abelian edges into two types: affine that are the same as abelian
edges in the Taylor case, and sets whose only term operations
are projections, as is done in [45].

V. MINIMAL TAYLOR ALGEBRAS

We start this section by recalling the central definition and
giving some examples.

Definition V.1. An algebra A is called a minimal Taylor
algebra if it is Taylor but no proper reduct of A is.

Examples of minimal Taylor algebras include two-
element semilattices, two-element majority algebras, and affine
Mal’cev algebras. This follows from the description of their
term operations: the term operations of the two-element
semilattice ({0,1};V) are exactly the operations of the form
Tiy Vx4, Voo -V x5 the term operations of the two-element
majority algebra ({0,1};maj) are exactly the idempotent,
monotone (i.e., compatible with the inequality relation <),
and self-dual (i.e., compatible with the disequality relation #)
operations; the term operations of an affine Mal’cev algebra
over an abelian group are exactly the operations of the form
a1x1 + asxe + - -+ + anT,, wWhere a; are integers that sum
up to one. (Each of the mentioned facts is either simple or
follows from [46].) In fact, there are exactly four minimal
Taylor algebras on a two-element set: the two semilattices, the
majority algebra and the two-element affine Mal’cev algebra.

A nice example of a minimal Taylor algebra on a three-
element domain is the rock-paper-scissors algebra mentioned
after The Four Types Theorem. To see that this algebra is
minimal Taylor observe that any term operation behaves on
any two-element set like the term operation of a two-element
semilattice with the same set of essential coordinates. There-
fore, the original operation can be obtained by identifying
variables in any term operation having at least two essential
coordinates. The same argument shows that any semilattice,
not necessarily two-element, is minimal Taylor.

In Subsection V-A we give the basic general theorems
that were proved in [39] in the context of minimal bounded
width algebras. Subsection V-B concentrates on absorption and
related concepts in Zhuk’s theory. It turns out that 2-absorbing
sets are exactly projective subuniverses (Theorem V.7) and
3-absorbing sets are exactly centers (Theorem V.9). Subsec-
tion V-C shows that edges substantially simplify in minimal
Taylor algebras (Theorem V.12) and gives additional infor-
mation for minimal edges; in particular, minimal semilat-
tice edges coincide with thin semilattice edges as defined
in [37], [45] (Proposition V.14). Finally, in Subsection V-D,

we demonstrate a strong interaction between absorption and
edges. We show that 2-absorbing subuniverses are exactly
subsets that are, in some sense, stable under all the edges
(Theorem V.18), we provide somewhat weaker interaction
between absorbing subuniverses and subsets stable under semi-
lattice and abelian edges (Theorem V.20), we give a common
witnessing operation for all the edges as well as all the 2- and
3-absorbing subuniverses (Theorem V.22), and we show that
each such a witnessing operation generates the whole clone of
term operations (Theorem V.23).

A. General facts

It is not immediate from the definitions that each Taylor
algebra has a minimal Taylor reduct. Nevertheless, this fact
easily follows from the characterization of Taylor algebras by
means of cyclic operations.

Proposition V.2. Every Taylor algebra has a minimal Taylor
reduct.

Another simple, but important consequence of cyclic opera-
tions is the following proposition. The result is slightly more
technical than most of the others, but it is in the core of many
strong properties of minimal Taylor algebras.

Proposition V.3. Let A be a minimal Taylor algebra and B C
A be closed under an operation f € Clo(A) such that B
together with the restriction of f to B forms a Taylor algebra.
Then B is a subuniverse of A.

A similar method based on cyclic operations prove that the
class of minimal Taylor algebras is closed under the standard
constructions.

Proposition V.4. Any subalgebra, finite power, or quotient of
a minimal Taylor algebra is a minimal Taylor algebra.

B. Absorption

The goal of this section is to show that absorbing subsets,
which are abundant in general Taylor algebras by Corol-
lary IV.12 and Proposition IV.4, have strong properties in
minimal Taylor algebras. We start with a surprising fact, which
clearly fails in general Taylor algebras.

Theorem V.5. Let A be a minimal Taylor algebra and B an
absorbing set of A. Then B is a subuniverse of A.

Now we move on to 2-absorption. We have already men-
tioned in Subsection IV-A that projectivity is a stronger form
of absorption in Taylor algebras, but we can go even further.

