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1 Introduction

The Argyres-Douglas (AD) field theories have particular significance among four-
dimensional N = 2 superconformal field theories (SCFTs). As in the original such theory
discovered by Argyres and Douglas in [1], many of these SCFTs appear at special singular
points on the moduli space of N = 2 gauge theories where mutually non-local dyons simul-
taneously become massless [2, 3]. Such phenomena cannot be captured by a Lagrangian in
the traditional sense, and thus these theories are intrinsically strongly coupled. Nonethe-
less, the existence of an interacting superconformal fixed point has been convincingly argued
from both field theoretic and string theoretic perspectives.

Several features of the Argyres-Douglas theories set them apart. A dramatic example
is that they possess relevant chiral operators in their spectrum with fractional scaling
dimensions. Among all unitary interacting N = 2 SCFTs, the theory with smallest c-
central charge is the original AD theory with one relevant chiral ring generator of dimension
6
5 , and in this sense the “minimal” N = 2 SCFT is of Argyres-Douglas type [4].

Argyres-Douglas SCFTs also appear in the low-energy limit of various string theory
configurations via geometric engineering. One such realization involves compactifying the
6d N = (2, 0) SCFTs of g =ADE type on a punctured sphere, which for g = AN−1 cor-
responds to N M5-branes wrapped on the sphere. An infinite class of four-dimensional
conformal field theories with varying amounts of supersymmetry can be obtained by com-
pactifying the (2,0) theories on a punctured Riemann surface, while employing a topological
twist to preserve supersymmetry in four dimensions, beginning with the N = 2 construc-
tions in [5–7]. A large subset of Argyres-Douglas theories can be thus obtained in the very
special case that the Riemann surface is a sphere with a puncture of irregular, rather than
regular, type [8–10] (also see [7, 11]). While the holographic duals of a large class of 4d
N = 2 SCFTs in geometric engineering with regular punctures are known [12], until now
the gravity duals of 4d field theories from irregular punctures have remained mysterious.

The realization of Argyres-Douglas theories via M5-branes wrapped on spheres with
irregular punctures offers the prospect of studying their properties in holography. In this
paper we present the first gravity duals of AD theories in M-theory, and provide a new
perspective on both the geometry of the irregular puncture and the curious field theoretic
properties of these SCFTs. An important motivation to this work has been the recent work
on branes wrapping spindle geometries1 [14, 15] as a novel way of preserving supersymmetry

1These geometries also appear in the study of holographic duals of N = 1 class S theories, where they
determined the structure of probe branes and aspects of the moduli space of the dual field theories [13].
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beyond the paradigm of the topological twist in supergravity [16]. Our construction will
provide yet another way of preserving supersymmetry, by wrapping branes on a disk with
a nontrivial U(1) holonomy at the boundary. Our setup can be thought of as M5-branes
wrapping a “half-spindle”.

A distinctive feature of our 11d solutions is the presence of localized M5-brane sources
in the internal space. These appear as singularities in the low-energy supergravity approx-
imation, but correspond to well-defined objects in the full M-theory. As demonstrated in
several examples [17–24], brane sources are useful ingredients in holography. In particular,
they provide an avenue to realizing arbitrary flavor symmetries. In our solutions the M5-
brane source is instrumental, and is in fact dual to the irregular puncture on the sphere.
This novel connection between irregular punctures and sources in supergravity paves the
way to further investigations and generalizations to other brane constructions.

Another peculiar property of our solutions is related to the interplay between the
isometry algebra of the internal space and the algebra of global zero-form symmetries
in the SCFT. In particular, we identify a U(1) isometry generator that is not mapped
to a generator of a continuous U(1) global zero-form symmetry of the dual field theory.
Indeed, the would-be massless U(1) gauge field associated to this isometry generator is
actually massive in the AdS5 low-energy effective action, by virtue of a novel Stückelberg
mechanism involving an axion field originating from the expansion of the M-theory 3-
form. The interplay between the background G4-flux supporting the holographic solution
and the isometry group of the internal space can be elegantly described in the language
of equivariant cohomology. Our physical analysis in terms of a Stückelberg mechanism
detects an obstruction to finding a closed equivariant completion of G4 — and provides a
recipe to overcome it.

The rest of this paper is organized as follows. In section 2 we present a new class of
AdS5 solutions in 11d supergravity that preserve N = 2 superconformal symmetry. We first
describe the solutions in 7d U(1)2 gauged supergravity, and then give their uplift on S4 to
eleven dimensions. The solutions feature an M5-brane source, and their flux configuration
is encoded by three positive integers. We compute the holographic central charge, as well
as the charges of various supersymmetric probe M2-branes wrapping two-cycles in the
internal space.

In section 3 we use the machinery of anomaly inflow to extract the global symmetries
and ’t Hooft anomalies of the SCFTs dual to the aforementioned supergravity solutions.
We verify that the central charge thus computed is compatible with the holographic central
charge, and additionally compute the flavor central charge. An important ingredient in the
matching of the global symmetries is a Stückelberg mechanism, in which one U(1) generator
of the isometry algebra of the internal space is spontaneously broken.

In section 4 we describe the proposed 4d N = 2 field theories dual to our supergravity
solutions, and perform tests of the holographic duality. The field theories are of Argyres-
Douglas type, and arise from N M5-branes wrapped on a sphere with one irregular puncture
and one regular puncture. We test the duality by matching the N = 2 R-symmetry
generators, the large-N central charge, the flavor central charge associated to the regular
puncture, the rank of the flavor symmetry, and the field theory operators dual to M2-
brane probes.
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Finally, several appendices elaborate on derivations and ideas used in the main text.
Appendix A provides a full derivation of the 7d gauged supergravity solutions. Appendix B
casts the uplifted 11d solutions into canonical N = 2 form. Appendix C collects useful
formulae on the ’t Hooft anomalies of 4d N = 2 SCFTs. Appendices D and E serve as select
reviews of the literature on Argyres-Douglas theories: appendix D gives an overview of the
landscape of four-dimensional field theories of Argyres-Douglas type, while appendix E
reviews the dual quiver Lagrangian description found in [25, 26] of a subclass of the AD
theories dual to our supergravity solutions.

A brief summary of some results of the supergravity solutions and checks of the pro-
posed duality were first reported in [27].

2 Supergravity solutions

This section is devoted to a discussion of a new class of 11d supergravity AdS5 solutions.
They are first obtained in 7d gauged supergravity and then uplifted to eleven dimensions.

2.1 Solutions in 7d supergravity

The reduction of 11d supergravity on S4 yields the 7d N = 4 SO(5) gauged supergravity
of [28]. In this work we consider a further truncation to the Cartan subgroup U(1)2 of
SO(5). We follow the notation and conventions of [29]. The bosonic field content of the
U(1)2 truncated model consists of the 7d metric gµν , two real scalars λ1, λ2, two U(1)
gauge fields A(1)

µ , A(2)
µ , and a real 3-form potential Cµνρ. (The indices µ, ν, . . . are curved

7d spacetime indices.) The equations of motion and BPS equations for this supergravity
model are recorded in appendix A.1. The mass scale of the model is denoted m. In our
conventions, the AdS7 vacuum solution has radius LAdS7 = 2/m. The gauge coupling of
the model is denoted g, and supersymmetry relates it to m as g = 2m.

As derived in appendix A, the following bosonic field configurations preserve 4d N = 2
superconformal symmetry and solve all equations of motion. The 7d metric is given by

m2 ds2
7 = 2Bw3/5√

κ (1− w2)

[
ds2(AdS5) + ds2(Σ)

]
,

ds2(Σ) = dw2

2w h(w) [κ (1− w2)]3/2
+ C

2 h(w) dz2

B
. (2.1)

Here ds2(AdS5) is the unit-radius metric in AdS5, w is an interval coordinate whose range
is discussed below, z is an angular coordinate, B is a positive constant, C is a real constant,
κ ∈ {1,−1} is a sign, and the function h(w) is given by

h(w) = B − 2w
√
κ (1− w2) . (2.2)

The scalar fields λ1, λ2 depend on the coordinate w only and are given as

λ1 = 3
5 logw , λ2 = −2

5 logw . (2.3)
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Figure 1. A schematic depiction of the internal geometry for the choice of parameters and range
of the w coordinate specified in (2.5). The z circle is fibered over the w interval to yield Σ with
metric ds2(Σ) in (2.1). Σ has the topology of a disk with a Z` orbifold singularity at the center.
We also depict the qualitative behavior of the AdS5 warp function f(w) = 2Bw3/5/

√
1− w2.

The gauge field A(1) has field strength F (1) = dA(1) given by

F (1) = −2m−1 C w dw ∧ dz , (2.4)

while the other gauge field A(2) and the 3-form potential C are set to zero. We observe
that the angular coordinate z enters the 7d metric and the field strength F (1) always in
the combination C dz. Without loss of generality we can then assign periodicity 2π to the
coordinate z.

The range of the coordinate w is constrained by requiring that λ1, λ2 be real and the
7d metric positive-definite. Depending on the parameters κ and B there are various cases,
listed in appendix A.5. The case of main interest for this paper is

κ = 1 , 0 < B < 1 , 0 < w < w1 := 1
2
(√

1 +B −
√

1−B
)
. (2.5)

Let us describe the behavior of the metric near the two endpoints w = w1 and w = 0 in
turn.

In the vicinity of w = w1, the AdS5 warp factor is smooth, and the z circle shrinks.
(The function h has a simple zero at w = w1.) By tuning the constant parameter C we can
ensure that z shrinks smoothly. More generally, if we impose

|C| = 1
`
√

1−B2
, ` = 1, 2, 3, . . . , (2.6)

the shrinking of the z circle gives an orbifold point R2/Z`. For more details, see ap-
pendix A.5. Near w = 0 the AdS5 warp factor vanishes and the 7d metric becomes
conformal to the direct product of AdS5 and a cylinder. This can be seen setting w = r2

and observing that

m2 ds2
7 ≈ 2B r6/5

[
ds2(AdS5) + 2B−1 dr2 + C2 dz2

]
, r → 0+ . (2.7)
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The locus r = 0 is a curvature singularity of the total 7d metric. Figure 1 gives a schematic
depiction of Σ and the AdS5 warp factor.

The space Σ, equipped with the metric ds2(Σ) as in (2.1), has the topology of a disk,
with the origin at w = w1 and the boundary at w = 0. Indeed, the z circle does not shrink
at w = 0 in the metric ds2(Σ). As observed above, we have a Z` orbifold singularity at
the origin of the disk Σ. There exists a gauge choice such that A(1) is well-defined near
w = w1,

A(1) = −m−1 C (w2 − w2
1) dz . (2.8)

Notice that we have fixed the ambiguity in A(1) by a shift by a constant times dz by
requiring that the prefactor of dz vanishes at w = w1. In this gauge, A(1) is globally
defined on the disk Σ. In appendix A.4 we verify that the Killing spinor on Σ is also
well-defined near w = w1, and is therefore globally defined on the disk Σ.

A brief digression about the normalization of A(1) is necessary. To find the natural
normalization, we observe that A(1) is identified with the ab = 12 component of the field
strength F ab of the full SO(5) gauged supergravity model (the indices a, b = 1, . . . , 5 are
vector indices of SO(5)). In the conventions of this paper — see also [28, 29]—the expression
for F ab is F ab = dAab + g Aac ∧ Acb, where g = 2m is the gauge coupling constant of the
supergravity theory. It is natural to rescale Aab to eliminate the factor g between the linear
and quadratic terms in the field strength: we set

Aab = 1
2m Aab , (2.9)

so that the field strength of Aab is Fab = dAab + Aac ∧Acb. The rescaling of Aab induces an
analogous rescaling of A(1),

A(1) = 1
2m A(1) . (2.10)

Since in the gauge (2.8) A(1) is globally defined on the disk Σ, the flux of the field strength
F(1) = dA(1) through Σ equals minus the holonomy of A(1) along the boundary at w = 0,

hol∂Σ(A(1)) :=
∮
w=0

A(1)

2π = −
∫

Σ

F(1)

2π = 2 C w2
1 = C (1−

√
1−B2) . (2.11)

We assign positive orientation to dw ∧ dz, with w increasing from 0 to w1.
The parameters B, C in the 7d solution can be expressed in terms of the integer ` and

the holonomy hol∂Σ(A(1)),

C = hol∂Σ(A(1)) + 1
`
,

√
1−B2 = 1

1 + ` hol∂Σ(A(1))
. (2.12)

We have anticipated that C is positive, which will be verified when we perform the uplift to
eleven dimensions in section 2.3. We think of ` and hol∂Σ(A(1)) as the geometric and gauge-
theoretic input data that specify the solution. At this stage hol∂Σ(A(1)) is an arbitrary real
quantity. We will see that, in the uplifted solutions, it is identified with the ratio of two
integer G4-flux quanta.

Let us compute the Euler characteristic χ(Σ) of Σ from the line element ds2(Σ) in (2.1)
using the Gauss-Bonnet theorem, following similar computations in [14, 15]. A potential
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contribution originates from the boundary of Σ. One verifies, however, that the boundary
at w = 0 is a geodetic in the metric ds2(Σ), and thus has vanishing geodetic curvature.
As a result, the only contribution to χ(Σ) originates from integrating the Ricci scalar of
ds2(Σ) against the volume form of the metric ds2(Σ),

χ(Σ) = 1
4π

∫
Σ
RΣ volΣ =

√
2
√
w1 C (1− 2w2

1) (1− w2
1)1/4

√
B

= C
√

1−B2 = 1
`
. (2.13)

This is the expected result for a disk in R2/Z` centered at the origin.2
Our 7d solutions can be compared to the spindle solutions of [14, 15, 30–32]. As in

those references, the 2d space Σ is not equipped with a constant curvature metric. The
gauge field A(1) does not cancel the spin connection on Σ, and the Killing spinor has a
non-trivial profile in the w direction (its explicit expression is recorded in (A.68)). These
features signal that supersymmetry is realized in a way that deviates from the standard
topological twist paradigm. In contrast to [14, 15, 30–32], however, our internal space
Σ has the topology of a disk, with a non-trivial holonomy of the gauge field A(1) along
its boundary. This is qualitatively different from the spindle geometries. Our Σ may be
intuitively thought of as a “half spindle” and leads to a new way of realizing supersymmetry.

2.2 Uplift to eleven dimensions

The uplift on S4 of solutions to the 7d U(1)2 gauged supergravity model considered above
has been analyzed in [33]. To perform the uplift, we find it convenient to make use of the
formulae in [34]. It is useful to keep in mind that the authors of [34] set implicitly m = 1;
it is straightforward to restore factors of m in their expressions. The 11d metric is given as

ds2
11 = (Tab Y a Y b)1/3 ds2

7 +m−2 (Tab Y a Y b)−2/3 (T−1)abDY aDY b . (2.14)

The indices a, b = 1, . . . , 5 are SO(5) indices and are raised/lowered with δ. The quantities
Y a are constrained coordinates on S4, satisfying Y a Ya = 1. The symmetric, unimodular
matrix Tab is constructed with the scalar fields λ1, λ2 as

Tab = diag(e2λ1 , e2λ1 , e2λ2 , e2λ2 , e−4λ1−4λ2) . (2.15)

The 1-form DY a is defined as

DY a = dY a + g Aab Yb , (2.16)

(recall that g = 2m) where A[ab] is an SO(5) connection with legs on 7d spacetime. Its
only non-zero components are

A12 = A(1) , A34 = A(2) . (2.17)

The expression for G4 is

G4 = 1
8m3 εabcde

[4
3 DY

aDY bDY cDY d Y e − 1
3 DY

aDY bDY cDY d Ỹ e

+ 2 g F abDY cDY d Ỹ e + g2 F ab F cd Y e
]

+ dC3 , (2.18)

2This can be verified by equipping the disk with the flat metric of R2/Z`: in this case, the only non-zero
contribution to the Euler characteristic comes from the geodetic curvature of the boundary of the disk.
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where C3 is the 3-form potential of the 7d supergravity model. We have suppressed wedge
products and we have used the quantities

F ab = dAab + g AacAc
b , Ỹ a := T ab Yb

Tcd Y c Y d
. (2.19)

We parametrize the constrained coordinates Y a as

Y 1 =
√

1− µ2 cosφ , Y 2 =
√

1− µ2 sinφ , Y 3,4,5 = µ ŷ1,2,3 , (2.20)

where the three real coordinates ŷ1,2,3 are subject to the constraint (ŷ1)2 +(ŷ2)2 +(ŷ3)2 = 1
and thus parametrize an S2 ⊂ R3. The coordinate µ has range [0, 1] and the angular
coordinate φ has periodicity 2π. Using the 7d line element (2.1), the 7d scalar fields (2.3),
and the 7d gauge field (2.4), the uplift formula (2.14) yields

m2 ds2
11 = 2Bw1/3H(w, µ)1/3√

κ (1− w2)

[
ds2(AdS5) + dw2

2w h(w) [κ (1− w2)]3/2
+ C

2 h(w) dz2

B

+
√
κ (1− w2)

2B

(
dµ2

w (1− µ2) + (1− µ2)Dφ2

wH(w, µ) + wµ2 ds2(S2)
H(w, µ)

)]
. (2.21)

We have introduced the notation

H(w, µ) = µ2 + w2 (1− µ2) . (2.22)

The function h(w) was defined in (2.2). The quantity ds2(S2) is the metric on the round
unit 2-sphere parametrized by ŷ1,2,3, while the 1-form Dφ is given as3

Dφ = dφ+ C (2w2 − 1) dz . (2.23)

The expression for G4 that follows from (2.18) is

G4 = − 1
m3 volS2 d

[
µ3

µ2 + w2 (1− µ2) Dφ
]
, (2.24)

where volS2 is the volume form on the 2-sphere of unit radius.

2.3 Internal geometry and flux quantization

For the rest of this section we specialize to the choice of parameters and range for w given
in (2.5). The other possibilities discussed in appendix A.5 may also be uplifted to eleven
dimensions and discussed in a similar fashion.

3The 1-form Dφ is computed in the gauge A(1) = −m−1 C (w2 − 1
2 ), which differs from (2.8). As

explained in appendix A.4, in the gauge (2.8) the 7d Killing spinor η depends on z via the phase factor e iz
2` .

Using the combined transformation of A(1) and η recorded in (A.23), one verifies that, in the new gauge
A(1) = −m−1 C (w2 − 1

2 ), the spinor η is independent of z. A different choice of gauge is equivalent to a
redefinition of φ, z of the form (φ, z) 7→ (φ + c z, z), where c is a constant. We also notice that the choice
of gauge for A(1) does not affect the coefficient of ∂z in ∂χ in equation (2.51) below, which is the data that
is mapped to the field theory side in (4.31).
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Figure 2. The internal space in the 11d solution is an S1
φ × S1

z × S2 fibration over the rectangle
in the (w, µ) plane delimited by the points P1, P2, P3, P4. We indicate the constant value of the
function L in the line element (2.25) on the sides P2P3 and P3P4. The point P3 is the location
of a monopole of charge ` for the Dz fibration in (2.25). The warp factor vanishes along the side
P1P4. The geometry in this region is interpreted in terms of smeared M5-branes. We also include
the segment Q1Q2 which is used in section 2.3.2 in the discussion of G4-flux quantization.

2.3.1 Geometry of the internal space

The 6d internal space in the 11d line element (2.21) can be regarded as an S1
φ × S1

z × S2

fibration over the 2d base space B2 parametrized by w and µ, which is the rectangle
[0, w1] × [0, 1], see figure 2. Let us describe in greater detail the features of the internal
geometry near the following three regions of the boundary of the rectangle B2:

• Region I: a neighborhood of the side P1P2 (depicted in green).

• Region II: a neighborhood of the union of the sides P2P3 and P3P4 (depicted in blue).

• Region III: a neighborhood of the side P1P4 (depicted in red).

Geometry of region I. As we approach a point along the {µ = 0} side of the rectangle
B2, at generic w ∈ (0, w1), the S2 shrinks smoothly, capping off the internal space. Both
Killing vector fields ∂z and ∂φ have a finite norm as we approach µ = 0.

