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We propose the first explicit holographic duals for a class of superconformal field theories of Argyres-
Douglas type, which are inherently strongly coupled and provide a window onto remarkable non-
perturbative phenomena (such as mutually nonlocal massless dyons and relevant operators of fractional
dimension). The theories under examination are realized by a stack of M5-branes wrapped on a sphere with
one irregular puncture and one regular puncture. In the dual 11d supergravity solutions, the irregular

puncture is realized as an internal M5-brane source.
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Introduction.—Strong-coupling phenomena in quantum
field theory (QFT) are of crucial importance, both con-
ceptually and phenomenologically, but their study poses
considerable theoretical challenges. In the endeavor of
exploring the vast and largely uncharted landscape of
strongly coupled phases in QFT, valuable lessons can be
learned from theories with a higher degree of symmetry.
Superconformal field theories (SCFTs) of Argyres-Douglas
(AD) type in four dimensions constitute a prominent
example. These theories are intrinsically strongly coupled
and describe interactions among mutually nonlocal mass-
less dyons [1]. Their spectrum contains relevant Coulomb
branch operators of fractional dimension. Establishing the
existence and surprising properties of these QFTs has been
complicated by their lack of an N =2 weak-coupling
Lagrangian description, and hence, exploring less conven-
tional windows into their physics is especially valuable.

A vast class of SCFTs of AD type is expected to admit
holographic duals, but their identification has remained an
open problem for years. In this Letter, we present a new
class of fully explicit AdSs solutions in 11d supergravity
and we propose them as holographic duals to SCFTs of AD
type. Our results give the opportunity to analyze these
QFTs from a new angle, providing novel insights on their
properties. Furthermore, a subclass of SCFTs of AD type
can be realized as N = 2 supersymmetric IR fixed points
of renormalization group (RG) flows preserving N = 1
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supersymmetry [2,3]. Our solutions pave the way to the
exciting possibility of studying the gravity dual of super-
symmetry enhancing RG flows, which could shed new light
on holography in general.

A crucial feature of our AdSs solutions is the presence of
suitable singularities, which we interpret as the low-energy
approximation to well-defined brane sources in M theory.
Localized sources in the internal space constitute an
important ingredient in the holographic dictionary that
allows for arbitrary flavor symmetries (see, e.g., [4—11]).
This Letter describes novel controlled examples allowing a
better understanding of these sources, pivotal for enlarging
the scope of the AdS/CFT correspondence.

Supergravity solutions.—Our AdSs solutions in 11d
supergravity preserve 4d N =2 superconformal sym-
metry. They were obtained in 7d gauged supergravity
and uplifted on S, as will be reported in [12]. The 7d
solutions are a warped product of AdSs and a 2d space X,
consisting of a circle fibered over an interval. X is supported
by a U(1) gauge flux, does not have a constant curvature
metric, and admits a nonconstant Killing spinor. Thus, as in
[13—15], supersymmetry is not realized in the standard
topological twist paradigm.

The metric of the uplifted 11d solution is

ds?, = m_zez’l(dsidSS + ds,zwﬁ), (1)
ist, — dw? N C’h(w)dz?
o 2wh(w)(1—w?)3/? B
LV 1—w?[  dy? (1—p®)D@?  wptdss,

2B [w(l—p?)  wH(w.p)  Hw.p)]

(2)

Published by the American Physical Society


https://orcid.org/0000-0003-4469-6890
https://orcid.org/0000-0002-4098-6391
https://orcid.org/0000-0002-1235-5314
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.211601&domain=pdf&date_stamp=2021-11-15
https://doi.org/10.1103/PhysRevLett.127.211601
https://doi.org/10.1103/PhysRevLett.127.211601
https://doi.org/10.1103/PhysRevLett.127.211601
https://doi.org/10.1103/PhysRevLett.127.211601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