Definition V.6. Let A be an algebra and B C A. The
set B is a strongly projective subuniverse of A if for every
f € Clo,,(A) and every essential coordinate i of f, we have
f(a) € B whenever a € A™ is such that a; € B.

The property of being a strong projective subuniverse is
indeed very strong. For example, in any non-trivial clone,
strong projective subuniverse is 2-absorbing and every binary
operation of the clone, except for projections, witnesses the
absorption. The next theorem states that strong projectivity in



minimal Taylor algebras is equivalent to 2-absorption, which
in general is a much weaker concept.

Theorem V.7. The following are equivalent for any minimal
Taylor algebra A and a set B C A.
(a) B 2-absorbs A.
(b) R(z,y,2z) = B(z) V B(y) V B(z) is a subuniverse of
A3
(c) B is a projective subuniverse of A
(d) B is a strongly projective subuniverse of A.

The main value of this theorem is the implication showing
that, in minimal Taylor algebras, every 2-absorption, i.e. (a),
is as strong as possible (d). Moreover (c) provides a nice
relational description of 2-absorption, which collapses the
general condition from Proposition III.8 for projectivity to
arity 3. We note that none of the conditions are equivalent
in Taylor algebras without the minimality assumption.

The following proposition collects some strong and unusual
properties of 2-absorbing subuniverses in minimal Taylor
algebras. Already the first item might be surprising since the
union of two subuniverses is rarely a subuniverse.

Proposition V.8. Let A be a minimal Taylor algebra and
B <5 Al
1) If C <A then BUC < A.
2) If C is proper and C' < A by f, then
a) BUC <A Dby f, and
b) BNC #Band BNC < A by f.
3) Every minimal Taylor algebra A has a unique minimal
2-absorbing subalgebra B. Moreover, this algebra B
does not have any nontrivial 2-absorbing subuniverse.

As for absorption of higher arity, we have already shown
in Proposition IV.4 that centers are 3-absorbing. Next theorem
says that, in minimal Taylor algebras, the converse is true as
well.

Theorem V.9. The following are equivalent for any minimal
Taylor algebra A and a set B C A.

(a) B 3-absorbs A.

(b) R(z,y) = B(z) V B(y) is a subuniverse of A®.

(c) B is a (Taylor) center of A.

(d) there exists C with Clo(C) C Clo({0,1};maj) such

that R(x,y) = B(xz) V (y = 0) is a centrality witness.

Moreover, if B = {b}, then these items are equivalent to

(e) B absorbs A.

Just like in Theorem V.7 we have that a relatively weak
notion of 3-absorption implies a very strong type of centrality
which is (d). Let us investigate (d) in greater detail. To
every operation of A, say f, we associate an operation f/ €
Clo({0,1}, maj) such that f(a) € B whenever f'(x) = 1
and x is the characteristic tuple of a with respect to B (i.e.
x; = 1 if and only if a; € B). That is, from the viewpoint
of “being outside B” vs. “being inside B> every operation
outputs “inside B” every time the corresponding operation of
Clo({0,1}; maj) outputs 1.

In fact, there exists a cyclic ¢ in A (say, p-ary) such that
R(z,y) = B(z) V (y = 0) is a subuniverse of (A;t) x
({0,1};maj,) for every 3-absorbing B, where maj, denotes
the p-ary majority function. This translates to a simpler state-
ment: for every 3-absorbing B we have ¢(a) € B whenever
majority of the a; belong to B, and we cannot expect more,
as witnessed by the 2-element majority algebra. Since ¢ is
cyclic it generates the whole clone and, for example, 3) in
Proposition V.11 below becomes obvious.

Item (b) provides a relational description of 3-absorption,
while item (c) provides a connection with the notion of
center (whether it is Taylor or not). We now give an example
that (e) and (a) are not equivalent even in minimal Taylor
algebras if B has more than one element.

Example V.10. Consider the algebra A = ({0,1,2},m)
where m is the majority operation such that m(a,b,c) = a
whenever |{a,b,c}| = 3. This algebra is minimal Taylor and
the set C' = {0, 1} is an absorbing subuniverse of A. However,
C is not a center of A.

