
Holographic Duals of Argyres-Douglas Theories

Ibrahima Bah,1 Federico Bonetti ,2 Ruben Minasian ,3 and Emily Nardoni 4

1Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
2Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
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We propose the first explicit holographic duals for a class of superconformal field theories of Argyres-
Douglas type, which are inherently strongly coupled and provide a window onto remarkable non-
perturbative phenomena (such as mutually nonlocal massless dyons and relevant operators of fractional
dimension). The theories under examination are realized by a stack ofM5-branes wrapped on a sphere with
one irregular puncture and one regular puncture. In the dual 11d supergravity solutions, the irregular
puncture is realized as an internal M5-brane source.
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Introduction.—Strong-coupling phenomena in quantum
field theory (QFT) are of crucial importance, both con-
ceptually and phenomenologically, but their study poses
considerable theoretical challenges. In the endeavor of
exploring the vast and largely uncharted landscape of
strongly coupled phases in QFT, valuable lessons can be
learned from theories with a higher degree of symmetry.
Superconformal field theories (SCFTs) of Argyres-Douglas
(AD) type in four dimensions constitute a prominent
example. These theories are intrinsically strongly coupled
and describe interactions among mutually nonlocal mass-
less dyons [1]. Their spectrum contains relevant Coulomb
branch operators of fractional dimension. Establishing the
existence and surprising properties of these QFTs has been
complicated by their lack of an N ¼ 2 weak-coupling
Lagrangian description, and hence, exploring less conven-
tional windows into their physics is especially valuable.
A vast class of SCFTs of AD type is expected to admit

holographic duals, but their identification has remained an
open problem for years. In this Letter, we present a new
class of fully explicit AdS5 solutions in 11d supergravity
and we propose them as holographic duals to SCFTs of AD
type. Our results give the opportunity to analyze these
QFTs from a new angle, providing novel insights on their
properties. Furthermore, a subclass of SCFTs of AD type
can be realized as N ¼ 2 supersymmetric IR fixed points
of renormalization group (RG) flows preserving N ¼ 1

supersymmetry [2,3]. Our solutions pave the way to the
exciting possibility of studying the gravity dual of super-
symmetry enhancing RG flows, which could shed new light
on holography in general.
A crucial feature of our AdS5 solutions is the presence of

suitable singularities, which we interpret as the low-energy
approximation to well-defined brane sources in M theory.
Localized sources in the internal space constitute an
important ingredient in the holographic dictionary that
allows for arbitrary flavor symmetries (see, e.g., [4–11]).
This Letter describes novel controlled examples allowing a
better understanding of these sources, pivotal for enlarging
the scope of the AdS=CFT correspondence.
Supergravity solutions.—Our AdS5 solutions in 11d

supergravity preserve 4d N ¼ 2 superconformal sym-
metry. They were obtained in 7d gauged supergravity
and uplifted on S4, as will be reported in [12]. The 7d
solutions are a warped product of AdS5 and a 2d space Σ,
consisting of a circle fibered over an interval. Σ is supported
by a Uð1Þ gauge flux, does not have a constant curvature
metric, and admits a nonconstant Killing spinor. Thus, as in
[13–15], supersymmetry is not realized in the standard
topological twist paradigm.
The metric of the uplifted 11d solution is

ds211 ¼ m−2e2λðds2AdS5 þ ds2M6
Þ; ð1Þ

ds2M6
¼ dw2

2whðwÞð1−w2Þ3=2 þ
C2hðwÞdz2

B

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−w2

p

2B

�
dμ2

wð1− μ2Þ þ
ð1− μ2ÞDϕ2

wHðw;μÞ þwμ2ds2S2
Hðw;μÞ

�
;

ð2Þ
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where m is a mass scale, ds2AdS5 is the metric on the unit-
radius AdS5, and ds2S2 is the metric on the unit-radius S2.
The functions hðwÞ, Hðw; μÞ are defined as

h ¼ B − 2w
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
; H ¼ μ2 þ w2ð1 − μ2Þ; ð3Þ

where 0 < B < 1 is a constant parameter. The coordinates
μ, w have ranges 0 ≤ μ ≤ 1 and 0 ≤ w ≤ w1, with
w2
1 ¼ 1

2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

p
Þ. The angular coordinates ϕ, z have

period 2π, and C is a constant. The 1-formDϕ and the warp
factor are given by

Dϕ ¼ dϕþ Cð2w2 − 1Þdz; e2λ ¼ 2Bw1=3H1=3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p : ð4Þ

