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ABSTRACT: We construct smooth static bubble solutions, denoted as topological stars, in
five-dimensional Einstein-Maxwell theories which are asymptotic to R3xS!'. The bubbles
are supported by allowing electromagnetic fluxes to wrap smooth topological cycles. The
solutions live in the same regime as non-extremal static charged black strings, that reduce
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constructing closed-form generalized charged Weyl solutions in the same theory. Generic
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by electromagnetic fluxes. We embed the solutions in type IIB String Theory on S'xT%.
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multiple charged objects in the non-supersymmetric and non-extremal black hole regime.
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1 Introduction

Black holes live at the interface of General Relativity (GR) and Quantum Mechanics. As
such, their theoretical studies have lead to interesting paradoxes that have highlighted and
sharpened the fundamental conflicts between the two frameworks. More importantly, they
have provided important windows to the underlying framework that characterizes the basic
degrees of freedom of Quantum Gravity. String theory has offered important resolutions to
such paradoxes and have provided microscopic descriptions of the basic degrees of freedom
of black holes that are counted by the Bekenstein-Hawking entropy [1]. These microstates
are captured by bound states of strings and branes at weak coupling. When strongly
coupled, these microstates can have physical sizes that are large compared to the string
and Planck scales, and as large as the horizon of the black hole they correspond to. Such
backreaction can resolve the unitarity problem for black hole evaporation as they provide
“quantum hair” to the black hole [2]. A class of such microstates can be coherent enough to
admit classical gravitational descriptions via geometric transition as compact horizonless
objects that cap off smoothly at the vicinity of the would-be horizon [3-7]. A classical
characterization of such structure must involve new phases of matter that arise from fluxes
of hidden fields and extra dimensions to prevent from complete collapse [8].

In parallel, the upcoming decade will see powerful new observational methods for black
holes. Their close environment can be observed via direct imaging by the Event Horizon
Telescope [9]. The progress of gravitational-wave detection from black hole binaries by
the LIGO collaboration [10, 11] and the promise of the eLISA mission [12] set also a new
incredible playground to directly test ideas in black hole physics by observations. In this
new age of astronomy, it is interesting to wonder whether theoretical results can lead to new
observables. In particular, it is natural to ask if classical horizonless microstate candidates
or even prototypes can lead to any predictions for beyond-GR black hole physics.

On one side, there are “bottom-up” toy models that consist in estimating deviation
from black holes in GR by constructing and analyzing exotic compact objects (ECOs) [13,
14]. Those models are usually four-dimensional theories involving exotic matters or mech-
anisms to construct horizonless ultra-compact objects that resemble a black-hole geometry
up to its near-horizon environment. As a non-exhaustive list of such bottom-up models
one can refer to boson stars [15], gravastars [16] or wormholes [17] (see [14] for a review).
Such objects are relatively simple to handle which has allowed to derive qualitative de-
partures from black hole in GR through multipole moments, quasi-normal modes, tidal
Love number or gravitational wave profile for instance (see [14] and references thereof).
Those computations are important for comparisons with direct observations. However,
all the models suffer from significant problems that limit the scope and relevance of their



outcomes and predictions. First, they are lacking top-down interpretations as they do
not admit a UV origin within the framework of a Quantum Gravity theory. Second, they
have fundamental issues that undermine their physical viability. Indeed, because they are
mostly four-dimensional models, the no-hair theorem requires to use very exotic matter
and unphysical fine-tunings in order to build structure at the scale of the horizon.

On the other side, String theory has provided numerous top-down constructions of
horizonless smooth microstate geometries, also seen as classical fuzzballs, that resemble
black hole geometries up to Planck scale above the horizon. It naturally realizes the only
mechanism to support vast amount of viable microstructures at the vicinity of the hori-
zon [8]. This mechanism allows to bypass the no-hair theorem via two key ingredients:
having extra compact dimensions that can degenerate at the vicinity of the horizon and
provide ends to spacetime, and turning on electromagnetic fluxes to prevent the structure
from collapse under its own gravitational attraction. The degeneracy of the extra dimen-
sions at different loci create non-trivial smooth topological cycles, or bubbles, supported by
fluxes as a replacement for the horizon. However, the construction techniques are rather
involved requiring to turn on various degrees of freedom from supergravity theories. The
price to pay for those rigorous constructions is that they are complicated to handle involving
non-spherically symmetric metrics, numerous gauge fields and scalars. Extracting relevant
predictions about new black hole physics as deviations from mutlipole moments [18, 19],
quasi-normal modes [20] or information recovery [21] is a challenge (see [22] for a review).
Moreover, almost all the solutions constructed so far live in non-astrophysical regimes.
Most of them require supersymmetry, from the first microstate geometries constructed [3]
to the large families so far [4-7]. Only few classes of solutions go beyond supersymme-
try [23-28], even less are in a valid non-extremal regime of black holes [29].

In this paper, we aim to fill the gap between the two philosophies of constructions.
We want to settle the simplest framework for the construction of smooth ultra-compact
objects that are convenient for phenomenology but keeping the two crucial ingredients of
the microstate geometry program in String theory: topology from extra dimensions and
fluxes. By doing so, our constructions will be non-supersymmetric and have the benefits
of a bottom-up approach while admitting a top-down description from string theory. The
minimal framework compatible with our method is Finstein-Maxwell theories with one ex-
tra compact dimension in addition to the four dimensions. More precisely, we will consider
a magnetically sourced one-form gauge field and its electric two-form dual. Those gauge
fields may not be considered as the usual gauge fields in Electromagnetism under Kaluza-
Klein (KK) reduction, but more as the descendants of “hidden” fields from the low-energy
and classical limits of Quantum Gravity. For the sake of simplicity, we will focus on static
solutions only. By creating non-trivial topologies via the degeneracy of the extra dimension
and turning on fluxes, we will show that we can construct smooth bubble geometries that

"1 in Einstein-Maxwell theories.

we call “Topological Stars
With this approach, we will build single-center two-charge spherically symmetric solu-

tions describing topological stars and black strings in five dimensions first (these were the

IThis appellation has been already introduced for similar solutions in [30].



subject of the short companion paper [31]). We will discuss their phase space in four dimen-
sions under Kaluza-Klein reduction and compare to usual GR charged black holes. Then,
using the Weyl formalism we will find closed-form two-charge solutions describing multi-
ple topological stars and black strings stacked on a line. We will discuss their top-down
origin as D1-D5-KKm objects in type IIB string theory. In this framework our generalized
charged Weyl solutions offer brand new multi-center type IIB solutions of static STU black
holes and smooth bubbles deep inside the non-supersymmetric and non-extremal regime.
Finally, we will discuss generalization to topological stars in D infinite dimensions plus an
extra compact dimension. We will have a special attention to D = 5 which is a common
playground for the microstate geometry program. We will compare our topological stars
to JMaRT [23] and discuss how they bypass the over-rotating problem of JMaRT.

Our constructions allow for a more direct and qualitative understanding of bubbles as
microstate geometries. The basic question about their stability without supersymmetry
can be explored. On this topic, some work on solutions similar to topological stars suggest
that they are classically and quantumly stable when the charges are non-zero [32-34].
As interestingly, the solutions can be used for phenomenological studies of microstate
geometries. This is relevant for black hole astrophysics and gravitational-wave physics.
Moreover, our generalized charged Weyl solutions and their embedding in type IIB lay the
foundations of non-trivial microstructure constructions replacing black hole horizons by
topology without the need for supersymmetry. We hope that the addition of degrees of
freedom by degrees of freedom will still allow explicit constructions that will evolve towards
more generic solutions far within the astrophysical regime.

The structure of the paper is as follows. We start with a summary of results in section 2.
In section 3, we construct and study single-center spherically symmetric topological stars
and two-charge black strings in five-dimensional Einstein-Maxwell theory. In section 4, we
derive the generalized two-charge Weyl solutions in the same framework and construct the
axisymmetric two-charge solutions describing multiple topological stars and black strings
on a line. In section 5, we discuss the embedding of those solutions in type IIB String
Theory and the generalization to arbitrary dimensions. We conclude in section 6 and
discuss future directions. The interested reader can find complementary details about the
construction of the charged Weyl solutions in appendix A and the properties of topological
stars and black strings in D + 1 dimensions in appendix B.

2  Summary of results

Single-center topological stars and two-charge black strings. Our discussion starts
by considering spherically symmetric solutions to characterize the main features of topo-
logical stars and the black strings they correspond to. We generalize the results of [31]
by adding an electric two-form gauge field as well as the magnetic one-form gauge field.
Therefore, we consider static two-charge solutions, sourced by a magnetic monopole and
a line electric charge along the extra dimension. The solutions superpose a Schwarzschild
string, that is a S! fibration over a four-dimensional Schwarzschild black hole, and a static
bubble of nothing [35], that is an Euclidean Schwarzschild solution with a time direction.



The former has a horizon where the timelike Killing vector 9; shrinks while the latter has
a smooth bubble, or bolt, where the orbits of a spacelike Killing vector 0, shrink. We
defined y as the coordinate of the extra compact dimension. The two solutions are related
by double Wick rotation (t,y) — (iy,it). We will show that superposing those solutions
into one solution indeed requires to turn on electromagnetic fluxes wrapping the bubble.
The final class of two-charge solutions will be invariant under the double Wick rotation.
Depending on which of the horizon or the bubble locus comes first, the solution is either a
two-charge black string or a two-charge smooth bubble solution, a topological star. Under
KK reduction, the black strings correspond to charged non-rotating black holes while the
topological stars give naked singularity due to the degeneracy of the extra dimension. By
studying the phase space according to the four-dimensional mass and charges, we will show
that topological stars live in the same regime as black strings

Both objects have interesting properties (see figure 1 for a schematic description). First,
the black string (figure 1a) has a bubble in its interior that hides its curvature singularity.
The topology at the bubble corresponds to a round S? sitting at the origin of a smooth
Milne space [36, 37]. Such a space has singular properties under certain perturbations
but is well studied in cosmology as a transition from a Big Crunch to a Big Bang [38]
which might suggest some traversability properties for our black string solutions. As for
topological stars (figure 1b), the solutions resemble the black strings but cap off smoothly
as a bolt, described by a round S? at the origin of a flat R2. The regularity at the bolt
constrains their overall size depending on the size of the extra dimension. The only way
to get around this problem is to add a conical defect to the bolt that allows to consider
topological stars of astrophysical size. A conical defect is not considered as a singularity
in String Theory as long as it acts as a discrete smooth quotient on the local geometry.
Moreover, we will argue that the conical defect can be classically resolved by blowing up
Gibbons-Hawking bubbles at the poles of the bolt. This classical resolution brings to light
a richer microstructure that our spherical symmetry hypothesis has swept under the rug.

Generalized two-charge Weyl solutions. To resolve the conical defect and to build
more generic topological stars, one needs to construct multi-bubble solutions in a non-
perturbative manner and to derive the backreaction of charged bubbles on the spacetime
by solving non-linear Einstein-Maxwell equations. This is a highly non-trivial task without
the rescue of supersymmetry. However, generic topological stars must have an angular mo-
mentum, potential NUT charges along the extra dimension and multiple bubbles supported
by fluxes on the three-dimensional base space.

As a first step towards this goal, we construct the axisymmetric generalization of our
solutions by allowing multiple charged bubbles and black strings on a line using the Weyl
formalism [39]. This has been successfully applied to classify axisymmetric vacuum static
solutions of Einstein theory in four dimensions with an extra compact dimension [40-
44]. The solutions are entirely determined by two functions that solve a Laplace equation
which can be sourced by rods or point particles on a line. A generic solution consists
of Schwarzschild black strings and bubbles of nothing stacked on a line and separated
by struts, or string with negative tension, to prevent the structure from collapse. The
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(a) Black string. (b) Topological star.

Figure 1. The two types of spherically symmetric static solutions of our five-dimensional Einstein-
Maxwell theory. The solutions have a four-dimensional mass M and are supported by electromag-
netic fluxes with conserved magnetic and electric charges (Q,, Qe )-

addition of electromagnetic gauge fields leads to non-linear differential equations. We have
found closed-form solutions that exhibit a linear structure in terms of two functions that
solve the Laplace equation. We introduce five different branches of possible gauge-field
backreactions. Those branches highlight strong non-linear non-perturbative phenomenon.
We show that a generic solution for one of this branch consists of two-charge black strings
and topological stars stacked on a line. In our constructions so far, regularity requires that
the fluxes on each object have the same orientation. Therefore, the solutions are again
supported by struts instead. It is possible that another branch can solve those struts or
that one needs to add other degrees of freedom as NUT charges or angular momenta. The
role of the struts in general are to account for binding energy of the system.

Embedding in type IIB and arbitrary dimensions. Our constructions are obtained
from a bottom-up approach, however they can be directly derived from String Theory and
compared to known class of solutions. We will show that our five-dimensional solutions
can be embedded in type IIB String Theory on S!xT* by turning only the two-form
Ramond-Ramond field, C;. The electric two-form gauge field in five dimensions arises
directly from Cs while the magnetic one-form is actually made of two indistinguishable
gauge fields with equal charges but with very different UV origins: one arises from Cy
while the other arises from a non-trivial connection along the new S!. More concretely,
our solutions are D1-D5-KKm non-BPS solutions in type IIB with equal charges and with
R3xS1xS!xT* asymptotics. In that framework, our black strings solutions are a three-
charge non-rotating subclass of the generic four-charge STU black hole [45, 46], while our
topological stars are brand new smooth D1-D5-KKm solutions obtained from an analytic
continuation of the parameter space of the STU black hole. Moreover, the generalized
charged Weyl solutions we have constructed in five dimensions can be similarly embedded



in type IIB. They consist in D1-D5-KKm black holes and D1-D5-KKm smooth bubbles
stacked on a line and separated by struts. They give the first non-trivial examples of
multiple D1-D5-KKm objects deep inside the non-BPS and non-extremal regime!

Finally, the discussion is not necessarily restricted to solutions that live with four
infinite dimensions. We will construct spherically symmetric topological stars and black
strings in (D + 1)-dimensional Maxwell-Einstein theories with an electric two-form gauge
field and a magnetic (D — 3)-form gauge field. The construction works similarly by su-
perposing a S!-fibered Schwarzschild-Tangherlini solution [47] and a (D + 1)-dimensional
bubble of nothing using electromagnetic fluxes. We will pay a special attention to D = 5.
We will show that the solutions can be embedded in type IIB on T* as D1-D5 non-BPS
solutions with equal charges. In this framework, the black strings correspond to a non-
rotating two-charge subclass of Cvetic-Youm black holes [48-50] while the topological stars
are obtained from an analytic continuation of the parameter space. We will compare our
smooth solutions to the known JMaRT solutions [23]. These solutions are non-BPS smooth
solutions in type IIB with a similar topology as the topological stars. However, their regu-
larity requires more angular momenta that the Cvetic and Youm black hole can have, and
therefore, unlike topological stars, they do not live in the same regime as non-extremal
black holes. We will discuss how our solutions have bypassed this issue.

3 Topological stars and black strings in five dimensions

We consider an Einstein-Maxwell theory in five dimensions defined by the action?

! 2) , (3.2)

1 2
55 = /d5x\/—detg (22R— = ’F(m)’
K5
where k5 is the five-dimensional Einstein gravitational constant, F(™ and F(¢) are the mag-

_%‘Fw)

2

netic two-form and electric three-form field strengths respectively, g is the five-dimensional
metric, R is the Ricci scalar. The equations of motion are

1
dxF™ =0,  dxF© =0, R, =k (TW — 3 9w TJ‘) , (3.3)

where « is the Hodge star operator in five dimensions, R, is the Ricci curvature tensor
and T}, is the stress tensor of the gauge fields

m m) ¢ 1 m m) B 1 e e) af 1 e e
Ty =F( )MQF( )1/ - iguyF( )QBF( 4 B} [F( )/LaﬁF( )V - Eg,uVF( )aﬂ’YF( )

aﬁ'y}
We aim to construct spherically symmetric solutions that are asymptotic to a S! fibration
over a four-dimensional Minkowski, R®xS!. We use the spherical coordinates (r,0,¢)
and the time coordinate t to parametrize the four-dimensional spacetime while the extra
dimension is denoted by y with radius R,.