Geometry of region II: regular puncture. To describe the geometry of this region
we make use of the angular coordinates φ, z, but we break up the 1-form Dφ and complete
instead the dz square. The resulting line element takes the form

ds2
11 = 2Bw1/3H1/3

m2
√

1− w2

[
ds2(AdS5) +

√
1− w2 µ2w ds2(S2)

2BH (2.25)

+ dw2

2hw (1− w2)3/2 +
√

1− w2 dµ2

2Bw (1− µ2) +R2
φ dφ

2 +R2
zDz

2
]
, Dz = dz − Ldφ .
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The function h is defined in (2.2), while H is defined in (2.22). The metric functions R2
φ,

R2
z and the function L inside Dz are given as

R2
φ = h (1− µ2)

√
1− w2

B
[
2hwH+ (2w2 − 1)2 (1− µ2)

√
1− w2

] ,
R2
z = 2hwH+ (2w2 − 1)2 (1− µ2)

√
1− w2

2BwH C2 ,

L = −(2w2 − 1) (1− µ2)
√

1− w2

C
[
2hwH+ (2w2 − 1)2 (1− µ2)

√
1− w2

] . (2.26)

We are describing the internal space in terms of S2 and the 4d space spanned by w, µ, φ,
z. The latter is an S1

z fibration over the 3d space spanned by w, µ, φ. This description is
modeled after [12] and the local geometries that describe regular punctures for M5-branes
wrapped on a Riemann surface [35, 36]. The Dz fibration over w, µ, φ is a convenient
device to keep track of the two different linear combinations of the Killing vectors ∂φ, ∂z
whose norms go to zero on the two sides {w = w1} and {µ = 1} of the rectangle B2.

We observe that R2
φ is the radius squared of the φ circle in the 3d base, and that it

goes to zero both along µ = 1 and w = w1. More precisely, one can verify that

µ = 1− %2 , %→ 0+ ,

√
1− w2 dµ2

2Bw (1− µ2) +R2
φ dφ

2 ≈
√

1− w2

2Bw (d%2 + %2 dφ2) , (2.27)

w = w1 − %2 , %→ 0+ ,

√
1− w2 dw2

2hw (1− w2)2 +R2
φ dφ

2 ≈ 2 (1− w2
1)−3/2

w1 (−h′(w1)) (d%2 + %2 dφ2) .

These relations demonstrate that, in the 3d base of the Dz fibration, the shrinking of the
φ circle is smooth. The 3d base space is thus locally R3 in the vicinity of the boundary of
B2, with φ playing the role of an azimuthal angle in cylindrical coordinates. The radius
squared R2

z of the z circle, on the other hand, is only zero at the corner (w, µ) = (w1, 1).
The function L(w, µ) is piecewise constant along the sides {w = w1} and {µ = 1} of

the rectangle B2. More precisely, one finds

L(w, 1) = 0 , L(w1, µ) = 1
C
√

1−B2
. (2.28)

The jump in L at the corner (w, µ) = (w1, 1) signals the presence of a monopole source
for the Dz fibration. The monopole charge must be an integer. We find it convenient to
adopt the same orientation conventions as in the discussion of the local puncture geometries
of [36]. In particular, the function L is non-negative and decreasing as we move along the
axis of the R3 fiber (spanned by w, µ, φ), starting from the point where the S2 shrinks
(point P2 in figure 2) and moving upwards towards P3 and then past the monopole towards
P4. These considerations imply that C is positive, so that

1
C
√

1−B2
= ` , ` = 1, 2, 3, . . . . (2.29)
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The integral quantization of the monopole charge can also be confirmed by a local analysis
of the metric near the corner (w, µ) = (w1, 1). More precisely, we trade w, µ for coordinates
R > 0 and θ ∈ [0, π] defined via

µ = 1− w
1/3
1√
2
R cos θ2 , w = w1 −

(1−B2)1/4w
5/6
1 (1− w2

1)
B

R sin θ2 . (2.30)

In the limit R→ 0, the 11d line element reads

m2 ds2
11 ≈ 4w4/3

1 ds2(AdS5) + w
4/3
1 ds2(S2)

+ dR2 +R2
{
dθ2 + sin2 θ dφ2

4 + C2 (1−B2)
[
dz − 1− cos θ

C
√

1−B2
dφ

]2}
. (2.31)

If C
√

1−B2 = 1, the line element in curly brackets in the second line is a round S3

presented as a standard Hopf fibration. The Hopf fiber is parametrized by z with period
2π, while the Hopf base is spanned by θ ∈ [0, π] and φ with periodicity 2π. More generally,
we can allow the quantity C

√
1−B2 to be 1/` for any positive integer `, as indicated

in (2.29). The quantity in curly brackets is then the metric on S3/Z`. When the latter
is combined with the radial direction R, we obtain the metric on R4/Z`. Thus, for ` > 1
the geometry in Region II has an orbifold singularity at the location of the monopole,
and is smooth elsewhere. We have demonstrated that the relation (2.6) in the 7d gauged
supergravity solution is reinterpreted in the uplifted 11d solution as the quantization of a
monopole charge.

Geometry of region III: smeared M5-branes. This region requires special care be-
cause the warp factor in front of the AdS5 metric goes to zero as w approaches 0. The 11d
line element can be approximated at small w as

m2 ds2
11 ≈w1/3

[
2B µ2/3 ds2(AdS5) + 2 C2B µ2/3 dz2

]
(2.32)

+ w−2/3
[
µ2/3

(
dw2 + w2 ds2(S2)

)
+ µ2/3

1− µ2 dµ
2 + µ−4/3 (1− µ2)Dφ2

]
.

This line element is interpreted as originating from smeared M5-brane sources. More
precisely, the M5-branes are:

• extended along the AdS5 and z directions;

• localized at the origin of the R3 parametrized by S2 and w, ds2(R3) = dw2 +
w2 ds2(S2);

• smeared along the µ and φ directions.

After smearing, the branes are effectively real codimension-3 objects. Notice that w is
identified with the radial coordinate away from the smeared branes. The relevant harmonic
function for a real codimension-3 problem is H ∝ 1/w. As appropriate for an M5-brane
solution, we find a prefactor H−1/3 in front of the six directions along which the M5-branes
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extend, while we find a factor H2/3 in front of the five directions in which the branes are
localized or smeared.

We can confirm the presence of an M5-brane source from the expression of G4
near w = 0,

G4 = −volS2 ∧ dµ ∧Dφ
m3 + . . . , w → 0 . (2.33)

In particular, the integral of the r.h.s. along the S2, µ, φ directions is finite as w → 0. This
signals the presence of a source of the schematic form dG4 ∼ δ(w) dw∧volS2∧dµ∧Dφ. The
total charge of the source is computed integrating (2.33) and is equal to the flux quantum
N defined below in (2.37), which is identified with the number of M5-branes on the stack
wrapping Σ.

2.3.2 G4-flux quantization

In our conventions for the normalization of G4 in 11d supergravity, the quantity that has
integrally quantized fluxes is G4/(2π`p)3, where `p is the 11d Planck length. We find it
convenient to define

G4 = − G4
(2π`p)3 , (2.34)

with the sign chosen for future convenience. The integral of the quantity G4 over any
4-cycle in the internal space must be an integer.

In the discussion of the non-trivial 4-cycles in the internal geometry it is convenient to
use the presentation (2.25) and to make contact with the analysis of [35, 36] (see also [12]).
To this end, let us express G4 in terms of dφ and Dz, using (2.24) and the definition of Dz
in (2.25). We find

G4 = volS2

4π ∧ d
[
Y
dφ

2π −W
Dz

2π

]
, (2.35)

where the 0-forms Y and W are given as

Y = 1
πm3`3p

[
1 + C L (2w2 − 1)

]
µ3

µ2 + w2 (1− µ2) , W = 1
πm3`3p

C (1− 2w2)µ3

µ2 + w2 (1− µ2) . (2.36)

The function Y (w, µ) is piecewise constant along the P2P3 and P3P4 segments: Y (w1, µ) =
0, Y (w, 1) = 1/(πm3`3p). These properties of Y are in line with the general analysis
of [35, 36].

A first non-trivial 4-cycle, which we denote C4, is obtained by considering the segment
Q1Q2 (see figure 2) and combining it with the S2 and with the circle that shrinks along
the P3P4 segment. As we have seen above, the latter is the dφ circle in the base of the Dz
fibration. Since along the segment P3P4 we have L = 0, Dz = dz and the shrinking circle
is simply dφ. The 4-cycle C4 has the topology of S4 and we identify it with the S4 fiber on
top of a generic point on Σ spanned by w, z. Having defined C4, we can now compute∫

C4
G4 =

∫
C4

volS2

4π ∧ d(Y + LW ) ∧ dφ2π = (Y + LW )
∣∣∣Q2

Q1
= 1
πm3`3p

=: N ∈ N . (2.37)
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We have assigned positive orientation to dµ∧ dφ. The positive integer N is identified with
the number of M5-branes on the stack wrapping Σ.

A different 4-cycle, denoted B4, can be constructed as follows. Let us consider the
segment P2P3 and let us combine it with S2 and the Dz fiber. We get a 4-cycle because
the S2 shrinks as we approach P2, while the radius of Dz goes to zero as we approach the
monopole location at P3. The flux through B4 is∫

B4
G4 = −

∫
B4

volS2

4π ∧ dW ∧ Dz2π = W
∣∣∣P3

P2
= C (1− 2w2

1)
πm3`3p

= C
√

1−B2

πm3`3p
= N

`
. (2.38)

We have used (2.37), (2.29) and we have chosen the orientation of B4 in such a way that
B4 ∼= C4 in the case ` = 1. For ` > 1 the 4-cycles B4 and C4 are inequivalent. Flux
quantization through B4 demonstrates that N must be a multiple of `,

N

`
∈ N . (2.39)

Finally, let us consider the 4-cycle D4, which is the analog of the 4-cycle B4 based on
the segment P3P4. More precisely, we combine this segment with the Dz fiber and the S2.
We know that Dz shrinks at P3. The total radius of the S2 in the 11d metric goes to zero
as we approach P4, because of the vanishing of the warp factor. The flux through D4 is∫

D4
G4 = −

∫
D4

volS2

4π ∧ dW ∧ Dz2π = W
∣∣∣P4

P3
= C 2w2

1
πm3`3p

= N

`

1−
√

1−B2
√

1−B2
=: K ∈ N .

(2.40)

We observe that the 4-cycle D4 leads to a novel integral flux K, which is positive because
0 < B < 1.

In summary, the topology and flux configuration of the solutions we are studying are
encoded in three positive integers: `, N , and K. Moreover, ` divides N . The constant
parameters B, C can we written in terms of `, N , K as√

1−B2 = N

N +K `
, C = N +K `

N `
. (2.41)

Using these identifications, we can revisit the expression (2.11) for the flux of F(1) on Σ,
which is also equal to the monodromy of A(1) at w = 0 (in the gauge (2.8) in which A(1) is
globally defined on the disk Σ),∮

w=0

A(1)

2π = −
∫

Σ

F(1)

2π = K

N
. (2.42)

As anticipated, this 7d holonomy is identified with the ratio between two integer flux quanta
in eleven dimensions.

2.3.3 11d solutions in canonical N = 2 form

The most general AdS5 solution of 11d supergravity preserving 4d N = 2 superconformal
symmetry was characterized in Lin-Lunin-Maldacena (LLM) [37]. The 11d metric and flux

– 12 –



J
H
E
P
1
1
(
2
0
2
1
)
1
4
0

are given as [12]

ds2
11 = e2λ̃

m2

[
ds2(AdS5) + y2 e−6λ̃

4 ds2(S2) + Dχ2

1− y ∂yD

+ −∂yD4 y
(
dy2 + eD ((dx1)2 + (dx2)2)

)]
,

G4 = 1
4m3 volS2 ∧

[
Dχ ∧ d(y3 e−6λ̃) + y (1− y2 e−6λ̃) dv − 1

2 ∂ye
D dx1 ∧ dx2

]
. (2.43)

The line elements on AdS5 and S2 have unit radius. The warp factor λ̃ and the function
D depend on y, x1, x2 and are related by

e−6λ̃ = −∂yD
y (1− y ∂yD) . (2.44)

The function D satisfies the Toda equation

∂2
x1D + ∂2

x2D + ∂2
ye
D = 0 . (2.45)

The coordinate χ is an angular coordinate with period 2π. The 1-form Dχ is defined as

Dχ = dχ+ v , v = −1
2
(
∂x1Ddx2 − ∂x2Ddx1

)
. (2.46)

The 2-form volS2 is the volume form on a unit-radius round S2. The Killing vector ∂χ
is dual to the U(1)r R-symmetry of the 4d N = 2 SCFT, while the isometries of S2 are
mapped to the SU(2)R R-symmetry.

The 11d solutions presented in section 2.2 can be cast into the canonical LLM
form (2.43). Let us summarize here the salient feature of this match, referring the reader
to appendix B.1 for more details. It is useful to introduce polar coordinates r, β on the
x1, x2 plane,

x1 = r cosβ , x2 = r sin β . (2.47)

The angular coordinates χ, β are related to the angular coordinates φ, z in (2.21) as

χ =
(

1 + 1
C

)
φ− z , β = − 1

C
φ+ z . (2.48)

The coordinates y and r are given in terms of w and µ as

y = 4Bwµ√
κ (1− w2)

, r = (1− µ2)−
1

2C G(w) , (2.49)

where the function G(w) is given in (B.5). The quantity D, expressed in terms of w and
µ, is given as

eD =
16B C2 (1− µ2)1+1/C [

B − 2w
√
κ (1− w2)

]
κ (1− w2) G(w)2 . (2.50)

Using the expressions of y, r, D in terms of w and µ and the properties of the function
G(w), one can verify that the Toda equation for D is satisfied. Finally, we have checked
explicitly that the expression (2.43) for G4 matches with (2.24).
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The formulae presented above apply to any choice of the sign κ and range of w. Let
us end this section with some remarks that apply to the case of interest (2.5). Combining
the relations (2.48) with (2.41), we can write

∂χ = ∂φ + N `

N +K `
∂z , ∂β = ∂φ +

[
1 + N `

N +K `

]
∂z . (2.51)

The U(1)r superconformal R-symmetry is given by a non-trivial mixing between the ∂z
isometry direction on Σ and the ∂φ isometry of the topological S4 fiber on top of a generic
point on Σ. The Killing vector ∂β is naively associated to a U(1) flavor symmetry of the
SCFT. As we will see in section 3, however, this expectation is incorrect.

2.4 Holographic central charge and supersymmetric wrapped M2-branes

This subsection is devoted to the analysis of two holographic observables. We consider the
choice of parameters and range of w specified in (2.5). Firstly, we extract the holographic
central charge from the (warped) volume of the internal space. Secondly, we study probe
M2-branes wrapping calibrated 2-submanifolds in the internal space.

2.4.1 Holographic central charge

As already observed in (2.43), the 11d line element is conveniently parametrized as

ds2
11 = e2λ̃

m2

[
ds2(AdS5) + ds2(M6)

]
, (2.52)

where AdS5 has unit radius and λ̃ is the warp factor. With this notation, the holographic
central charge reads [38]

c = 1
27π6m9`9p

∫
M6

e9λ̃ volM6 , (2.53)

where volM6 is the volume form of the metric ds2(M6). For our solutions, we extract λ̃,
ds2(M6) by comparing (2.21) and (2.52), and we compute

c = B2 C
2π3 (m`p)9

∫
wµ2

(1− w2)2 dw ∧ dµ = B2 C
12π3 (m`p)9

[ 1
(1− w2)

]wmax

wmix

. (2.54)

For the case of interest (2.5), wmin = 0 and wmax = w1, yielding a finite central charge

c = B2 C w2
1

12π3 (m`p)9 (1− w2
1) . (2.55)

The r.h.s. can be written in terms of N , K, and ` by making use of (2.5), (2.41),

c = `N2K2

12 (N +K `) . (2.56)

We get a well-defined, finite result even though the 11d solution has singularities.
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2.4.2 Supersymmetric wrapped M2-brane probes

A probe M2-brane wrapping a calibrated 2d submanifold in the internal space gives a BPS
particle in the external AdS5 spacetime. Our solutions preserve 4d N = 2 superconformal
symmetry, but we find it convenient to study the calibration conditions with reference to
a 4d N = 1 subalgebra. More precisely, any solution of the form (2.43) admits a doublet
ξI , I = 1, 2 of Killing spinors on M6, constructed out of Killing spinors on S2 and suitable
spinors in the 4d space spanned by χ, y, x1, x2. We select a linear combination ξ = cI ξ

I

of the two Killing spinors and study calibration with respect to ξ. We refer the reader
to appendix B.2 for a more thorough discussion of Killing spinors for solutions of the
form (2.43), and their relation to the most general supersymmetric AdS5 solution of [39].

The calibration condition for an internal 2d submanifold C2 can be written as [38]

Y ′
∣∣∣
C2

= volM6(C2) , (2.57)

where volM6(C2) is the volume form on C2 induced by the metric ds2(M6) and the 2-form
Y ′ is constructed as a spinor bilinear,

Y ′ = 1
4 ξ γmn ξ dy

m ∧ dyn . (2.58)

In the previous expression the indices m, n are curved indices onM6, with local coordinates
dym, and γmn = γ[mγn] with Euclidean gamma matrices γm in six dimensions. To write
Y ′ we find it convenient to write the quantity ds2(S2) that enters (2.43) as

ds2(S2) = dτ2

1− τ2 + (1− τ2) dϕ2 , (2.59)

where the coordinate τ lies in the interval [−1, 1] and the angle ϕ has period 2π. The
expression for Y ′ in terms of the quantities that enter the canonical LLM form of the
solution is

Y ′ = 1
4 y

3 e−9λ̃ volS2 + 1
2 y e

−3λ̃ (1− y2 e−6λ̃) dτ ∧Dχ

− 1
2 τ e

−3λ̃Dχ ∧ dy − 1
4
y e−9λ̃ τ eD

1− y2 e−6λ̃
dx1 ∧ dx2 . (2.60)

We refer the reader to appendix B.2.2 for the expression of Y ′ in terms of the µ, w, z, φ
coordinates. The conformal dimension ∆ of the operator associated to the BPS particle
originating from a probe M2-brane on the calibrated subspace C2 is given by [38]

∆ = 1
4π2m3`3p

∫
C2
e3λ̃ volM6(C2) , (2.61)

where we are still adopting the parametrization (2.52) of the 11d metric.
We identify two calibrated submanifolds that can support supersymmetric M2-brane

probes. Firstly, we consider the 2-cycle C2 in M6 defined by taking the S2 on top of the
point P3 in the (w, µ) plane, with coordinates w = w1, µ = 1. At this point both the φ

– 15 –



J
H
E
P
1
1
(
2
0
2
1
)
1
4
0

and z circles shrink. The calibration 2-form Y ′ restricted on C2 is most easily evaluated by
using the expression (B.66),

Y ′
∣∣∣
C2

= w
3/2
1 (1− w2

1)3/4
√

2B3/2 volS2 = 1
4 volS2 . (2.62)

On the other hand, the metric on C2 induced from ds2(M6) is readily extracted from (2.21),

ds2(C2) =
w1
√

1− w2
1

2B ds2(S2) = 1
4 ds

2(S2) . (2.63)

We see that the calibration condition (2.57) is satisfied. Let O1 denote the M2-brane oper-
ator associated to the calibrated 2-cycle C2. The dimension of O1 is computed with (2.61),

∆(O1) = N K `

N +K `
. (2.64)

Another calibrated submanifold B2 is realized by considering the segment P3P4 (see
figure 2) and the combination of S1

φ and S1
z that does not shrink in the interior of P3P4.