PHYSICAL REVIEW LETTERS 127, 211601 (2021)

where m is a mass scale, dszAdSi is the metric on the unit-
radius AdSs, and ds§2 is the metric on the unit-radius S2.
The functions h(w), H(w,u) are defined as

h=B-2wV1-w? H=p>+w?(1-p*), (3)

where 0 < B < 1 is a constant parameter. The coordinates
u, w have ranges 0 <pu <1 and 0<w <w;, with
wi =1(1 = V1 — B?). The angular coordinates ¢, z have
period 27, and C is a constant. The 1-form D¢ and the warp
factor are given by

2Bw!'AH/3
D¢ = d¢p + C(2w* — 1)dz, e ="
( ) T
The G, flux supporting the solution reads

u3D¢} ’ (5)

G4 = —%VO]SZ A d|: H
where volg: is the volume form of the S2.

The space Mg is an S! x SL x §? fibration over the
rectangle [0, w;] x [0, 1] in the (w, u) plane, see Fig. 1. The
directions w, S; in (2) are identified with X in the 7d
solution, while u, Sqlb, S? span the S* used in the uplift.

Regularity and flux quantization.—As we approach a
point in the interior of the PP, segment in the (w, ) plane
(see Fig. 1), the $? shrinks smoothly. The Killing vector 9
shrinks smoothly in the interior of P;P,. The linear
combination d, + £, shrinks smoothly along P,Ps,
where 7 is given as

1
f:*, Z eN. 6
CV1 - B? (6)

The quantization of £ stems from analyzing the local
geometry of the 4d space spanned by w, u, ¢, z near P53, and
requiring it to be locally an orbifold R*/Z,.

1A
1 P4 Q2 E)%
SN I
[19g]] =0 R*/Z; orbifold
smeared i
M5-branes 4\
\/" 10p +£0.]| — 0
52 shrinks
0LP1 ) Py
0 Ql w1 'u')

FIG. 1. The internal space is an Sé x S! x §? fibration over
[0,w,] x [0, 1] in the (w, u) plane. The S? shrinks smoothly along
P,P,. Different linear combinations of d,, d, shrink smoothly
along P,P; and P;P,, as indicated. At P; the 4d space para-
metrized by w, u, ¢, z is locally R*/Z,. The region near P, P, is
interpreted in terms of smeared M5-branes. The segment Q;Q,
enters the definition of the four-cycle Cy.

The internal space M, admits nontrivial four cycles
which lead to flux quantization conditions for G4. The four-
cycle C, is obtained by combining the segment Q;Q,, Sé,,
and S%. C, has the topology of a four sphere because the S?
shrinks at Q; and the S;ﬁ shrinks at Q,. The flux of G,

through C, with suitable orientation defines

G, 1
N:A4( NeN,  (7)

22, am’ts’

where 7, is the 11d Planck length. Next, we define the
four-cycle B, by combining S?, the segment P,P5, and
the linear combination of S and S} that does not shrink in
the interior of P,P;. B, is topologically a four sphere,
because the $? shrinks at P, and both Sy and S} shrink at

the orbifold point P5. For £ = 1 we have B, = C,4, but 3, is
an independent four cycle for Z > 1, with

G, N .
Z> /li4m_?’ hence # divides N.  (8)
Finally, we construct the four-cycle D, by combining P;P,
with S?—which shrinks at P,—and the combination of S;s
and S! that does not shrink in the interior of P3P,.
Integrating G4 on D, defines

B G, N1-VI-B)
R e S LU

In the vicinity of P,P,, the geometry is singular and e**
vanishes. We interpret this in terms of a smeared M5-brane
source, as inferred from G4 near w = 0,

vole A du A D¢
Gy=——2 3 e (10)

This term yields a finite flux equal to N (7) when integra-
ted along S°, u, S(}), signaling a source of the form
dGy ~ 8(w)dw A volg A du A D¢p. Comparing the 11d
metric near w = 0 with the standard M5-brane solution,
we see that the M5-branes are extended along AdSs and the
S!, smeared along the p, S(},) directions, and sitting at the
origin w = 0 of the local R3 space aw?* + Wzdsgz.