2We define the norm of a p-form F as

1 1
|.7:\2 = Egalﬁl ...g%’@" Fay...op ]:51"'5’1, where F = E}—alm% dx“* A ... ANdZP . (3.1)



3.1 The class of two-charge solutions

We consider an ansatz for the spacetime metric as:

2
dr” + 72 (d92 +sin? 9 d(bQ) . (3.4)

ds? = —fs(r) dt* + fg(r) dy® + B

We want to translate the shrinking of the y-circle as a construction constraint. For that
purpose, we exhibit a double Wick rotation symmetry for our constructions. The solutions
will be symmetric under Wick exchange of (t,y),

t,y, fs(r), fe(r)) — (it, iy, fe(r), fs(r)). (3.5)

Thus, if we initially prepare a solution with a horizon where the timelike Killing vector
0; shrinks at some loci, its symmetric counterpart solution has a spacelike Killing vector
0Oy that shrinks. Moreover, we want to turn on a magnetic charge in F (m) whose flux is
wrapping the S2. By doing so we can also consider an electric charge in F(¢) by considering
the dual form of F("™) . The spherical symmetry and the double Wick rotation symmetry
drastically constrain the field strengths to be

Q

le) — >

dr NdtAdy,  FU =Psin0doAdg. (3.6)
Thus, F(©) is sourced by a line charge @ along the y circle and F(™) is sourced by a magnetic
monopole P. One can check that we have considered proportionally dual gauge fields since
*F(©) oc FO™)_ In the vacuum limit (P = Q = 0) we have

Bubble of Nothing:  fa(r) = h(r) =1— 2, fs(r) =1, P — pim) —
r
SW Black hole x S':  fs(r)=h(r)=1--2,  fa(r)=1, FO — plm) _
r
(3.7)
We consider a superposition of the two vacuum solutions and consider®
B rs
fa(r) =1- P fs(r) = 1- . h(r) = fa(r) fs(r). (3.8)
The equations of motion (3.3) are solved by turning on the fluxes (3.6) as
3rsrB
P?+ Q% = . 3.9
=50 (3.9)

Thus, the superposition is prevented from collapse by electromagnetic fluxes with fixed
total charge. The solutions have a curvature singularity at » = 0 and two coordinate sin-
gularities at r = rg and r = rg. The first corresponds to a bolt coordinate singularity
where the y-circle degenerates while the second corresponds to a horizon coordinate singu-
larity where the timelike Killing vector, d;, shrinks. Depending on the order, rg < rg, the
topology of the solution is very different. Before describing each type of solutions in the
class, we first discuss their main characteristics from a four-dimensional perspective after
compactification along y.

3Bubbles and black strings of these solutions were also studied in [34].



3.2 Reduction to four dimensions

We keep the minimal number of ingredients for the Kaluza-Klein reduction along y by
turning off several degrees of freedom that are trivial for our class of solutions. Therefore,
we will not consider the gauge field that arises from the connection in five dimensions, we
will consider that F(™) has no leg on dy while F(¢) has only leg on dy,

F© = Fl© ndy, (3.10)

where Fée) is the field strength of a common electric U(1) gauge field. The five-dimensional
action (3.2) reduces to a Einstein-Maxwell-Dilaton action given by

o= [ dtov—detar (LR — 2 0000 — o |pm|? _ €T g 311
1= [ dev=detn gt - Gawore -G [F - IR ). e

where the gravitational and the electric couplings are

2= 5 2= 1 (3.12)
* 7 27R,’ - 27R, ’
In this framework, the solutions are given by
i 2 7.2
ds? = (1“3)2 - <1TS> di® + rdr + 12 (d6? + sin® 0.d?) |,
r r (r—rs)(r—rgp)
) (3.13)
624} = (1 - TB)_2 )
T
and the electric and magnetic U(1) gauge fields have the following field strengths
2
FO = Qarndg, PO Psingdonds, P +QP= O S® (3.14)
Y 72 2K%

From a four-dimensional perspective, the solutions have an electric charge and a magnetic
charge. The conserved quantities in four dimensions, as the ADM mass, M, the electric
and the magnetic charges, Q. and @Q,,, are given, following the conventions of [51], by

2m P 3rgr
M= —@2rs+rB), Qm = —, Q.= 2 P?=qQ2+Q* =P (315)
H4 € (& 254

We have then constructed a three-parameter family of two-charge solutions. It is worth for
what will follow to express the initial parameters according to the asymptotic quantities
and we obtain two pairs (rg, rg) for given (M, Q):

(1) _ K (1) _ ki
rd = - Mya], Y = DMt My, )
8 47 2 2 8mQ
ME = M2 — . (3.16)
® _ v y), @ = - M) Vs
"s Y Al TB T g Al

Therefore, we have physical solutions only in the regime where

V3a M > 81 Q = 814/Q2, + Q2. (3.17)



As an illustration, one can compare to the two-charge Reissner-Norstrom solution. It would
be only illustrative since it is not a solution of (3.11) due to the dilaton equation of motion.
The metric and fields are given by

2 2 12 2 2 12\ !
dSQRN:—<1—K4M+/€4Q)dt2+(1—K4M+R4Q> dr® +r2d03

2 2
4t r 2r 4t r 2r (3.18)
F{9 = %dr/\dt, F = Psinfdd Andp, P>+ Q> = 2 Q2.
r
The two horizons are then at
K2 M £ \/kIM?2 — 327202
rBN = 4 \/ 48 , kaM > 427 Q. (3.19)
T

The range of our class of solutions is larger than the Reissner-Norstrém as implied by the
cosmic censorship bound.

3.3 Topological star

We now describe in details the different types of solutions contained in the class (3.4)

and (3.6) with (3.8) and (3.9). We first assume that rg > rg. Thus, the outermost

coordinate singularity corresponds to r = rg where the y-circle shrinks to zero size forming

an end to spacetime. The horizon and the singularity are not part of the spacetime. The

solutions are smooth geometries provided that the metric is regular at » = rg where the

y-circle shrinks.* The region near r = rp is best described by the local radial direction
4(r—rp)

2 _
=8 3.20
p eam—— (3.20)

and taking the limit p — 0. The five-dimensional metric (3.4) with (3.8) converges to

BT dt® + 7”123 dp2 + B 737“8

p? dy* + d6? + sin? 6 dp? | . (3.21)
B 4ry

ds? ~ —

The (6, ¢)-subspace describes a round S? of radius rg while the (p, y)-subspace corresponds
to a smooth origin of R? if
47“}33

R =_"B_
B —1TS

2 (3.22)

With this condition, the topology at the coordinate singularity corresponds to a bolt, a
smooth S? bubble sitting at an origin of a R%2. One needs to also check the regularity of the
gauge fields at this locus. The regularity is satisfied if the components along the shrinking
circle, dy, vanishes as p — 0. Therefore, the magnetic field is straightforwardly regular and
the electric gauge field goes to a constant value that can be gauged away as p — 0. Both
gauge fields are then regular.

“The regularity outside the coordinate singularity, as the absence of closed timelike curves or the de-
generacy of the ¢-circle at # = 0 and m, is fairly straightforward from the form of the metric and gauge
fields.
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Figure 2. Penrose diagram of a topological star.

Thus, we have constructed a solution that caps off smoothly before the horizon as a
bolt supported by electromagnetic fluxes. The geometry is depicted by the Penrose diagram
figure 2. It has the same structure as a S' fibration over a four-dimensional Minkowski
spacetime but the time slices end smoothly at r = rg as a R?xS2.

In four dimensions the mass, the electric and magnetic charges are given by (3.15).
The four-dimensional metric (3.13) has a curvature singularity at » = rg due to the dilaton
blowing there. In this region, one must use the five-dimensional theory to describe the
solutions.

The solutions can be characterized by the asymptotic data (R,, M, Q). This will be
useful when we study the phase space of objects for fixed mass and charges (M, Q). For the
topological star, the regularity condition for the smooth shrinking of the y-circle, (3.22),

47“123)
re =rg |l — —=>|. (3.23)
( Ry

can be recast as

Since rg and rg must have the same sign in order to have physical charges (3.9), this gives
a significant bound to the size of the bubble

2

rg < Ay (3.24)
4

Therefore, the topological star is at best the size of the extra dimension. To have an
astrophysical bubble, one needs to have a large extra dimension which is incompatible with
the real world physics. Our “topological star” appellation is in that sense too optimistic and
should be replaced by “topological particle”. However, if we assume that the local metric
around the bubble has a conical defect and has the topology of a smooth Zj quotient over

R2xS2, the constraint (3.22) transforms to

4r3 472
R B o g1 - 2B 3.25
T P— 'S =B < K R2 (8.25)

Taking k to be large allows for the construction of astrophysical bubbles with a size much
larger than the extra dimensions.

~10 -



The orbifold parameter has important implication onto the classical degrees of freedom
that can make topological stars. Indeed, within string theory, spacetimes with conical
singularities can be smoothed, and often describe localized objects. An interesting question
is if we can make sense of this singularity with the context of Einstein-Maxwell theory, and
as interestingly if we can provide physical interpretation for their presences. We will make
the observation that the conical defect is induced by KK monopole charges at the poles
of the bolt and discuss the possibility of blowing up those monopoles into smooth small
bubbles.

3.3.1 Conical defect and geometric transition

In this section, we show that the conical defect arises as two Kaluza-Klein monopoles of
charge k£ and —k at the north and south poles of the bolt, # = 0 and 7, and that each
one can be replaced by k — 1 smooth bubbles without conical defects. More precisely, the
spherical coordinates around the North and South poles are given by

rg —rg — (rg +rg — 2r) cosé

PN = 72@/ (2r —rg—rg — (rg —rg) cosB), cosvy = R, 5 ,
PN
R —rg — — 2r) cos
ps = 7@, (2r —rg — 13 + (rp — 1) cosf), cos¥g = R, 25 (TB2:STS r) cosb

The time slices of the metric at the vicinity of the poles, py/g — 0, are

k

lds? ~ = (dp?v + % (dﬁ?\; + sin? ﬁNdx2>) 4N (2dp + k(cos Uy — 1) dx)?,
pN—0 k

PN (3.26)

k
tds} ~ = (dpk + p} (d0 +sin? Ugdx?) ) + %S (2dy — k(cos Oy + 1) dy)?,

ps—0 pg

where we have also defined

Yy ¥ B —1Ts
2 = zor=2, /25 3.27
© R, X =0+ - (3.27)

The local metrics are then in the class of Gibbons-Hawking spaces [52].> They are Hyper-

Kihler spaces described as a S! fibration over a flat three-dimensional base with lattice of
periodicities ¥ — ¥ + 47 and (¢, ¥) — (¢, ¢) + (27, 27), given by

dstyg =V [dpz + p?(di? + sin? ﬁdqﬁ?)} + V7 dp+ A2, x3dsA = edsV, e=+1,

where ¢ = 1 for the north pole and ¢ = —1 for the south pole. This difference of sign
corresponds to the sign of the KK charge with respect to the orientation of the base.
For both local metrics (3.26), the Gibbons-Hawking space is sourced by a single Gibbons-
Hawking center of charge ek giving R*/Z;. It is well-know that such space can have a
geometric transition to k centers of charge € as follows

k
1

V= ; szfj (3.28)
P i—1 Pi

5This transformation was motivated by a similar that was used to understand geometric descriptions of
punctures in class S field theory constructions [53, 54].
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Figure 3. Schematic description of a generic topological star.

where p; defines the distance to the i'" center. The new metric looks like R* at each
center, R3xS! in between and the space is now free from conical defect. The new geometry
defines k — 1 new bubbles. We assume that these new bubbles exist in a limit where their
characteristic size, r,g, is much smaller than the original bubble of size rg. The space far
away from these bubbles but very close to the poles of the bolt will be still given by V' ~ %
and the original bubble will look like a bolt with conical defect k. However, as soon as we
get very close to the poles of the bolt the structure of the small bubbles will be manifest
and will resolve the conical defect.

From that aspect, a generic topological-star geometry is made of two different scales
as depicted in figure 3. We have a large scale rg corresponding to the size of the large S?
bubble of order kR, and a small scale r,g < rp corresponding to the scale for which the
small bubbles at the poles make the geometry entirely smooth.

Note that we were a bit too fast in our argumentation since the local metrics at the
poles (3.26) are not strictly speaking in the class of Gibbons-Hawking space. The issue is
coming from the periodicity of x (3.27) which is not 27 but 27/k. This has to be understood
as an artifact of taking a spherically symmetric probe limit for the muti-bubble system.
First, in order to grow the additional Gibbons-Hawking bubbles we will need to turn on
NUT charge along the y-circle which will break the spherical symmetry and change the
periodicity constraints of the various circles. Such monopoles will also add additional
asymptotic charges that can provide further macroscopic data to characterize topological
stars. The analysis of the spherically symmetric system then suggests a larger phase space
of smooth classical solutions. To move towards a complete derivation of these solutions,
we should consider more general ansatz without spherical symmetry and allowing NUT
charges along y. In section 4, we will take the first step and consider axially symmetric
systems of multi-bubble geometries.

3.4 Black string

When rg > rp, the locus where the timelike Killing vector 9y vanishes is now part of the
spacetime. This degeneracy highlights an event horizon and the geometries correspond to
black objects. We will see that for rq > rp, the solutions are non-extremal black strings
and that for s = rpg, they correspond to extremal black strings.
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3.4.1 The non-extremal two-charge black string
If rg > rg, the first coordinate singularity is a horizon at » = rg. The topology of the

horizon can be made manifest by considering the local metric with the radial direction

4(7‘ — T‘S)

2 2

_— 2
rs —TB s (3 9)

p

and taking p — 0. The five-dimensional metric (3.4) with (3.8) leads to

ds? ~ =SB 24> 4 dp? + 12 (46 + sin? 9 dg? ) + T8 g2 (3.30)
4rg s

The horizon has a S2xS! topology and the radii of the S? and S! are rg and %Ry
respectively. The Bekenstein-Hawking entropy gives

2
S = SLZ Tg (r¢s —rp). (3.31)
Ky

We have then defined a two-charge non-extremal black string that reduces to a two-charge
non-extremal black hole in four dimensions given by (3.13) and (3.14), with mass and
charges (3.15). For more details on the thermodynamic properties, we refer to the exhaus-
tive analysis [46] where a class of four-dimensional black holes has been studied in which
our black string solutions are contained.

Unlike the topological star, the second coordinate singularity is part of the full space-
time and is in the interior of the black string. Rigorously, one should consider the Kruskal
coordinates to extend the metric in the whole interior. However, the local metric at » = rg
will look the same as if we directly consider the spherical coordinate (r, 6, ¢) which we will
do. We therefore consider the coordinate

2= dr=rs) (3.32)

s —7TB

and the metric (3.4) behaves when p — 0 as

ds? ~ ISTTB g2 4 rg | —dp® + w pAdy* 4+ dQ3| . (3.33)

B 4’r‘B
The spacelike Killing vector 9, shrinks, thereby defining a S? bubble behind the horizon.
However, because r is the timelike direction beyond the horizon, the (p,y)-subspace does
not correspond to a R? as for the topological star but describes a quotient of R by a boost.

We consider again the 2m-periodic angle ¢ as y = ¢ R, and perform the transformation

= —pcosh(vy), R = —psinh (yyp), 72 = TS4;3TB Rz. (3.34)
B

The two-dimensional metric transforms to

s —TB
3
dry

—dp? + pdy? = —dT? + dR?. (3.35)
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Figure 4. Penrose diagram of the black string.