This combination corresponds to the fiber Dz in the presentation (2.25). This submanifold
is not a 2-cycle. It rather describes an open M2-brane that ends on the M5-brane source
at w = 0. The M2-brane sits at a point on the S2. The calibration 2-form Y ′ on B2 can
be computed using (B.66) and is given by

Y ′
∣∣∣
B2

= C (1− w2)−3/4
√

2
√
B
√
w

τ∗ dw ∧Dz . (2.65)

Here τ∗ is the value of the τ coordinate on the S2 at which the M2-brane is located. The
induced metric on B2 is extracted from (2.25),

ds2(B2) = dw2

2w h (1− w2)3/2 + C
2 h

B
Dz2 . (2.66)

Comparing (2.65) and (2.66) we see that the calibration condition (2.57) is satisfied, pro-
vided that the M2-brane sits at north pole of S2, τ∗ = 1. (We are defining the orientation
of the volume form on B2 to be dw ∧Dz.) Since B2 describes an open M2-brane, it corre-
sponds to a collection of operators, which we denote collectively as Oi2. The label i runs
over various possible boundary conditions for the M2-brane ending on the M5-brane source.
All operators Oi2 have the same dimension, computed from (2.61) to be

∆(Oi2) = K . (2.67)

The degeneracy of the operators Oi2 (i.e. the range of the label i) can be estimated
as follows. On general grounds, the M2-brane ending on the M5-brane sources can have
several boundary components. Thus, for each M5-brane in the source stack, we can decide
whether the M2-brane ends on that M5-brane or not. Recalling that the number of M5-
branes at the source is N , this gives a total of 2N possibilities. We have to subtract 1,
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however, because the M2-brane must end on at least one of the M5-branes. In conclusion,
this counting argument gives a degeneracy of 2N − 1 for the operators Oi2.

The charges of the operators O1, Oi2 under the U(1)r × SU(2)R R-symmetry can be
computed on the gravity side using the methods of [38]. The derivation is reported in
appendix B.2.3. The result reads

r(O1) = 2 ∆(O1) , R(O1) = 0 , r(Oi2) = 0 , R(Oi2) = ∆(Oi2) . (2.68)

In the previous expressions R denotes the Cartan generator of SU(2)R, normalized as to
have integer eigenvalues.

3 Symmetries and ’t Hooft anomalies

In this section we analyze the global symmetries and ’t Hooft anomalies of the SCFTs dual
to the 11d solutions of section 2, for the choice of parameters and range of w specified
in (2.5). We observe that the solutions admit a u(1)2 ⊕ su(2) isometry algebra, but the
algebra of continuous (0-form) symmetries of the dual SCFTs is only u(1) ⊕ su(2), which
is identified with the R-symmetry algebra of 4d N = 2 superconformal symmetry. This
apparent discrepancy is explained via a Stückelberg mechanism. Moreover, we also compute
the ’t Hooft anomalies for the R-symmetry and the flavor symmetry associated to the R4/Z`
orbifold singularity, and we extract the corresponding flavor central charge.

The symmetries and ’t Hooft anomalies of a holographic SCFT with a smooth M-
theory dual can be extracted systematically using the methods developed in [40], build-
ing on [41, 42]. Let M6 denote the internal space of the holographic solution, as in the
parametrization (2.52) for the 11d line element. The analysis makes use of an auxiliary
12-manifold M12, realized as a fibration of M6 over closed 6-manifoldM6,

M6 ↪→M12 →M6 . (3.1)

The spaceM6 is interpreted as external spacetime, Wick-rotated to Euclidean signature,
and extended from four to six dimensions as appropriate for application of the standard
descent formalism for the anomaly polynomial. The fibration (3.1) ofM6 overM6 includes
non-zero connections for the isometry algebra of M6. These connections are interpreted as
background gauge fields for the global symmetries of the SCFT. We will see momentarily,
however, that this general expectation requires some refinement for the setups of interest
in this paper.

A central role in the analysis of the symmetries and anomalies of the SCFT is played
by the 4-form E4, which enjoys the following properties:

• E4 is a globally defined 4-form on the total space M12.

• E4 is closed.

• E4 has integral periods on 4-cycles in M12.

• E4 restricted to theM6 fiber over a generic point inM6 reproduces the closed 4-form
G4/(2π`p)3 that describes the G4-flux configuration that supports the AdS5 solution.
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We interpret E4 as the object that encodes the boundary conditions for the M-theory
3-form in the vicinity of the stack of M5-branes that supports the SCFT. In the next
section, we describe in detail the construction of E4. Crucially, we will encounter a difficulty
in constructing E4 while incorporating background connections for the full u(1)2 ⊕ su(2)
isometry algebra of M6. The resolution of this difficulty will yield a physical explanation
of the absence of a continuous 0-form flavor symmetry in the dual SCFT corresponding to
this isometry.

Once the 4-form E4 is constructed, the 6-form anomaly polynomial of the SCFT, at
leading order in the large N limit, is computed as

ISCFT, large N
6 = 1

6

∫
M6

E4 ∧ E4 ∧ E4 , (3.2)

where E4 ∧E4 ∧E4 is a 12-form on M12 and
∫
M6

denotes integration along the M6 fibers.

3.1 Construction of E4

In this section we construct the 4-form E4. We find it convenient to proceed in steps.
Firstly, we discuss the inclusion in E4 of background connections for the u(1)2 isometry
algebra of M6 associated to the Killing vectors ∂z and ∂φ. We encounter an obstruction in
the construction of E4, which is resolved by demonstrating that only one linear combination
of the u(1)2 isometry generators translates to a continuous symmetry of the SCFT, with
the other combination being spontaneously broken by a Stückelberg mechanism.

3.1.1 Obstruction in the construction of E4

Our starting point is the G4-flux background G4, conveniently rescaled to G4 as in (2.34)
to have integral periods. We aim at constructing a local expression for the 4-form E4,
including background connections for the u(1)2 isometry algebra of M6 associated to the
Killing vectors ∂z and ∂φ. (We postpone the discussion of the su(2) isometry algebra of
the S2.) It is actually more convenient to use the linear combinations ∂χ, ∂β of ∂z and
∂φ defined in (2.51). The expression of G4 in terms of dχ, dβ is extracted from (2.24)
and (2.48) and takes the form

G4 = N
volS2

4π ∧
[
dα0χ ∧

dχ

2π + dα0β ∧
dβ

2π

]
, (3.3)

where α0χ, α0β are 0-forms on M6 given by

α0χ = 2w2 µ3

µ2 + w2 (1− µ2) , α0β = µ3 (2w2 + 2 C w2 − C)
µ2 + w2 (1− µ2) . (3.4)

The 4-form E4 is globally defined on M12 and can be expanded as a polynomial in the
field strengths of the external connections associated to the Killing vectors ∂χ, ∂β . As a
result, the naïve ansatz for E4 takes the form

E4 = G
g
4 +

∑
I=χ,β

F I

2π ∧ ω
g
2I +

∑
I,J=χ,β

F I

2π ∧
F J

2π σ0IJ . (3.5)
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The 2-forms F I = dAI are the field strenghts of external U(1) gauge fields AI associated
to the Killing vectors ∂χ, ∂β . The objects ω2I are 2-forms on M6, while σ0IJ = σ0(IJ) are
0-forms on M6, to be determined. The superscript ‘g’ stands for “gauged” and indicates
the operation of taking a p-form on M6 and making the replacements

dχ→ (dχ)g := dχ+Aχ , dβ → (dβ)g := dβ +Aβ . (3.6)

This replacement is necessary to promote a globally defined p-form on the fiber M6 to
a globally defined p-form on the total space M12. Since 0-forms are unaffected by this
prescription, we omit the superscript ‘g’ on σ0IJ .

We must demand closure of E4. This translates into a set of conditions on the unspec-
ified forms ω2I , σ0IJ ,

2πιIG4 + dω2I = 0 , 2πι(Iω2J) + dσ0IJ = 0 . (3.7)

The symbol ιχ, ιβ denotes the interior product of a p-form with the vector field ∂χ, ∂β ,
respectively. The 4-form E4 must be globally defined on M12, which means that ω2I must
be globally defined on M6. As a result, the first condition in (3.7) can only be satisfied if
the 3-forms 2πιχG4 and 2πιβG4 are exact 3-forms on M6.

The 3-forms 2πιχG4 and 2πιβG4 are readily computed using (3.3),

2πιχG4 = −N volS2

4π ∧ dα0χ , 2πιβG4 = −N volS2

4π ∧ dα0β . (3.8)

Both these 3-forms are manifestly closed. They are also globally defined on M6, because
G4 and the Killing vector fields ∂χ, ∂β are globally defined on M6. The 3-form 2πιχG4 is
exact: we can write

2πιχG4 = d

[
−N α0χ

volS2

4π

]
, (3.9)

and the 2-form inside the total derivative on the r.h.s. is globally defined on M6, because
the 0-form α0χ goes to zero at the loci {µ = 0}, {w = 0} where the S2 shrinks. A similar
manipulation for 2πιβG4 fails, because the 0-form α0β does not go to zero at w = 0. We can
confirm that the 3-form 2πιβG4 is closed but not exact by computing its integral over the
3-cycle C3 defined as follow (see figure 2). Consider a path in the (w, µ) plane connecting
a generic point Q1 on the P1P2 segment to the point P4. Combining this path with the S2

we get a 3-cycle, because the S2 shrinks both at Q1 and P4. The integral of 2πιβG4 over
C3 is indeed non-zero, and evaluates to∫

C3
2πιβG4 =

[
−N α0β

]P4

Q1
= N C = K + N

`
. (3.10)

In the last step we used (2.41). Recall that N is divisible by `, so
∫
C3

2πιβG4 is an integer.
The 3-form 2πιβG4 is not exact because of the presence of the localized M5-brane

source at w = 0. Indeed, we observe that Dφ|w=0 = −C dβ. The “Gaussian pillbox”
that measures the charge of the M5-brane source is defined taking w = constant → 0 and
considering the directions µ, S2, Dφ. We may regard the Gaussian pillbox as a Dφ ∝ dβ
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fibration over µ and the S2. The base of this fibration can be identified with the 3-cycle
C3, in the limit in which the point Q1 is brought towards P1.

The non-exactness of 2πιβG4 is an obstruction to the construction of E4 via the
ansatz (3.5). To proceed, we must consider a more general ansatz.

3.1.2 Resolution of the puzzle: a novel Stückelberg mechanism

The analysis of the previous subsection revealed the importance of the following closed but
not exact 3-form on M6,

Λ3 := −C−1 volS2

4π ∧ dα0β , (3.11)

which is defined is such a way that

2πιβG4 −N C Λ3 = 0 ,
∫
C3

Λ3 = 1 , (3.12)

where C3 is the 3-cycle in M6 defined above (3.10). We extend the ansatz for E4 including
not only the external U(1) gauge fields Aχ, Aβ , but also an external 0-form gauge field
a0 (a real periodic scalar, i.e. an axion). We think of a0 as the light mode originating
from fluctuations of the M-theory 3-form C3 along the cohomology class defined by the
closed but not exact 3-form Λ3. Let f1 be the 1-form field strength of a0. We allow for a
non-trivial Bianchi identity for f1, of the form

df1 =
∑
I=χ,β

qI F
I . (3.13)

The constant parameters qI will be determined momentarily. The field strengths of the
U(1) gauge fields Aχ, Aβ remain standard, Fχ = dAχ, F β = dAβ .

The improved ansatz for E4 reads

E4 = G
g
4 +

∑
I=χ,β

F I

2π ∧ ω
g
2I +

∑
I,J=χ,β

F I

2π ∧
F J

2π σ0IJ + f1
2π ∧ Λg

3 . (3.14)

(Since Λ3 has no legs along χ, β, the gauging prescription ‘g’ on Λ3 could be dropped.)
Closure of E4 gives the conditions

2πιIG4 + dω2I + qI Λ3 = 0 , 2πι(Iω2J) + dσ0IJ = 0 , dΛ3 = 0 , 2πιIΛ3 = 0 . (3.15)

The last two conditions are satisfied, because the 3-form Λ3 is closed and invariant under the
action of both U(1) isometries, £IΛ3 = 0, as can be seen explicitly from its definition (3.11).
The first condition in (3.15) can now be solved by setting

ω2χ = N α0χ
volS2

4π , qχ = 0 , ω2β = 0 , qβ = −N C , (3.16)

as can be seen from (3.9), (3.12). Notice that we can set ω2β to zero without loss in
generality: a non-zero ω2β could be reabsorbed by a redefinition of Λ3 by an exact piece.
Since ω2χ has no legs along χ and/or β, we can solve the second condition in (3.15) simply
setting σ0IJ = 0.
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Having identified the parameters qI , the Bianchi identity (3.13) for f1 reads

df1 = N C F β , f1 = da0 −N C Aβ . (3.17)

It demonstrates that the U(1) gauge field Aβ gets massive via a Stückelberg mechanism
by “eating” the axion a0. The U(1) gauge group associated to Aβ is thus spontaneously
broken.

There might be a non-trivial cyclic discrete subgroup that remains unbroken after
the Stückelberg mechanism. In order to determine this discrete subgroup, it is necessary
to fix the normalizations of the axion a0 and the vector Aβ . The fact that the 3-form
Λ3 integrates to 1 over C3, see (3.12), suggests that a0 is correctly normalized (i.e. is a
compact scalar with period 2π). Fixing the normalization of Aβ is more subtle. It would
also be interesting to identify which operators in the dual SCFT would be charged under
the discrete subgroup left over after the Stückelberg mechanism. We leave these questions
for future investigation.

We conclude this section with a comparison with the spontaneously broken U(1) sym-
metries in M-theory discussed in [43]. In that reference, the focus is on U(1) p-form sym-
metries originating from the expansion of the M-theory 3-form C3 onto cohomology classes.
Some of these symmetries are spontaneously broken by topological mass terms of BF type.
A BF coupling is related to a Stückelberg mechanism by dualization of a p-form gauge
field (as reviewed for instance in [44]). Thus, the main physical mechanism observed in the
present setup is the same as in [43]. Their 11d origin, however, is different: while in [43]
all BF couplings originate from the C3G4G4 Chern-Simons term in the M-theory effective
action, in the solutions of this paper the Stückleberg coupling originates from a non-trivial
Bianchi identity, which is required by self-consistency of G4 after the Kaluza-Klein vector
Aβ is turned on.

General formulation. We have uncovered an example of the following phenomenon in
M-theory reductions to five dimensions:

A U(1) gauge field associated to an Abelian isometry of the internal space M6
gets massive by eating an axion originating from the expansion of the M-theory
3-form C3 onto a non-trivial class in the third cohomology of M6.

Let us give a general formulation of the conditions for this phenomenon to happen.
Let I be an index labeling the generators of the U(1) factors in the isometry group of

M6. Let ξI be the Killing vector field associated to the I-th factor. We use the notation
ιI , £I for the interior product with the vector field ξI and the Lie derivative along ξI , re-
spectively. Let [Λ3x] be a basis of the de Rham cohomology H3(M6,R), x = 1, . . . , b3(M6).

In order for the Killing vector field ξI to be a symmetry of the full holographic M-
theory solution, we must demand £IG4 = 0. As a result, the 3-form 2πιIG4 is necessarily
closed, as follows immediately from dG4 = 0 and £I = dιI + ιId. The closed 3-form 2πιIG4
defines a (possibly trivial) de Rham cohomology class, which can be expanded onto the
basis [Λ3x] as

[2πιIG4] +QxI [Λ3x] = 0 . (3.18)

– 21 –



J
H
E
P
1
1
(
2
0
2
1
)
1
4
0

The expansion coefficients QxI are identified with the constants entering the Bianchi iden-
tities for the field strengths fx1 of the axions ax0 obtained from expanding C3 onto the
basis [Λ3x],

dfx1 = QxI F
I , fx1 = dax0 +QxI A

I . (3.19)

Here F I = dAI is the field strength of the U(1) gauge field AI associated to the Killing
vector field ξI . Non-zero coefficients QxI indicate a non-trivial Stückelberg mechanism. If
the U(1) gauge fields AI and the axions ax0 are correctly normalized, the coefficients QxI
are integrally quantized. They determine to which cyclic subgroup the U(1) gauge group
associated to AI is spontaneously broken by the Stückelberg mechanism. To see this, we
observe that the Stückelberg couplings encoded in (3.19) can equivalently be cast in the
form of BF-like topological terms [44, 45]. This can be done by dualizing the axions ax0
to 3-form potentials c3x. The relevant topological terms in the 5d supergravity effective
action take the form

Stop = 1
2π Q

x
I

∫
M5

c3x ∧ F I , (3.20)

whereM5 is 5d external spacetime. This topological action describes 5d 1-form and 3-form
gauge fields with discrete gauge group. The discrete gauge group is read off from the Smith
normal form of the matrix QxI [46].

We observed above that, in our solutions, non-exactness of 2πιβG4 is closely related
to the presence of an M5-brane source in the solution. It is natural to ask whether smooth
solutions without internal sources can be found, for which 2πιIG4 is non-trivial in coho-
mology for some isometry direction I. We aim to address this question more systematically
in the future.

As discussed in [40, 47], the construction of E4 from G4 can be phrased mathematically
using the language of G-equivariant cohomology (where G stands for the isometry group of
the internal space M6). More precisely, G4 is a closed invariant form on M6, and the task
at hand is to construct an equivariant extension of G4. Obstructions to such a construction
have been discussed in the mathematical literature [48]. Our physical analysis detects the
obstructions and offers a way to circumvent them, by generalizing the notion of equivariant
extension with the inclusion of the axion field.

In our discussion so far we have implicitly modeled p-form gauge fields using differential
forms. While this is adequate to capture local aspects of their dynamics (such as their
curvatures), a better mathematical framework to describe the physics of p-form gauge
fields is differential cohomology (reviews aimed at physicists include [49–51]). Since we are
turning on gauge fields associated to the isometries of M6, we should be actually employing
G-equivariant differential cohomology [52]. It would be interesting to adopt this language
to study the obstructions we have encountered and their resolution.

3.2 Anomaly inflow

Having identified how to treat the isometry direction ∂β , we can complete the construction
of the full form of E4, including background su(2) gauge fields associated to the non-Abelian
isometry algebra of the S2. This is most easily accomplished noticing that G4, ω2χ, and
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Λ3 all have a common factor volS2 . We may simply perform the replacement
volS2

4π → e2 , (3.21)

where e2 is the global angular form of SO(3), which is closed, gauge-invariant, and nor-
malized to integrate to 1 on S2. (We refer the reader to (B.71) for the explicit expression
of e2.) Notice that the non-Abelian isometry su(2) cannot participate in any non-trivial
Stückelberg mechanism with the axion a0.

In conclusion, the final form of E4, including the external U(1) gauge fields Aχ, Aβ ,
the axion a0, and the background su(2) gauge fields, can be written as

E4 = N e2 ∧
[
dα0χ ∧

(dχ)g

2π + dα0β ∧
(dβ)g

2π

]
+N α0χ e2 ∧

Fχ

2π − C
−1 f1

2π ∧ e2 ∧ dα0β .

(3.22)

We can verify directly the closure of E4 using de2 = 0, (3.6), and (3.17).
It is now straightforward to compute E4 ∧E4 ∧E4 and fiber integrate along M6. The

integral over S2 is most easily performed with the help of the Bott-Cattaneo formulae [53],∫
S2
e2 = 1 ,

∫
S2
e2

2 = 0 ,
∫
S2
e3

2 = 1
4 p1(SO(3)) , (3.23)

where p1(SO(3)) is the first Pontryagin class of the SO(3) bundle associated to the S2

fibration over external spacetime.
We assign positive orientation to dβ ∧ dχ. Taking into account that both these angles

have periodicity 2π, we arrive at

ISCFT, large N
6 = 1

6

∫
M6

E3
4 = −1

8 N
3 F

χ

2π p1(SO(3))
∫
B2
dα0β ∧ d(α2

0χ) , (3.24)

where B2 denotes the rectangle spanned by w and µ. Assigning positive orientation to
dw ∧ dµ, and recalling the definitions (3.4) of α0χ, α0β , one finds∫

B2
dα0β ∧ d(α2

0χ) = 4
3 C w

4
1 = `K2

3N (N +K `) , (3.25)

where in the second step we have used (2.5), (2.41). The quantities Fχ, p1(SO(3)) are re-
lated to the Chern classes of the U(1)r and SU(2)R bundles of the 4d N = 2 superconformal
R-symmetry by

Fχ

2π = −2 c1(U(1)r) , p1(SO(3)) = −4 c2(SU(2)R) . (3.26)

With these identifications, we get the result

ISCFT, large N
6 = − `K2N2

3 (N +K `) c1(U(1)r) c2(SU(2)R) . (3.27)

The central charges a, c are related to the ’t Hooft anomaly coefficients for the SU(2)R ×
U(1)r R-symmetry as reviewed in appendix C. Comparing (3.27) with (C.1) and us-
ing the relations (C.4), we verify that (3.27) is compatible with the holographic central
charge (2.56).
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3.2.1 Flavor central charge from anomaly inflow

Expanding the M-theory 3-form C3 onto the resolution cycles of the R4/Z` orbifold singu-
larity at P3, one obtains `−1 Abelian gauge fields. The gauge group enhances to SU(`) by
virtue of states from M2-branes wrapping the resolution cycles [12]. We can compute the
associated flavor central charge kSU(`) by computing the mixed ’t Hooft anomaly between
SU(`) and U(1)r. To this end, we can follow the methods of [36]. We turn on background
gauge fields Âα, α = 1, . . . , ` − 1 for the Cartan subalgebra of SU(`). We include a new
term in E4,

∆E4 =
`−1∑
α=1

F̂α
2π ∧ ω̂α . (3.28)

In the previous expression F̂α = dÂα and ω̂α denote the harmonic 2-forms dual to the
resolution 2-cycles of the R4/Z` singularity (in the 4d space spanned by µ, w, φ, z). The
intersection pairing of the 2-forms ω̂α reproduces the Cartan matrix of su(`),

∫
M4

ω̂α ∧ ω̂β = −Csu(`)
αβ , α, β = 1, . . . , `− 1 . (3.29)

Intuitively speaking, we can think of ω̂α as being localized at the point P3, see figure 2.
The 4d spaceM4 is a local Taub-NUT model for the resolved R4/Z` singularity at P3.