Solutions in canonical N' = 2 form.—The general form
of an AdSs M-theory solution preserving 4d N =2
superconformal symmetry was determined in [16] by
Lin, Lunin, and Maldacena (LLM). The 11d metric and
flux are summarized in [17]. In LLM form, the internal
space Mg is an S}( x $? fibration over a 3d space with local
coordinates (x;, x,,y). The Killing vector 0, is associated
with the U(1), R symmetry of the dual SCFT, while the
isometries of the S? are mapped to the SU(2), R symmetry.
The solution is determined by a function D(xy,x,,y)
satisfying the Toda equation
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(02 4 02)D + 9%eP = 0. (11)

Our solutions can be cast in canonical LLM form, with the
§? in (2) identified with the S? in LLM. Defining
x; + ix, = re'’, the map between y,  and ¢, z is

9,=0,+ o,

N¢
= 1"
N +K? % a¢+[ +N+Kf]

(12)

With reference to the uplift from 7d, the isometry J, mixes
the X and S* directions. This is in contrast to the solutions
of [17,18], in which 9, = 0.

The function D and the map between the LLM coor-
dinates y, r and the coordinates u, w, are

ye = (=) G ),
D 16BC*(1 — p*)"*WOn G(w)  —Bw (13)
T—w)0WP  Gw)  C—wd)h

This determines a class of exact solutions D to the Toda
equation (11) which are separable in the variables u, w
Crucially, in our setup D does not describe a constant
curvature Riemann surface, in contrast to the 4d N =2
Maldacena-Nuiiez solutions [18].

Holographic central charge, flavor central charge, and
probe M?2-branes.—The holographic central charge is
extracted from the warped volume of the internal space [19],

1 £N?K?
= [ ol = (14
w7 /MG vl = vy ke Y

where voly, is the volume form of dsj, in (1).

Expanding the M-theory three-form C; onto the reso-
lution cycles of the R*/Z, orbifold singularity at P5, one
obtains Z — 1 Abelian gauge fields. The gauge group
enhances to SU(#) by virtue of states from M2-branes
wrapping the resolution cycles [17]. We compute the
associated flavor central charge kgy(s) using the 't Hooft
anomaly inflow methods of [20], yielding

2NK?¢
N+K?¢'

su() = (15)

M?2-brane probes wrapping calibrated two cycles in
the internal space are dual to Bogomol’nyi-Prasad-
Sommerfield (BPS) operators in the SCFT. The calibration
condition was written in [19] for a generic solution
preserving 4d N = 1 superconformal symmetry and can
be adapted to the N/ = 2 solutions at hand. The conformal
dimension A of the operator dual to an M2-brane wrapping
the calibrated two-cycle C, is [19]

1
m/ e ﬂVOICZ, (16)

where vole, is the volume form on C, induced from dsﬁ%.

We identify two supersymmetric M2-brane probes in our
setup. First, we can wrap an M2-brane on the S on top of
the orbifold point P; in the (w,u) plane. We denote the
corresponding operator as (0. Second, we can wrap an
M?2-brane on the 2d subspace consisting of the segment
P3P, and the combination of Sj, and S that does nor shrink
in the interior of P;P,. This subspace corresponds to an
open M2-brane ending on the M5-branes at w = (0. We
denote the associated operator as (J,. The dimensions of
0y, O, from (16) are

NKr¢

A =— A =K. 17
O) = s A0 (17)
The U(1), x SU(2), charges of O;, O, can be computed
from the M2-brane coupling to the 11d three-form C; [19],
(r,R)(O1) = [2A(01). 0],

(r,R)(Oy) = [0, A(O,)],

(18)

with R the Cartan generator of SU(2)g. Thus O; and O,
have the R charges of A/ = 2 Coulomb branch and Higgs
branch operators, respectively.