From the expressions of 7" and R, the (p, ¢)-subspace describes only a lower cone in the two-
dimensional (7', R) Minkowski space. The apex of the cone corresponds to the coordinate
singularity where the y-circle shrinks. The extension to negative values of p defines the
upper cone connected at the apex. The two cones form the Milne region of a Misner space
defined as the quotient of R%! by the boost v [36, 55]. Milne space are smooth and free
from closed timelike curves. It is well studied in cosmology as a smooth transition from a
Big Crunch to a Big Bang [38]. It is not surprising to find such a topology for the black
string solutions. In the interior, r is the time line and r = rp can be then compared to a
Big Crunch inside the black string due to the degeneracy of the y-circle. The fact that the
Milne space can be extended to the other part of the cone as a Big Bang could describes a
new class of possible wormholes, and deserves further study. However, it should be noted
that geodesics that have momentum along ¥y or string probe along y are singular at this
location, which could make the traversability analysis subtle [37, 56]. The wormholes would
be at best stable for probes with energies bellow the KK scales of the external spacetime.

The causal structure of the spacetime is depicted by the Penrose diagram figure 4.
Even if it is not clear how the different regions maybe connected when crossing the bubble,
the black-hole singularity has been hidden by a S? bubble at the origin of a Milne space
without curvature singularity.

3.4.2 The extremal two-charge black string

We now study the last type of solutions obtained when rg = rg = m. The five-dimensional
solution (3.4) with (3.8) and (3.9) is now given by

-1 2

ds? = <1 4 7;) (_dt2 T dy2> i <1 1 ’Z) [dpQ + p2d02, (3.36)
Q AN 3m?

Fl) = X4 (1+) ANdtNdy,  F™ =Psingddndy, PP+Q*="—,
m P 2KE

where we have defined the isotropic coordinate p = r — m. We recognize a two-charge
extremal black string. At p = 0, both 9, and J; Killing vectors degenerate defining an
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AdS3xS? near-horizon geometry. Considering p = 4m?p? and taking the limit p — 0,

we have )
d5
ds? ~ 4m? _—pz

+ 7% (—dt* + dy?) | + m?dO3. (3.37)

The radius of AdS3 and S? are 2m and m respectively. Due to the degeneracy of the y
circle, the horizon area vanishes and the black string does not have a macroscopic horizon.
Those solutions are well-understood as D1-D5-KKm extremal black holes when embedded
in type IIB string theory as we will discuss in section 5.

3.5 Phase space

The class of spherically symmetric solutions contains two types of solutions: the smooth
topological stars of section 3.3, the black strings of section 3.4. Upon Kaluza-Klein reduc-
tion, they correspond to four-dimensional solutions as discussed in section 3.2 with mass
M and electric and magnetic charges (Q., @y,) given by (3.15). In this section, we aim to
describe the phase space of solutions for given asymptotic quantities. In addition to the
four-dimensional mass and charges, one must also consider R, as a fixed quantity. If R, is
free for the black string, it constrains the topological stars as in (3.22) or (3.25). Moreover,
the electromagnetic duality induces a degree of freedom between the magnetic and electric
charge, and only the “total” charge, Q = \/Q% + @2, (3.15), is fixed.

Let us first consider the different regimes for given (M, Q). This phase space is depicted
in figure 5. By inverting the expressions of M and Q (3.15), we obtain two solutions of
(rg,rB) given by (3.16).

o For /3rkys M < 81 Q.
In this regime, the solutions (’I"éi),rg))i:LQ (3.16) are not real. Therefore, the cor-
responding solutions are unphysical and no solutions in our class exist. This corre-
sponds to the regime (1) in figure 5.

. FOT%QS Ky M < 2¢/67 Q.
(@ .4 (@) (@)

In this regime, both solutions (rq’,rg’)i=12 are real and ry’ < rg’. Therefore, they
correspond to topological stars. However, if we consider R, fixed and if we allow for

a conical defect (3.25), we have an extra quantization constraint for each solution:

3
3kaM + /(BraM)? — 19272Q2)?
O — ( )1 €7y, (3.38)

3\/€7TRy (H4M + \/(3&4/\/1)2 — 1927I-2QQ>§

|

3kaM — /(3kgM)2 — 1927202
K = (3 — VR ) €Z,. (3.39)

BﬁﬂRy (I‘MM . \/(3/€4M)2 — 1927I-2QQ>§

Therefore, this regime of mass and charges, depicted by the region (2) in figure 5,
should not be considered as a continuum of bubble solutions but as two discrete
lattices of solutions for which each node corresponds to a topological star with a
specific orbifold parameter.
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Figure 5. Phase space of spherically symmetric solutions. “T'S”, “BH” or “RN” stand for the topo-
logical star of section 3.3, the black string of section 3.4 and the magnetic Reissner-Nordstrém (3.18)
respectively. The graph should be read as “1 TS or 1 BH”= one topological star solution and one
black string solution for the same (M, Q).

o For 2\/671’ Q< gy M.

When approaching the line 2¢/6m Q = k4 M from the region (2), the second topolog-
ical star has rg) — r](32). On the line, the solution then becomes the extremal black
string of section 3.4.2. Therefore, in the regime 2v/6m Q < k4 M, depicted by the
regions (3) and (4) in figure 5, the first solution corresponds to a topological star
while the second corresponds to a black string. Once again, the topological stars
exist on a lattice given by the quantization (3.38). On this lattice, both topological
stars and black strings exist for the same mass and charges. Moreover, from the
expressions (3.16), we have

7"](31) = 2ré2), (3.40)

and therefore the spacetime caps off for the topological star at a distance twice larger
than where the horizon of its corresponding black string is. The topological star has
a S? topology while the black string has a S?xS! topology in five dimensions which
renders the comparison of size subtle. However, one can still compare the size of the
S2. In that sense, the size of the topological star is also twice bigger than the size of
the black string.

The region (4) in figure 5 corresponds to the domain of validity of the two-charge
Reissner-Nordstrom in four dimensions (3.18). We remind that such a solution is not
a solution of our theory (3.11) and should be considered as an illustrative comparison
with usual GR objects. In this regime, topological stars, black strings and Reissner-
Nordstrom exist for the same mass and charges. From a four-dimensional perspective,
one can compare the size of the black string solution with the Reissner-Nordstrém,
which means to compare the radius of the S? at the horizons. We essentially find that
the size matches when M > Q and the difference is maximal when k4 M ~ 4v/271Q
where the size of the Reissner-Nordstrom is twice smaller than the black string.

The take-away message in the context of black hole microstates is that, even if we re-
strict to spherically symmetric solutions, we have smooth five-dimensional bubble solutions
that have the same charge and mass as the non-extremal four-dimensional black holes. It
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might be appropriate to interpret this solution as a microstate of the thermal ensemble
given by the Bekenstein-Hawking entropy. It is already surprising that such a state can be
built with spherical symmetry. Moreover, because the topological star is twice as large as
the size of its corresponding black hole, it is a rather atypical state. This is a common story
for microstate geometries. Having solutions that scale very close to the horizon requires to
consider multi-bubble solutions, that is, to break the spherical symmetry.

4 Generalized two-charge Weyl solutions in five dimensions

In the previous section, smooth solutions that follow the spirit of microstate geometries
have been constructed with the minimum complexity, that is within a class of spherically
symmetric solutions of Einstein-Maxwell theory in five dimensions. We aim to extend to
more typical bubbling geometries in the same theory where the solutions can have multiple
sources in the three-dimensional base space, angular momentum, NUT charges along ¢ and
momentum along y. Such solutions will follow the most general ansatz

ds? = —fs(dt +wdp)® + fu (dy + Aydt + Ay dp) + hy dr? + hg 6 + hy d¢?

4.1
F = dH Ndg,  F©) = d[Z(dt +wde) A (dy + Ardt + Agdo)]. 1)

It will be also very interesting to add Chern-Simons terms to the Maxwell-Einstein theory
which will give non-trivial contribution with this present ansatz and which is known to be
important for constructing microstructure at the vicinity of the would-be horizon [8].

The price to pay for this ansatz will be to have highly non-linear equations of motion
for which closed-form solutions might be very complicated to find. Instead of jumping
directly into the fire, we will allow one degree of complication at a time and try to see if
closed-form solutions can be derived.

In section 3.3.1, we have seen the importance of blowing up Gibbons-Hawking bubbles
at the poles of the spherically symmetric topological stars in order to give them a macro-
scopic size and to classically resolve their conical defect. This requires to consider at least
axisymmetric bubble configurations and additional NUT charges. As a first step, we will
apply the well-known Weyl formalism [39] which will allow to find axisymmetric solutions
that are asymptotic to four-dimensional flat spacetime times an extra compact dimension.

The Weyl formalism has been very successful to test the uniqueness theorem in four-
dimensional Einstein theory (see [57] for a short review). We can cite the Israel-Khan
solutions [58, 59] which consist in a chain of Schwarzschild black holes that are either
supported from collapse by struts, that are strings of negative tension, or by the fact that
the chain is made of a succession of positive-mass and negative-mass objects. The rotating
generalization has been initiated by Kramer and Neugebauer [60] who found the solutions
corresponding to a superposition of two Kerr black holes supported by struts. However,
they can be balanced by the spin-spin interaction when their horizons touch. Generalization
to multi-parameter solutions of two Kerr-NUTs can be found in [61] and references thereof.
Ernst’s extensions to four-dimensional solutions with a U(1) gauge field are in [62, 63].

The extension to vacuum multi-body solutions in five dimensions for which one di-
mension is an internal compact circle has been done in [40-44]. The much richer nature of
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gravity with extra dimensions has highlighted a larger diversity of solutions. Depending if
we source along the time direction or along the y direction we have either black string cen-
ters or bubble-of-nothing centers respectively. As in four dimensions, all solutions require
struts between the objects to prevent from its collapse.

We can consider generalizations of our construction for multi-body solutions using
the Weyl formalism. The difference with vacuum solutions [40-44] is that the addition of
electric and magnetic gauge fields makes the equations of motion non-linear. Nonetheless
we can solve them and generalize the single-body solutions of the previous section into a
class of multi-body solutions made of two-charge black strings and topological stars on an
axis. This class of charged solutions is novel and has a very large phase space due to the
non-trivial possibilities from the backreactions of the gauge fields.

As in vacuum, the solutions will be given according to two functions that solve a
Laplace equation, but the interaction with the gauge fields makes the functions appear in
the metric in non-perturbative and highly non-trivial ways. The functions can be sourced
on the z-axis by rod sources, point sources etc. We will treat only the solutions of rod
sources with a specific type of gauge-field backreaction. For these specific examples, the
solutions admit struts between the centers as for vacuum solutions, but it is possible that
different type of sources and gauge-field configurations might resolve this issue. Moreover,
we also expect that the addition of angular momentum or NUT charges allowing Gibbons-
Hawking type of sources will also decrease the needs of struts to sustain the geometry. This
will be the subject of further study.

4.1 Ansatz and equations

We consider axisymmetric solutions of the five-dimensional Einstein-Maxwell theory (3.2).

The ansatz of metric and field strengths in the Weyl form are
ds? = —fs(p,2) dt* + fu(p, 2) dy? + h(p, 2) [e* ) (dp? + dz2) + p?dg?] (4.2)
F™ = dH(p,z) Ndp,  F© = dZ(p,z) ANdt Ndy, '

where (p, z,¢) are the cylindrical coordinates of the three-dimensional base space and
(fs, fB, h,v) are scalars that are functions of p and z and that must solve the Maxwell and
Einstein equations (3.3). We define the Laplace operator on the three-dimensional base as

1
EE;@WM+£. (4.3)

The derivations of the equations of motion are given in the appendix A. The equations
of motion simplify greatly with the field redefinition

Vip,z) = pVisfsh, Woulp.z) = \/;E, War(p, z) =

The solutions are then given by

1
Visfs’

vV =19+ VGE-

ds®> = Wg [—WO dt® + W' dyﬂ + W (‘;)2 [eQ(”fJ*”GF) (dp2 + sz) + p%qﬂ ,

F'™ = dH(p,z) Ndp,  F© = dZ(p,z) AdtAdy. (4.4)
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This redefinition is appropriate to pair the scalars into physically meaningful quantities.
As we will see, the pair (W, 1) will be completely independent of the gauge fields, they
correspond to the purely “massive” warp factors and will be governed by the same equations
as in vacuum. The pair (Wgp,vgr) corresponds to the gauge-field contribution, that is
why we use the index “GF” as gauge field. They will be non-trivially sourced by and
coupled with H and Z. Note that the dependence on the gauge fields appears as an overall
warp factor along the (¢,y) direction. Moreover, the redefinition makes the double Wick

rotation symmetry manifest since the class of solutions is symmetric under
(t,y,Wo) — (iy,it,Wg ). (4.5)

Before listing the equations, we use electromagnetic duality to fix Z according to H
by imposing x5 F(©) o F(™) to obtain

dZ = —= — ¥y dH. (4.6)

The parameter q represents a charge ratio between the total electric and magnetic charges,
and xy corresponds to the Hodge star operator on the flat (p, z)-subspace.
We decompose the equations of motion into four distinct layers:

e The zeroth layer.
The zeroth layer fixes the potential V' as

RV + 92V = 0. (4.7)

e The mass layer.
The “mass” layer corresponds to the equation that governs the purely massive warp

factor,
0, (V 0,logWy) + 0. (V 0,logWy) = 0. (4.8)

e The Maxwell layer.
The “Maxwell” layer corresponds to the equations of motion for the gauge fields and
their backreaction on the spacetime

1 1
9, (VWGFa H> + 0. (VW(Q;FE)ZH> =0, (4.9)

2(1+ ¢°)r?

VWC%F [ap (Vap log War) + 0. (V 0. log WGF)] = - 3

[CRZSSCRIME

e The base layer.
The base layer corresponds to simple integral equations for the last scalars (vy, vgr).
They are non-trivially sourced by the other fields and fix the nature of the three-

dimensional base,
d,logV d,v + 9. logV Ay = SO (V, W),
OplogV 0pvy — 0. logV 0,1y = S;()O) (V, W),
plog V d.vgr + 0:logV dpvgr = S (V, Wer) |

OplogV dpvar — 0:logV O.vgr = SS°F) (V, War),

where the explicit forms of the source functions are given in (A.22).

(4.10)
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We see that one can solve the equations almost linearly layer by layer. Except for the
non-linear coupled Maxwell layer, the other equations can be solved one by one as linear
partial differential equations.

4.2 The class of axisymmetric solutions

The zeroth layer of equation is an irrelevant constraint that can be fixed by coordinate
transformation, usually referred as “Weyl’s canonical coordinates” (see [41] for all the
details of this transformation). In other words, one can consider without restriction that

vV =np. (4.11)

The Weyl’s canonical coordinates have the benefit to transform the equations for the
warp factors to Laplace equations in the three-dimensional base. The mass layer can be
solved with purely mass sources,

E(log Wo) = 0, (4.12)

where L is the Laplace operator (4.3). This equation has well-known solutions for rod
sources or point sources [41, 57, 58].

The complications arise when solving the Maxwell layer since the presence of gauge
field makes the Maxwell equation and the Laplace equation for log Wap to be two coupled
non-linear partial differential equations. To find closed-form solutions we split the Maxwell
equation in two pieces that will be taken to be zero,

1
P9, <apH) +92H = 0, 1 1
,W29,H + . WS20.H = 0 pHGr pWar

pP'Y GF ¥p zVVYGF Yz - )

This is the only assumption we make to solve the system of equations. This is motivated
by how the spherically symmetric solutions in section 3.1 solve the system.