We may repeat the computation of the fiber integral of E3
4 including the new

term (3.28). We obtain an additional term in the inflow anomaly polynomial,

ISCFT, large N
6 ⊃ − N K `

2 (N +K `)
Fχ

2π

`−1∑
α,β=1

C
su(`)
αβ

F̂α
2π ∧

F̂β
2π . (3.30)

As argued above, non-perturbative M2-brane states enhance the U(1)`−1 symmetry to
SU(`). Correspondingly, we have4

`−1∑
α,β=1

C
su(`)
αβ

F̂α
2π ∧

F̂β
2π → 2 c2(SU(`)) . (3.31)

Making use of (3.26), we can write the new term in the inflow anomaly polynomial as

ISCFT, large N
6 ⊃ 2N K `

N +K `
c1(U(1)r) c2(SU(`)) . (3.32)

Comparison with the standard presentation (C.1) of the anomaly polynomial of a 4d N = 2
SCFT yields the flavor central charge

kSU(`) = 2N K `

N +K `
. (3.33)

4This expression corrects a typo in equation (6.3) of [36].
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4 Field theory duals

We propose that the supergravity solutions presented above are dual to four-dimensional
SCFTs that arise from the low-energy limit of N M5-branes — whose worldvolume theory
at low energies is the 6d (2,0) theory of type AN−1 — wrapped on a sphere with one
irregular and one regular puncture. The 4d SCFTs of interest are of Argyres-Douglas
type, meaning they are intrinsically strongly coupled and possess relevant Coulomb branch
operators with fractional dimensions. In this section we review the properties of these field
theories, and discuss the matching of their central charges and operators to the gravity
duals. In appendix D we further elaborate on the landscape of Argyres-Douglas SCFTs,
their properties, and their geometric construction via irregular punctures.

4.1 Properties of the (A
(N)
N−1[k], Y`) Argyres-Douglas SCFTs

The field theories dual to the supergravity solutions presented in section 2 are the 4d N = 2
SCFTs that are geometrically engineered by wrapping N M5-branes on a sphere with one
irregular puncture of type A(N)

N−1[k], and one regular puncture. The labeling of the irregular
puncture follows from the classification in [9, 10]—we refer the reader to appendix D for a
review.5 The regular puncture is labeled by a Young diagram in the shape of a rectangular
box with ` columns and N/` rows, which we denote by Y`. We refer to the 4d SCFTs thus
constructed as (A(N)

N−1[k], Y`). These SCFTs carry three integer labels: N the number of
M5-branes, k > −N labeling the irregular puncture, and ` a positive integer that divides
N labeling the regular puncture, which contributes an SU(`) flavor symmetry. The case
` = 1 corresponds to the “non-puncture”, and is equivalent to having no regular puncture
on the sphere. These are the (AN−1, Ak−1) SCFTs which can also be obtained in Type
IIB string theory [55], and throughout this section we interchangeably refer to the ` = 1
cases as (A(N)

N−1[k], Y1) and (AN−1, Ak−1). The case ` = N corresponds to the maximal
puncture with associated SU(N) flavor symmetry, known also as the Db=N

p=k+N (SU(N))
theories studied in [56–58].

4.1.1 R-symmetry twist

We denote the R-symmetry of the N = 2 SCFT by SU(2)R × U(1)r, with R = 2I3 the
Cartan generator of SU(2)R (in conventions in which R has integer-valued charges), and
r the generator of U(1)r. The R-symmetry that is preserved at the fixed point can be
deduced from the properties of the Higgs field Φ in the Hitchin system that arises from
first compactifying the 6d (2, 0) theory on a circle to five dimensions, and then twisting
over the sphere (see appendix D for more details). The U(1)r symmetry of the 4d N = 2
field theory is a combination of the SO(2)φ ⊂ SO(5) R-symmetry that would be preserved
in the absence of an irregular defect on the sphere, and a global U(1)z isometry of the
sphere.6 This combination can be fixed by requiring that the coefficient to the leading
singularity of the Higgs field (the matrix Tk in (D.1)) is covariant under a U(1)r rotation.

5These are also denoted as Type I theories in [9], and IN,k theories in [54].
6Indeed, the requirement that U(1)z is globally defined is what leads to the restriction that the Riemann

surface in the compactification must have genus zero.
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For an irregular puncture of type A(b)
N−1[k], the result is to fix the SO(2)φ generator to

be proportional to the U(1)z generator, with proportionality factor b
k+b . For the theories

(A(N)
N−1[k], Y`) (i.e. for b = N), we thus identify the U(1)r generator as the combination

r = Rφ + N

k +N
Rz . (4.1)

4.1.2 Seiberg-Witten curve and deformations

The Seiberg-Witten curve of the 4d theory is identified with the spectral curve of the
Hitchin system. The Seiberg-Witten curve in the conformal phase is

y2 = xN + zk , (AN−1, Ak−1) , (4.2)

from which it follows (by requiring that the dimension of the Seiberg-Witten differential
λSW = xdz is unity) that the scaling dimensions of x and z are

∆(x) = k

k +N
, ∆(z) = N

k +N
. (4.3)

The possible deformations of the curve (4.2) take the form uabx
azb, and are encoded in

a Newton polygon. For the (AN−1, Ak−1) (` = 1) theories the Newton polygon consists of a
single triangle in the upper right quadrant bounded by a line with (minus) slope ρ−2 = k

N ,
where ρ is the leading pole for the irregular singularity from (D.1) (see [9]). An example
Newton polygon with k = 8 and N = 4 is shown in figure 3. An integer point on the
polygon with coordinates (a, b) encodes a deformation uab of the curve, with dimension

y2 ⊃ uabxazb , ∆(uab) = kN − ak − bN
k +N

. (4.4)

Points that lie on the lines zk−1 and xN−1 are excluded, since they can be removed by
translation invariance of the z coordinate, and by removal of the U(N) trace (Φ is traceless).
The remaining points fall into the following classes:

• Parameters uab with dimensions ∆(uab) > 1 correspond to Coulomb branch operators,
which we will denote by ui with one subscript. These operators are by definition scalar
primaries of the protected chiral N = 2 multiplets LB̄1[0, 0](0;r)

r
2

(in the notation
of [59]) with R-charges r(ui) = 2∆(ui) and R = 0. The total number of Coulomb
branch operators is the rank of the Coulomb branch, which was computed for the
(AN−1, Ak−1) theories from the Type IIB geometric engineering setup in [60] (based
on proposals in [61]) and then corrected in [58]. The result is

rank(CB) = 1
2 ((k − 1)(N − 1)− (GCD(k,N)− 1)) , ` = 1 . (4.5)

Identifying the Coulomb branch operators from the Newton polygon is especially
simple when k = mN form an integer, in which case one finds a set of 1

2(k−2)(N−1)
operators ui of dimensions

∆(ui) = i

m+ 1 , i = m+ 2, . . . , lm , l = 2, . . . , N , k = mN . (4.6)
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Figure 3. The Newton polygon for the (AN−1, Ak−1) theory, drawn for N = 4 and k = 2N = 8.
The black points represent excluded deformations corresponding to the xN−1 and zk−1 lines, as
well as the bounding points xN and zk. The blue points that lie on the dotted line bounding the
triangle correspond to the N − 2 exactly marginal deformations.

• For every Coulomb branch operator whose dimension satisfies 1 < ∆(ui) < 2, there
is a corresponding coupling λi with ∆(λi) < 1 that satisfies ∆(ui) + ∆(λi) = 2 [2].
These couplings are identified with relevant (N = 2)-preserving deformations of the
form

∫
d4θ λiUi, for Ui the chiral superfield whose bottom component is ui.

• Deformation parameters with ∆(uab) = 1 correspond to mass deformations, whose
number is equal to the rank of the global symmetry F of the SCFT. For the
(AN−1, Ak−1) theories, this is [58]

rank(F ) = GCD(k,N)− 1 , ` = 1 . (4.7)

which for k an integer multiple of N reduces to rank(F ) = N−1. These deformations
are paired with the moment map operators µ with dimension ∆(µ) = 2 and R-
charges (R, r)(µ) = (2, 0), which are the primaries of N = 2 multiplets B1B̄1[0, 0](2;0)

2
containing conserved flavor currents.

• Exactly marginal couplings are identified with the parameters uab of dimension zero.
The number of exactly marginal couplings is the complex dimension of the conformal
manifoldMC . For general k,N ,

dimCMC = GCD(k,N)− 1 , (4.8)

as can be seen from the Newton polygon (also see [62]).
When k = mN for m a positive integer, there are N − 1 points on the bounding line
of the Newton polygon in addition to the points at the tips of the triangle. N − 2 of
these points correspond to exactly marginal deformations (since their dimension is
zero), while one lies on the xN−1 line and is thus excluded. In this case the complex
dimension of the conformal manifoldMC is then N − 2,

dimCMC = N − 2 , k = mN . (4.9)

When k = N , the dimension is reduced further to dimCMC = N − 3.
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Adding an arbitrary regular puncture with Young diagram Y deforms the curve (4.2)
of the (AN−1, Ak−1) theory with terms

y2 ⊃
N∑
l=2

α`(z)xN−l + . . . , αl = · · ·+ v1z
−1 + · · ·+ vnlz

−pl . (4.10)

Here pl = l−hl is the pole structure of the Young diagram introduced in [6], with l (distinct
from `!) labeling the boxes from 1 to N starting in the bottom left corner, and hl the height
of the l’th box. (Here Y is arranged with column sizes decreasing from left to right and
row lengths increasing from top to bottom.) For example, the maximal puncture ` = N

consists of the diagram with N boxes in a single row, so hl = 1 for all l. The additional
deformation parameters for the box puncture Y` with ` > 1 are thus given by

y2 ⊃

∑̀
l=2

l−1∑
j=1

+
N/`∑
x=2

x∑̀
l=(x−1)`+1

l−x∑
j=1

xN−lvl,jz−j , ∆(vl,j) = kl + jN

k +N
. (4.11)

The v-parameters associated to the regular puncture appear as points in the lower right
quadrant in the diagram of the Newton polygon, where the lowest point occurs at (a, b) =
(0,−N(1− 1

` )).7
In figure 4 we give the Young Tableaux and Newton polygons of the possible box-

diagram regular punctures for N = 4. The Newton polygons in figure 4 are reflected
versions of those in figure 7 of [6], given in conventions such that they can be appended to
the bottom of the Newton polygon of the ` = 1 theory (given for N = 4, k = 8 in figure 3).
For example, the Newton polygon of the ` = N theory is depicted in figure 5 for N = 4
and k = 8. To summarize, the Newton polygon for general ` > 0 consists of a right triangle
in the first quadrant whose hypotenuse has slope k/N , plus a reflected right triangle below
the horizontal axis whose hypotenuse has slope (1− 1

` ).
Since all the vl,j in (4.11) have dimension greater than unity, they correspond

to Coulomb branch operators ui. The dimensions of the Coulomb branch operators
then satisfy

1 < ∆(ui) ≤ N −
N2

`(k +N) . (4.12)

Thus, the rank of the Coulomb branch is increased from (4.5) at ` = 1 to

rank(CB) = 1
2

(
(k − 1)(N − 1)− (GCD(k,N)− 1) +N2

(
1− 1

`

))
(4.13)

for general `. The rank of the flavor symmetry is now equal to (4.7), plus `− 1 due to the
additional SU(`) global symmetry of to the regular puncture,

rank(F ) = GCD(k,N) + `− 2 . (4.14)

The dimension of the conformal manifold is unchanged from (4.8) by the regular puncture.
7Note that the addition of the regular puncture also allows the deformations corresponding to the zk−1

line in the Newton polygon to be turned on, since translational symmetry on the sphere is broken.
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(a) The maximal puncture with flavor symmetry SU(N). The Young tableaux consists of a single
row of length N . pl = l − 1, such that pl = {0, 1, 2, 3} for N = 4.

(b) The puncture with flavor symmetry SU(N/2). The Young tableaux consists of two rows of
length N/2. pl=1,...,N/2 = l − 1 and pl=N/2+1,...,N = l − 2, such that pl = {0, 1, 1, 2} for N = 4.

(c) The non-puncture. The Young tableaux consists of N rows of length 1. pl = 0 for all l.

Figure 4. The Young tableaux and Newton polygons of some of the possible regular punctures
for N = 4. The black dots correspond to the xN−1 line and the leading xN term, which have no
corresponding deformation parameters.

Figure 5. The Newton polygon for ` = N , drawn for N = 4 and k = 2N = 8.
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4.1.3 Central charges

The combination 2a − c of the a and c central charges can be computed using the useful
formula [63]8

2a− c = 1
4
∑
i

(2∆(ui)− 1) , (4.15)

which relates the central charges to the dimensions of the Coulomb branch operators
ui. The dimensions of the ui for the (A(N)

N−1[k], Y`) theories are described around (4.6)
and (4.11). The quantities a and c can be separately extracted from another useful set of
formulae derived in [63],

a = R(A)
4 + R(B)

6 + 5r
24 + h

24 , c = R(B)
3 + r

6 + h

12 , (4.16)

where R(A) and R(B) are R-charges computed from topological field theories, and r, h are
the number of free vector multiplets and hypermultiplets at a generic point on the Coulomb
branch. For the (A(N)

N−1[k], Y`) theories, r is equal to rank(CB) given in (4.13), and h = 0.
The quantity R(A) can then be expressed

R(A) =
∑
i

(∆(ui)− 1) , (4.17)

which can be computed from the Newton polygon. The quantity R(B) was conjectured
in [9] for the (AN−1, Ak−1) theories to be

R(B) = kN(N − 1)(k − 1)
4(N + k) , (AN−1, Ak−1) , (4.18)

with the conjecture confirmed and then computed for the general (G,G′) Argyres-Douglas
theories in [57] (see more discussion of this generalized class in appendix D).

Given (4.18), our knowledge of the Coulomb branch operator spectrum from the New-
ton polygon, and (4.13), a and c can be computed for the ` = 1 theories as

a = 4k2(N2 − 1)− 5(k +N)(N − 2 + GCD(k,N))
48(k +N)

+ N

8(k +N)

N−1∑
j=1

{
j(k +N)

N

}(
1−

{
j(k +N)

N

})
,

c = (N − 1)(k − 1)(kN + k +N)− (k +N)(GCD(k,N)− 1)
12(k +N) , ` = 1 .

(4.19)

Here {x} = x − bxc denotes the fractional part. Taking k = mN for m ∈ Z+, the central
charges (4.19) reduce to

a = (N − 1)
(
2N(N + 1)m2 − 5m− 5

)
24(m+ 1) ,

c = (N − 1)
(
N(N + 1)m2 − 2m− 2

)
12(m+ 1) , k = mN ,

(4.20)

which were first computed in this case in [9].
8This result uses the assumption that the Coulomb branch is freely generated.
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Next we include the regular puncture associated to the diagram Y`. When ` = N and
the puncture is maximal, the central charges were first computed for k = mN in [54], and
for general k,N in [57] (also see the nice summary in [62]). In this case,9

a = 1
48
(
10 + 4k(N2 − 1)− 5GCD(k,N)− 4N +N2(−5 + 4N)

)
+ N

8(k +N)

N−1∑
j=1

{
j(k +N)

N

}(
1−

{
j(k +N)

N

})
,

c = 1
12
(
(k +N − 1)(N2 − 1) + 1−GCD(k,N)

)
, ` = N .

(4.21)

Again, {. . .} denotes the fractional part. The flavor central charge in this case is [60]

kSU(N) = 2N − 2N
k +N

. (4.22)

Now consider the case of an arbitrary regular puncture labeled by Y on the sphere.
As described in [62], a straightforward way to compute the central charges is to start
with the known central charges of the ` = N theories, and then to partially close the
maximal puncture by giving a nilpotent VEV to the moment map operator of the SU(N)
flavor symmetry. The central charges of the (A(N)

N−1[k], Y ) theories can then be cast as
those of the (AN−1, Ak−1) theories without the regular puncture (4.19), plus the additional
contributions [62]

∆a = aY + 6IρY −N(N2 − 1)
12

N

k +N
, ∆c = cY + 6IρY −N(N2 − 1)

12
N

k +N
. (4.23)

In (4.23), aY , cY denote the standard contribution of the puncture Y ignoring the irregular
puncture, which in this notation (following [62]) includes the contribution of one puncture
to the bulk ’t Hooft anomalies, χ ⊃ −1 for χ the Euler characteristic (see appendix C).
These quantities can be extracted from (C.8), and are given below in examples. IρY is
the embedding index of SU(2) into SU(N) that labels the nilpotent VEV in the RG flow,
defined in terms of the data of the Young diagram as

IρY = 1
6

p̃∑
i=1

i(i2 − 1)k̃i , F = S

 p̃∏
i=1

U(k̃i)

 . (4.24)

Here p̃ is the number of rows in the Young tableaux, and k̃i = ˜̀
i − ˜̀

i+1 for ˜̀
i the length

of the i’th row of the tableaux, in a convention where row lengths increase from top to
bottom. Then, the Young tableaux is labeled by the partition N = ∑

i ik̃i. See appendix C
for more details.

As a first example of applying (4.23), consider the non-puncture ` = 1 given by the
last diagram in figure 4. In this case there are p̃ = N rows each of length ˜̀

i=1,...,N = 1,
such that the only nonzero k̃i is k̃N = 1. Then, the embedding index is

Iρnon = 1
6N(N2 − 1) , (4.25)

9In the notation of [57], p = k +N .
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and ∆a = ∆c = 0, as expected. For the general box diagram Y` with ` columns, p̃ = N/`,
˜̀
i=1,...,N/` = `, and the only nonzero k̃i is k̃r = `. The contributions (aY` , cY`) are given by
adding the contributions of (C.12), to the terms in (C.8) that are proportional to χ ⊃ −1.
For example, one computes aY` as

aY` = 1
48(8N3 − 3N − 5) + 1

24(nh(Y`) + 5nv(Y`)) (4.26)

= 1
48N

(
− 3 + 3`− 8N

2

`
+ 8N2

)
, (4.27)

and similarly for cY` . The embedding index of the box diagram is given by

Iρ` = 1
6N

(
N2

`2
− 1

)
. (4.28)

Substituting (4.27) and (4.28) into (4.23) and adding the resulting ∆a to (4.19) (and
similarly for c), we obtain

a =
4k2(N2−1)− 5(k+N)

(
(8−3`)

5 N − 2+ GCD(k,N)
)

+4N3(1− 1
` )
(
2k +N(1− 1

` )
)

48(k +N)

+ N

8(k +N)

N−1∑
j=1

{
j(k +N)

N

}(
1−

{
j(k +N)

N

})
,

c =
k2(N2 − 1)− (k +N) (N(2− `)− 2 + GCD(k,N)) +N3(1− 1

` )(2k +N(1− 1
` ))

12(k +N) .