A novel Stiickelberg mechanism.—The Killing vector 0y
in (12) is a symmetry of the 11d metric and flux, but it does
not correspond to a continuous flavor symmetry of the dual
SCFT. This is due to a Stiickelberg mechanism in the 5d
low-energy effective action of M theory on M. The
components of the 114 metric with one external leg and
one leg along dj yield a U(1) gauge field A”. When A” is
turned on, the one-form df must be replaced by the gauge
invariant combination df + A”. This replacement affects
the closure of G4, which is restored by adding suitable
terms, including

Gy = Gulapoaprar +Dag N w3 + - -. (19)

The improved GY' is built with the closed but not exact
three-form w; o 15 , G4 whose nonexactness hinges on the
M5-brane source at w = 0. The one-form Da,, is the field
strength of an external axion a.

Closure of G, requires dDay o« dA”?, signaling a non-
trivial Stiickelberg coupling between A” and a,,. As a result,
AP is massive and is dual to a spontaneously broken U(1)
symmetry in the SCFT. As discussed in detail in [21], this
mechanism provides a nontrivial physical realization of a
mathematical obstruction to promoting G, to an equivariant
cohomology class [22]. In contrast, 1o, G, is exact, and the
U(1) gauge field A* (originating from the components of
the 11d metric with one external leg and one leg along 0,)
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TABLE 1. The central charges of the (Ag\,N_)1 [k], Y,) theories. {x} = x — |x] denotes the fractional part.

a {[4K*(N? = 1) = 5(k + N){[(8 = 3¢)/5]N — 2 + GCD(k. N)}]/[48(k + N)]}
HN/Bk+ NI} 325 H{Li(k + N)/NTH(1 = {i(k + N)]/N})
H(AN[1 = (1/2){2k + N[1 = (1/2)]})/[48(k + N)]]
¢ {(F(N* = 1) = (k+ N)[N(2 - £) =2 + GCD(k. N)])/[12(k + N)]}
+(N?[1 = (1/2){2k + N[1 = (1/2)]}]/[12(k + N)])

N, k - o

a=c={[N*{k+N[1 - (1/2)]}°|/[12(k + N)]}

does not participate in any Stiickelberg coupling to a, and
remains massless. This is expected since d, is dual to the
U(1), R symmetry of the SCFT. Similar versions of the
Stiickelberg mechanism for isometries in flux backgrounds
are known for flat internal spaces (see, e.g., [23]). The
internal geometry discussed in this Letter is richer, and this
Stiickelberg mechanism is novel in the context of holo-
graphic M-theory solutions.

Field theory duals.—We claim that the 11d supergravity
solutions presented above are holographically dual to 4d
N =2 SCFTs that arise from the low-energy limit of N
M5-branes wrapping a sphere with an irregular puncture of

type A]<\,N_)1 [k], labeled by the integer k > —N. For £ = 1 the
irregular puncture is the only puncture on the sphere, and
the 4d field theories coincide with the type I theories with
b = N and J = Ay_; in the classification of [24,25] (also
called I, in [26]). These are the AD theories of type
(Ay_1,Ag_1), obtained in type IIB in [27] (generalizing the
N = 2 cases obtained in [1,28,29]). For # > 1 there is an
additional regular puncture at the opposite pole of the
sphere that is labeled by a box Young diagram with ¢
columns and N/Z rows, contributing an SU(#) non-
Abelian flavor symmetry [30]. We label the resulting 4d

theories by (A%V_) \[k], Y ), which belong to the class labeled
type IV in [24,25]. For £ = N the regular puncture is of
maximal type and these are the D}, ,[SU(N)] theories
studied in [32-34]. The case £ = 1 is the “nonpuncture,’
equivalent to the (Ay_;, A;_;) theories.

The irregular puncture is identified with the M5-brane
source in the gravity dual. Because of the irregular
puncture, the U(1), R symmetry of the SCFT is given
as the combination r = R, + [N/(k + N)|R., where R, is
the generator of the R symmetry that would be preserved in
the absence of the irregular defect and R, is the generator of
the global U(1), isometry of the sphere [24,25].
Comparison with (12) gives the map between k in the
SCFT and the flux quantum K,

K:k+N<1—Llﬂ>. (20)

The central charges of the (A,(\Z,V_),[k],Y ¢) theories are

summarized in Table I. They are computed in the literature
[24,33-36] using useful formulas from [37]. For £ > 1, an

especially simple way to compute the central charges as a
function of £ is to apply the results of [34,38] for the partial
closure of a maximal puncture, initiated by a nilpotent
vacuum expectation value for the moment map operator of
the maximal puncture’s flavor symmetry. The third row of
Table I gives the central charge in the limit N, k — oo with
k/N finite. Using (20), we get a perfect match with the
holographic central charge (14).