The solutions of the Maxwell layer with fluxes turned on are given by an arbitrary
function K (p, z) that solves the following Laplace equation

1
L < @K) =0. (4.14)
P
See the appendix A.4 for details. The fields are given as®
cosh? (9 0,K + b) 3
Wép = — 4 H= |-+"%5—50K b)eC. (4.15
GF a2 ) 2(1+q2)/€§ ) (a7 )E ( )

Vacuum solutions with the fluxes turned off are also given in terms of a function K that
satisfy (4.14), but the fields would take the much simpler form

1
Wép = exp L} 8,,K} , H =0. (4.16)

At first glance, we have an integration freedom K — K + f(z) that does not change the nature of
p~'0,K but changes the gauge field given by H. This integration freedom f(z) must be actually fixed such
that pd, (%apK) + 02K = 0, which can always be found from solutions satisfying (4.14). See appendix A.4
for more details.
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We observe that the addition of the gauge fields keeps the same structure of sources as
with vacuum solutions, but they change the metric in a non-perturbative way. The free
parameters (a,b) in (4.15) are complex. We then find five possible branches of backreactions
with real coefficients that fix War,

sinh(az + b)\? cosh(az + b)\?
Rie) = (R ) < - (SHEEDY R < @2,
. 2 2
F3(z) = (Sm(azm) . Fy(x) = (W) : (a,b) € R,  (4.17)
and we can take
WCQ;F = FI(P_lapK)a
for arbitrary I = 1,...,5. In this paper, we will only analyze the branch of solutions

given by F} since it is the direct generalization of the single-center solutions in section 3.1.
However, the other branch might also give interesting class of solutions. For instance, the
branch given by F, has the benefit to have no potential zeroes to avoid for Wgp, but
it gives solutions with (—, —, —, —, —) signature since it requires (Wgp, Wy) € iR. The
branch given by Fjy is also interesting since Wgr is a linear function of the solution of
Laplace equation. It corresponds to a kind of “extremal” branch, and as we will see the
base layer is not affected by the gauge fields for this branch.

The base layer (4.10) also drastically simplifies considering that V' = p. The equations
for vy are the usual equations for vacuum solutions and we know how to integrate them
when log Wy solves Laplace equation with rod sources or point sources,

Dvp = gap log Wod, log Wy, D, = g [(ap log Wo)? — (8, log Wo)ﬂ . (4.18)

The equations for vgp has the same form after replacing log Wy by p~19,K, but the
coefficients differ depending on which Fy is taken,’

Se 29, (L0,K) 0. (19,K) if I=1,2,
O.var = § =220, (L0,K) 0. (19,K)  if =34, (4.19)
0 it 1=5,
foe [(8,, (L9,K))" ~ (o (;apK))Z} it T=1,2,
ovar = -2 (9, (30,K))" - (0. (30,))°| it 1=3a, (420
0 it I=5.

"If we take the generic solutions (4.15) with complex parameters (a, b), one would obtain

3a

2 2 2 2
e 1 _sap 1 (o (1
220, (L) (o). w222 [ (o (o)) - (o (30)) |

anGF =
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The base layer is therefore simple to integrate and depends to what type of sources have
been considered for (log Wy, p~10,K).

Summary. We have defined a class of axisymmetric two-charge solutions of the five-
dimensional Einstein-Maxwell theory (3.2) in a closed form. The metric and gauge fields
are given by

ds® = Wg} [—WO dt? + Wyt dyﬂ + W {62(”0+VGF) (alp2 + sz) + p2d¢2] ,
(4.21)

F™ = qH Adg,  F© = xo dH NdtAdy.

2
GF

The solutions are determined by two arbitrary functions that solve a Laplace equation on
the three-dimensional base

L (logWy) = 0, L (; 8PK) =0, with £ = ;8p (p0,) + 02. (4.22)

The scalars (Wgp, H) are given by

1 3
Wi, = F (a K) H=,—"——0.K, 4.23
GF = T 2(1 + ¢2)r2 (4.23)

where F7 is one of the five generating functions of one variable given by two real parame-
ters (4.17). The base scalars (v, vgr) are obtained by integrating (4.18) and (4.20). These
integrals must be treated in a case-by-case manner depending on the type of sources cho-

sen for log Wy and p_lﬁpK . In the next section, we will study solutions obtained from rod
sources using F}.

4.3 Multiple topological stars and black strings on a line

We consider sources for log Wy and %OPK that are given by n distinct rods of length M;
along the z-axis centered around z = a;. Without lost generality we can order them as
a; < aj for i < j (see figure 6 below). The coordinates of the endpoints of the rods on the
z-axis are given by

F=ax = (4.24)

We define the distances to the endpoints rgi) and the distances Rg) as

. 2 . . )
TSZ) = \/p2 + (z — zli) , Ri) = T‘Sf) +r9 4 M; . (4.25)

The harmonic functions associated to such sources are

log Wy = Z G log % , -0,K = Z P; log % , (4.26)
i=1 R P i=1 R
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and we take the branch of solutions (4.23) with I = 1. The metric warp factors and the
gauge fields (4.21) are then given by

. G;
V3 N (0,0 1y (B
1 e ) IS

R() aPi () aPi

1 L ! o [ RY

WGF:? ebH(g) —ebH( )
a i=1 - i=1

RY RY

(4.27)

One can check from the form of H that the magnetic field strength F(™ = dH A d¢ is
indeed sourced by magnetic monopoles on each rod and then that its electric dual F(©) is
sourced by electric charges along the y-circle. It is manifest using the spherical coordinates
(75,05, @) around the i*" rod as follows

2r; = 7‘5:) +r® M; M; cosb; = rgf) — , (4.28)

and F(™ has the usual form for a magnetic monopole around the i*" rod

V3
V2(1+¢%) ks

Therefore, our multi-rod solutions are indeed the multi-body generalization of the single-

F) o~ (P; M; sin6; + cst)df; Adg. (4.29)

center two-charge solutions described in section 3.1.
Moreover, the solutions are invariant under the following transformations

(M;, P;,Gi) — (—=M;,—P;,—G;) Vi and (t,y,a)— (iy,it,—a). (4.30)

We can then fix without loss of generality that a > 0 and M; > 0 Vi. We now need to
integrate the base layer (4.18) and (4.20) to get (v, vgr). We define for that purpose

E(ili) = rg)rg) + (z - zi) (z — zji) +p?, (4.31)

)

and the generating functions v;;,

vij = logﬁ. (4.32)
B\ gl
The base layer (4.18) and (4.20) gives
3a? & 1 &
VGF = T Z PiP; vij, W =g Z GiGjvij . (4.33)
i,j=1 tj=1

We have constructed a family of solutions given by 4n + 2 parameters (M;, G;, P;, a;, a,b).
We now have to study the regularity of the solutions that constrains the parameter space.
The potential constraints arise from coordinate singularities on the z-axis, regularity of the
spacetime elsewhere and from conditions on the asymptotics. We discuss in greater details
the regularity analysis in the appendix A.5. As a summary, we found that
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« The solutions must be asymptotic to R13xS! at large p or/and z and regular every-
where out of the z-axis. This requires

a = sinhb, P, >0. (4.34)

Note that this implies that all the charges have the same sign. It comes from the
requirement that Wap (4.27) does not change sign. Having taken Wgrp to be a sinh
of p_lapK induces many zeroes around two rods of different sign of charges. If we
would have considered Wgr as a cosh using Fh (4.17), we would have been able to
consider rods with different sign of charges but it would have led to issue with the
signature of the solutions. Because all the charges have the same sign, we cannot use
the gauge fields to make the rods to repulse each other or to have a neutral system
from far away.

e At each rod where G; < 0, the timelike Killing vector 9, shrinks and the rod corre-
sponds to a regular S?xS! horizon of the black string discussed in section 3.4 if

1 1
Gi= - = . (4.35)

Its four-dimensional ADM mass, M, electric charge, Qg), and magnetic charge,
Qﬁ,ﬁ), are given by

. M; . 3¢° M2
MO = T 3 eothb+1 0% _ : 1.36
K4 (3o ) Qe = Q) 8(1+q ) k3 sinh?b (4.36)

The presence of a black-string rod induces a temperature to the whole solution which
can be derived by regularity of the Euclidean version of the metric. We find that

372Gj

on2 M2 e _ )\ sl —3
oo M (52 , (437
sin —

gA N7 T

£ is given in (4.24) and d; corresponds

where the z-coordinate of the rod endpoints, z z5

to the following product of aspect ratios

L 34+4G; Gy,
z, — 2 )2y —z; 4
(Ek ])(k J)> when:=2,...n

(4.38)
« At each rod where G; > 0, the spacelike Killing vector J, shrinks and the rod corre-

sponds to a degeneracy of the y-circle if

1 1
Gi = = P = . 4.39
‘ ‘ 2sinh b ( )
As for the single-center solutions of section 3.3, this degeneracy corresponds to

R2/Zy, x S% with k; € Z., if

3+2Gj
M2 e3b 2 ] _ Zz sign(j—i) —
R? = d . 4.40
Y 2 k2 smh3 Jl_[?éz ]_ Z; ( )
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The rod corresponds to a bolt, that is a S bubble similar to the single-center topolog-
ical star depicted in section 3.3. However, the S? is now warped due to the presence
of the other sources as detailed in the appendix A.5.2. Its four-dimensional ADM
mass, M electric charge, Qg), and magnetic charge, Q%), are given by

2 2
i = ™Mi g otnp -1 02 _ 2oi? - __34 M; 4.41
M K3 (3co ), Qe ¢ @ 8(1 + ¢2) K2 sinh?b (4.41)

e On the z-axis in between the rods, the ¢-circle shrinks as the usual cylindrical coordi-
nate degeneracy. To be smooth at those loci, the time slices of the spacetime should
be locally R3xS!'. We showed in the appendix A.5.2 that this condition is guaranteed
if di = 1foralli=1,...,n. However, the arguments in the product of d; (4.38)
are necessarly smaller than one and the powers, %, are necessarly positive.®
Therefore, the solutions are forced to have conical excesses on the segments between
the rods given by n — 1 rational numbers 0 < d; < 1 for ¢ = 2,...,n. Those conical
excesses correspond to struts or strings with negative tension that are necessary to

prevent the rods from collapse.

To conclude, the parameters are strongly constrained by regularity such that

1 €

— <inh P = R 4.42
a = sinhb, i Ssinhb’ G; 9 ( )

where ¢; = 41 is a sign lattice determining the nature of the i*" rod: for ¢; = 1 the rod
corresponds to a topological star while for ¢, = —1 the rod corresponds to a two-charge
black string. In the n — 1 segments in between the rods, there is a conical excess given by
the parameter 0 < d; < 1:

d=Hﬁ<(zk__Z;_)Z:_zj_)> when i =2,...n (4.43)
Z_, ' (+ ¥ '_) =2,...Nn. .

In the presence of black strings and bubbles the temperature and the radius of the y-circle
are respectively

376]'
om2 M2 ¢ +_ L\ Sl =5
72 =T e & ] { = . Vistoe = 1,
sin ik \%j T
(4.44)
ign(i—i)
M2 e3b ( L\
R? = ! d? o B , Vist. e =1.
Y 2k2 2k2 sinh®b H z; — %

From far away, the solutions are asymptotic to R13xS! and have the following con-
served charges in four dimensions

V34q >ic1 M;
M = M; (3cothb —¢;), e = m = = .
421; co €i) Q qQ 2201+ ¢@) rq sinhb

8Tt should be noted that the powers are initially assigned by 3a2Pij + G;Gy. If we were allowed to

(4.45)

have different sign of charges, these powers could be negative and therefore d; could be set to 1.
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az + % R*
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>]R3><S1 with a strut (conical excess)

ay Two-charge black string

! ¢ circle

\W R3xS!

Figure 6. Illustration of the topology on the z-axis for a solution with one black string and one
topological star. The behavior of the y-circle is depicted in red: it shrinks at the bubble rod and
have a finite size otherwise. The ¢ circle is in blue: it shrinks out of the rods and has a finite size
at the rods. The magnetic and electric fluxes are wrapped on the blue bubbles at the rods.

In figure 6, we have depicted the typical topology of multi-rod solutions by considering
an illustrative example of a two-body configuration with a topological star and a black
string. In addition to the rod profile, we have depicted the behavior of the y-circle (red)
and the ¢-circle (blue). The y-circle shrinks to zero size on the bubble rod and has finite
size elsewhere while the ¢-circle shrinks on the z-axis except on the rods.

4.3.1 A simple example

e One-rod configurations.
We can retrieve the class of single-center solutions discussed in section 3.1 by consid-
ering only one rod, n = 1, changing the parameters to

a1 = 0, M; = |rs —rg|, e = sign(rg —rg), b:Slgn(r];_rS)logrB,
TS
(4.46)
and changing the coordinates to the spherical (7,0, ¢) as
M
p = y/r(r—+ M) sin6, z = (r—|—21> cosf. (4.47)

o Two-bubble-rod configurations.
We now consider two distinct bubble rods, n = 2 and €; = e = 1, We place the origin
of the z-axis such that —a; = as = u > 0. Moreover, we assume by symmetry that
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the rods are ordered such that 0 < My < M;. The condition to have two distinct
rods translates to
O0< My + My <4u. (4.48)

The profile of the solutions is depicted in figure 7. The metric components and the
gauge fields are given by the functions in (4.27) and (4.33):

V3 @ _ 0 R() - R(”
72\/§nssinhbz(r_ *”)’ Wer= 2s1nhb bH bH

i=1

2 2

RE;) 2(vo+var)
Wozlj[l W’ 2o GF:H

= ij=1

EVIED)

TN s oo e 4-49
ES)ECD (449

The regularity conditions introduce three conical-defect parameters, dy € Q with
0 <ds <1 (4.38) and (k1,k2) € Z4 (4.44). In between the two rods on the z-axis,
the ¢-circle shrinks and the time slices of the solution correspond to the cylindrical
degeneracy of R3xS! with a conical excess

16u2 — (M, + Ms)?

do =
27 1602 — (M — My)?

(4.50)

Note that we have indeed 0 < dg < 1 for My + My < 4u. Moreover, bringing the
two bubbles closer to each other u — i(M1 + M) implies that the tension on the
strut becomes greater and greater do — 0, which is intuitive since the gravitational
attraction between the two bubbles diverges.

The regularity on the rods gives

R =
Y 2sinh®bk?

ME e <4u+M1+M2>2_ M3 e <4u—|—M1+M2)2

= ——=— (4.51)
4u 4+ My — My 2sinh” bks \4u + Mz — M

We can use u to solve the constraint from the second equality and get

(M1 — Mg)(k‘QMl + k‘lMQ)
U = . 4.52
A(ko My — k1 M>) ( )

The physicality condition (4.48) requires % k1 < ko < ki and we have defined a
family of two-bubble solutions supported by a strut parametrized by 6 parameters
(Ml, Mo, b, ky, ko, q).

For simplicity, we can also solve (4.51) by considering that the two bubbles are
identical My = My = M and k1 = ko = k. We then have a class of two interacting
topological stars very similar to the single topological star studied in section 3.3 but
with one extra parameter that we can choose to be the separation between the two
bodies, § = u — 4. We can take a similar parametrization by applying (4.46), and
each bubble is descrlbed by the same pair (rg,rg) with rg > rg. Therefore, the strut
that separates the bubbles is given by the conical excess

4(5(?”]3 —Ts-i-(s)
(TB—T8+26)2

dy = (4.53)
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Figure 7. The profile of the solutions along the z-axis. We have depicted the behavior of the
y-circle in red which shrinks on the rods and have a finite size otherwise and of the ¢-circle in blue
which has a finite size on the rods and shrinks otherwise. The electric and magnetic fluxes are
wrapped on the blue bubbles on the rods.

The ADM mass, the electric and the magnetic charge of the system are naturally
twice the ones computed for the single-bubble solutions (3.15). The radius of the
y-circle however is given by

1673 (rg — rg + 6)?
R? = B . 4.54
Y k2 (rg —rg) (rg — rg + 24)? ( )

There are many more configurations that we can think about by adding bubble or
black string rods. However, the take-away message is that with the current constructions
we cannot use the magnetic and electric charges to get rid of the struts in between the
different objects. In the next section, we briefly discuss some extrapolations that can be
used to get rid of the struts.