(4.29)

Taking ` = 1 reproduces (4.19), while taking ` = N reproduces (4.21).
The flavor symmetry central charge of the regular puncture is conjectured in [54] to

be equal to two times the scaling dimension of the Coulomb branch operator of maximal
dimension. Using (4.12), for the regular puncture labeled by Y` this translates into a flavor
central charge kSU(`) of

kSU(`) = 2N − 2N2

`(k +N) . (4.30)

For example, kSU(N) reduces to (4.22) upon taking ` = N .
In table 1 we summarize the properties discussed in this subsection.

4.2 Checks of the holographic duality

Let us summarize the checks of our proposed holographic duality between the field theory
data of the (A(N)

N−1[k], Y`) SCFTs described in this section (and summarized in table 1), and
the supergravity solution described in sections 2 and 3.

• Comparing the U(1)r symmetry generator in the field theory given in (4.1)
with (2.51), we are led to identify N`

N+K` with N
k+N , yielding

K = k +N

(
1− 1

`

)
. (4.31)
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(A(N)
N−1[k], Y`)

a

4k2(N2−1)−5(k+N)
( (8−3`)

5 N−2+GCD(k,N)
)
+4N3(1− 1

`
)(2k+N(1− 1

`
))

48(k+N)

+ N
8(k+N)

∑N−1
j=1

{
j(k+N)
N

}(
1−

{
j(k+N)
N

})
c k2(N2−1)−(k+N)(N(2−`)−2+GCD(k,N))+N3(1− 1

`
)(2k+N(1− 1

`
))

12(k+N)

a|N→∞ = c|N→∞
N2(k+N(1− 1

`
))2

12(k+N)

kSU(`) 2N − 2N2

`(k+N)

rank(CB) 1
2

(
(k − 1)(N − 1)− (GCD(k,N)− 1) +N2(1− 1

` )
)

rank(F ) GCD(k,N) + `− 2

dim(MC) GCD(k,N)− 1

Table 1. The properties of the (AN−1[k](N), Y`) theories that arise from N M5-branes wrapping a
sphere with one irregular puncture of type A(N)

N−1[k], and one regular puncture whose Young diagram
consists of ` columns and N/` rows. Here {x} = x − bxc denotes the fractional part. The case
` = 1 yields a “non-puncture” on the sphere, and these reduce to the class (AN−1, Ak−1). The case
` = N yields the maximal regular puncture with associated SU(N) flavor symmetry. To compute
the large-N scaling we assume that k is of order N . The dimension of the conformal manifold is
reduced according to (4.9) for special values of k.

(Recall that ` divides N .) The condition k > −N on the field theory side is consistent
with the positivity of K in the supergravity solution.

• The large-N limit of the a and c central charges is given in table 1, where we take
N, k →∞ with k/N finite. Using (4.31), this can be rewritten

a|N→∞ = c|N→∞ = `N2K2

12(N +K`) , (4.32)

which precisely matches (2.56).

• The flavor central charge kSU(`) for the SU(`) symmetry associated to the regular
puncture Y` is given in (4.30) in the field theory. Translating from k toK using (4.31),
we can rewrite

kSU(`) = 2NK`
N +K`

. (4.33)

This precisely matches the computation of kSU(`) obtained in (3.33).

• From (4.12), the largest dimension Coulomb-branch operator has scaling dimension
given by N − N2

`(k+N) , with R-charges satisfying (r,R) = (2∆, 0). Using (4.31), we
find that this precisely matches the dimension and R-charges of the operator O1
computed in (2.64), (2.68). We thus identify the wrapped M2-brane operator O1
with the maximal dimension Coulomb branch operator.
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• The rank of the flavor symmetry in the field theory is GCD(k,N) + ` − 2. Of the
total rank, `−1 corresponds to the SU(`) flavor symmetry that is evident both in the
field theory and gravity descriptions. The maximal remaining rank is N − 1, which
matches the maximal possible rank from the source consisting of N M5-branes in the
supergravity solutions (with the minus one corresponding to an overall center of mass
mode). It will be interesting to further understand the dynamics of the source on the
gravity side, and to explicitly see the reduction from rank N −1 in the maximal case,
to GCD(k,N)− 1 depending on k. We also expect the matching of the dimension of
the conformal manifold to depend on the detailed dynamics of the source.

A dual Lagrangian description of the (A(N)
N−1[k], Y1) = (AN−1, Ak−1) Argyres-Douglas

SCFTs for k an integer multiple of N was obtained in [25, 26].10 The RG flow of inter-
est begins in the UV with a conformal N = 2 quiver gauge theory with N − 1 gauge
nodes and non-abelian flavor symmetry group SU(k), to which we couple an N = 1 chiral
multiplet that transforms in the adjoint representation of the SU(k) flavor group. One
then undergoes the nilpotent Higgsing procedure that was first considered in [66, 67] (see
also [68]). Upon giving a particular vev to this chiral multiplet and decoupling the massive
and Nambu-Goldstone modes (utilizing [69]), one flows to the (AN−1, A(k=mN)−1) theory
at low energies. This RG flow is reviewed in detail in appendix E, and both the UV and IR
quivers are summarized in figure 7. As we review in that appendix, many of the properties
of the ` = 1 theories reviewed here are reproduced by the Lagrangian description.

Using the Lagrangian description, we have the following additional check for ` = 1 and
k an integer multiple of N :

• One can construct 2N −2 Higgs branch operators with R-charges (r,R) = (0,∆), and
scaling dimensions ∆ = k − k

N (see (E.17) in appendix E). Using (4.31) with ` = 1
and taking the limit that k,N →∞ with k/N finite, these become

∆|N→∞ = K . (4.34)

This precisely reproduces the dimensions and R-charges of the operators Oi2 com-
puted in (2.67), (2.68). Recall from the discussion around (2.67) that in gravity, the
degeneracy of the operators Oi2 is determined by the possible boundary conditions
of the M2-brane on the M5-branes at w = 0, leading to a degeneracy of 2N − 1. We
thus identify all but one of the operators Oi2 with the Higgs branch operators on the
field theory side, while one mode decouples from the interacting fixed point. It would
be interesting to understand the origin of this decoupled mode, which it is natural to
expect is associated to the center-of-mass mode of the stack of M5-branes.

5 Discussion

In this work we have proposed gravity duals for a class of 4d N = 2 SCFTs of Argyres-
Douglas (AD) type, which can be engineered by wrapping a stack of M5-branes on a sphere
with one irregular puncture and one regular puncture. The latter is described by a Young

10The cases N = 2 with general k were first obtained in [64, 65] via RG flow from conformal SQCD.
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diagram of rectangular shape.11 Our solutions have been found in 7d gauged supergravity
and uplifted on S4. Crucially, we find M5-brane sources in the internal space, which
model the irregular puncture. We test the proposed holographic duality by matching the
central charges and the dimensions of suitable BPS operators originating from wrapped
M2-brane probes.

Our results suggest several natural directions for future investigations. It would be
interesting to obtain a more systematic understanding of the structure of the novel solutions
to the Toda equation of the type we have discovered. In particular, since the solutions are
axially symmetric, one can analyze the electrostatic system obtained after the Bäcklund
transform [12]. The goal is to identify the gravity duals of 4d N = 2 SCFTs of AD type
featuring a regular puncture with a Young diagram of arbitrary shape, and to explore
whether the field-theoretic classification of irregular punctures can be recovered from the
gravity side.

The Stückelberg coupling involving the U(1) gauge field associated to the Killing vec-
tor ∂β deserves further study. In particular, it would be interesting to identify the leftover
discrete subgroup (if any) and the states in the dual SCFTs that are charged under it.
More broadly, one can ask whether this phenomenon appears in other contexts in super-
gravity and how it is related to the presence of internal sources. The inclusion of external
background gauge fields in the 4-form flux of M-theory can be described using equivariant
cohomology. It would be beneficial to phrase the Stückelberg mechanism at hand in this
broader mathematical language.

The anomaly inflow methods of [40] can be used to extract ’t Hooft anomalies beyond
the leading terms in the large-N limit. Moreover, O(N0) terms could also be accessible
via a study of singleton modes in the gravity dual. It would be interesting to apply these
ideas to the solutions discussed in this paper, aiming to match the known exact ’t Hooft
anomalies of SCFTs of AD type.

It is also natural to study generalizations of our AdS5 solutions preserving 4d N = 1
superconformal symmetry. A class of N = 1 solutions describing M5-branes wrapped on
a spindle have been presented in [32]. We would like to analyze whether N = 1 solutions
with internal M5-brane sources can be found. More generally, a systematic analysis of
N = 1 gravity solutions can yield useful insights into the spectrum of allowed regular12

and irregular punctures for 4d N = 1 SCFTs in class S and generalizations thereof [71–77].
A subset of the N = 2 SCFTs discussed in this paper can be realized as low-energy

fixed points of Lagrangian N = 1 flows [25, 26]. It would be interesting to investigate
Lagrangian realizations of the larger class of theories of AD type studied in this work.
Furthermore, our AdS5 solutions offer a new avenue to study the holographic duals of
these supersymmetry-enhancing flows.
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A Gauged supergravity solutions

In this appendix we provide a derivation of the 7d gauged supergravity solutions described
in the main text in section 2.1. The supergravity model of interest is obtained as a U(1)2

truncation of the full 7d N = 4 SO(5) gauged supergravity of [28]. We follow the notation
and conventions of [29].

A.1 Equations of motion and BPS equations

The bosonic equations of motion are recorded in [29]. The scalar equations of motion read

∇2(3λ1 + 2λ2) = −e−4λ1 F (1)
µν F

(1)µν +m2 e−4λ1−4λ2 CµνρC
µνρ + m2

8
∂V
∂λ1

, (A.1)

∇2(2λ1 + 3λ2) = −e−4λ2 F (2)
µν F

(2)µν +m2 e−4λ1−4λ2 CµνρC
µνρ + m2

8
∂V
∂λ2

, (A.2)

where V is the scalar potential, given as

V = −8 e2λ1+2λ2 − 4 e−2λ1−4λ2 − 4 e−4λ1−2λ2 + e−8λ1−8λ2 . (A.3)

The gauge field equations of motion are

∇µ(e−4λ1 F (1)
µν ) = 1

2
√

3
εµν

ρ1...ρ5 ∇µ(F (2)
ρ1ρ2 Cρ3ρ4ρ5) , (A.4)

∇µ(e−4λ2 F (2)
µν ) = 1

2
√

3
εµν

ρ1...ρ5 ∇µ(F (1)
ρ1ρ2 Cρ3ρ4ρ5) , (A.5)

where F (1)
µν = 2 ∂[µA

(1)
ν] , F

(2)
µν = 2 ∂[µA

(2)
ν] , while the 3-form equation of motion is

e−4λ1−4λ2 Cµ1µ2µ3 = 1
6m εµ1µ2µ3

ν1...ν4 ∂ν1Cν2ν3ν4−
1

2m2
√

3
εµ1µ2µ3

ν1...ν4 F (1)
ν1ν2 F

(2)
ν3ν4 . (A.6)

Finally, Einstein’s equation can be written in the form

Rµν = m2

10 V gµν + 5 ∂µ(λ1 + λ2) ∂ν(λ1 + λ2) + ∂µ(λ1 − λ2) ∂ν(λ1 − λ2)

+ 2 e−4λ1

[
F (1)
µρ F

(1)
ν
ρ − 1

10 gµν F
(1)
ρσ F (1)ρσ

]
+ 2 e−4λ2

[
F (2)
µρ F

(2)
ν
ρ − 1

10 gµν F
(2)
ρσ F (2)ρσ

]
− 3m2 e−4λ1−4λ2

[
Cµρσ Cν

ρσ − 2
15 gµν Cρ1ρ2ρ3 C

ρ1ρ2ρ3

]
. (A.7)
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The constant parameter m has dimensions of mass. It sets the scale of the AdS7 vacuum
solution of the 7d gauged supergravity model: in these conventions, the radius of AdS7 is
LAdS7 = 2/m. The BPS equations of this supergravity model are [29]

0 = ∇µεI + g

2
[
A(1)
µ (Γ12)IJ +A(2)

µ (Γ34)IJ
]
εJ

+ m

4 e−4λ1−4λ2 γµ ε
I + 1

2 γµ γ
ν ∂ν(λ1 + λ2) εI

+ 1
2 γ

ν e−2λ1 F (1)
µν (Γ12)IJ εJ + 1

2 γ
ν e−2λ2 F (2)

µν (Γ34)IJ εJ

− m
√

3
4 γνρ e−2λ1−2λ2 Cµνρ (Γ5)IJ εJ , (A.8)

0 = m

4 (e2λ1 − e−4λ1−4λ2) εI − 1
4 γ

µ ∂µ(3λ1 + 2λ2) εI − 1
8 γ

µν e−2λ1 F (1)
µν (Γ12)IJ εJ

+ m

8
√

3
ρµνρ e−2λ1−2λ2 Cµνρ (Γ5)IJ εJ , (A.9)

0 = m

4 (e2λ2 − e−4λ1−4λ2) εI − 1
4 γ

µ ∂µ(2λ1 + 3λ2) εI − 1
8 γ

µν e−2λ2 F (2)
µν (Γ34)IJ εJ

+ m

8
√

3
ρµνρ e−2λ1−2λ2 Cµνρ (Γ5)IJ εJ . (A.10)

The constant g is the gauge coupling of the 7d gauged supergravity model, related to m
as g = 2m. The supersymmetry parameter ε is a 7d Dirac spinor, but we do not indicate
explicitly its spacetime spinor index. It also carries a index I = 1, . . . , 4 associated to the
4 representation of SO(5)c ∼= USp(4)c, which is the composite SO(5)c symmetry of the
scalar coset of the full 7d N = 4 SO(5) gauged supergravity [28]. The index I on εI is
acted upon by SO(5)c gamma matrices Γ1, . . . , Γ5; we have introduced Γ12 = Γ1 Γ2 and
Γ34 = Γ3 Γ4. The 7d spacetime gamma matrices γµ commute with the SO(5)c gamma
matrices Γ1, . . . , Γ5.

A.2 Ansatz

The ansatz for the 7d line element reads

ds2
7 = f(w) ds2(AdS5) + g1(w) dw2 + g2(w) dz2 , (A.11)

where ds2(AdS5) denotes the unit-radius metric on AdS5, w parametrizes an interval, and
z is an angular coordinate, whose periodicity will be fixed later. The gauge field A(1) takes
the form

A(1) = Az(w) dz , (A.12)

while A(2) and the 3-form C are set to zero. The scalar fields λ1, λ2 are given in terms of
a single function of w,

λ1 = λ(w) , λ2 = −2
3 λ(w) . (A.13)

These choices guarantee that the equations of motion for the 3-form, one of the scalars,
and one of the vectors are automatically satisfied, see (A.6), (A.2), (A.5).
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The metric (A.11) suggests an obvious vielbein, with the flat directions 0, . . . , 4 asso-
ciated to AdS5, and the flat directions 5, 6 associated to w, z, respectively. The 7d gamma
matrices are decomposed according to

γα = ρα ⊗ σ3 , α = 0, 1, 2, 3, 4 , γ5 = I4 ⊗ σ1 , γ6 = I4 ⊗ σ2 , (A.14)

where α are (flat) 5d spacetime indices, ρα are 5d 4×4 gamma matrices satisfying {ρα, ρβ} =
2 ηαβ with signature (−,+,+,+,+), and σ1,2,3 are the standard Pauli matrices. The 7d
supersymmetry parameter ε is written in the form

εI = nI ϑ⊗ η . (A.15)

The quantity ϑ is a 4-component Killing spinor on AdS5, satisfying

∇AdS5
α ϑ = 1

2 s ρα ϑ , (A.16)

where s ∈ {±1} is an arbitrary sign. The quantity η is a 2-component spinor depending
on the coordinates w and z. The quantities nI are the components of a constant object in
the 4 representation of SO(5)c. They are subject to the projection condition

(Γ12)IJ nJ = i nI . (A.17)

(Flipping the sign of the gauge field A(1) we could have equivalently written −i on the r.h.s.)
Notice that we do not impose any additional projection condition on nI with Γ34. In other
words, two out of the four components nI are retained by the projection. This ensures
that, if a 2-component spinor η can be found that satisfies the BPS conditions spelled out
below, the system automatically preserves 4d N = 2 superconformal symmetry.

The AdS5, w, and z components of the BPS equation (A.8) give respectively

0 = 1
2 s η + 1

2 g
−1/2
1 f1/2

[1
2
f ′

f
+ 1

3 λ
′
]

(i σ2 η) + m

4 e−
4
3λ f1/2 (σ3 η) , (A.18)

0 = ∂wη + 1
6 λ
′ η + 1

2 g
−1/2
2 e−2λA′z (i σ2 η) + m

4 e−
4
3λ g

1/2
1 (σ1 η) , (A.19)

0 =
[
− i ∂z + 1

2 g Az
]
η − 1

2 g
−1/2
1 e−2λA′z (σ1 η)

− m

4 e−
4
3λ g

1/2
2 (i σ2 η)− 1

2 g
−1/2
1 g

1/2
2

[1
2
g′2
g2

+ 1
3 λ
′
]

(σ3 η) . (A.20)

The BPS condition (A.9) yields

0 = m (e2λ − e−
4
3λ) η − 5

3 λ
′ g
−1/2
1 (σ1 η) + e−2λA′z g

−1/2
1 g

−1/2
2 (σ3 η) , (A.21)

while the BPS equation (A.10) is trivially satisfied. Here and in the following a prime
denotes differentiation with respect to w.

We assume that the spinor η has a definite charge under the U(1)z isometry, i.e.

η(w, z) = einz η̂(w) , (A.22)
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where n is a constant. We notice that ∂zη enters the BPS equations only in the combination
(−i ∂z + 1

2 g Az)η = (n + 1
2 g Az)η. The quantity (−i ∂z + 1

2 g Az)η is invariant under a
combined transformation of η, A(1) of the form

A(1) 7→ A(1) − 2α0
g

dz , η 7→ eiα0z η , (A.23)

where α0 is an arbitrary constant. It is thus convenient to define Âz via

1
2 g Âz = n+ 1

2 g Az . (A.24)

Notice that Â′z = A′z.

A.3 Analysis

We can solve the equation of motion (A.4) for the gauge field A(1) by writing

A′z = b e4λ g
1/2
1 g

1/2
2 f−5/2 , (A.25)

where b is an unspecified integration constant. We plug this expression for A′z in the
BPS equations (A.18), (A.20), (A.21), and, after some rearrangements (including mul-
tiplying from the left by suitable Pauli matrices), we arrive at the following algebraic
BPS conditions,

0 = s f−1/2 η + g
−1/2
1

[1
2
f ′

f
+ 1

3 λ
′
]

(i σ2 η) + m

2 e−
4
3λ (σ3 η) , (A.26)

0 = g g
−1/2
2 Âz (σ1 η)− f−5/2 e2λ b η + g

−1/2
1

[1
2
g′2
g2

+ 1
3 λ
′
]

(i σ2 η) + m

2 e−
4
3λ (σ3 η) ,

(A.27)

0 = m (e2λ − e−
4
3λ) (σ3 η)− 5

3 λ
′ g
−1/2
1 (i σ2 η) + f−5/2 e2λ b η . (A.28)

The three algebraic equations above are of the form M (i) η = 0, whereM (i), i = 1, 2, 3,
are three 2× 2 matrices, which can be parametrized as

M (i) = X
(i)
0 I2 +X

(i)
1 σ1 +X

(i)
2 (i σ2) +X

(i)
3 σ3 . (A.29)

For each matrix M (i), let us define the column 2-vectors

v(i) =

 X
(i)
1 +X

(i)
2

−X(i)
0 −X

(i)
3

 , w(i) =

 X
(i)
0 −X

(i)
3

−X(i)
1 +X

(i)
2

 , (A.30)

and the quantities

Aij = det(v(i)|w(j)) , Bij = det(v(i)|v(j)) , Cij = det(w(i)|w(j)) , (A.31)

where (a|b) denotes the 2×2 matrix obtained by juxtaposition of the column 2-vectors a and
b. We seek a non-trivial solution to the algebraic BPS equations in which η is not identically
zero. Let us therefore pick a fixed but generic value of y for which η 6=

(0
0
)
. At such a
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value of y, the quantities Aij , Bij , Cij are zero. This can be seen for instance as follows
(we keep the dependence on the chosen point y implicit throughout the argument). Since
η 6=

(0
0
)
, we can choose a basis of C2 consisting of η and some other linearly independent

2-component spinor ξ. Let G be the GL(2,C) matrix that implements the change of basis
from the standard basis in C2 to the new basis {η, ξ}. Since η is annihilated by M (i), the
first column of the matrix M (i) in the new basis in zero, which means that we can write

M (i) = G−1
(

0 u(i)

0 v(i)

)
G , (A.32)

where u(i), v(i) are unspecified. After parametrizing G =
(
a b
c d

)
, we can extract the quanti-

ties X(i)
1,2,3,4 in terms of u(i), v(i), a, b, c, d, and verify explicitly that Aij , Bij , and Cij vanish.