Finally, we list some strong and unusual properties of 3-
absorbing subuniverses. They are not as strong as in the case of
2-absorbing subuniverses, which is to be expected since every
2-absorbing subuniverse is 3-absorbing but not vice versa.

Proposition V.11. Let A be a minimal Taylor algebra and
B,C <3 A.

1) BUC<A

2) If BNC # (0 then BNC <3 A.

3) If BNC = 0 then B?> U C? is a congruence on the
algebra with universe B U C and the quotient is term-
equivalent to a two-element majority algebra.

C. Edges

The next theorem says that, in minimal Taylor algebras,
every ‘“thick” edge, in the terminology of [37], [47], is
automatically a subuniverse. This property is a simple con-
sequence of the result we have already stated, whereas it was
relatively painful to achieve using the original approach. We
additionally obtain that semilattice and majority edges have
unique witnessing congruences.

Theorem V.12. Let (a,b) be an edge (semilattice, majority,
or abelian) of a minimal Taylor algebra A and 0 a witnessing
congruence of E = Sgp (a,b).

(@) If (a,b) is a semilattice edge, then E/0 is term equiva-
lent to a two-element semilattice with absorbing element
b/6.

If (a,b) is a majority edge, then E/0 is term equivalent

to a two-element majority algebra.

(¢) if (a,b) is an abelian edge, then E/0 is term equiva-
lent to an affine Mal’cev algebra of an abelian group
isomorphic to Z/plf1 X oo X Z/pfl for distinct primes
P1,...,p; and positive integers ki, ..., k;, where Z/m
denotes the group of integers modulo m.

(b)



Moreover a semillatice edge is witnessed by exactly one
congruence of B, and that congruence is maximal. The same
holds for majority edges.

For minimal edges we can say a bit more. If (a, ) is a minimal
edge witnessed by 6, a congruence on E = Sg4 (a,b), then
E/6 is simple. In particular, for abelian edges, E/6 is an affine
Mal’cev algebra of a group isomorphic to Z/p. Moreover, such
an E has a unique maximal congruence as shown in the next
proposition. This implies that the type of a minimal edge is
unique and so is the direction of a semilattice minimal edge
and the prime p associated to an abelian minimal edge.

Proposition V.13. Let (a,b) be a minimal edge in a minimal
Taylor algebra. Then E = Sg, (a,b) has a unique maximal
congruence equal to pg. In particular, minimal edges have
unique types.

The structure of minimal semilattice edges is especially sim-
ple.

Proposition V.14. Let (a,b) be a minimal semilattice edge in
a minimal Taylor algebra. Then {a,b} is a subuniverse of A,
5o Sga(a,b) = {a,b} and the witnessing congruence is the
equality.

Unfortunately, majority and abelian edges do not simplify
in a similar way; see Example V.15 and Example V.16.
Weaker versions of Proposition V.14 have been developed by
Bulatov (comp. Lemma 12 and Corollary 13 in [37]) to deal
with this problem.

Example V.15. Let A = {0,1,2,3} and « the equivalence
relation on A with blocks {0,2} and {1,3}. Define a sym-
metric ternary operation g on A as follows. When two of
the inputs to g are equal, g is given by g(a,a,a + 1) = q,
gla,a,a+2) = g(a,a,a+3) = a+2 (all modulo 4) and when
all three inputs to g are distinct, g is given by g(a,b,c) = d—1
(mod 4) where a, b, ¢, d are any permutation of 0,1, 2,3. Then
A = (A4;9) is a minimal Taylor algebra, « is a congruence
on A, and each of pair of elements in different a-blocks is a
minimal majority edge with witnessing congruence o

Example V.16. Ler A = ({a,b,c,d},p), where p is a
Mal’cev operation with the following properties. The operation
p commutes with the permutations o = (a ¢) and 7 = (b d).
The polynomials +, = p(-,a,-),+y = p(-, b, -) define abelian

groups:
+a ‘ a b ¢ d +p ‘ a b ¢ d
a |la b ¢ d a |b a d c
b b ¢ d a b la b ¢ d
c c d a b c|d ¢ b a
d |d a b c d |c d a b

Then A is a minimal Taylor algebra, with a unique maximal
congruence 6 whose congruence classes are {a,c} and {b, d}.
Each pair of elements of A in different congruence classes of
0 is a minimal abelian edge of A with witnessing congruence

0.