4.4 Going further

We would like to explore the other classes of solutions one can obtain by considering the
other branches of solutions for Wgp given by the five possible functions Fr (4.17). We can
be especially interested in the cosh branch, F5, for which succession of rods with different
sign of charges can be constructed.

Second, we can add an extra circle and consider geometries that are asymptotically
R13xT2. This does not change the underlying structure of the equations of motion. The
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ansatz can be written as follows

ds? = WC:P} [—W0W1 dt2—|—W(;1 dy§+Wf1 dy%] +Wc3;F |:62(V0+V1+VGF) (dp2+dz2> +p2d¢2} ’
(4.55)

F™) = dH(p,z) Ndo, Flo) = % xo dH Adt Adyo Adyy (4.56)
P Wi

and the equations of motion for the new pair (W7y,14) is identical to the ones for (Wy,vp)
that we have already studied (4.12) and (4.18). The only change is in the Maxwell and base
layer for (H,Wgr, vgr) for which the source parts have different coefficients. Within this
ansatz, it might be possible to alternate bubbles where the yg-circle shrinks with bubbles
where the y-circle shrinks without having connecting segments where the ¢-circle shrinks
inducing struts.

Finally, we will be interested in using Gibbons-Hawking type of sources. This will
require to add a possible NUT charge in the metric ansatz (4.21) by replacing dy? —
(dy + A(p, z) dp)?. From the resolution in four dimensions by Papapetrou [64], we hope
that the structure of the equations of motion is also not changed and their solvability
remains. By doing so, we will be able to source the solutions by Gibbons-Hawking centers.
This will allow first to resolve the conical defect of the single-bubble solutions as discussed
in section 3.3.1 and possibly remove the need for the struts.

5 Generalization to D + 1 dimensions and type IIB embedding

Our strategy so far has been a “bottom-up” approach to building ultra-compact smooth
objects that can mimic non-supersymmetric and non-extremal black holes. However, unlike
other bottom-up toy models such as gravastars [16] or boson stars [15], our class of solutions
can be easily embedded into string theory and therefore can be motivated from a UV theory.
In this section, we use a “top-down” approach and discuss how to embed our solutions
in type IIB string theory on S'xT%. We will perform the uplift of the five-dimensional
solutions and compare them to known type IIB solutions. We will show that our class
of spherically symmetric solutions that describe topological stars can be obtained from
an analytic continuation on the parameter space of specific black hole solutions in string
theory. Moreover, the embedding of the Weyl solutions constructed in the previous section
will give a new class of non-supersymmetric non-extremal type IIB solutions consisting of
a stack of D1-D5-KKm black holes and D1-D5-KKm smooth bubbles.

First, we consider generalizations of the spherically symmetric solutions in five dimen-
sions to solutions in arbitrary dimensions. Indeed, these solutions have been constructed
as a superposition of Schwarzschild solutions and bubble of nothing supported by fluxes. A
similar strategy can be applied to construct solutions that are asymptotic to D-dimensional
Minkowski times an extra S! using the Schwarzschild-Tangherlini solution [47]. We will
show that the class of (D + 1)-dimensional solutions will have the same properties as the
one studied in five dimensions. Moreover, we will study the type IIB embedding of the
solutions for D = 5 as D1-D5 solutions on T#. This framework is a common playground for
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the microstate geometry program to study smooth bubbling geometries in the same regime
as five-dimensional black holes. We will compare our solutions to the smooth JMaRT so-
lutions [23] and see how our solutions can be non-rotating while JMaRT is forced to live
in the unphysical over-rotating regime of black hole.

5.1 The class of two-charge solutions in D + 1 dimensions

In this section, we construct a class of spherically symmetric topological stars and black
strings that are asymptotic to a S' fibration over D-dimensional Minkowki. Since the
analysis and the properties of the solutions are very similar to the one performed for D = 4
in section 3, we will be brief and we refer the reader to the appendix B for more details.
We consider a (D + 1)-dimensional Einstein-Maxwell theory with the following action

Spt1 = /dDH:U\/—detg ( 2) , (5.1)

where kp1 is the (D + 1)-dimensional Einstein gravitational constant, F(™) and F(¢) are

1
2
26D 41

R—%’F(m)‘Q—%‘F(e)

magnetic (D — 2)-form and electric three-form field strengths respectively. The equations
of motion are

1
d*DJ’_]_ F(m) = O7 d*DJ’_]_ F(e) = O, RMV = K,2D+1 (TNV — ﬁ gNV Taa> s (52)

where T}, is the stress tensor

1 a2...Xp— 1 al..0xp—
T#V - m [F(m)”O‘?'"aDzF(m)l’ - mgﬂVF(m)alnﬂszF(m) o 2}

1 aﬁv]

e e) b 1 e e
+ = [F( )uaﬁF( )1/ - EQ;WF( )oz,B’yF( ) (5'3)

2

As in five dimensions, we use a spherically symmetric ansatz that satisfies a double-Wick-
rotation symmetry (t,y) — (iy, it),
dr?

dshy = —fs(r)dt* + fa(r) dy* + 0 o) +r2dQ% ,, -
Q

FO = posdr AdtAdy,  F™ = PdVgo-a,
where d€p_» and dVgp-2 are the line element and the volume form of a round §b-2
sphere and P and @) correspond to magnetic and electric charges respectively. We consider

the superposition of a (D + 1)-dimensional bubble of nothing and a S! fibration over D-
dimensional Schwarzschild-Tangherlini solution [47],

folr) = 1- (’"B)M, f(r) = 1- (TS)N. (5.5)

r r

The Einstein equations are solved if the fluxes satisfy

(D-3)(D-1) 7“5737“573 ‘

P2 + Q2 _
2 K%—i—l
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The solutions have two coordinate singularities at r?=3 = réj —3 and 7“]137 ~3. The former

corresponds to a horizon while the latter corresponds to the degeneracy of the y-circle.
As detailed in the appendix B.1, we have solutions of Einstein-Maxwell-dilaton in D
dimensions with ADM mass, M, electric and magnetic charges, Q. and @,,, given by

D—1

__ Tz o\.D—3 , .D-3

M= 2 (21 ((D s ATy )’
KD 2

(5.7)
D —3)(D —1)rP3p2-3 P
Q2EQ%+Q§=( ) 2K2)S B, Qm:;, Qezg
D

The phase space of solutions has the same properties as in five dimensions depicted in
figure 5 but with different delimitations between the regions (see appendix B.2). For given
mass M and charge Q, we have two solutions that are, depending on 7“5 -3 s rg =3 either

topological stars or black strings:

o If ré) 3 < rg ~3 the outermost coordinate singularity, r = rg =3, corresponds to the
degeneracy of the y-circle providing an end to spacetime. We have a horizonless
solution which ends as a smooth bolt with a potential conical defect, R?/Z; x SP~2.
The parameters (7“5 _3,7“]? _3,k) are constrained according to the radius of the y-

circle as D1
2 drg

VTR (D -3 (R D)

It would be interesting to study whether the conical defect can be resolved by blowing

keZ,. (5.8)

up smooth Gibbons-Hawking bubbles at the vicinity of the poles of the bolt as for
five-dimensional topological stars.

o If réJ -3 > rg —3. the outermost coordinate singularity corresponds to a horizon at
r = ré) =3, The horizon has a SP=2xS! topology corresponding to a black string.
The Bekenstein-Hawking entropy and the temperature are given by

D+1

IR (D C3\\3 D-3 b3
= oy (R TR

(5.9)
Moreover, the locus r = 7“]13) ~3 in the interior corresponds to a degeneracy of the
spacetime as a Milne space as described in section 3.4.

5.2 Embedding in type IIB string theory

There are many ways to embed Einstein-Maxwell theories in string theory. We investigate
the simplest embedding by considering torus compactification. We restrict the discussion
to the five-dimensional and six-dimensional solutions by compactification of type IIB super-
gravity on S xT% and T* respectively. It will be important to make the difference between
the new S' and the previous y-circle since the former is supposed to be internal with a
much smaller size. For that purpose, we will rename the S' that describes the y-circle as
S.}J and use S! for the new internal circle.
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We will start by the embedding of the six-dimensional solutions that we obtain from
the previous section with D = 5 since it is less involved than the five-dimensional solutions.
They will correspond to D1-D5 solutions on SéxT‘l with equal charges. We pay particular
attention to these solutions since they are well-studied in the microstate geometry pro-
gram. Our construction gives the first construction of smooth non-supersymmetric D1-D5
solutions with the same mass and charges as non-extremal D1-D5 black holes.

The five-dimensional solutions correspond to type IIB solutions on S;><Sl><T4 with
equal D1 and D5 charges, but one also needs to turn on a KK monopole on S! with the
same charge. The magnetic field we observe in five dimensions corresponds to the sum
of two magnetic fields that have different UV origins: one corresponds to a KKm charge
while the other arises from a D5 charge. The embedding of the Weyl solutions constructed
in section 4 gives interesting and brand new configurations in type IIB made of a chain of
D1-D5-KKm objects in the non-supersymmetric and non-extremal regime.

Before going through the details, we first fix the conventions. We consider the action
of type IIB supergravity in the string frame as

1 H? 1 1
SuB :W/\/—detg lem <R+4(8<I>)2 - ) ~3 (\Fﬂz + B3 + 3 F5|2)]
10

12
1
- /C4/\H/\d02, (5.10)
K7y

where the R-R field strengths, F},, in terms of the potentials are
F = dCy, F; =dCy — CyH, Fs=dCy— HANCsy. (5.11)

In this convention, the matter fields are renormalized with the gravitational couplings,
2K3y, unlike our convention for the Einstein-Maxwell action (5.1) and (3.2).

The solutions of interest will have NS-NS fields turned off (H = 0, ® = 0), the equations
of motions that are relevant to us are
1
48
dx10 F1 = dx10 F3 = dx10F5 = 0, F5 = *10k5,

1 b
- ﬂg,uuFi%achga ¢ ;

abed
v

1 1
R, = B} F1MF1V+§F3uabF33b+ F5 pabea Fs

(5.12)

R=0, FyANxF3 + F3ANF; = 0.
5.2.1 The embedding of the six-dimensional solutions

The class of solutions, (5.4), is special for D = 5 since both electric and magnetic field
strengths are three-forms. We can embed the electromagnetic fields in F3 under a com-
pactification on T*:

2 2 4 7.2
rg 9 B 9 redr
dsiy = — (11— (=) |dt 1-(—) )d
o= (1 () ) (- ()) o+ e
4
+ 17 (di? + sin? ) dp? + cos? 9 dy?) + > daF, (5.13)
=1
Cy= — D 2
2 =3 ANdy — Qs cos“ddy Ado,
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where (z;);=1,.. 4 are the coordinates of the rigid T* of volume V4, and (9, $,1)) are the
Hopf coordinates of the S3 with 0 < ¥ < 5 and 0 < ¢,9 < 2m. The equations of
motion (5.12) are solved if

Q1= Qs = £rs7B. (5.14)
We have then a class of non-rotating type IIB solutions with ()1 D1-brane charge, Q5
D5-brane charges and with ADM mass

2 2
™ 2 2 2 k1o
-2 (3 = . 5.15

M=z (38 + b)), 21 R, Via (5.15)
After reduction on T*, we retrieve the D = 5 solutions (5.4) with (5.5) with the identifi-

cation

v/ Vpa 1
F@ 4 pm) — ™ Jac, = —
ﬁ/ﬂo 2 \@f%’

Note that the constraint on the charges (5.14) matches the one we obtained earlier (5.6) if

dCy .

we require the magnetic charge to be equal to the electric charge, P = ). The fact that
the charges are identified is a consequence of imposing a rigid-T* compactification.

The black string obtained from (5.13) with r > r3 is identical to the Cvetic-Youm non-
rotating D1-D5 black string with equal charges [48-50]. The map can be done considering

r? =g, rd = Mcosh?§, r4 = Msinh?§, (5.16)

where 0 is the boost parameter giving rise to the D1 and D5 charges. From this point
of view, taking r3 > r% requires an analytic continuation of the boost parameter that
keeps the metric real valued. This possibility is a consequence of the double Wick rotation
symmetry between the time direction and the y-circle.

In [23], a procedure has been applied to construct smooth solutions with the same
topology as our topological stars using the class of Cvetic-Youm solutions. However, if
r% is taken to be greater than r%, large angular momenta are required to impose a circle
degeneracy “before” the horizon. Therefore, the solutions have the same conserved quan-
tities as unphysical over-rotating black holes in five dimensions. Our analytic continuation
allows to bypass this constraint and our non-rotating smooth solutions are direct examples.
We can apply the procedure of [23] with the analytic continuation of the parameters of
Cvetic-Youm solutions and try to obtain a rotating smooth solution with charges in the
physical regime of the corresponding black hole. It is given as

2 2
ds?y = — (cpdt — spdy)® + % (cpdt — spdy +wi)? + (cpdy — spdt)* — %3 (cpdy — spdt —wy)?
r2dr? 4
+T | oy T (r2+a3) sin? 0 dp® + (12 + a3 ) cos? 9 dyp? + Y daF,
i=1
Cy ==+ 8T8 (cpdt — spdy +wy) A (cpdy — spdt —wy) £rsrp cos® I dip Ad, (5.17)

where (¢, sp) = (cosh dp,sinh d,) corresponds to the boost parameter giving rise to the P
charge, (ay,aq) are the angular-momentum parameters and we have defined

2 2 2)
)

Y= r2+a%p Sin29+a3) cos? 0, g(r) = (7"271"}23+a§))(r fr]23+ai)—(r§fr]23)(r -8
wy = ad,coszﬁdw—i—%sinQHd(ﬁ, Wy = a¢cos26d¢+a¢ sin? 0 d¢ .
(5.18)
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The double Wick rotation symmetry is more subtle but still present. The class of solutions
is symmetric under

™

(t,y) — (iy,it) with (12,9, ¢,¢) — (7“2 + ai + afb,ﬂ + 5,1/1, qb) ,
and transform the parameters (rg,r,ay,as) — (7B, 7s, —iag, —iay). This shows, as for
the non-rotating class, that each solution with a vanishing timelike Killing vector has
a symmetric partner in the same class for which a spacelike Killing shrinks. However,
imposing a smooth degeneracy requires more works. From a first study, it seems that the
presence of angular momenta imposes smooth solutions to have either T% > 7“123, that is
to be JMaRT solutions, or to have a conical excess where the circle degenerates® which

corresponds to presence of struts. We will study this issue in future work.

5.2.2 The embedding of the five-dimensional solutions

In this paper, we have constructed two classes of five-dimensional solutions: the spherically
symmetric solutions in section 3 and their axisymmetric Weyl generalizations in section 4.
We will first study the embedding of the former for which the formalism is slightly simpler.

The spherically symmetric solutions. It is natural to embed the five-dimensional
metric (3.4) in type IIB by considering a rigid T®. However, there are many ways to embed
the magnetic two-form field strength, (™), as it can arise from Fj or from a KK monopole
charge along a circle of the T°. Therefore, we take the following ansatz in type IIB by
considering a S'xT*

2d7‘2
sy = — 1—“>dt2 (1—7”B>d2 !
P10 ( r * r )Y + (r —rg)(r—rp)
4
+ 12 (d0? +sin®0d¢?) + (dzs + A)? + > dz?,
( "5) (dz5 +4) ; (5.19)
@
Cy = — —dtANdy — Q5 cosfBdzs Ndo,
T

dA = psinfdi ANdop,

where (2;)i=1,.. 4 are the coordinates of the rigid T4 of volume V4, and z5 is the coordinate
of the extra S! of radius L. The equations of motion are solved providing

Q1 =Qs =p==*rsrp. (5.20)

We have then a class of non-rotating type IIB solutions with equal D1-brane charge, D5-
brane charge, and KKm charge. The ADM mass is

2
M=

2 2 2 ’f%o
(2 rg + T‘B) , Ky =
Ky

= "o 5.21
472 L Ry Via (5.21)

9We are grateful to David Turton for the discussion in that regards.
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After compactification along S!x T4, the metric matches the five-dimensional metric (3.4),
but we obtain three gauge fields, two magnetic and one electric that we appropriately
renormalize to have the same convention as the Einstein-Maxwell action (3.2)

VLV, 1
ple) — VT2V T“Q—;drAthdy:—Q—;detAdy,
K10 r V2ks T (5.22)
1 1 '
piml) _ Qssinfdf Ado, F(m2) _ psinfdi Ade.