The vanishing of Aij , Bij , and Cij at a generic point in y where η 6=
(0
0
)
gives us a

number of necessary conditions for the existence of a non-trivial solution, which facilitate
the analysis. The vanishing of the diagonal components Aii gives the conditions

0 = 1
f

+ 1
g1

(1
2
f ′

f
+ 1

3 λ
′
)2
− 1

4 m
2 e−

8
3λ , (A.33)

0 = b2 e4λ

f5 + 1
g1

(1
2
g′2
g2

+ 1
3 λ
′
)2
− 1

4 m
2 e−

8
3λ − g2 Â2

z

g2
, (A.34)

0 = 25 (λ′)2

9 g1
+ b2 e4λ

f5 −m2
(
e2λ − e−

4
3λ
)2

. (A.35)

The vanishing of the off-diagonal symmetrized components Aij +Aji (i 6= j) yields

0 = 2
g1

(1
2
f ′

f
+ 1

3 λ
′
)(1

2
g′2
g2

+ 1
3 λ
′
)
− 2 s b e2λ

f3 − 1
2 m

2 e−
8
3λ , (A.36)

0 = 2 s b e2λ

f3 − 10
3 g1

λ′
(1

2
f ′

f
+ 1

3 λ
′
)
−m2 e−

4
3λ
(
e2λ − e−

4
3λ
)
, (A.37)

0 = 2 b2 e4λ

f5 + 10
3 g1

λ′
(1

2
g′2
g2

+ 1
3 λ
′
)

+m2 e−
4
3λ
(
e2λ − e−

4
3λ
)
, (A.38)

while setting to zero the off-diagonal antisymmetrized components Aij −Aji gives

0 = mbe
2
3λ

f5/2 + mse−
4
3λ

√
f

+ 2 g
√
g1
√
g2
Âz

(1
2
f ′

f
+ 1

3 λ
′
)
, (A.39)

0 = mbe
2
3λ

f5/2 − 2ms√
f

(
e2λ − e−

4
3λ
)
, (A.40)

0 = mbe
2
3λ

f5/2 + 2mbe2λ

f5/2

(
e2λ − e−

4
3λ
)
− 10 g Âz λ′

3√g1
√
g2

. (A.41)

The vanishing of all components of Bij + Cij yields

0 = 2 b e2λ

f5/2√g1

(1
2
f ′

f
+ 1

3 λ
′
)

+ 2 s√
f
√
g1

(1
2
g′2
g2

+ 1
3 λ
′
)

+ mg e−
4
3λ Âz√
g2

, (A.42)

0 = 2 b e2λ

f5/2

(1
2
f ′

f
+ 1

3 λ
′
)

+ 10 s λ′
3
√
f
, (A.43)

0 = 10 b e2λ λ′

3 f5/2√g1
− 2 b e2λ

f5/2√g1

(1
2
g′2
g2

+ 1
3 λ
′
)
− 2mg Âz√

g2

(
e2λ − e−

4
3λ
)
. (A.44)
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Finally, the vanishing of all components of Bij − Cij gives

0 = me−
4
3λ

√
g1

(1
2
g′2
g2

+ 1
3 λ
′
)
− me−

4
3λ

√
g1

(1
2
f ′

f
+ 1

3 λ
′
)

+ 2 s g√
f
√
g2
Âz , (A.45)

0 = 5me−
4
3λ λ′

3√g1
+ 2m
√
g1

(1
2
f ′

f
+ 1

3 λ
′
)(

e2λ − e−
4
3λ
)
, (A.46)

0 = 5me−
4
3λ λ′

3√g1
+ 2m
√
g1

(1
2
g′2
g2

+ 1
3 λ
′
)(

e2λ − e−
4
3λ
)

+ 2 b g e2λ Âz
f5/2√g2

. (A.47)

The relation (A.40) is an algebraic relation for f in terms of λ. In particular, it implies
that λ is a constant if and only if f is a constant. The case of interest for this paper is λ
non-constant; the case of constant λ does not yield new solutions. Let us therefore assume
that λ is not a constant. We can solve (A.40) for f ,

f = 2Bm−2 eλ√
κ (1− e 10

3 λ)
, (A.48)

where κ is a sign and B > 0 is a constant such that

8 sB2m−4 + κ b = 0 . (A.49)

In what follows, we express b in terms of B using the above relation. Next, we solve (A.35)
for g1,

g1 = 25Bm−2 e
8
3λ

9 (1− e 10
3 λ)2

[
B − 2 e 5

3λ
√
κ (1− e 10

3 λ)
] (λ′)2 . (A.50)

We proceed by considering (A.39), or equivalently (A.41). These equations give an expres-
sion for √g1

√
g2 in terms of Âz,

√
g1
√
g2 = 5κ s g

√
2Bm−2 e

11
6 λ

3m (1− 2 e 10
3 λ)

[
κ (1− e 10

3 λ)
] 5

4
Âz λ

′ . (A.51)

On the other hand, (A.25) gives an expression for √g1
√
g2 in terms of A′z = Â′z,

√
g1
√
g2 = −κ s

√
2Bm−2 e−

3
2λ[

κ (1− e 10
3 λ)

] 5
4

A′z . (A.52)

Comparing (A.51) and (A.52) we get a simple ODE for Âz, which is solved by

Âz = −m−1 C
(
e

10
3 λ − 1

2

)
, (A.53)

where C is a real constant. From the definition (A.24) of Âz and the expression (A.53) we
conclude that

Az = −m−1
[
C
(
e

10
3 λ − 1

2

)
+ n

]
. (A.54)
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Having determined Âz, we also have an expression for g2,

g2 =
2 C2m−2 eλ

[
B − 2 e 5

3λ
√
κ (1− e 10

3 λ)
]

√
κ (1− e 10

3 λ)
. (A.55)

We can now verify that all equations (A.33) to (A.47) together with (A.25) are satisfied,
provided that the signs of C and λ′ are related as

sign(C) = κ s sign(λ′) . (A.56)

We have exploited the necessary conditions originating from the vanishing of the quan-
tities Aij , Bij , Cij . We can now verify directly that a 2-component spinor η can be found,
which satisfies the original algebraic BPS equations (A.26)–(A.28). This spinor is

η = einz Q(y)



√
√
B −

√
2 s e 5

6λ
[
κ (1− e 10

3 λ)
] 1

4

−κ sign(λ′)

√
√
B +

√
2 s e 5

6λ
[
κ (1− e 10

3 λ)
] 1

4

 (A.57)

To write η we have exploited the factorization

B − 2 e
5
3λ
√
κ (1− e 10

3 λ)

=
(√

B +
√

2 s e
5
6λ [κ (1− e

10
3 λ)]

1
4
) (√

B −
√

2 s e
5
6λ [κ (1− e

10
3 λ)]

1
4
)
. (A.58)

The l.h.s. must be positive to ensure positivity of g1. On the r.h.s. , one of the two factors is
a sum of positive quantities, hence is automatically positive, and therefore the other factor
must be positive, too. Finally, we consider the BPS equation (A.19) to determine Q as a
function of w. We get a simple ODE, which is solved by

Q = Q0
e

1
4λ[

κ (1− e 10
3 λ)

] 1
8
. (A.59)

To finish, we verify that all bosonic equations of motion are satisfied.
Notice that we have not determined λ as a function of w. This is in accordance with

the general covariance of the BPS equations and equations of motion. We find it convenient
to fix the ambiguity in reparametrizations of w by choosing

λ(w) = 3
5 logw . (A.60)

This choice requires w > 0. The line element takes the form

m2 ds7
2 = 2Bw3/5√

κ (1− w2)
ds2(AdS5) + Bw−2/5

h(w) (1− w2)2 dw
2 + 2 C2w3/5 h(w)√

κ (1− w2)
dz2 , (A.61)

where we have defined
h(w) = B − 2w

√
κ (1− w2) . (A.62)
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The gauge fields and scalars are given as

λ1 = 3
5 logw , λ2 = −2

5 logw , A(1) = −m−1
[
C
(
w2 − 1

2

)
+ n

]
dz . (A.63)

The spinor η takes the more explicit form

η = Q0 e
inz w3/20[

κ (1− w2)
] 1

8



√
√
B −

√
2 sw1/2

[
κ (1− w2)

] 1
4

−κ

√
√
B +

√
2 sw1/2

[
κ (1− w2)

] 1
4

 . (A.64)

A.4 Regularity of the gauge field and Killing spinor

Let us study the regularity of A(1) and η for the choice of parameters (2.5), repeated here
for convenience,

κ = 1 , 0 < B < 1 , 0 < w < w1 :=
√

1
2
(
1−

√
1−B2

)
. (A.65)

From (2.1) we see that line element near w = w1 can be written as

r2 := w1 − w , m2 ds2
7
r→0= 2Bw3/5

1√
1− w2

1

[
ds2(AdS5) +

2
[
dr2 + C2 (1−B2) r2 dz2]
−h′(w1)w1 (1− w2

1)3/2

]
,

(A.66)

which confirms that the w, z directions near the point w = w1 are locally an R2/Z` orbifold
if we impose (2.6). Since the z circle shrinks at w = w1, the quantity Az must vanish at
w = w1. This requirement fixes the constant n,

n = 1
2 C

√
1−B2 = 1

2 ` , A(1) = −m−1 C (w2 − w2
1) dz . (A.67)

We have made use of (2.6) and we have fixed sign(C) = +1, which is the choice made in
the main text when discussing the uplift of the 7d solution. From (A.56) we see that we
must select s = 1. The Killing spinor η is therefore given by

η = Q0 e
iz
2`

w3/20

(1− w2) 1
8


√√

B −
√

2w1/2 (1− w2) 1
4

−
√√

B +
√

2w1/2 (1− w2) 1
4

 . (A.68)

From this expression we see that

lim
w→w1

η = −Q0
w

3/20
1

(1− w2
1) 1

8

√√
B +

√
2w1/2

1 (1− w2
1) 1

4

(
0
1

)
e
iz
2` . (A.69)

Let us now argue that η is well-defined near w = w1, using arguments similar to those
presented in [15]. We see from (A.66) that a good set of polar coordinates near the point
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w = w1 is furnished by the angle z and r =
√
w1 − w. The flat metric on the orbifold

R2/Z` can be written in various equivalent forms,

ds2 = dr2 + 1
`2
r2 dz2 = dx2 + dy2 = (e1)2 + (e1)2 = (e′1)2 + (e′1)2 , (A.70)

where the Cartesian coordinates x, y and the 1-forms e1,2, e′1,2 are defined as

x = r cos z
`
, y = r sin z

`
e1 = dx , e2 = dy , e′1 = dr , e′2 = 1

`
r dz . (A.71)

The vielbeins ea=1,2 and e′a=1,2 are related by a local rotation,

e′a = Λab eb , Λab = (expλ)ab , λab =
(

0 −z/`
z/` 0

)
. (A.72)

Let ψ be a 2-component Dirac spinor in the frame ea, and let ψ′ denote its components in
the frame e′a. The transformation relating ψ′ to ψ is

ψ′ = S ψ , S = exp
(1

4 γab λ
ab
)

=
(
e−

iz
2` 0

0 e
iz
2`

)
, (A.73)

where we have chosen the 2d Euclidean gamma matrices to be γ1 = σ1, γ2 = σ2, with
σ1,2 standard Pauli matrices. The transformation (A.73) shows that, if the spinor ψ in the
Cartesian frame is constant, its components ψ′ in the polar frame acquire a z-dependence
through the phase factors e∓ iz2` . In particular, if ψ has negative chirality (its only non-zero
component is the lower one), it acquires a phase factor e iz2` . This is exactly the dependence
found in (A.69), demonstrating that our Killing spinor is well-defined near w = w1, because
it corresponds to a constant spinor in the Cartesian frame.

A.5 Alternative possibilities for the range of w

The allowed possibilities for the range of w depend on the values of the constant parameters
κ and B. We find six possibilities:

• Case I: κ = 1, 0 < B < 1, 0 < w < w1 where

w1 =
√

1
2
(
1−

√
1−B2

)
= 1

2
(√

1 +B −
√

1−B
)
. (A.74)

• Case II: κ = 1, 0 < B < 1, w2 < w < 1 where

w2 =
√

1
2
(
1 +

√
1−B2

)
= 1

2
(√

1 +B +
√

1−B
)
. (A.75)

• Case III: κ = 1, B = 1, 0 < w < 1/
√

2.

• Case IV: κ = 1, B = 1, 1/
√

2 < w < 1.

• Case V: κ = 1, B > 1, 0 < w < 1.

• Case VI: κ = −1, B > 0, 1 < w < w3 where

w3 =
√

1
2
(
1 +

√
1 +B2

)
. (A.76)

Case I has been discussed in the main text and in the previous subsection. Let us describe
here the salient features of the line element in the other cases.
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Figure 6. A schematic depiction of the internal geometry in Case II. The z circle is fibered over
the w interval to yield Σ. In the metric ds2(Σ) in (2.1), Σ has the topology of a disk with a Z`
orbifold singularity at the center. We also depict the qualitative behavior of the AdS5 warp function
f(w) = 2Bw3/5/

√
1− w2.

Case II. The z circle shrinks near the endpoint w = w2. If we impose the same condition
as (2.6) above, we get an orbifold point R2/Z`. As we approach w = 1, the AdS5 warp
factor goes to infinity, see figure 6. If we set w = 1 − B2 C2 r4/8 and consider the limit
r → 0+, the line element takes the form

m2 ds2
7 ≈

4
r2

[ 1
C2 ds

2(AdS5) + dr2 + dz2
]
, r → 0+ , (A.77)

from which we see that the 7d metric is given approximately by a conformal rescaling of
the direct product of AdS5 and a cylinder. The space Σ in the metric ds2(Σ) in (2.1) has
the topology of a disk, as in Case I. The regularity of A(1) and of the Killing spinor can be
analyzed in a similar way as done above in Case I.

Case III. This case is similar to Case I, except that the function h(w) has a double
zero at w = 1/

√
2. As a result the z circle does not shrink smoothly for any value of the

constant C. Instead, if we set w = 1√
2 −

1
R , as we consider R→ +∞ the 7d line element is

approximately given by

m2 ds2
7 ≈ 26/5 ds2(AdS5) + 1

24/5
dR2 + 32 C2 dz2

R2 , R→ +∞ . (A.78)

The behavior near w = 0 is similar to Case I.

Case IV. The behavior as we approach w = 1/
√

2 from the right is similar to the behavior
of Case III approaching w = 1/

√
2 from the left. The behavior in the limit w → 1− is as

in Case II, with a decompactification of the z circle.

Case V. This case combines the features of Case I near w = 0 and the features of Case
II near w = 1.
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Case VI. As w → 1+, the z circle decompactifies and the AdS5 warp factor diverges. If
we set w = 1 +B2 C4 r4/8 and consider r → 0+, the line element takes the form

m2 ds2
7 ≈

4
r2

[ 1
C2 ds

2(AdS5) + dr2 + dz2
]
, r → 0+ . (A.79)

As we approach w = w3, the z circle shrinks. If we impose

|C| = 1
`
√

1 +B2
, ` = 1, 2, 3, . . . , (A.80)

we get an R2/Z` orbifold point.

B Solutions in canonical N = 2 form

In this appendix we describe in greater detail the change of variables that brings the uplifted
solution (2.21), (2.24) into canonical N = 2 LLM form (2.43). We also review some general
facts about Killing spinors and spinor bilinears for LLM setups and their connections with
the most general supersymmetric AdS5 solution of 11d supergravity discussed in [39].

B.1 Change of variables to LLM form

All solutions discussed in this paper fall into a subclass of the canonical LLM form (2.43)
with an enhanced U(1) isometry. In terms of the polar coordinates (r, β) in the (x1, x2)
plane introduced in (2.47), the function D depends on y and r only, and therefore the
same holds true for the warp factor λ̃, determined by D via (2.44). It follows that ∂β is
a Killing vector. When the function D is independent of β, the Toda equation (2.45) and
the expression (2.46) for the 1-form v take a simpler form,(

∂2
r + 1

r
∂r

)
D + ∂2

ye
D = 0 , v = −1

2 r ∂rDdβ . (B.1)

The relation between the LLM angular variables χ, β and the angular variables φ, z in (2.21)
was given in (2.48), repeated here for convenience as(

dχ

dβ

)
=
(

1 + C−1 −1
−C−1 1

) (
dφ

dz

)
,

(
∂χ
∂β

)
=
(

1 C−1

1 1 + C−1

) (
∂φ
∂z

)
. (B.2)

The matrix that implements this linear change of coordinates has determinant 1, consistent
with the fact that all these four angular variables have period 2π. As anticipated in the
main text, the LLM coordinates y, r are related to the coordinates µ, w in (2.21) via

y = 4Bwµ√
κ (1− w2)

, r = (1− µ2)−
1

2C G(w) , (B.3)

where the function G(w) is determined up to an overall constant normalization and is a
solution to the ODE

G′(w)
G(w) = −Bw

C (1− w2)
[
B − 2w

√
κ (1− w2)

] . (B.4)
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For the choice of parameters and range of w specified in (2.5), G(w) is given explicitly as

G(w) =G0 exp
{
− 1

2 C log(1− w2) + 1− B
2 C B log(1− B − 2w2) (B.5)

− 1 + B
4 C B log

[
(
√

2−
√

1− w2
√

1− B − w
√

1 + B)

× (
√

2 +
√

1− w2
√

1− B + w
√

1 + B)
]

− 1− B
4 C B log

[
(
√

2 +
√

1− w2
√

1 + B − w
√

1− B)

× (
√

2−
√

1− w2
√

1 + B + w
√

1− B)
]}
,

where G0 is an integration constant and we have introduced the shorthand notation

B =
√

1−B2 . (B.6)

The quantity D, expressed in terms of w and µ, is given as

eD =
16B C2 (1− µ2)1+1/C [

B − 2w
√
κ (1− w2)

]
κ (1− w2) G(w)2 . (B.7)

Using the chain rule, (B.7), (B.3), (B.4) one computes the derivatives of D with respect to
y and r. The expressions for ∂yD, ∂rD, and the warp factor, computed from (2.44), are

−∂yD = κ (1− w2)µ
2B

[
µ2 h+Bw2 (1− µ2)

] , e−6λ̃ = [κ (1− w2)]3/2
8B3wH

,

r ∂rD =
B (1− µ2)

[
C − 2w2(C + 1)

]
− h (C + 2µ2 + Cµ2)

µ2 h+Bw2 (1− µ2) (B.8)

The second derivatives of D are computed in a similar way and can be used to verify that
D satisfies the Toda equation in the form (B.1).