The dimensions of the Coulomb branch operators u; of

the theory (AI(\,N_>1 [k],Y,) are conveniently captured by a
Newton polygon [24] and obey the bounds

NZ
AN+

The upper bound is saturated by exactly one u;, which has
the correct dimension and R charges to be identified with
the M2-brane operator O, in (17), (18) [39].

Using (20), the kgy(,) central charge (15) reads

2N?
/(N +k)

For £ = N it matches the field theory computation of [33].
For generic 7, it matches the conjecture of [26] that the
flavor central charge is equal to twice the maximal
Coulomb branch operator dimension—see (21).

For # =1, the rank of the global symmetry of the
(Ay_1,Ax_1) theories is GCD(k,N) —1, where GCD
stands for greatest common divisor [34]. The maximal
rank N — 1 on the SCFT side matches with the maximal
rank that can be achieved via the M5-brane source on the
gravity side. It would be interesting to establish a precise
match with the SCFT formula for generic k, N.

When # =1 and k/N is an integer, a Lagrangian
description of the SCFT was obtained in [2,3] (see also
[40,41] for the case N = 2). Using the dual Lagrangian, a
set of 2V —2 Higgs branch operators can be constructed,
with dimension [3]

1<A(w) <N (21)

ksy(e) = 2N — (22)

k
A=k——. 23
- (23)
At large N, this exactly matches with the dimension of the
wrapped M2-brane operators O, in (17), (18). We expect
that the field-theory degeneracy factor 2V —2 could be
understood on the gravity side by studying the possible
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ways in which the M2-brane can end on the M5-brane
source. Heuristically, we can picture the M2-brane world
volume, which has a disk topology, as the collapsed version
of a multipronged configuration that can have a boundary
component on each of the N M5-branes independently.
Since the M2-brane must end on at least one of them, the
degeneracy is 2" — 1. Notice the mismatch by one between
the degeneracy in field theory and in gravity. It would be
interesting to sharpen this argument and to understand the
origin of the additional decoupled mode, which we expect
is associated to the center-of-mass mode of the M5-brane
source stack.

Discussion.—We have proposed gravity duals for the 4d
N =2 SCFTs (AW [k].Y,) of AD type, performing
checks on the central charge, the SU(#) flavor central
charge, and the dimensions of suitable Coulomb branch
and Higgs branch operators. Our AdSs solutions contain
internal MS5-brane sources. They admit an isometry algebra
3u(2)r @ u(l), @ u(l),. The 8u(2)g & u(1), is dual to
the SCFT R-symmetry, while u(1), does not yield a
continuous flavor symmetry thanks to a Stiickelberg
mechanism in which the u(1); vector eats an axion
originating from the expansion of the M-theory three form.
There could be still a discrete symmetry remnant of (1),
which we plan to study elsewhere.

We expect our 11d solutions to admit generalizations
corresponding to a regular puncture labeled by an arbitrary
Young diagram. Constructing Lagrangian descriptions for
these cases would yield further insights into SCFTs of AD
type and allow for precision tests of the holographic duality.

It would be interesting to investigate whether the
classification of irregular punctures in field theory can
be recovered by a systematic study of exact solutions to the
Toda equation of the class we discovered.

Our results set the stage for a broader study of holo-
graphic duals of AD theories. The supergravity construc-
tions can be generalized to obtain A/ = 1 systems. More
interestingly, our solutions can be used to study the holo-
graphic dual of the supersymmetry enhancing flows
observed in the Lagrangian realizations of AD theories.
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