\/élig, B \/5"{5

In five dimensions, the magnetic gauge fields are indistinguishable, that is why it has
been appropriate to recast into an unique gauge field. However, their UV origin is very
different, one corresponds to a D5 charge while the other one corresponds to a KKm
charge. Considering two magnetic gauge fields in section 3.1 will change the constraint on
the charges (3.9) to

3rsrp

2 2 2
Q P Pz =
! 2 2/'1% ’

which is indeed compatible to the constraint we obtain in type IIB (5.20). As in the
previous section, the degree of freedom between the charges in Einstein-Maxwell theory
has been frozen due to the compactification on a S'xT*.

The black string obtained from (5.19) with rg > rp is identical to the four-dimensional
non-rotating three-charge STU black hole [45, 46] which can be embedded in type IIB
following [65]. The map can be done as in the previous section,

r—r4+rg, rq = M cosh?§d, rg = M sinh?§, (5.23)

where 0 is the boost parameter giving rise to the D1, D5 and KKm charges. Our con-
struction offers an enlargement of the class of STU single-center solutions exploiting a
double-Wick rotation symmetry to replace the cosh and sinh to arbitrary values. As it
has been done with the five-dimensional Cvetic-Youm solutions in the previous section, we
can use the embedding of the more general class of rotating four-charge STU solutions to
generalize our present class to rotating solutions. This will be a subject of future studies.

The axisymmetric Weyl solutions. We aim to generalize the embedding to the class
of two-charge Weyl solutions (4.21). We will use a similar ansatz as before by considering
an extra S'xT* and the magnetic field in five dimensions will arise from the connection
along the S' and from the R-R two-form field:

dsly = W [~ Wodi? + Wyt dy?| + Wi [e2001760) (dp? + d2?) + p?dg?]
4
+ (dzs + A)* + Zdziz,

i=1 (5.24)

D o dH NdtNdy + gsdH Add A dzs,

p Wi
dA = qxrkm dH N do.

3 = dCy =
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Once again, the Einstein equations along the rigid T4 and S' requires to take

g1 = ¢5 = ¢KKm (5.25)

which we can be fix to 1 by reabsorbing into H. Therefore, we also end with D1-D5-
KKm configurations with equal charges. Otherwise, the solutions work the same way as in
five dimensions with a different normalization for the gauge-field scalar H. The solutions
are given by two arbitrary functions that solve a Laplace equation on the three-dimen-
sional base

1 1
LlogWo) =0, £ ( apK) =0, with £=20,0) + 2. (520
p
The scalars (Wgr, H) are given by
1
Wép = Fr (pa,,K>, H = 0.K, (5.27)

where F7 is one of the five generating functions of one variable given by two real parame-
ters (4.17). The base scalars (v, vgr) are obtained by integrating (4.18) and (4.20). We
retrieve the class of five-dimensional solutions with an electric and magnetic gauge fields
after compactification on S'xT* by appropriately reshuffling the gauge fields as in (5.22).

We can uplift all the multi-rod solutions constructed by sourcing (W, p~18,K) with
rod sources in section 4.3. In type IIB, they correspond to D1-D5-KKm non-extremal black
strings and D1-D5-KKm non-BPS bubbles stacked on a line and prevented from collapse
by struts.

6 Discussion

In this paper, we have shown from a bottom-up approach that smooth ultra-compact
structure a la microstate geometries can be constructed with minimum of ingredients:
electromagnetic gauge fields, an extra dimension and allowing non-trivial topology wrapped
by fluxes. The topological stars have a minimal degree of complexity as they are static
and spherically symmetric, but are good prototypes for testing the features of microstate
geometries in a more astrophysical regime than that in which they are usually constructed.!?
We argue that their size can range from microscopic to the macroscopic scales compared
to the size of the extra dimension.

For macroscopic topological stars, the solutions have the same malleability as bottom-
up ECO models, which will allow to estimate many observable deviations with respect to
expectations for GR black holes. However, their physical viability and the scope of the
outcomes will be much more robust since their UV origin in a quantum gravity theory as
D1-D5-KKm solutions of type IIB string theory has been established. For this aspect, it
will be very interesting to describe the physical characteristics of topological stars as seen

10 Astrophysical objects need to be spinning. Being neutral is also considered as a necessary condition.
However, the charges we are considering here must be seen as dark charges that are not the usual charges
in Electromagnetism. For such charges, there are no strong bounds on astrophysical objects.
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by an asymptotic observer. As a non-exhaustive list of interesting computations, this will
consist in studying the geodesics and the photon shell in such backgrounds [66], quasi-
normal modes and information recovery, gravitational radiation and tidal Love number.
Because of their simple structure compared to known microstate geometries, this will allow
a more qualitative understanding of bubbles as microstate geometries.

For microscopic topological stars, which should rather be called topological particles,
we have noted in this paper that nothing a priori prohibits the nucleation of microscopic
objects of the size of the extra dimension and of mass M ~ }:—%’. Such an observation
could also have been made with known microstate geometries. If the size of the y-circle is
slightly larger than the string scale,'! these objects have mass of order slightly larger than
102Mp where Mp is the Planck mass in four dimensions. They are generated by hidden
electromagnetic fluxes that can be weakly coupled with the fields of the standard model.
It is interesting to ask whether early universe processes could create stable configurations
of massive bubbles that are long-lived as possible new candidates for dark matter.

The physical characteristics of the non-extremal two-charge black strings is also inter-
esting. As noted in section 3.4.1, their curvature singularity is hidden by a curvature-free
origin of Milne space. This could give interesting prototypes of traversable wormholes.

Furthermore, an important question to address is about stability. It is well-known
that gravity with extra dimensions can lead to instabilities. Neutral black strings have a
Gregory-Laflamme instability that forces them to decay to stable black holes [68], while
static vacuum bubbles of nothing are semi-classically unstable, but the presence of gauge
fields can drastically change this feature. The classical stability of similar black strings
as ours, for which only the magnetic flux has been turned on, has been studied in [32].
It has been shown that they are free from classical linear instability for %rg <rg < rs.
Extending to rg > rg shows that the topological stars are classically stable for the full
range of parameters.'? The analysis of [34] suggests that electromagnetic flux can support
vacuum KK bubbles against the bubble-of-nothing instability of [35]. This result is a
priori valid for microscopic topological stars without conical defects. Adding a non-trivial
orbifold parameter k (3.25) does not change the arguments, and electromagnetic fields are
also expected to stabilize generic topological stars.

Finally, one can also ask about the stability of topological stars under non-linear pertur-
bation. The standard lore in GR is that, even if a background is linearly stable, long-lived
quasi-normal modes can induce unstable backreaction that lead to black hole formation.
This requires the study of scalar wave perturbations on topological stars and their quasi-
normal modes, which we leave to future projects. However, we can posit two scenarios
according to previous studies in supersymmetric microstate geometries [20, 21, 69-71]. If
topological stars are purely reflexive, no quasi-normal modes exist, which guarantees their
non-linear instability. If the topological stars have quasi-normal modes, it is likely that the

1 1

spectrum has an energy gap of the order of el and a small imaginary part which

emphasises a low decay rate. These types of modes are similar to those studied in the

11t must be larger than the string scale to avoid quantum instabilities [67].
12This follows from a stability analysis by Anindya Dey.
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context of supersymmetric microstate geometries [20, 21, 69-71]. One can use for example
the Giusto-Mathur-Saxena solutions which are smooth geometries with an orbifolded AdSs
cap [50, 72, 73], similar to our orbifolded R? backgrounds. The mass gap of the excitations
is also ﬁ < 1, showing that any information sent into the background is recovered after a
long time, kR,, due to the high redshift [20]. Secondly, it has been argued in [20] that small
decay rates do not equate to instability in the context of string theory and the fuzzball
paradigm. Therefore, we expect topological stars to be stable and viable astrophysical
objects.

In parallel, we have extended the construction of generalized Weyl solutions that has
been derived in five-dimensional Einstein theory in [40-44]. Generic solutions consist in
neutral black strings and bubble of nothing on a line and separated by struts. Adding
gauge fields undermines the linearity of the Weyl equations of motion but highlights a non-
trivial backreaction nature. We have been able to solve the equations of motion and find
closed-form solutions by defining five types of gauge-field backreactions. By studying one
in particular, we constructed the generalized charged Weyl solutions that consist of two-
charge black strings and topological stars on a line. Unfortunately, regularity did not allow
to have different orientations between the fluxes and then the objects are still separated
by struts. From this result, we can wonder if the struts are “quantum” ingredients that
must been taken into account to support structure at the vicinity of non-extremal black
holes or if we did not turn on enough classical degrees of freedom to get rid of them. It
would be interesting if the need of struts can be made manifest with orientifold planes in
string theory. However, we still believe that the second option is possible by allowing NUT
charges, angular momentum along ¢ and momentum along y. We motivate this argument
by the well-known two Kissing Kerr solutions in four dimensions that has resolved the
struts between two Schwarzschild black hole by imposing opposite angular momenta [60].

An interesting aspect of the generalized charged Weyl solutions is that they can be
also embedded in type IIB string theory as multiple D1-D5-KKm static black strings and
smooth bubbles stacked on a line. They give the first non-trivial examples of multi-center
three-charge solutions in such framework far within the non-supersymmetric and non-
extremal regime. With that regards, studying the interactions between centers and their
dynamics would be interesting for further studies.
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A Charged Weyl solutions in five dimensions

In this section we will give all the details of the construction of axisymmetric solutions
of the Einstein-Maxwell theory (3.2) in five dimensions using the Weyl formalism. We
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want to construct solutions that are asymptotic to a S! fiber over a flat four-dimensional
spacetime. We start with a general axisymmetric ansatz for the metric

ds? = —fs(p,2) dt* + fu(p, =) dy? + h(p,2) [P (dp* +dz2) + p*dg?|, (A1)

where t is the time direction, y is the coordinate parametrizing the extra S! with periodicity
21 Ry, (p, 2, ¢) defines the cylindrical coordinates of the three-dimensional base. Moreover,
the assumption of axisymmetry also constrains the two field strengths to be

F'™ = dH(p,2)Adp,  F© = dZ(p,z) AdtAdy. (A.2)

We will first detail the computation of the Ricci and the stress energy tensors. Then,
we will appropriately order the equations of motion to obtain the different layers written
down in section 4.1. Finally we will solve the equations, find closed-form solutions. We
will explicitely derive solutions for rod sources and analyze carefully their regularity.

A.1 Ricci tensor

We will label the coordinates of the two-dimensional base as (z1,z2) = (p, 2) with the
latin letter “a,b,c...”. We will use the tetrad formalism for which the indices are raised
and lowered by the Minkowski metric ny/ny = Diag(—1,1,1,1,1). The tetrad one-forms
obtained from the metric (A.1) are

E'=\/fsdt, EY=\/fgdy, E*=Vhe'da", E®=pVhds. (A-3)

The spin connections, given by dEM = EN A w%, are

L [fs _ 1 /fs _
t _ Lt ]IS v y _ - . //B —v
w'y, 5 he 0q log(fs) dt, wY, 5\ % eV 0y log(fB) dy,
1
2

1
pe~" Oy log(p*h) do, wh = 5 (8b log(he®”) dz® — 9 log(he®”) d:):b) .
(A.4)
The curvature components, given by RM, = dw% + w]\/é A wON, lead to
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_1 \/ % eV 3% log(he® )y log(fs) dt A da,

R'y =7 ;jfs e~ 9% log(fp) dalog(fs) dy A dt,
1 pVifs —
t _ = 2v aa 2
R'y = I Vi e Y 0%log(p“h) O, log(fs) dt A do ,

RY, = — % lab ( J%B e Y0, log(fB)) — % UJ%B e 0y log(he*)dylog(fp) | dy A da?

1
1 J%B eV 9" log(he* )y log(f) dy A dx,
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%

_ _1pvis
¢ 4 /b
R?, :% [81, (pe_"(“)a log(th)) — %aa log(he®) O log(p?h)pe™ | dz® A do

e 2 0" log(p®h) O, log(fa) dy A dg

1
+ —pe? 3" log(he®) 8y log(ph) dxg A d,

4
a __ 1 2 2 22U a
RY =~ (97 + 3) [tog(he)] da A day,.
(A.5)
Therefore, the non-vanishing components of the Ricci tensor, Ryny = ROMO N> Will be
given as
1
2he* Ry = ————— 0" |pv/hfsfs Oalog(fs)],
Y pVhTsTe | |
1
2he® R, = —————— 0% |p\/hfsfs 0.log(fB)],
Y pVifshe | b O log(fo)
1
2he* Ryy = ———— 0% |p\/hfsfr Oulog(p®h)|,
v pvhisfs { ( )} (A.6)
1 1
2he® Ray = —0udhlog (p*hfsf5) — 5 dalog fs Ghlog fs — 5 dalog fis 0 log f

1 1
—5 da log(p®h) Oy log(p?h) + 5 a log(heQ”)é?b) log (thfsz)

1
-3 |0°10g(he®)0.1og (p*h fs [ ) + 20°0.(log(he)) | dap -
A.2 Stress energy tensor

We rewrite the field strengths in the tetrad basis

bt 4 —v

Fm = € ANE®, FO = _© 9. ZEAE'AEY. AT
ph ™ Vhfsfs ™ (A1)
The stress energy tensor in the tetrad basis is given by
Tary = FO 0Py - %nMNF(m)OPF(m)OP
1 op 1 oPQ (A8)
+3 [F( ) worF©, " — gnMNF(e)OPQF(e) ] :
We find
1 67211 ,02h
_ _ _ MN _
ﬂt — = yy—T¢¢—_TMN77 - 2h2 (6 8GH+ foB aazaaz>7
(A.9)
T = o (oumoym - 20 azaz-ﬁ oo — 2 0,007
e\ R ‘ fs s
A.3 The equations of motion
The Einstein equation in five dimensions,
1
Ryn = K2 (TMN — 3N TOO> ; (A.10)
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gives along (tt), (yy) and (¢¢)

2
,/ 54 p\/hfoB B, log( fS =255 (gomocm + P g, z007
sz 3 IsfB
2 _ 2 2
e hoge [0V fs i Oalog(fn)] = 255 (gomort + L 9,200 7)) (A.11)
fs/fB . 3 IsfB
2 - 2 2
P g (Vs Dalog(ph)] = 485 (o HomH + L g, z007)
fs/B / 3 fs/B

The sum of the three equations and the difference of the two first are clearly independent
of the gauge fields and we can use the sum of the two first as the last equation. Therefore,
we introduce new warp factors that are more appropriate for the equations,

s 1
V = pvhfsfs, Wo T’ War ToTs (A.12)

The three equations above transform to

00,V = 0, 0% (VO,logWy) = 0,
02 (A.13)
VWar 0" (VO,log Wer) = ——° (aaHaaH F VW aazaaz) .

The metric according to the new warp factors, (A.12), is given in (4.4). The two equations
in the first line are independent of the gauge fields and then are the same equations that
one obtains for vacuum solutions. Such equations and their solutions are well-known and
well-studied [40-44]. Therefore, the warp factor Wy is the “purely massive” warp factor
while Wgr is the warp factor cooresponding to the gauge-field backreaction.