In order to verify that the G4 flux (2.24) matches with the LLM expression, it is
convenient to observe that the LLM G4 flux is G4 = 1/(4m2) volS2 ∧ Ω2, where

Ω2 := Dχ ∧ d(y3 e−6λ̃) + y (1− y2 e−6λ̃) dv − 1
2 ∂ye

D dx1 ∧ dx2

= d
[
− y3 e−6λ̃Dχ− y v

]
+ 1

2 (r ∂rDdy − ∂yeD r dr) ∧ dβ . (B.9)

The 1-form (r ∂rDdy − ∂yeD r dr) is closed by virtue of the Toda equation, hence locally
exact. For the solutions we are discussing, one verifies indeed that

r ∂rDdy − ∂yeD r dr = dF , F := −8Bwµ (C + 1)√
κ (1− w2)

+ 8 C µ . (B.10)

The above relations can be used to check that

Ω2 = d

[
− y3 e−6λ̃Dχ− y v + 1

2 F dβ
]

= −4 d
[

µ3

µ2 + w2 (1− µ2) Dφ
]
. (B.11)

In the second step we have used the definition (2.46) of Dχ, the definition (2.23) of Dφ,
and the change of variables (B.2). The expression (B.11) for Ω2 shows that the G4 flux
in (2.43) matches exactly with (2.24).
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B.2 Killing spinors and calibration

In this section we review some facts about Killing spinors for the general LLM solu-
tion (2.43). In particular, we are interested in establishing a precise map with the Killing
spinors and bilinears of the most general supersymmetric AdS5 solution of 11d supergrav-
ity analyzed in Gauntlett-Martelli-Sparks-Waldram (GMSW) [39]. Our aim is to study
calibration conditions for wrapped M2-branes in the solutions described in this work.

B.2.1 Killing spinors and spinor bilinears in LLM

Killing spinors and their bilinears for LLM solutions are described in detail in the ap-
pendices of the original paper [37]. The spinor bilinear analysis of [37] is performed for
stationary 11d solutions containing an S5 and an S2 factor. They are related to the AdS5
solutions (2.43) by a double analytic continuation of S5 to AdS5 and time to the angle
χ. Instead of following the analytic continuation, we find it convenient to repeat the steps
of [37] directly for the AdS5 case. Our main objective is to set a consistent set of conventions
and notation, so we will be brief and refer to the original paper for further explanations of
some aspects of the Killing spinor analysis.

Split of M6 Into S2 and M4. The parametrization of the 11d line element and G4
flux is

ds2
11 = m−2 e2λ̃

[
ds2(AdS5) + ds2(M6)

]
, G4 = m−3 G4 , (B.12)

where ds2(AdS5) has unit radius and λ̃ is the warp factor. This is the same parametrization
as in [39], except that we have factored out the overall scale m−2. The quantity G4 is a
closed form on M6. As in [39] the Killing spinor of 11d supergravity is decomposed as
ψAdS ⊗ eλ̃/2 ξ, where ψAdS is a Killing spinor on AdS5 and ξ is a Dirac (non-chiral) spinor
on M6. The BPS equations for ξ are derived in [39]. We write them with m = 1 because
we have factored out the overall scale. They read[

∇m + i

2 γm γ7 −
1
24 e

−3λ̃ Gmn1n2n3 γ
n1n2n3

]
ξ = 0 ,[

γm∇mλ̃+ 1
144 e

−3λ̃ Gn1n2n3n4 γ
n1n2n3n4 − i γ7

]
ξ = 0 . (B.13)

The indices m,n = 1, . . . , 6 are curved indices on M6, which are raised/lowered with the
metric ds2(M6) defined by (B.12). Throughout this appendix, flat indices are underlined
to distinguish them from curved indices. Thus the 6d gamma matrices with flat indices
are denoted γm. They are Hermitian and obey the Clifford algebra {γm, γn} = 2 δmn. The
chirality matrix γ7 is defined as γ7 = γ1 . . . γ6, is anti-Hermitian, and satisfies γ2

7 = −1. As
usual, a gamma matrix with several indices denotes the product of gamma matrices totally
antisymmetrized with weight 1.

To specialize the general BPS equations (B.13) to LLM setups, we write the internal
metric ds2(M6) in the form

ds2(M6) = e2A ds2(S2) + ds2(M4) , (B.14)
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where ds2(S2) is the metric on a unit-radius round sphere, ds2(M4) is a Riemannian metric
on a 4d space M4, and A is a function on M4. The G4 flux is parametrized as

G4 = F ∧ volS2 , (B.15)

where volS2 is the volume form of the metric ds2(S2) and F is a closed 2-form on M4. The
6d index m is split as m = (x, α), with x = 1, 2 for the S2 directions and α = 1, 2, 3, 4 for
the M4 directions. Following [37], we split the 6d gamma matrices γm as

γx = σx ⊗ Γ5 , γα = 1⊗ Γα , (B.16)

where σx=1,2 are the standard Pauli matrices and the 4d gamma matrices Γα are Hermitian
and satisfy {Γα,Γβ} = 2 δαβ . The 4d chirality matrix Γ5 is defined as Γ5 = Γ1 . . .Γ4, is
Hermitian, and satisfies Γ2

5 = 1.
We decompose the 6d Dirac spinor ξ that enters the BPS conditions (B.13) into Killing

spinors on S2 and Dirac spinors on M4. More precisely, we write

ξI = ϑI ⊗ ε+ + (i σ3 ϑI)⊗ ε− . (B.17)

In the above relation, ε± are Dirac spinors on M4 while ϑI is a basis of independent Killing
2-component spinors on S2, satisfying

∇S2
x ϑ
I = + i

2 σx ϑ
I . (B.18)

The index I = 1, 2 is not a spinor index, but rather labels the two linearly independent
solutions to the above equation. We can regard I as a fundamental index of the isometry
algebra su(2) ∼= so(3) of the round S2. The fact that the 6d spinor ξ carries a label I = 1, 2
is simply the statement that we are seeking solutions preserving 4d N = 2 superconformal
symmetry. Notice that the spinor (i σ3 ϑI) satisfies the Killing equation (B.18) with +i on
the r.h.s. replaced with −i.

The spinors ε± are not independent, but rather related as (see [37] and also [78])

ε− = −aΓ5 ε+ , a = ±1 . (B.19)

As a result, we can also write the expression (B.17) for ξ as

ξI = (1− a γ7) (ϑI ⊗ ε) , ε ≡ ε+ . (B.20)

The BPS equations (B.13) imply the following conditions on ε,

∇αλ̃Γα ε+ a

12 e
−3λ̃−2A Fαβ Γαβ Γ5 ε− i a ε = 0 ,

∇αε+ i a

2 Γα ε−
a

4 e
−3λ̃−2A Fαβ Γβ Γ5 ε = 0 ,

∇αAΓα ε+ i e−A Γ5 ε+ i a ε− a

4 e
−3λ̃−2A Fαβ Γαβ Γ5 ε = 0 . (B.21)
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Dirac bilinears. We are now in a position to retrace the steps of [37] to study bilinears
constructed with ε and projection conditions on ε. Dirac bilinears are constructed with
ε̄ ≡ ε†. The scalar bilinear is a constant: we choose the normalization

ε̄ ε = 1 . (B.22)

The pseudo-scalar bilinear defines a non-trivial 0-form on M4. The Fierz rearrangements

(ε̄Γα ε)2 = −(ε̄Γα Γ5ε)2 = (ε̄ ε)2 − (ε̄Γ5 ε)2 , (B.23)

together with the fact that ε̄Γα ε is real and ε̄Γα Γ5ε purely imaginary, show that |ε̄Γ5 ε| ≤
|ε̄ ε| = 1. Therefore, we can parametrize ε̄Γ5 ε as

ε̄Γ5 ε = − sin ζ , (B.24)

with ζ ∈ [−π/2, π/2]. The quantity ζ is related to the canonical coordinate y in LLM
form (2.43) via

y = e3λ̃ sin ζ . (B.25)

The vector bilinear defines a Killing vector, which is identified with the canonical angular
direction χ in the standard LLM form (2.43). More precisely, if yα are local coordinates
on M4, we can write

ε̄Γα ε ∂

∂yα
= ∂

∂χ
. (B.26)

The pseudo-vector bilinear ε̄Γα Γ5 ε turns out to be given in terms of the warp factor and
the derivative of the pseudo-scalar bilinear ε̄Γ5 ε. More precisely, we can write

ε̄Γα Γ5 ε dy
α = − i a2 e−3λ̃ dy . (B.27)

The Fierz rearrangements (B.23), together with the additional Fierz identity

(ε̄Γαε)(ε̄ΓαΓ5ε) = 0 , (B.28)

can also be used to constrain the form of the metric on M4. Together with the coordinates
χ, y defined in (B.26), (B.25), we have two coordinates xi, i = 1, 2. The line element reads

ds2(M4) = cos2 ζ (dχ+ vi dx
i)2 + 1

4 e6λ̃ cos2 ζ
(dy2 + γij dx

i dxj) . (B.29)

Notice how (B.28) is exploited by choosing the coordinate y not to have any mixed metric
component with any other coordinate. The quantities ζ, vi, γij and the warp factor depend
on y, xi, but not on χ. A natural vielbein for ds2(M4) is

eχ = cos ζ Dχ ≡ cos ζ (dχ+ vi dx
i) , ey = 1

2 e3λ̃ cos ζ
, ei = 1

2 e3λ̃ cos ζ
êi , (B.30)

where ê1, ê2 is a vielbein for γij . We choose the orientation i = 1, i = 2, χ, y, so that
ε12χy = 1 and Γ5 = Γ1 Γ2 Γχ Γy.
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Following the steps detailed in appendix F.2 of [37], one can manipulate the BPS
conditions (B.21) on ε to determine the function A and the 2-form F . The function A is

eA = −a2 sin ζ . (B.31)

The coordinate y in LLM form is non-negative. Comparing (B.25) and (B.31) we see that
we have to choose the sign a to be

a = −1 . (B.32)

The sign of a is correlated to our choice (B.24). We could perform the redefinition ζ → −ζ
and change the sign of a. The 2-form F is given by

F = 3
4

y2 e−6λ̃

1− y2 e−6λ̃
∗3 dλ̃+ 1

4 Dχ ∧ d(y3 e−6λ̃) , (B.33)

where ∗3 denotes the Hodge star operation associated to the line element dy2 + γij dx
i dxj ,

with ordering i = 1, i = 2, y.

Projection conditions. We may now plug the values of A and F in the first and third
BPS equation in (B.21). The resulting algebraic conditions on the spinor ε can be manip-
ulated to take the form of projection conditions. More precisely, one finds[

1− iΓ12
]
ε = 0 ,

[
cos ζ + i sin ζ Γy + iΓy Γ5

]
ε = 0 . (B.34)

These relations take a simpler form in terms of the rescaled spinor

ε̃ = e
i
2 ζ Γy ε , (B.35)

since they can be written as[
1− iΓ12

]
ε̃ = 0 ,

[
1 + iΓy Γ5

]
ε̃ = 0 . (B.36)

These relations demonstrate that ε̃ has only one independent component. Moreover we can
always use a local Lorentz rotation to make sure that ε̃ is independent of the coordinates
y, x1, x2. (Its χ dependence will be fixed momentarily.)

Majorana bilinears. To proceed we follow [37] and construct a Majorana 1-form bilin-
ear. The 4d charge conjugation matrix C satisfies

(Γα)T = −C ΓαC−1 , CT = −C . (B.37)

The bilinear of interest is
ω1 = εT C Γα ε dyα . (B.38)

Since the matrices C, C Γ5, and C Γα Γ5 are antisymmetric, and the spinor ε is Grassmann
even, the bilinears εT C ε, εT C Γ5 ε, and εT C Γα Γ5 ε are all identically zero. This infor-
mation, combined with the projection conditions (B.34), allow one to conclude that the
1-form ω1 has only one independent component, because

εT C Γy ε = 0 , εT C Γχ ε = 0 , εT C Γ2 ε = −i εT C Γ1 ε . (B.39)
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The definition (B.35) implies

εT C Γ1 ε = cos ζ ε̃T C Γ1 ε̃ . (B.40)

Using this relation, the 1-form ω1 can be cast in the form

ω1 = 1
2 e
−3λ̃ (ε̃T C Γ1 ε̃)

(
ê1 − i ê2) , (B.41)

where ê1, ê2 is a vielbein for the γij metric in (B.29). The 2-form dω1 can be computed
making use of the BPS equations (B.21), with the result

dω1 = i

4 (εT C Γαβ ε) dyα ∧ dyβ − 3 dλ̃ ∧ ω1 . (B.42)

The components of the bilinear εT C Γαβ ε are greatly constrained by the projection con-
ditions (B.34). Combining them with the fact that εT C Γα Γ5 ε is identically zero, one
verifies

i εT C Γy2 ε = εT C Γy1 ε = i tan ζ εT C Γ1 ε ,

i εT C Γχ2 ε = εT C Γy1 ε = − 1
cos ζ ε

T C Γ1 ε ,

εT C Γ12 ε = 0 = εT C Γχy ε . (B.43)

These relations allow one to recast the equation for dω1 in the form

dω1 =
[
− y e−6λ̃

2 (1− y2 e−6λ̃)
dy − iDχ− 3 dλ̃

]
∧ ω1 . (B.44)

As explained in [37], using (B.41) and the fact that the rescaled spinor ε̃ is independent of
y, x1, x2, one can use (B.44) to argue that the vielbein for the metric γij can be chosen
to be

ê1 = eD/2 dx1 , ê2 = eD/2 dx2 , (B.45)

for some function D of y, x1, x2 (which is ultimately identified with the function D in
the canonical LLM form). Once this choice for ê1, ê2 is made, the various components of
the equation (B.44) can be studied separately and yield the following results. Firstly, the
warp factor is determined by the function D by the expression (2.44). Secondly, the χ
dependence of the rescaled spinor ε̃ is determined to be

∂χ ε̃ = − i2 ε̃ . (B.46)

Finally, the quantities vi in the metric (B.29) are fixed in terms of the function D as

v1 = +1
2 ∂2D , v2 = −1

2 ∂1D . (B.47)
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Toda equation and final form of the 2-form F . The relation (B.26) and the form
of the metric (B.29) imply that

α1 := (ε̄Γα ε) dyα = cos2 ζ Dχ = (1− y2 e−6λ̃)Dχ . (B.48)

On the one hand, the 2-form dα1 is readily computed from this expression for α1. On the
other hand, the BPS equations (B.21) imply the following equation for dα1,

dα1 = −2 i · 1
2 (ε̄Γαβ ε) dyα ∧ dyβ − e−3λ̃−2A (ε̄Γ5 ε)F . (B.49)

The components of ε̄Γαβ ε are constrained by the projection conditions (B.34). For exam-
ple, we have Γ2 ε = −iΓ1 ε and ε̄Γ1 = −i ε̄Γ2, and therefore

ε̄Γy Γ1 ε = −(ε̄Γ1) Γy ε = i ε̄Γ2 Γy ε = −i ε̄Γy (Γ2 ε)− ε̄Γy Γ1 ε , (B.50)

which shows that ε̄Γy Γ1 ε = 0. By similar arguments, one verifies that the only independent
non-zero components of ε̄Γαβ ε are

ε̄Γ12 ε = −i , ε̄Γχy ε = −i sin ζ . (B.51)

This information, combined with the expressions (B.31), (B.33) for A and F , allows us to
make a direct comparison between the relation (B.49) for dα1 and the actual value of dα1 as
computed from (B.48). The dx1 ∧ dx2 piece of the resulting 2-form equation, using (B.47),
implies the Toda equation for D (2.45).

Having established that D satisfies the Toda equation, we can revisit the expres-
sion (B.33) for F and make use of the identity

3 y2 e−6λ

1− y2 e−6λ ∗3 dλ̃ = y (1− y2 e−6λ) dv − 1
2 ∂ye

D dx1 ∧ dx2

+ y

2 (1− y ∂yD) (∂2
1D + ∂2

2D + ∂2
ye
D) . (B.52)

Since the term on the second line is zero, we can rewrite F as

F = 1
4

[
y (1− y2 e−6λ) dv − 1

2 ∂ye
D dx1 ∧ dx2 +Dχ ∧ d(y3 e−6λ̃)

]
, (B.53)

Using (B.12) and (B.15), this expression for F implies that G4 is given by the expression
quoted in (2.43).

B.2.2 The calibration 2-form Y ′

The calibration 2-form for supersymmetric M2-branes was identified in [38] for the most
general AdS5 solution preserving 4d N = 1 superconformal symmetry, as classified by
Gauntlett, Martelli, Sparks, and Waldram (GMSW) [39]. In order to apply the results
of [38] to a solution preserving 4d N = 2 superconformal symmetry, we select a linear
combination ξ of the two LLM spinors ξI in (B.20), and we identify ξ with the Killing
spinor of the general GMSW solution,

ξ = cI ξ
I = (1 + γ7) (cI ϑI ⊗ ε) , (B.54)
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where we have used a = −1 and cI are complex constants. Before proceeding, it is useful
to collect some identities about bilinears of the S2 Killing spinors ϑI . We set ϑ̄I = (ϑI)†.
A basis ϑI of solutions to (B.18) can always be chosen, in such a way that13

ϑ̄I ϑ
J = δJI , ϑ̄I σ

3 ϑJ = ŷA (σA)J I ,

ϑ̄I σx ϑ
J = −KxA (σA)J I , ϑ̄I σx σ

3 ϑJ = i ∂xŷ
A (σA)J I . (B.55)

In the previous relations x = 1, 2 is a curved index on S2. The Pauli matrices on the l.h.s.
s play the role of gamma matrices on S2. The Pauli matrices on the r.h.s. s are invariant
tensors of the su(2) ∼= so(3) isometry algebra of S2, connecting the indices I,J = 1, 2 in the
fundamental representation of su(2) to the indices A = 1, 2, 3 in the vector representation
of so(3). The three quantities ŷA are real scalars in S2, identified with the Cartesian
coordinates of R3 in the standard embedding S2 ⊂ R3. The metric on S2 is given in terms
of ŷA by

gxy = ∂xŷ
A ∂yŷA . (B.56)

(The A indices in are raised/lowered with δ.) The 1-forms KxA are defined as

KxA = εABC ŷB ∂xŷC , (B.57)

and yield the standard Killing vectors on S2 after raising their curved index x with the
S2 metric. The 1-forms KxA can also be written as Hodge duals of the gradients of ŷA,
because εxy KxA = ∂xŷ

A, where ε12 =
√

detgxy.
In order to preserve the normalization condition ξ ξ = 2 of [39], the constants cI and

their complex conjugates c̄I should satisfy cI c̄I = 1. A choice of cI determines a vector
nA in R3 via the formula

nA = cJ (σA)J I c̄I . (B.58)

Without loss of generality, we can select cI = (1, 0) in such a way that the 3-vector nA
points in the direction A = 3. (Any other choice is related by the action of the isometry
group of S2.) With this choice we have

ŷA nA = ŷA=3 ≡ τ . (B.59)

The quantity τ lies in [−1, 1]. The other two real scalars ŷA=1, ŷA=2 are parametrized as

ŷA=1 =
√

1− τ2 cosϕ , ŷA=2 =
√

1− τ2 sinϕ , (B.60)

where ϕ is an angle of periodicity 2π. The metric on S2 is written in terms of τ and ϕ

in (2.59).
We are now in a position to discuss the calibration 2-form. It is given as

Y ′ = 1
2 Y

′
mn dy

m ∧ dyn , Y ′mn = 1
2 ξ̄ γmn γ7 ξ . (B.61)

13In checking these relations, we have adopted the explicit expressions for Killing spinors on spheres
of [79].