The G4 flux supporting the solution reads

G4 ¼ −
1

m3
volS2 ∧ d

�
μ3Dϕ

H

�
; ð5Þ

where volS2 is the volume form of the S2.
The space M6 is an S1z × S1ϕ × S2 fibration over the

rectangle ½0; w1� × ½0; 1� in the ðw; μÞ plane, see Fig. 1. The
directions w, S1z in (2) are identified with Σ in the 7d
solution, while μ, S1ϕ, S

2 span the S4 used in the uplift.
Regularity and flux quantization.—As we approach a

point in the interior of the P1P2 segment in the ðw; μÞ plane
(see Fig. 1), the S2 shrinks smoothly. The Killing vector ∂ϕ

shrinks smoothly in the interior of P3P4. The linear
combination ∂ϕ þ l∂z shrinks smoothly along P2P3,
where l is given as

l ¼ 1

C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

p ; l ∈ N: ð6Þ

The quantization of l stems from analyzing the local
geometry of the 4d space spanned by w, μ, ϕ, z near P3, and
requiring it to be locally an orbifold R4=Zl.

The internal space M6 admits nontrivial four cycles
which lead to flux quantization conditions forG4. The four-
cycle C4 is obtained by combining the segment Q1Q2, S1ϕ,
and S2. C4 has the topology of a four sphere because the S2

shrinks at Q1 and the S1ϕ shrinks at Q2. The flux of G4

through C4 with suitable orientation defines

N ¼
Z
C4

G4

ð2πlpÞ3
¼ 1

πm3l3
p
; N ∈ N; ð7Þ

where lp is the 11d Planck length. Next, we define the
four-cycle B4 by combining S2, the segment P2P3, and
the linear combination of S1ϕ and S1z that does not shrink in
the interior of P2P3. B4 is topologically a four sphere,
because the S2 shrinks at P2 and both S1ϕ and S1z shrink at
the orbifold point P3. For l ¼ 1 we have B4 ≅ C4, but B4 is
an independent four cycle for l > 1, with

Z ∋
Z
B4

G4

ð2πlpÞ3
¼ N

l
; hencel dividesN: ð8Þ

Finally, we construct the four-cycleD4 by combining P3P4

with S2—which shrinks at P4—and the combination of S1ϕ
and S1z that does not shrink in the interior of P3P4.
Integrating G4 on D4 defines

K ¼
Z
D4

G4

ð2πlpÞ3
¼ Nð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

p
Þ

l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

p ; K ∈ N: ð9Þ

In the vicinity of P1P4, the geometry is singular and e2λ

vanishes. We interpret this in terms of a smearedM5-brane
source, as inferred from G4 near w ¼ 0,

G4 ¼ −
volS2 ∧ dμ ∧ Dϕ

m3
þ � � � : ð10Þ

This term yields a finite flux equal to N (7) when integra-
ted along S2, μ, S1ϕ, signaling a source of the form
dG4 ∼ δðwÞdw ∧ volS2 ∧ dμ ∧ Dϕ. Comparing the 11d
metric near w ¼ 0 with the standard M5-brane solution,
we see that theM5-branes are extended along AdS5 and the
S1z , smeared along the μ, S1ϕ directions, and sitting at the
origin w ¼ 0 of the local R3 space dw2 þ w2ds2S2 .
Solutions in canonical N ¼ 2 form.—The general form

of an AdS5 M-theory solution preserving 4d N ¼ 2
superconformal symmetry was determined in [16] by
Lin, Lunin, and Maldacena (LLM). The 11d metric and
flux are summarized in [17]. In LLM form, the internal
spaceM6 is an S1χ × S2 fibration over a 3d space with local
coordinates ðx1; x2; yÞ. The Killing vector ∂χ is associated
with the Uð1Þr R symmetry of the dual SCFT, while the
isometries of the S2 are mapped to the SUð2ÞR R symmetry.
The solution is determined by a function Dðx1; x2; yÞ
satisfying the Toda equation

FIG. 1. The internal space is an S1ϕ × S1z × S2 fibration over
½0; w1� × ½0; 1� in the ðw; μÞ plane. The S2 shrinks smoothly along
P1P2. Different linear combinations of ∂ϕ, ∂z shrink smoothly
along P2P3 and P3P4, as indicated. At P3 the 4d space para-
metrized by w, μ, ϕ, z is locally R4=Zl. The region near P1P4 is
interpreted in terms of smeared M5-branes. The segment Q1Q2

enters the definition of the four-cycle C4.
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ð∂2
x1 þ ∂2

x2ÞDþ ∂2
yeD ¼ 0: ð11Þ

Our solutions can be cast in canonical LLM form, with the
S2 in (2) identified with the S2 in LLM. Defining
x1 þ ix2 ¼ reiβ, the map between χ, β and ϕ, z is