We can also provide nontrivial information about Sg(a, b) in
case that (a,b) is not necessarily an edge, and this information
helps in proving Theorem V.23 in the next subsection (and
shows that case (d) in Corollary IV.12 is never necessary for
two-generated algebras). However, the following fundamental
question remains open: Is there a minimal Taylor algebra such
that, for some a, b, neither (a,b) nor (b, a) is an edge?

D. Absorption and edges

We start this subsection with a definition that will connect
absorption with edges.

Definition V.17. Let A be an algebra, let B C A and let (b, a)
be an edge. We say that B is stable under (b, a) if, for every
witnessing congruence 6 of Sga (b, a) such that b/0 intersects
B, each 0-block intersects B.

As the next theorem states, stability under every edge can be
added as a next item to Theorem V.7. This direct connection
of absorption, which is a global property, to local concepts
in Bulatov’s theory is among the most surprising phenomena
that the authors have encountered in this work.

Theorem V.18. The following are equivalent for any minimal
Taylor algebra A and a set B C A.

(a) B 2-absorbs A.

(b) B is stable under all the edges.

The implication from (b) to (a) does not require the full
strength of stability for semilattice and majority edges. It is
enough to require that for a minimal semilattice or a majority
edge (b, a) it is never the case that b/6 C B and a/6NB = {),
where 6 is the edge-witnessing congruence of Sg(b,a) (which
is the equality relation on {a, b} in case of semilattice edges).
The following example shows that stability under abelian
edges cannot be significantly weakened.

Example V.19. We consider the four-element algebra A =
({0,1,2,*}, ) with binary operation - given by

0 1 2 =x
0j]0 2 1 =«
112 1 0 2
211 0 2 1
x| % 2 1 =«

Then A is a minimal Taylor algebra, with a semilattice
edge (0,x), with {0,1,2} an affine subalgebra, and with a
congruence O corresponding to the partition {0,x*}, {1}, {2}
such that A /0 is affine. The set {x} is stable under semilattice
and majority edges and there is no minimal abelian edge (*, a)
with a # . But {x} is not an absorbing subalgebra of A.

For absorption of higher arity the connection to edges is not
as tight as for 2-absorption. Nevertheless, one direction still
works and both directions work for singletons.

Theorem V.20. Any absorbing set of a minimal Taylor algebra
A is stable under semilattice and abelian edges. Moreover, for
any b € A the following are equivalent.



(a) {b} absorbs A
(b) {b} is stable under semilattice and abelian edges.

Stability under semilattice edges for the implication from
(b) to (a) can be again replaced by the requirement that there
is no minimal semilattice edge (b,a) with b € B and a & B.
Example V.19 shows that this is not the case for abelian edges.

The following example shows that the implication from (b)
to (a) does not hold for non-singleton subuniverses.

Example V.21. Consider the algebra A = ({0,1,2},m)
where m is the majority operation such that m(a,b,c) = 2
whenever |{a, b, c}| = 3. This algebra is minimal Taylor, every
pair of distinct elements forms a subuniverse, and every pair is
a minimal majority edge. So there are no semilattice or abelian
edges. However, the subuniverse {0,1} is not absorbing.

An important fact for the edge approach is that semilattice,
majority, and Mal’cev operations coming from edges can be
unified, see Theorem 7 in [37]. In minimal Taylor algebras,
a simple consequence of the already stated results is that we
not only have a common ternary witness for all the edges but
also for all the binary and ternary absorptions.

Theorem V.22. Every minimal Taylor algebra A has a ternary
term operation | such that if (a,b) is an edge witnessed by 6
on E = Sgy (a,b), then
e if (a,b) is a semilattice edge, then f(x,y,z) =xzVyVz
on E/6 (where b/0 is the top);
e if (a,b) is a majority edge, then f is the majority
operation on E /0 (which has two elements);
e if (a,b) is an abelian edge, then f(z,y,z) =z —y+ 2
on E/6;
o f witnesses all the ternary absorptions B <3 A;
e any binary operation obtained from f by identifying two
arguments witnesses all the binary absorptions B <5 A.