The remaining Einstein equations along the two-dimensional flat base (ab) give a priori
three equations, (pp), (zz) and (pz), that constrain v. The equations are not independent
and we write a set of two equations, obtained from (pz) and (pp) — (22), for 9,v and 0,v
for which the integrability condition is guaranteed by the equations above (A.13):

1
0plogV 0.v + 0, logV O,v = 582 log Wy 0, log Wy + ;62 log War 0, log War

2
K5

_|_ PR —
V2Wee

(0,H 0.H —V*WEp0,20.%)

. 1
Jrap@Zlogi@zlogV@plogVJra%v,

d,logV d,v— 0. logV o,v = i ((0, log Wo)? — (9. log Wy)?) + Z ((9,log War)? — (9. log War)?)
2
K
+ W [(0,H)? = (0.H)* + VWi ((0.2)* — (0,2)?)]
GF

1

d,logV
+3 (82— 02)log V + (9. 1og V)* — (9, log V)? + 22228 | |

(A.14)
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It is natural to split v in two pieces,
v = 1y + VGF (A.15)

where vy is only sourced by the “purely massive” warp factors and vgp is sourced by the
gauge-field scalars. We will give these equations in a moment, but before that we write
down the Maxwell equations, d  F(™) = 0 and d  F(¢) = 0, and obtain

a 1 _ a 2 _
0 [VWVéFékfﬂ =0, 0" |[VWra.z] = 0. (A.16)

We will restrict to gauge fields that are electromagnetic duals, that is we will assume that
F© = g xFm (A.17)

where ¢ is the charge ratio between the electric and magnetic charges. From the expressions
of the field strengths (A.7), it implies

q

0.2 =
VW

& OpH (A.18)

where €, is the two-dimensional Levi-Civita tensor and the Maxwell equation for Z is
straightforwardly satisfied.

We can now have a final version for the equations of motion (A.13), (A.14) and (A.16).
We divide them in layers that will facilitate the construction of solutions.

o The zeroth layer:
RV + 02V =0. (A.19)

e The mass layer:
0, (V 0,logWy) + 0. (V 0, logWy) = 0. (A.20)

e The Mazwell layer:

1 1
5 OpH Nz O:H | =0,
ap<VWéFap >+a (vwgﬁ ) 0
2 1+ 2\ ,.2
VW (9, (V 8, log Wer) + 0. (V 0. log W) = — 000 [(9,m)? 1 (0.11)7].
(A.21)
e The base layer:

1 0, logV
0plogV 0,19+ 0,1log V 0,1y = §8z log Wy 0, log Wy + 0,0, 1ogV — 0, log V 0, log V + %g )

9plog V 0,19 — 0. log V 0,19 = — ((9, log Wp)? — (0. log Wo)?)

] =

1 0, logV
+3 (02 —92)1og V + (9. log V)* — (9, log V)* + P -0

9
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2\ .2
LHaIRE ) Ho.m,

3
ap logV 0,vgr + 0, log V' apI/GF = 582 log War ap log War + TI/VGQF

((ap log War)? — (9. log WGF)Q)

> w

0plogV O,vgr — 0, logV O,var =

(1+¢%)K3

T ovewe,

[(0,H)* — (0.H)?] .

(A.22)

A.4 Closed-form solutions

In this section, we detail the derivation of the solutions. Apart from the Maxwell layer,
all the equations can be treated as linear equations with potential quadratic sources. Sur-
prisingly, we can find closed-form solutions that rely only on one extra assumption to solve
the Maxwell layer. As for vacuum solutions [40—44], the solutions will be entirely given
by two functions that solve a Laplace equation on the three-dimensional base. The main
difference is that those functions will intervene in the warp factors and gauge fields in a
much richer manner than in vacuum.

A.4.1 The zeroth layer
Solutions of the zeroth layer (A.19) are a priori given by

V = filp+iz) + falp —iz), (A.23)

where fi; and fo are arbitrary functions of one variable. As it has been showed in details
in [41], one can pick a gauge by changing the coordinates of the two-dimensional base where

V =p. (A.24)

This coordinate system is commonly refered as the “Weyl’s canonical coordinates” Very

briefly, if we use the complex conjugate coordinates w = p + iz and w = p — iz, the
two-dimensional metric is given by

ds(, ) = dwdi . (A.25)

The change of coordinates (w,w) — (f1(w), fo(w)), induces a conformal factor in the two-
dimensional metric that can be absorbed in v. Moreover, the new p and z coordinates,
given by p/z = fi(w) £ fo(w), imply that V = p.

From now on, we consider without loss of generality that

V =p. (A.26)

The benefit of choosing such a coordinate system is that two equations of motion transform
to Laplace equation in the three-dimensional (p, z, ¢) base space. Indeed, the Laplacian'?

in the base gives

L= ;a,, (p,) + 02, (A.27)

and the equations for log Wy and log War are both Laplace equations with extra coupling
terms for log WaE.

13The Laplacian is more rigorously 0, (p0,) + p &2, but we renormalize it for convenience.
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A.4.2 The mass layer

The mass layer is now given by the equation
L(logWy) = 0. (A.28)

This equation is well-known and well-studied. It is the equation one obtains for the warp
factors in vacuum Einstein solutions [40, 41, 57, 58]. We can source log Wy by massive rods
or massive point particles. Rod sources are usually preferred by the fact that they give
Schwarzschild-types of warp factors. We will study the solutions obtained by such sources
in the section A.5.

A.4.3 The Maxwell layer

We aim to find closed-form solutions of the equations that govern the pair (H, Wgr):

1 2 (14 ¢?) k2
(M): 0 |~ 0,H| =0 and (E): pWagd*[pdalog W] _ 200K g pgep,
PWer 3

(A.29)

First let’s have a clean set of variables. We define

4(1 2 2
= A0F )R +3q )5 = wgk, (A.30)
and we have
2

(M) : 8" [g BaH} =0 and (E): 0°[pd,loglU] = %U@aHaaH. (A.31)

The only assumption we will make is that we will decompose (M) into two parts that will
cancel rather than solving in full generality

(M1): 0, (;aaH):o and (M2): 9,U0°H — 0. (A.32)

This is motivated by the fact that our single-center solutions satisfy this relation and that
those equations are known to contain solutions for H that can be sourced by magnetic
charges [64]. We now expand the equations:

1
(M1) : O2H + 0?H — ;apH =0,
(M2): 0,U0,H + 0.U0.H = 0,
1 1 Y2 U?
. 2 2 L _ 4 2 2\ _ 2 2
(B): U + QU+ U — 17 (0,U)? + (0.U)?) = > ((0pH)* + (0-H)?).
(A.33)
The proof will be based on the following observation:
consider an arbitrary solution of Laplace equation R(p, z), that is
_ _ 1
LK) = 2K + 8§K+;8pK =0.
Therefore, if we write K as a function of U only, K(U), then we have
LK) = K'(U) L) + K"(U) ((8,0)% + (2:U)?) = 0. (A.34)
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Note how close this equation is to (E). From (M2), it is very likely that (0,H)*+ (0, H)? o
(9,U)% + (9.U)?, then (E) will be identical to the above equation. From the coefficients,
we will be able to find the explicit K (U) that we will invert into U (/). Therefore, the con-
struction scheme consists in appropriately using (M1) and (M2) to obtain an equation (E)
that depends only on U.

The equation (M2) implies that

0,U =T(p,2)0.H, 0.U = —TI'(p,2)0,H , (A.35)
for which the integrability gives
O2H + 02H + 9,logT 9,H + 0.logl 9.H = 0. (A.36)

Using now (M1) to replace 8§H + 02H and (A.35) to replace 0, H we get

0plog(pI') 0.U — 0. log(pI') 0,U = 0. (A.37)
This equation is trivial to integrate and we have
1
' = p ), (A.38)

where G is an arbitrary differentiable function. Now let us pack everything to get an
expression for £(U), we obtain

9 9 G G G’
U + 00U = —=0.H + —0,U0.H—- —0,U0,H, (A.39)
p p P
which leads to o
LU) =% (0,U)? + (2.0)?). (A.40)
Moreover, we have
2 772 2 P’ 2 2
(GpH) + (0:H)" = &5 (Q,U) + (2:U)%). (A1)
Replacing the two last expressions into (F) we get'4
G'(U) 1 Y U? 2y 2 o 2772
- — L= S — = 2 . A.42
Gy ~ U Teue ¢ @)-g@ =20 (A-42)
This equation is integrable and gives
GU)? = U*(c+2/2U), ceC. (A.43)

We can now use (A.34) with (A.39). We can consider an arbitrary function K of Laplace
equation such as

K"(U) G'() - a

= = - = K({U) =+ acC. A.44

“Note that to write down this equation we have divided by (97 H )+ (92 H)?. This restricts the discussion
to solution with non-constant H, that is to solutions with the gauge fields turned on. Therefore, we do not

expect to retrieve in our closed-form solutions the expressions one would obtain in vacuum.
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We finally obtain

2
1+ 20 hec (A.45)

C

2
K{U) =1b - %arctanh

This is simple to invert
_ c 1
272 cosh? {2%3 (.f( — b)] ’

To finish the resolution, we now have to find H from

(a,b,c) e C. (A.46)

p P i P =
.H = - _o,u = Lo,k H=-—-_0U=-LoK. A4
d Gy Y = o 8, .U = —~0 (A.47)

The best then is to define a function K such that p_lapK = K and we immediatly
obtain that

1
H=-—-0,K. (A.48)
a
We can appropriately redefine the three constants to get
h? (ap~19,K +b) 3 a
W2 — -1 = 8 P H=,—" %K b C
GF U 02 ) 2(1 +q2)/i52) c ) (CL, 70) € )
(A.49)
and K is a function satisfying
1
L <p 8pK) = 0. (A.50)

The third parameter is irrelevant since we can rescale K — K, ¢ — a and we obtain

h? (ap~19,K +b) 3
W2, = Ul = - P H=,—" 3K b) eC.
GF a2 ’ 2(1_}_(]2)5% ’ (aa ) €

(A.51)
To finish the proof one needs to check that those solutions indeed satisfy the equations.
We find that this is the case if in addition

1
0, (apK> + 02K = 0. (A.52)
p
If it looks a stronger constraint compared to (A.50), it is not. Indeed we have

L (/1) a,,K) =0 < po, (;@,,K) + K = f(2), (A.53)

where f is an arbitrary function of z. Moreover, by considering £ (% 0, K ) = 0 we have
an integration freedom K — K + g(z). The new constraint is just fixing correctly this
integration freedom to the unique solution satisfying f(z) = 0.

The solutions being mostly complex, we can define five branches of real solutions
by appropriately playing with (a,b). The Maxwell layer is then solved by considering a
generating function K that solves the following Laplace equation

£(5ox) = 0. (A.54)
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and the pair (H, Wgr) is given by

1 3
Wép = F (aK>, H=,—>—0,K, A.55
aF = T 2(1 4 ¢2)k? (A.55)

where F7j is taken from one of the five following choices

Fi(z) = (sinh(c;x—l—b))27 Fy(z) = — (C()Sh(cf—i_b)>2, Fs(x) = (z+b)?,
F3(z) = (W)Z Fy(z) = (W)Z (a,b) € R
(A.56)

Note that we have necessarily assumed that the gauge fields have been turned on to write
down (A.42). If we want to retrieve the vacuum solutions we can simply take a function
K that satisfies (A.54), but we the pair (H, Wgr) is given by

1
Wép = exp (p a,,K) ,  H=0. (A.57)

Therefore, the presence of the gauge fields did not change the nature of the sources since
we can source pflapK by rods or point particles similarly as in vacuum. However, the way
the sources for the gauge fields backreact in the metric warp factors have a richer form as
we have five possible branches of backreaction and two arbitrary parameters (a, b).

A.4.4 The base layer
The equations of the base layer drastically simplify with V' = p,

O,vg = g@z log Wy 0, log Wy , Opvy = g ((ap log VVO)2 — (0, log WO)Q) ,

(1+¢*)K3

3 K
dover = Epaz log Wer 0, log War + T 5 0,HO,H (A.58)

dpver = 3{ ((9p1og War)? = (9- log War)?) + O;V‘;GQ)F |(0,H)* — (0.H)?) .
These equations are simple integral equations for which the integrability condition is guar-
anteed by the previous layers. The equation for 1 is well-known as it is the same equation
for vacuum solutions [40, 41, 57, 58]. However, it needs to be integrated in a case-by-case
manner depending on the type of sources for log W,. We will give the solutions for rod
sources in section A.5.

As for vgp, let us replace (Wap, H) by their expressions to have an equation that

depends on K only. We find

YFP—F
aZVGFz?’z”ap(aK>a(aK> IF2 ar 1

(@ Gore)) = (o Gowe)) |25

(A.59)
Opvar =

iy
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and we have

L g a® if I=1,2,
4 IF2 I = {42 if 1=3,4, (A.GO)
! 0 it I=5.
Therefore,
29, (10,K) 0. (L0,K) it T=1,2,
d.var = § =252, (Lo,K) 0. (19,K)  if =34,
0 if I=5,
e [0, (30,0))" = (0: (J0m))"| it 1=z, O
Opvar = § 84 [(ap (10,5)) - (o. (;a,,K))Z] it 1—=34,
0 if I=5.

The equations have exactly the same form as the equations for vy but with log Wy replaced
by p‘lapK and with different weights that depend on a?. Thus, the base layer gives simple
integral equations that must be integrated in a case-by-case manner depending on the kind
of sources for (log Wy, p~19,K).

To conclude, we have found closed-form axisymmetric two-charge solutions of the
Einstein-Maxwell theory (3.2) in five dimensions. We refer to (4.21) and the paragraph
that follows for a complete summary of the solutions.

A.5 Rod solutions

We consider that the sources are obtained from n distinct rods on the z-axis centered
around z = a; and with length M;. We refer to the section 4.3 for the derivation of the
main functions (H, Wy, War, v, var). We will discuss in more details the constraints on
the asymptotics and the regularity of the metric and gauge fields.

A.5.1 Asymptotics

Far away from the rods, p > 2 or/and 2 > 25, we have

rg) ~ o/ p? 4 22, Rg? ~ 2\/p2+722, Egi) ~ 2 (/)2 + 22) . (A.62)

It is then appropriate to use spherical coordinates
p=rsind, z=rcosf. (A.63)

The main scalars at large r are given by

V3 & sinh b )
H~ ———— E M;P; cos@, Wap ~ , Wo ~ 1, e2otver) 1
2(1 + q2)H5 i=1 GF a 0

(A.64)
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The metric and field strengths (4.21) are asymptotic to

2 2 2 Slnh b 2 2
ds* ~ b(—dt +dy) <dr +r dQ)
V3 V3a®q 31y M;P,

Fm o~ — M;P; sinfdo ndg, F© ~ =1 —d AdtAd
V20 + )rs - Z sin ¢ V2Lt D)rs sinth 2 v
(A.65)

The solutions are asymptotic to R4 xSt if

a =sinhb. (A.66)

In the four-dimensional framework described in section 3.2 obtained after KK reduction
along y, the solutions are massive solutions with magnetic and electric charges. The con-
served quantities are given by

V34q
M = M; (3P; coshb — G;), Qe = qQurp = ———— M;P;. (A.67)
ﬁ; V2(1 + ¢?2) ;

A.5.2 Regularity

The ratio Rgf) / RY and v;; (4.32) have potential zeroes or divergences on the z-axis only.
Thus, Wy and 62(”0+VGF) are regular and positive out of the z-axis. However, Wgr can
have zeroes out of the z-axis. Indeed, due to the sinh expression of Wgp (4.27), if two
successive rods have different signs of charges P; < 0 and FP;4+1 > 0, then Wgr — —o0 at
the i*" rod and +o0 at the (i 4+ 1)*™ rod. By continuity, there is a closed curve in between
the two rods and that is not only supported on the z-axis where Wgp vanishes. On this
curve, the metric (4.21) is singular. We are then forced to require that all charges have the
same sign,

P, > 0. (A.68)

This is a strong restriction since the rods will not be repulsed from each other using fluxes
with opposite orientations. Taking the branches F» or even Fy for Wgr (A.56) would have
allowed for charges with different sign. However, we have observed that those branches
have other complications to deal with.