∂χ ¼ ∂ϕ þ
Nl

N þ Kl
∂z; ∂β ¼ ∂ϕ þ

�
1þ Nl

N þ Kl

�
∂z:

ð12Þ

With reference to the uplift from 7d, the isometry ∂χ mixes
the Σ and S4 directions. This is in contrast to the solutions
of [17,18], in which ∂χ ¼ ∂ϕ.
The function D and the map between the LLM coor-

dinates y, r and the coordinates μ, w, are

y ¼ 4Bwμffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p ; r ¼ ð1 − μ2Þ−1=2CGðwÞ;

eD ¼ 16BC2ð1 − μ2Þ1þð1=CÞh
ð1 − w2ÞGðwÞ2 ;

G0ðwÞ
GðwÞ ¼ −Bw

Cð1 − w2Þh : ð13Þ

This determines a class of exact solutions D to the Toda
equation (11) which are separable in the variables μ, w.
Crucially, in our setup D does not describe a constant
curvature Riemann surface, in contrast to the 4d N ¼ 2
Maldacena-Nuñez solutions [18].
Holographic central charge, flavor central charge, and

probe M2-branes.—The holographic central charge is
extracted from thewarped volume of the internal space [19],

c ¼ 1

27π6m9l9
p

Z
M6

e9λvolM6
¼ lN2K2

12ðN þ KlÞ ; ð14Þ

where volM6
is the volume form of ds2M6

in (1).
Expanding the M-theory three-form C3 onto the reso-

lution cycles of the R4=Zl orbifold singularity at P3, one
obtains l − 1 Abelian gauge fields. The gauge group
enhances to SUðlÞ by virtue of states from M2-branes
wrapping the resolution cycles [17]. We compute the
associated flavor central charge kSUðlÞ using the ’t Hooft
anomaly inflow methods of [20], yielding

kSUðlÞ ¼
2NKl
N þ Kl

: ð15Þ

M2-brane probes wrapping calibrated two cycles in
the internal space are dual to Bogomol’nyi-Prasad-
Sommerfield (BPS) operators in the SCFT. The calibration
condition was written in [19] for a generic solution
preserving 4d N ¼ 1 superconformal symmetry and can
be adapted to the N ¼ 2 solutions at hand. The conformal
dimension Δ of the operator dual to anM2-brane wrapping
the calibrated two-cycle C2 is [19]

Δ ¼ 1

4π2m3l3
p

Z
C2

e3λvolC2 ; ð16Þ

where volC2 is the volume form on C2 induced from ds2M6
.

We identify two supersymmetricM2-brane probes in our
setup. First, we can wrap an M2-brane on the S2 on top of
the orbifold point P3 in the ðw; μÞ plane. We denote the
corresponding operator as O1. Second, we can wrap an
M2-brane on the 2d subspace consisting of the segment
P3P4 and the combination of S1ϕ and S

1
z that does not shrink

in the interior of P3P4. This subspace corresponds to an
open M2-brane ending on the M5-branes at w ¼ 0. We
denote the associated operator as O2. The dimensions of
O1, O2 from (16) are

ΔðO1Þ ¼
NKl

N þ Kl
; ΔðO2Þ ¼ K: ð17Þ

The Uð1Þr × SUð2ÞR charges of O1, O2 can be computed
from theM2-brane coupling to the 11d three-form C3 [19],

ðr; RÞðO1Þ ¼ ½2ΔðO1Þ; 0�; ðr; RÞðO2Þ ¼ ½0;ΔðO2Þ�;
ð18Þ

with R the Cartan generator of SUð2ÞR. Thus O1 and O2

have the R charges of N ¼ 2 Coulomb branch and Higgs
branch operators, respectively.
A novel Stückelberg mechanism.—The Killing vector ∂β

in (12) is a symmetry of the 11dmetric and flux, but it does
not correspond to a continuous flavor symmetry of the dual
SCFT. This is due to a Stückelberg mechanism in the 5d
low-energy effective action of M theory on M6. The
components of the 11d metric with one external leg and
one leg along ∂β yield a Uð1Þ gauge field Aβ. When Aβ is
turned on, the one-form dβ must be replaced by the gauge
invariant combination dβ þ Aβ. This replacement affects
the closure of G4, which is restored by adding suitable
terms, including