In fact, any ternary operation f defined from a cyclic term
operation ¢ of odd arity p > 3 by

f(w7y7z):t(xﬂ‘r7"'ﬂ‘r7y7y7"'7y72:72’"'7z)7
—_——— — — ——

kx Ix m X

where k + [,l +m,k +m > p/2, satisfies all the items in
Theorem V.22 except possibly the third one (which can be
obtained by picking k, [, and m a bit more carefully).

We finish this section with a theorem stating that any ternary
witness of edges generates the whole clone of the algebra. In
particular, the number ogf minimal Taylor clones on a domain
of size m is at most n™ .

Theorem V.23. If A is a minimal Taylor algebra, then
Clo(A; f) = Clo(A) for any operation f satisfying the first
three items in Theorem V.22.

VI. OMITTING TYPES

In this section we consider classes of algebras whose graph
only contains edges of certain types. We say that an algebra
is a-free if it has no abelian edges. More generally, an algebra
is x-free or is xy-free, where x,y € {(a)belian, (m)ajority,
(s)emilattice} if it has no edges of type x (of types x,y).

It turns out that within minimal Taylor algebras these
“omitting types” conditions are often equivalent to important
properties of algebras. In the theorems below we prove the
equivalence of the following four types of conditions: (i) the
absence of edges of a certain type (equivalently, minimal
edges of the same type); (ii) properties of absorption and the
four types in Zhuk’s approach; (iii) the existence of a certain
special term operations; (iv) algorithmic properties of the CSP.
Here recall that the properties of “having bounded width” and
“having few subpowers” characterize the applicability of the
two basic algorithmic ideas in the CSP — local propagation
algorithms [48], [29] and finding a generating set of all
solutions [49], [30]. Theorems in this section are consequences
of the theory we have already built in the previous section and
known results (see [5]).

The first theorem concerns the class of algebras omitting
abelian edges. Numerous characterizations of this class are
known for general algebras and we do not add a new one, but
we state the characterization for comparison with the other
classes. In order to state a characterization in terms of iden-
tities we recall that an operation f is a weak near unanimity
operation (or wnu for short) if it satisfies f(y,z,...,z) =
flzyy,z,...;2) =+ = f(x,...,z,y) for every z,y in the
algebra.

Theorem VI1.1. The following are equivalent for any algebra
A.
(1) A is a-free.
(i1) No subalgebra of A falls into case (c) in Corollary IV.12,
i.e., no subalgebra of A has a nontrivial affine quotient.
(iii) A has a wnu term operation of every arity n > 3.
(iv) A has bounded width.

Minimal Taylor algebras omitting other types of edges do have
significantly stronger properties than general Taylor algebras
omitting those edges. Minimal s-free algebras are exactly
those for which option (a) in Corollary IV.12 does not hold,
and that have the few subpowers property [47]. The few
subpowers property, i.e., that the number of subuniverses of
A" is 200" can be characterized by the existence of an edge
term operation [49] in general. In minimal Taylor algebras, the
second strongest edge operation always exists — the 3-edge op-
eration defined by the identities e(y, y, x,z) = e(y, z,y, x) =
e(z,x,x,y) = x. This is significant, because the exponent in
the running time of the few subpowers algorithm depends on
the least k& such that the algebra has a k-edge term operation.
The number 3 here is best possible: a 2-edge operation is the
same as a Mal’cev operation appearing in Theorem VI.6.

Theorem VL.2. The following are equivalent for any minimal
Taylor algebra A.

(1) A is s-free.

(i) Case (a) in Corollary 1V.12 does not hold, that is, no
subalgebra of A has a nontrivial 2-absorbing subuni-
verse.

(iii) A has a 3-edge term operation.

(iv) A has few subpowers.



For the remaining omitting-single-type condition, m-freeness,
we do not provide a natural condition in terms of identities,
and we are not aware of algorithmic implications of this
condition. Nevertheless, it can be characterized by means of
absorption.

Theorem VI.3. The following are equivalent for any minimal
Taylor algebra A.
(1) A is m-free.
(i) Every center (3-absorbing subuniverse of) B < A 2-
absorbs B, i.e., (b) implies (a) in Corollary IV.12 in all
the subalgebras of A.
(ii’) Every subalgebra of A has a unique minimal 3-
absorbing subuniverse

Surprisingly, if along with m-freeness we also limit the type of
abelian edges allowed in an algebra, the resulting condition is
equivalent to the existence of a binary commutative term oper-
ation. This is interesting, since the existence of a commutative
term operation was not considered to be a natural requirement
for the CSP (see the discussion in [5]) or in Universal Algebra.
We call an abelian edge (a, b) a Z/2-edge if the corresponding
affine Mal’cev algebra Sg(a,b)/6 is isomorphic to the affine
Mal’cev algebra of Z/2.