Assuming that P; is positive for each rod implies that Wgap is positive everywhere.
Therefore, the metric is regular out of the z-axis and free from closed timelike curves. We
will now discuss the regularity on the z-axis which is more involved. We will divide the
discussion in two parts: the regularity at the rods where the y-circle or the time direction
shrink and the regularity out of the rods where the ¢-circle shrinks.

o At the i rod.
The local spherical coordinates around the it rod are given by r; — 0 for 0 < 6; <
m with

M;
p =\/ri(r; + M;) sinf, z= <rZ + 2> cosf; + a; . (A.69)

The two-dimensional base behaves as

Mi Sin2 91 (dr

dp? + dz* ~

1 + M; d92> (A.70)

i
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Moreover,

R ) Seleewrfea]
~ o~ —, ~ ~ : , JFT. .
RY T RY —% + |a; —a; + ]g’ cos b;
Thus,
. P; sinhb . G
b RU\ M\ P sinhb M\ G RW\™
Wer ~ 5 5mp 11 R(+j) <7~) o Wor <r> I] R(+j) '
A \ 1t ‘ O g \ RS
(A.72)

The metric components along (¢,y, @) give

2sinh b RY Gi=Fy sinh? M\ Gi—P: sinhb
g~ — 5% H . — 7

(4)
i \ 1Y i
2sinh b R(]) —Gj—F; sinhb M —G;—P; sinh b
~ 481 o il M Y A
Gyy ob ]1;[1 (R(j)) < Te > ) ( .73)

2 2 () \ 2Fi sinhd 2P, sinhb—1
M?e RY M\ . 9
sin” 6; .

P

g0 ™ 4sinh?b RY) e

The ¢-circle must have a finite size at r; = 0. This fixes the magnetic charges to be

1

P, = . A.74
' 2sinhb ( )
Moreover, the condition that g and gy, do not diverge requires that
1
Gil <. (A.75)
We have three interesting cases: G; = % and gy is finite while g,y o< r;, G; = —%

and gy, is finite while gy o< r; and G; = 0 and gy o gyy o< /1. To derive the metric
components along (73, 0;) we first need the limits for v, (4.32). We have different

situations:
. 167‘3 Vi 1 N le<]§]€OI']§k‘<Z
erit ~ e ~ - 2 _.—)\2
2 ind (2 =27 )2 (20 —25) e
M7 sin* 0; (23721)2(22 7;__)2 ifj<i<k,
J J
(z;—z;)Q(z;—(ai—i-% cos@i))2 TRy
N o A o
(zj_—zj)z(zj—(al—&-% cos@i))2 .
PRV A 5 if j <,
(z]. -2z;) (z _(GH'T cos@i))

(A.76)

where we remind that Z]:-t are the rod endpoints (4.24). We gather everything to
derive the behavior of vgp + vg = %Z;{k:l(i’)a?Pij + G;Gy) v, = %Z?,k:l (% +
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G]Gk) Vik (4.33),

2 ripe, | ATD
P _ _ o _ sign(j—1) oy
Xﬁﬁ((%‘#)(ﬁ‘%)) JRH<23+_ZZ> s ’
j=1k=i (le - Zj)('zl; o Z;) G#i Zj_ - Zi_
where we have defined the exponents o, as
3+4G;G
O = fjk, (A78)
(')

and the expansion of ( + is 0;-dependent given in (A.71). We have also considered

that the product “J]’Z 1 7 is equal to 1 for the first rod, ¢ = 1. We define the constants
d; that depend on the geometry of the rods only and are independent of r; and 6;

i—1 n (z_ _ z-}-)(z-i- _ Zﬁ) 4
di =1, d; = K J ]i ) when:=2,...n
jl;llkl;[z ((z/,ir — 2Dz, — 2

(A.79)
Thus, g, and gs,e, behave around the i*" rod as

. N 1-2ay;
g = VL g (5= (Ve
0 ™ sinhZ b G \% T Ei R(,j) M; sin® 0; 7

i i#i
con(i—s) cues AN 1—2a;
M2 2bd2 H ;_Z; 2 sign(j z)aL]H RSf) a;1< 4 >G?—i
Grirs 4sinh? b i zj — 2 i R(,j) r; \ M, sin2 6;

(A.80)

It is obvious from those expressions that we need G; = :t% in order to have a well
defined gg,, so the choice G; = 0 mentioned above is singular. We now treat the two
possible values separately:

If G; = P; sinhb = %

We remind that this corresponds to a shrinking y-direction (A.73). From (A.73)
and (A.80), we notice that the 6;-dependent factors in gy, and g,,,, are remarkably
the same. We end with a local five-dimensional metric around the i*? rod as

L dy?

(A.81)
where (g4(6:), 90,60,(0i), G36(6:), Grir: (65)) can be obtained from (A.73) and (A.80) and
are all finite and non-zero for 0 < #; < w. Moreover, we have defined ,012 = 4r; and

d82|ri:0 = gtt(9 )dt + 96,0, (9 ) <d9 + g¢¢(01) sin? 0; d¢2> +§Tﬂ‘i(91) (dpl + = C;

C; is given by

2sign(j—1) o
2 3b -z J
M; ) (A.82)

C: = ) 2 J ?
! 251nh3 H( s

JA\F T
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The two dimensional subspace (p;,y) describes a smooth origin of R? or a smooth
discrete quotient R? /Zy, if the parameters are fixed according to the radius of the
y-circle

R =

2 (A.83)

TR

To conclude, the time slices of the five-dimensional space at the i*" rod is a bolt
described by a warped S? sphere times an origin of a R?/ Zy,; space.

If G; = —P; sinhb=—3.
It is now the time direction that shrinks (A.73). The analysis is identical to the one
above and the metric at the rod is given by

2
ds®|, o= 9yy(0:) dy* +90.6,(6:) (d@% + oo (0;) sin® 0; d¢2) +Gryri (07) (d;ﬁ —~ % dt2> :
(A.84)
The metric corresponds then to a horizon of a black string. The topology of its
horizon is a warped S?xS'. One can relate C; to the temperature of the solution by

requiring smoothness of the Euclideanized solution. We find

2 1

= — A.
42 C; (A-85)

Out of the rods.

We now study the behavior of the solutions on the z-axis out of the rods where the
(%)

¢-circle shrinks to zero size. On this segments, each R}’ is non-zero and finite,
RY =20z — a;| + M;. (A.86)

Thus, War and Wy are also non-zero and finite there. The regularity reduces to the
study of the three-dimensional subspace (p, z, @),

ds% — 2(votvar) (dp2 + dZQ) + p2d¢2- (A.87)

At p =0 and out of the rods, we want this space to correspond at least to the origin

of a R? with potential conical defects. First we have

1 ifjgkandzg[ajjt%,ak—%}
Vik
e IR~ (zi—zJ.r)Q(ZJr—Z-i)Q M
k J k j . . . M; B %
Gt == (e —2; ) if j <kandze€ [aj + =5t ar — = }
(A.88)
Therefore, we get
2( ) 1 ifz<a1—%andz>an—%
e vgr+ro) O 21
2 _rpte (G )G )\ T M M,
di = Hj:l [Tk=i ((z;—z?r)(zlzfz?)> if 2 [%—1 +t 5 ai— ] .
(A.89)
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First we notice that asymptotically, z ~ oo, the base space is directly flat R3
without conical defect. Moreover, note that

(ze =205 —27) (g —aj)? — LMy + M;)? 3P; P, +4G;Gy,
N\ ) 2 _ 1 3 <1, jp = —————— >0,
(2 — % ) (2% % ) (ak —a;)? — 3 (M, — M) 2
(A.90)
Then, we necessarily have e2varto) < 1 for z € [ai_l + %,ai — ]\;[Z] Thus, the

segment has a conical excess that manifests itself as a string with negative tension or
a strut between the two rods. The string gives the necessary repulsion in order for
the whole structure not to collapse. The three-dimensional metric on the z-axis in
between the (i — 1) and i rods is given by

2
ds? = d? (d;ﬂ vt szqb2> . (A.91)
To conclude, our class of solutions describes regular two-charge black strings (for rods
with G; = —3) and regular topological stars (for rods with G; = ) that are stacked on a

line and which are prevented from collapse by struts between them.

B Topological stars and black strings in D + 1 dimensions

In section 5.1, we have seen that one can construct solutions that are superposition sup-
ported by fluxes of (D + 1)-dimensional bubble of nothings and S! fibration over D-
dimensional Schwarzschild-Tangherlini solutions [47],

D—3 D-3 2(D=3) qr2
- (1 - (Ts) ) di® + <1 = (TB> ) dy® + ——————
r r (rD—:s — 7l > (TD—S —rk )

+r2dQ,_,,
F) = 7«15% dr AdtAdy,  F™ =PdVgp-o,

(B.1)

with D3 D3

D-3)(D-1)ry “rg
GRS UL E g -
KD+1

The solutions correspond to either smooth topological stars for rg 3> rSD ~3 or two-charged

black strings for rg_?’ < 7’5‘3.

B.1 Reduction to D dimensions

We consider the minimum ingredients for the Kaluza-Klein reduction along the y-circle.
For the matter fields, we assume that only F(¢) has a component along dy and define Fy(e)
as in (3.10). The ansatz for the reduction of the metric is

dshyq = e 2D gy | 2% g2 (B.3)
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The Einstein-Maxwell action 5.1 reduced to an Einstein-Maxwell-dilaton theory in D di-

mensions:
1 D-2)(D-1 —2D-3)® 2
SD = /le'\/ —det gD 72RD_1 — ( )(2 ) &1(1) 0P € 3 ‘F(m)‘
2K7 2K7 2e
2(D-3)®
e (D=3) ‘F(e) 2
2e2 Y ’
(B.4)
where the gravitational and electric couplings are given by
2
_ kbt 2 _ 1
= , = . B.5
D 2R, c 2R, (B.5)
Depending on taste, we can rescale ® to get a canonical scalar Lagrangian with
b =,/2(D-2)(D—1)%. (B.6)

In this framework, the solutions are given by

1
D-3\ D—2 D-3 2(D73)dr2
2 (1 (LB> - 17(@) +2 r — + 72d02
b ( r r e (rP=3 —rd 73 (rP=3 — [ 7?) T2

1
D-3\ D—2
e?® = (1 - (TE> ) )
r

Q

D2

(D—3)(D—1)e? 7“st37'§73

rle) —
2 H%

dradt,  F™ =PdVep—o, P*+Q*=

(B.7)

From a D-dimensional perspective, the solutions are sourced by an electric charge and

a magnetic charge. The conserved quantities in D dimensions, as the ADM mass, M,

the electric and the magnetic charges, Q. and @Q,,, are given, following the conventions
of [51], by

D-1
T2 D-3 , D-3
M= s (D=2 g 0),
/{DI‘< 5 )

Q= Qn+Qi =

(D —3)(D—1)rd3rf™? P
e

) Qm: ) Qe:

2
2K}

2 D—3

As in five dimensions, one can invert those expressions and find two solutions (réz) ,
N D—3

rg) )i=1,2 for a given (M, Q). The expressions are not very useful and look like (3.16)

with different coefficients. The important points are that the solutions exist only if

r(D;rl> VD —3kpM > \/2(D-2)(D-1)n" 7 Q, (B.9)
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and we have the following relations

D-3 D-3
r](31) =(D-2) réz) ,
nD-3 nD-3
7“1(3) > Té) ; (B.10)
3
D-3 D-3 D+1 D—-12 b-
réQ) > r](32) , when F<+> vD —-3kp M > uﬂ'% Q.
2 V2
B.2 Phase space

As in five dimensions, the class of spherically symmetric solutions defined above describes

either topological stars or black strings:

Topological star.
If rg B ré) ~3 the outermost singularity is where the y-circle degenerates thus
corresponding to an end of spacetime. The topology at this locus is best described

by the radial distance

2= it S (B.11)
(D—3)2 ;03 ;D=3
and taking the limit p — 0. The metric (B.1) converges to
D-3 D-3 2 (,.D—-3 D-3
_ D—3 _
dshq ~ B s D_gs dt? + r§ |dp* + ( ) (T%_l s ) p* dy® +dQp_,
g drg
(B.12)
The (p,y) subspace corresponds to a smooth origin of R? providing that
4 D-1
2 "B . (B.13)

D=3y g

The spacetime at the coordinate singularity corresponds to a smooth SP~2 bubble
of radius rp sitting at an origin of a R?. One can also show that the matter fields
are regular there. Moreover, it is fairly straightforward that the solution has no
closed timelike curves for r?=3 > r2~3 from the metric (5.4). Consequently, we have
constructed a solution that caps off smoothly before the horizon as a round SP—2
bubble wrapped by electric and magnetic fluxes.

We can also allow the solution to have a conical defect at the bubble locus.
The local geometry given by (B.12) will correspond to a smooth discrete quotient
SP=2 x R? /7, providing that

9 47‘5 -1

= ., keZ,. B.14
Y k(D =325 P ! (814

Having a large k is the only way to have a macroscopic topological star compared to
the size of the extra dimension.
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e Black string.

D-3 D-3

We start with the solutions where rg > rg The outermost coordinate sin-

gularity corresponds to a horizon at r?3 = ’I”SD =3, The horizon has a SP~2xS!
topology corresponding to a black string. At the horizon, the radius of the S' is

D-3__D-3\ 1/2
(TSTD_Z?) R, while the radius of the SP=2 js ry. The Bekenstein-Hawking

S

entropy is then
D+1

42 1
S = 7;11 5 (T’SD_1 (rg_g — 7’]?_3)) . (B.15)
r (T) KD
We read the temperature from the near-horizon metric and we get
D-3 rg\ P73
T = 1—(— . B.16
4T rg ( rg ) ( )

We have then defined a two-charge non-extremal black string that reduces to a two-
charge non-extremal black hole in D dimensions given by (B.7), with mass and
charges (B.8). As in five dimensions, the locus 7?3 = rL =3 in the interior is part of
the spacetime and corresponds to a SP~2 bubble on the origin of a two-dimensional
Milne space.

Finally, when TSD 3= rg ~3 = m, the solution corresponds to an extremal two-

charge black string given by

m -1 m Di—a
dsd,, = (1 + pD_3> (—d* + dy?) + (1 + pD_g) [dp* + p?d0% | ,

-1
o - Q 4 (1 m) dt Ad F™) — P gingdf Ad
D —3)m ( Tps) )RR s,

(B.17)

where we have defined pP =3 = rP=3 —m and (P, Q) are still constrained by (5.6).The
near-horizon geometry corresponds to an AdS3zxSP~2 where the radius of AdS and
2

the radius of the sphere are 5=3m and m respectively.

e The phase space.
The phase space of solutions for given mass, “total” charge and KK radius,
(M, Q,Ry) (B.8), has exactly the same properties as in five dimensions depicted
in figure 5. The difference is in the delimitations between the different regions:

— For I’ (%) Vd—3kp M < /2(D—-2)(D—1) 777 Q: no solutions exist.

3 o
— For V2D -)(D-1)n 7 Q < r(%) Vd—3kpM < (D\—/;?Tr% o:

two lattices of topological stars exist. Each node corresponds to an orbifold

parameter following the quantization (B.14).

3 D1

— For %WT Q <7T (%) Vd —3kp M: one branch of solutions corre-
sponds to the two-charge black string, while the other branch corresponds to a
lattice of topological stars. In this region, topological stars and black strings
live in the same regime of mass and charges.
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