Gtot
4 ¼ G4jdβ→dβþAβ þDa0 ∧ ω3 þ � � � : ð19Þ

The improved Gtot
4 is built with the closed but not exact

three-form ω3 ∝ ι∂β
G4, whose nonexactness hinges on the

M5-brane source at w ¼ 0. The one-form Da0 is the field
strength of an external axion a0.
Closure of G4 requires dDa0 ∝ dAβ, signaling a non-

trivial Stückelberg coupling between Aβ and a0. As a result,
Aβ is massive and is dual to a spontaneously broken Uð1Þ
symmetry in the SCFT. As discussed in detail in [21], this
mechanism provides a nontrivial physical realization of a
mathematical obstruction to promotingG4 to an equivariant
cohomology class [22]. In contrast, ι∂χG4 is exact, and the
Uð1Þ gauge field Aχ (originating from the components of
the 11d metric with one external leg and one leg along ∂χ)
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does not participate in any Stückelberg coupling to a0 and
remains massless. This is expected since ∂χ is dual to the
Uð1Þr R symmetry of the SCFT. Similar versions of the
Stückelberg mechanism for isometries in flux backgrounds
are known for flat internal spaces (see, e.g., [23]). The
internal geometry discussed in this Letter is richer, and this
Stückelberg mechanism is novel in the context of holo-
graphic M-theory solutions.
Field theory duals.—We claim that the 11d supergravity

solutions presented above are holographically dual to 4d
N ¼ 2 SCFTs that arise from the low-energy limit of N
M5-branes wrapping a sphere with an irregular puncture of

type AðNÞ
N−1½k�, labeled by the integer k > −N. For l ¼ 1 the

irregular puncture is the only puncture on the sphere, and
the 4d field theories coincide with the type I theories with
b ¼ N and J ¼ AN−1 in the classification of [24,25] (also
called IN;k in [26]). These are the AD theories of type
ðAN−1; Ak−1Þ, obtained in type IIB in [27] (generalizing the
N ¼ 2 cases obtained in [1,28,29]). For l > 1 there is an
additional regular puncture at the opposite pole of the
sphere that is labeled by a box Young diagram with l
columns and N=l rows, contributing an SUðlÞ non-
Abelian flavor symmetry [30]. We label the resulting 4d

theories by ðAðNÞ
N−1½k�; YlÞ, which belong to the class labeled

type IV in [24,25]. For l ¼ N the regular puncture is of
maximal type and these are the DN

kþN ½SUðNÞ� theories
studied in [32–34]. The case l ¼ 1 is the “nonpuncture,”
equivalent to the ðAN−1; Ak−1Þ theories.
The irregular puncture is identified with the M5-brane

source in the gravity dual. Because of the irregular
puncture, the Uð1Þr R symmetry of the SCFT is given
as the combination r ¼ Rϕ þ ½N=ðkþ NÞ�Rz, where Rϕ is
the generator of the R symmetry that would be preserved in
the absence of the irregular defect and Rz is the generator of
the global Uð1Þz isometry of the sphere [24,25].
Comparison with (12) gives the map between k in the
SCFT and the flux quantum K,

K ¼ kþ N

�
1 −

1

l

�
: ð20Þ

The central charges of the ðAðNÞ
N−1½k�; YlÞ theories are

summarized in Table I. They are computed in the literature
[24,33–36] using useful formulas from [37]. For l > 1, an

especially simple way to compute the central charges as a
function of l is to apply the results of [34,38] for the partial
closure of a maximal puncture, initiated by a nilpotent
vacuum expectation value for the moment map operator of
the maximal puncture’s flavor symmetry. The third row of
Table I gives the central charge in the limit N, k → ∞ with
k=N finite. Using (20), we get a perfect match with the
holographic central charge (14).
The dimensions of the Coulomb branch operators ui of

the theory ðAðNÞ
N−1½k�; YlÞ are conveniently captured by a

Newton polygon [24] and obey the bounds

1 < ΔðuiÞ ≤ N −
N2

lðN þ kÞ : ð21Þ

The upper bound is saturated by exactly one ui, which has
the correct dimension and R charges to be identified with
the M2-brane operator O1 in (17), (18) [39].
Using (20), the kSUðlÞ central charge (15) reads

kSUðlÞ ¼ 2N −
2N2

lðN þ kÞ : ð22Þ

For l ¼ N it matches the field theory computation of [33].
For generic l, it matches the conjecture of [26] that the
flavor central charge is equal to twice the maximal
Coulomb branch operator dimension—see (21).
For l ¼ 1, the rank of the global symmetry of the