Theorem VI.4. The following are equivalent for any minimal
Taylor algebra A.

(1) A is m-free and has no 7 /2-edges.
(iii) A has a binary commutative term operation
(iii") Clo(A) can be generated by a collection of binary
operations.

Properties of minimal Taylor algebras having edges of only
one type can be derived as conjunctions of the properties stated
above. For two of these cases, sm-free and as-free, we provide
additional information.

Minimal Taylor am-free algebras are exactly those which
have wnu operations of every arity n > 2. These are exactly
the minimal spirals in the terminology of [39] and a significant
property is that for every (a,b) such that neither (a,b) nor
(b,a) is a minimal semilattice edge, there is a surjective
homomorphism from Sg{a,b} onto the (three-element) free
semilattice on two generators.

The sm-free minimal Taylor algebras are those where cases
(a) and (b) in Corollary IV.12 do not occur. Additionally, these
are exactly the hereditarily absorption free algebras studied
in [5] and, also, the algebras with a Mal’cev term operation — a
type of operation that played a significant role in the CSP [50].

Theorem VLS. The following are equivalent for any minimal
Taylor algebra A.
(1) A is sm-free.
(i) No subalgebra of A has a nontrivial absorbing subuni-
verse.
(iii) A has a Mal’cev term operation.

Finally, the as-free algebras are those where cases (a) and (c)
in Corollary IV.12 do not occur and those that have bounded

width and few subpowers. It is known [42], [49] that the
latter property in general implies having a near-unanimity term
operation of some arity. Surprisingly, in minimal Taylor alge-
bras, the arity goes down directly to three. In the algorithmic
language, these algebras have strict width two [2], [5].

Theorem VI.6. The following are equivalent for any minimal
Taylor algebra A.

(1) A is as-free.
(iii) A has a near unanimity term operation.
(iii’) A has a majority term operation.

VII. CONCLUSION

We have introduced the concept of minimal Taylor algebras
and used it to significantly unify, simplify, and extend the three
main algebraic approaches to the CSP — via absorption, via
four types, and via edges. We believe that the theory started
in this paper will help in attacking further open problems
in computational complexity of CSP-related problems and
Universal Algebra. There are, however, many directions which
call for further exploration.

First, several technical questions naturally arise from the
presented results: Do every two elements of a minimal Taylor
algebra form an edge? How to characterize sets stable under
affine and semilattice edges in a global way? Is it possible to
characterize (3-)absorption in terms of edges? Does stability
under other edge-types correspond to a global property? Is ev-
ery minimal bounded width algebra a minimal Taylor algebra?
Are the equivalent characterizations in Theorem VI.3 equiv-
alent to “every subalgebra has a unique minimal absorbing
(rather than 3-absorbing) subuniverse”?

Second, both CSP dichotomy proofs [9], [11] require and
develop more advanced Commutator Theory [51], [52] con-
cepts and results, while in this paper we have merely used
some fundamental facts about the basic concept, the abelian
algebra. Is it possible to develop our theory in this direction as
well, potentially providing sufficient tools for the dichotomy
result? Also, is there a natural concept that would replace thin
edges in Bulatov’s approach?

Third, Brady in [39] provided a complete classification of
minimal bounded width algebras of small size. Can such a
detailed analysis be made also for minimal Taylor algebras? Is
it possible to develop a strong theory or even full classification
for minimal algebras in other classes, such as the algebras con-
jectured to characterize CSPs in log-space or nondeterministic
log-space?

Fourth, which of the facts presented in the paper have their
counterpart for non-minimal Taylor algebras or even general
finite idempotent algebras? Here we would like to mention
Ross Willard’s work (unpublished) that provides a generaliza-
tion for some of the advanced facts in Zhuk’s approach.

Finally, there is yet another, older, and highly developed
theory of finite algebras, the Tame Congruence Theory started
in [42]. What are the connections to the theory initiated in this
paper?
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