ðAN−1; Ak−1Þ theories is GCDðk; NÞ − 1, where GCD
stands for greatest common divisor [34]. The maximal
rank N − 1 on the SCFT side matches with the maximal
rank that can be achieved via the M5-brane source on the
gravity side. It would be interesting to establish a precise
match with the SCFT formula for generic k, N.
When l ¼ 1 and k=N is an integer, a Lagrangian

description of the SCFT was obtained in [2,3] (see also
[40,41] for the case N ¼ 2). Using the dual Lagrangian, a
set of 2N − 2 Higgs branch operators can be constructed,
with dimension [3]

Δ ¼ k −
k
N
: ð23Þ

At large N, this exactly matches with the dimension of the
wrapped M2-brane operators O2 in (17), (18). We expect
that the field-theory degeneracy factor 2N − 2 could be
understood on the gravity side by studying the possible

TABLE I. The central charges of the ðAðNÞ
N−1½k�; YlÞ theories. fxg ¼ x − bxc denotes the fractional part.

a f[4k2ðN2 − 1Þ − 5ðkþ NÞf½ð8 − 3lÞ=5�N − 2þ GCDðk; NÞg]=½48ðkþ NÞ�g
þfN=½8ðkþ NÞ�gPN−1

j¼1 f½jðkþ NÞ=N�g(1 − f½jðkþ NÞ�=Ng)
þ[(4N3½1 − ð1=lÞ�f2kþ N½1 − ð1=lÞ�g)=½48ðkþ NÞ�]

c f(k2ðN2 − 1Þ − ðkþ NÞ½Nð2 − lÞ − 2þ GCDðk; NÞ�)=½12ðkþ NÞ�g
þ([N3½1 − ð1=lÞ�f2kþ N½1 − ð1=lÞ�g]=½12ðkþ NÞ�)

N, k → ∞ a ¼ c ¼ f[N2fkþ N½1 − ð1=lÞ�g2]=½12ðkþ NÞ�g
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ways in which the M2-brane can end on the M5-brane
source. Heuristically, we can picture the M2-brane world
volume, which has a disk topology, as the collapsed version
of a multipronged configuration that can have a boundary
component on each of the N M5-branes independently.
Since the M2-brane must end on at least one of them, the
degeneracy is 2N − 1. Notice the mismatch by one between
the degeneracy in field theory and in gravity. It would be
interesting to sharpen this argument and to understand the
origin of the additional decoupled mode, which we expect
is associated to the center-of-mass mode of the M5-brane
source stack.
Discussion.—We have proposed gravity duals for the 4d

N ¼ 2 SCFTs ðAðNÞ
N−1½k�; YlÞ of AD type, performing

checks on the central charge, the SUðlÞ flavor central
charge, and the dimensions of suitable Coulomb branch
and Higgs branch operators. Our AdS5 solutions contain
internalM5-brane sources. They admit an isometry algebra
suð2ÞR ⊕ uð1Þr ⊕ uð1Þβ. The suð2ÞR ⊕ uð1Þr is dual to
the SCFT R-symmetry, while uð1Þβ does not yield a
continuous flavor symmetry thanks to a Stückelberg
mechanism in which the uð1Þβ vector eats an axion
originating from the expansion of theM-theory three form.
There could be still a discrete symmetry remnant of uð1Þβ,
which we plan to study elsewhere.
We expect our 11d solutions to admit generalizations

corresponding to a regular puncture labeled by an arbitrary
Young diagram. Constructing Lagrangian descriptions for
these cases would yield further insights into SCFTs of AD
type and allow for precision tests of the holographic duality.
It would be interesting to investigate whether the

classification of irregular punctures in field theory can
be recovered by a systematic study of exact solutions to the
Toda equation of the class we discovered.
Our results set the stage for a broader study of holo-

graphic duals of AD theories. The supergravity construc-
tions can be generalized to obtain N ¼ 1 systems. More
interestingly, our solutions can be used to study the holo-
graphic dual of the supersymmetry enhancing flows
observed in the Lagrangian realizations of AD theories.
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