– 54 –



J
H
E
P
1
1
(
2
0
2
1
)
1
4
0

Making use of (B.54) this 2-form can be written in LLM setups as

Y ′mn = (c̄J ϑ̄J ⊗ ε̄) γmn γ7 (cI ϑI ⊗ ε̄) . (B.62)

Using (B.14), (B.16), (B.55), we can write the 2-form Y ′ as

Y ′ = −e2A (c̄I cI) (ε̄Γ5 ε) volS2 + eA d(ŷA nA) ∧ (ε̄Γα ε) dyα

+ i

2 (ŷA nA) (ε̄Γαβ Γ5 ε) dyα ∧ dyβ . (B.63)

To treat the last term, it is convenient to use the identity

Γαβ Γ5 = −1
2 εαβγδ Γγδ . (B.64)

We have already established the non-zero independent components of the bilinear ε̄Γαβ ε.
Combining our previous results, and specializing to our choice of cI such that ŷA nA = τ ,
we obtain

Y ′ = 1
4 y

3 e−9λ volS2 + 1
2 y e

−3λ (1− y2 e−6λ) dτ ∧Dχ

− 1
2 τ e

−3λDχ ∧ dy − 1
4
y e−9λ τ eD

1− y2 e−6λ dx
1 ∧ dx2 . (B.65)

We can also write Y ′ in terms of dφ and the 1-form Dz defined in (2.25),

Y ′ = µ3w3/2 [κ(1− w2)]3/4√
2B3/2H3/2 volS2 + C κµ [κ (1− w2)]−3/4

√
2
√
B
√
w
√
H

τ dw ∧Dz

− κµ (1− µ2) (2w2 − 1) [κ(1− w2)]−1/4
√

2
√
B
√
w
√
H
[
2BwH− (µ2 − 1 + 4w2)

√
κ(1− w2)

] τ dw ∧ dφ
+
C [κ(1− w2)]−1/4

[
Bw −

√
κ(1− w2)

]
√

2B3/2√w
√
H

τ dµ ∧Dz

+
C µ
√
w [κ(1− w2)]1/4

[
BH− w (1 + µ2)

√
κ(1− w2)

]
√

2B3/2H3/2 dτ ∧Dz

+
√
w (1 + µ2)h [κ(1− w2)]3/4

√
2B3/2

√
H
[
2BwH− (µ2 − 1 + 4w2)

√
κ(1− w2)

] τ dµ ∧ dφ
+

√
wµ (1− µ2)h [κ(1− w2)]3/4

√
2B3/2

√
H
[
2BwH− (µ2 − 1 + 4w2)

√
κ(1− w2)

] dτ ∧ dφ . (B.66)

B.2.3 R-symmetry charges of wrapped M2-branes

The R-symmetry charges of wrapped M2-brane operators can be extracted using the Wess-
Zumino coupling of M2-branes to C3, as in [38]. To this end, we need to introduce external
background gauge fields in G4. This is accomplished in the construction of E4 in section 3.1.
The final result is repeated here for convenience,

E4 = N e2 ∧
[
dα0χ ∧

(dχ)g

2π + dα0β ∧
(dβ)g

2π

]
+N α0χ e2 ∧

Fχ

2π − C
−1 f1

2π ∧ e2 ∧ dα0β .

(B.67)
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The 0-forms α0χ, α0β are defined in (3.4). If all external gauge fields are turned off, E4
reduces to G4, which is related to the background G4 by the relation (2.34). As a result,
we can write

Gtot
4 = −(2π`p)3E4 , (B.68)

where Gtot
4 denotes the background G4-flux dressed with external background gauge fields,

written in the same normalization used in the main text in giving the solution, cfr. (2.24).
To proceed, let us write

Gtot
4 = G4 + dδC3 , (B.69)

where δC3 collects all terms that contain external gauge fields. For the computation at
hand, we only need to retain terms linear in the external gauge fields inside δC3. In the
conventions we are adopting, the coupling of an M2-brane to C3 fluctuations is given by

SM2 ⊃ TM2

∫
W3

δC3 , TM2 = 2π
(2π`p)3 , (B.70)

where W3 denotes the worldvolume of the M2-brane.
The expression of dδC3 is extracted from E4 − G4. A useful identity for the SO(3)

global angular form e2 is

e2 = volS2

4π − d(ŷAAA)
4π , A = 1, 2, 3 , (B.71)

in conventions in which DŷA = dŷA − AAB ŷB = dŷA − εABC AC ŷB. Making use of the
expression (3.17) for f1, we find the following result for dδC3,

− dδC3
(2π`p)3 = −d(ŷaAa)

4π N

[
dα0χ

dχ

2π + dα0β
dβ

2π

]
+N

volS2

4π

[
dα0χ

Aχ

2π + dα0β
Aβ

2π

]
+N

volS2

4π α0χ
dAχ

2π − C
−1 da0 −N C Aβ

2π
volS2

4π dα0β . (B.72)

An antiderivative of the above quantity is readily extracted,

− δC3
(2π`p)3 = − ŷ

aAa
4π N

[
dα0χ

dχ

2π + dα0β
dβ

2π

]
+N

volS2

4π α0χ
Aχ

2π − C
−1 a0

2π
volS2

4π dα0β .

(B.73)

Plugging this expression in (B.70) we can write the relevant couplings for the two super-
symmetric M2-brane probes discussed in the main text. For the probe associated to Oi2, it
is convenient to write δC3 in terms of dφ, Dz. The results are

O1 : SM2 ⊃ −
N K `

N +K `

∫
W1

Aχ , Oi2 : SM2 ⊃
1
2 K

∫
W1

ŷa∗ Aa . (B.74)

We have used W1 to denote the worldline of the M2-brane in external spacetime. In the
computation for Oi2, we have assigned positive orientation to dw ∧Dz. The quantities ŷa∗
are the R3 embedding coordinates of the point on S2 where the M2-brane probe sits. As
verified in section 2.4.2, the brane sits at the north pole of S2, hence

ŷA∗ = (0, 0, 1) , ŷa∗ AA = AA=3 . (B.75)
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In what follows, we turn off the gauge fields AA=1,2, leaving only a non-zero Aa=3. Using
ŷ1 =

√
1− τ2 cosϕ, ŷ2 =

√
1− τ2 sinϕ, ŷ3 = τ , we verify that the gauging prescription

dŷA → DŷA = dŷA − εABC AC ŷB is equivalent to

dϕ→ dϕ+Aϕ , Aϕ ≡ AA=3 . (B.76)

This relation confirms the identification of the Killing vector ∂ϕ with the Cartan generator
of so(3)R ∼= su(2)R, and states our normalization for the associated U(1) gauge field Aϕ.

To match with the normalization conventions of (2.68), we define appropriately
rescaled versions of Aχ, Aϕ, denoted Ar, AR,

Ar = −1
2 A

χ , AR = 1
2 A

ϕ , r = −2 ∂χ , R = 2 ∂ϕ . (B.77)

We have also given the identification between the generators r, R and the Killing vectors
∂χ, ∂ϕ (by slight abuse of notation, we use the symbols r, R both for the abstract generators
and for the charges of a given operator). Notice that the relation between Ar and Aχ is
compatible with (3.26) since c1(U(1)r) = dAr/(2π). The charges r, R of the operators O1,
Oi2 are now read off from the M2-brane action, SM2 ⊃

∫
W1

(r Ar + RAR). We reproduce
the charges given in (2.68) in the main text.

C Anomaly polynomial in class S

In this section we review the anomaly polynomial for four-dimensional N = 2 SCFTs that
belong to class S.

Consider an N = 2 SCFT with U(1)r × SU(2)R R-symmetry, and flavor symmetry
F . Denote the R-symmetry generators by r and Ia, with I3 the generator of the Cartan
subgroup of SU(2)R. The anomaly polynomial for the theory takes the form

I6 = (nv − nh)
(

(cr1)3

3 − cr1p1(T 4)
12

)
− nvcr1cR2 − kF cr1ch2(F ) . (C.1)

This form follows from the N = 2 superconformal algebra [80]. In this expression, cr1 is the
first Chern class for the U(1)r bundle, cR2 is the second Chern class for the SU(2)R bundle,
and ch2(F ) is the two-form part of the Chern character for the flavor symmetry bundle,
given for an SU(m) flavor group as ch2(SU(m))) = −c2(SU(m)). The parameters nv and
nh represent an effective number of vector and hypermultiplets respectively, coinciding
with the actual number when the theory is weakly coupled. These are given in terms of
the anomaly coefficients and a, c central charges as

tr r3 = tr r = 2(nv − nh) = 48(a− c) , (C.2)

tr rIaIb = δab
nv
2 = δab2(2a− c) . (C.3)

One can equivalently express the central charges in terms of nv, nh as

a = 1
24(nh + 5nv) , c = 1

12(nh + 2nv) . (C.4)
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The flavor central charge kF is defined in terms of the flavor symmetry group generators
T a as

kF δ
ab = −2 tr rT aT b . (C.5)

Let us now review the contributions to the anomaly polynomial for the theories of
class S of AN−1 type that is obtained by wrapping N M5-branes on a Riemann surface
Σg,n with genus-g and n regular punctures. The contributions can be split into a “bulk”
term which we denote with a Σg,n argument, and a “local” term associated to each regular
puncture on the Riemann surface labeled by the Young diagram Yα, as [81]

I6 = I6(Σg,n) +
n∑

α=1
I6(Yα) . (C.6)

The bulk contribution is proportional to the Euler characteristic χ(Σg,n) of the Riemann
surface, and is given (using the parameterization (C.1)) by [73, 82]

nv(Σg,n) = −1
6χ(Σg,n)(4N3 −N − 3) , nh(Σg,n) = −2

3χ(Σg,n)(N3 −N) . (C.7)

These can be equivalently written in terms of the a and c central charges using (C.4), as

a(Σg,n) = − 1
48χ(Σg,n)(8N3 − 3N − 5) , c(Σg,n) = − 1

12χ(Σg,n)(2N3 −N − 1) .
(C.8)

The local contributions due to regular punctures on the Riemann surface can be given
in terms of the data of the Young tableaux that labels the puncture. Our notation fol-
lows [36]. Let ˜̀

i denote the lengths of the i = 1, . . . , p̃ rows, with p̃ the total number of
rows. Denote k̃i = ˜̀

i− ˜̀
i+1 the differences between adjacent rows, where here we are using

a convention in which the lengths of rows increases from top to bottom of the diagram,
so ˜̀1 ≥ ˜̀2 ≥ . . . . We also define Ñi = ∑i

j=1
˜̀
j , such that Ñp̃ = N . The associated flavor

symmetry is S(∏i U(k̃i)). In terms of this data, the contribution to the central charges of
the regular puncture labeled by Y is given as [12, 83]

nv(Y ) = −
p̃∑
i=1

(N2 − Ñ2
i )− 1

2N
2 + 1

2 , nh(Y ) = nv(Y ) + 1
2

p̃∑
i=1

Ñik̃i −
1
2 . (C.9)

For example, the maximal puncture has p̃ = 1, ˜̀1 = k̃1 = Ñ1 = N , contributing an SU(N)
flavor symmetry and yielding

nv(Ymax) = −1
2(N2 − 1) , nh(Ymax) = 0

a(Ymax) = − 5
48(N2 − 1) , c(Ymax) = − 1

12(N2 − 1) ,
(C.10)

The minimal puncture has p̃ = N − 1, ˜̀1 = 2, ˜̀
i=2,...,N−1 = 1, k̃1 = 1, k̃2,...,N−2 = 0,

k̃N−1 = 1, contributing a U(1) flavor symmetry and contributing

nv(Ymin) = −1
6(4N3 − 6N2 −N + 3) , nh(Ymin) = −1

3(2N3 − 3N2 − 2N)

a(Ymin) = − 1
48(8N3 − 12N2 − 3N + 5) , c(Ymin) = − 1

12(2N3 − 3N2 −N + 1) .
(C.11)
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Another example that we need in the main text is the rectangular box diagram with
N/` rows and ` columns, which we denote throughout by Y`. (The maximal puncture
corresponds to ` = N .) In this case, p̃ = N/`, ˜̀1,...,N/` = `, k̃1,...,N/`−1 = 0, k̃N/` = `, and
Ñi = i`. Then, we have that

nv(Y`) = 1
6

(
3 + `N − 4N

3

`

)
, nh(Y`) = 2

3N
(
`− N2

`

)
. (C.12)

D Landscape of Argyres-Douglas theories

In this appendix we review the landscape of four-dimensional Argyres-Douglas theories,
and their construction via geometric engineering.

D.1 Construction in class S

A large class of four-dimensional quantum field theories known as class S are obtained by
compactifying the 6d N = (2, 0) SCFTs on a genus-g Riemann surface with punctures,
while implementing a partial topological twist in order to preserve some supersymmetry in
four dimensions. 4d N = 2 SCFTs engineered in this way were first studied and classified
in [6, 7], building on [5]. The parent (2,0) theories are labeled by an algebra g which follows
an ADE classification, and which upon circle compactification reduces to the gauge algebra
of the low-energy 5d supersymmetric Yang-Mills theory.14 The case relevant to this work
is g = su(N) — namely, the theories of type G = AN−1 which arise on the worldvolume of
N M5-branes [84, 85].

The choice of punctures on the Riemann surface leads to a great variety of possible
4d SCFTs that can be geometrically engineered in this manner. From the perspective of
the 6d (2,0) theory, punctures are 1/2-BPS codimension-two defects that extend over 4d
spacetime. They correspond to singular boundary conditions of the Hitchin equations on
the Riemann surface — which arise as the BPS equations of the (2,0) theory compactified
on a circle and then twisted over the Riemann surface — and are classified by consistent
boundary conditions of the Higgs field in the Hitchin system. There is a distinction between
regular punctures (or tame defects) for which the pole of the Higgs field is simple, and
irregular punctures (or wild defects) with higher order poles, to be reviewed in more detail
below. The classification of regular punctures was studied for g = su(N) in [6, 12], with
possibilities labeled by partitions of N , or equivalently Young tableaux with N boxes. More
generally, regular punctures are labeled by an embedding of su(2) into g, corresponding
to nilpotent orbits in g (e.g. see [83]). The contributions to the a and c central charges
of these regular punctures was obtained in [12, 83] for the AN−1 case, and in [86] for the
general ADE case. The holographic duals of the 4d N = 2 SCFTs of type AN−1 in class S
involving only regular punctures are known, and are given by the 11d supergravity solutions
of Gaiotto and Maldacena [12].

The classification of consistent irregular-type singularities of the Higgs field in the
Hitchin system was undertaken in [9] (for AN−1) and [10] (for types D and E), building

14Below we use g and G interchangeably to refer to the QFT labeled by g.
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on [7]. These are labeled by the group G with algebra g, as well as by two integers b > 0
and k > −b, and so following [60] we denote the irregular puncture with these labels by
G(b)[k]. In order to engineer a superconformal field theory by wrapping the (2,0) theory
on a Riemann surface with irregular punctures, there are precisely two possibilities [9, 10]:
the Riemann surface is a sphere with a single irregular puncture, or the Riemann surface
is a sphere with one irregular puncture and one regular puncture (see also [7, 8, 87] for
earlier constructions involving A1). This is in contrast to geometric engineering with only
regular punctures, for which an almost unlimited number and variety of regular punctures
can decorate a Riemann surface of any genus (with caveats at low genus g = 0, 1) and flow
to an SCFT at low energies.

D.2 Survey of generalized Argyres-Douglas SCFTs

The Argyres-Douglas SCFTs are intrinsically strongly-coupled 4d N = 2 SCFTs with
Coulomb branch operators of fractional scaling dimension, that are also notable for pos-
sessing relevant deformations. The original theory of this type was discovered by Argyres
and Douglas in [1], where it was obtained as a special point on the moduli space of N = 2
pure SU(3) gauge theory where mutually non-local BPS states simultaneously become
massless.15 This original Argyres-Douglas SCFT has rank-one, with a single Coulomb
branch operator of dimension ∆ = 6

5 and no flavor symmetry.
A larger class of SCFTs of this type were obtained in [3] at the maximal conformal point

on the moduli space of N = 2 pure SU(k) super Yang-Mills with k ≥ 3. These generalized
Argyres-Douglas theories are denoted (A1, Ak−1), with the case k = 3 corresponding to
the original Argyres-Douglas theory (also sometimes denoted by H0 in the literature). The
case k = 4 — also called H1 in the literature — is also notable for being rank-one, with
a single Coulomb branch operator of dimension 4

3 . The theories in this series with odd k
have no flavor symmetry, while those with even k possess a U(1) global symmetry which
is enhanced to SU(2) for k = 4 [88].16

The (A1, Ak−1) theories belong to a more general set of 4d N = 2 SCFTs which
can be obtained via Type IIB string theory on a class of isolated hypersurface singulari-
ties labeled by (G,G′) (with the theories of type (G,G′) are equivalent so those of type
(G′, G)) [55]. The IIB background takes the form of an arbitrary closed four-manifold
times a non-compact Calabi-Yau threefold with an isolated singularity given by the sum
of two singularities Pg(x, y) + Pg′(w, z)=0, where each (g, g′) is of ADE type. (Note that
the cases G = A1 with G′ = DE were first studied in [3, 89].) Another special case is
the class (A1, Dk) that arises from the maximal conformal point on the moduli space of
N = 2 SO(2k) gauge theory [3], which can also be obtained via a relevant deformation
to the maximal superconformal point of the SU(k − 1) theory with two fundamental hy-
permultiplets [8]. The (A1, Dk) theories with k-odd have an SU(2) flavor symmetry, while
those with k-even have an SU(2) × U(1) flavor symmetry that is enhanced to SU(3) for
k = 4 [88].

15See also [2] for a construction involving SU(2) Nf = 1 SQCD, and generalizations for Nf > 1.
16This even versus odd difference is also apparent from (4.7).
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A subset of the (G,G′) theories can be engineered in class S using irregular punctures.
One set with this property is the class (G,Ak−1), which can be engineered from the 6d
(2,0) theory of type g wrapped on a Riemann surface with an irregular puncture of type
G(b=hG)[k], where hG is the dual Coxeter number of G. For example, taking G = AN−1
with hG = N yields the class (AN−1, Ak−1), which can be engineered from N M5-branes
wrapping a sphere with one irregular puncture of type A(N)

N−1[k] [9, 10], which is the case
of interest in the present work.

D.3 Classification of irregular singularities

Let us now review pertinent aspects of the classification of irregular singularities given
in [9, 10]—also see [90] for a nice review of these properties.

We consider a 4d N = 2 theory engineered by twisting the 6d (2,0) theory of type g

over a Riemann surface C with punctures. Let z denote a local holomorphic coordinate
on C. By further compactifying on a circle, at low energies one obtains a 3d theory with
N = 4 supersymmetry. One can instead reverse the order of the compactification, first
reducing the 6d theory on a circle to obtain 5d N = 2 super Yang-Mills, and then twisting
the 5d theory over C. The BPS equations of this configuration are the Hitchin equations for
the holomorphic (1, 0)-form Higgs field Φ = Φzdz that comprises two of the adjoint scalars
of 5d maximally supersymmetric Yang-Mills, and the gauge field A = Azdz + Az̄dz̄, both
of which are valued in the Lie algebra g [91]. The space of solutions to these equations
modulo gauge transformations is the Hitchin moduli space, which is identified by mirror
symmetry with both the Higgs branch of the 5d theory, and the Coulomb branch of the 3d
theory from the reverse-order compactification. The interplay of the 4d N = 2 theory and
the Hitchin system was studied in detail in [7].

At punctures the fields Φ and A are singular, and one must specify their boundary
conditions. Φ = Φzdz can be put into semisimple form by a gauge transformation,

Φz(z) =
k+b∑
m=0

Tm−b

z1+m
b

+ (non-divergent) , (D.1)

where in (D.1) we have placed the defect at z = 0 on C. The defining data of the defect
is the set (T, k, b), where the {T−b, . . . , Tk} are semisimple elements of the Lie algebra g,
b is a positive integer, and k is an integer satisfying k > −b. As indicated in section D,
the defect with these labels is denoted G(b)[k]. Evidently the order ρ of the leading pole
in (D.1) is ρ = 2 + k

b . A regular puncture has a simple pole ρ = 1 with k + b = 0, in
which case the puncture is characterized the choice of T , which is a nilpotent element of
the Lie algebra g. By contrast, the case of a higher order pole k+ b > 0 corresponds to an
irregular puncture. In a nice class of solutions, the T` are regular semisimple elements of
the Lie algebra, with restricted values of b that are one-to-one with the three-fold isolated
quasi-homogeneous singularities of compound du Val type (see table 1 of [10]). For the
G = AN−1 case, this translates into a choice of b = N or N − 1, denoted respectively as
Type I and Type II in the notation of [9, 10].17

17There is also a Type III singularity, which is a special case of Type I characterized by a nested Young
Tableaux structure in T that we will not discuss here — also see [11].
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The resulting 4d SCFTs preserve N = 2 supersymmetry when the Riemann surface
is a sphere [9]. One can also add a single regular puncture to the sphere while preserving
supersymmetry, resulting in the theories of Type IV in the notation of [9], which are also
denoted by their two punctures as (G(b)[k], Y ) with Y the Young diagram labeling the
regular puncture. The examples pertinent to this note arise from N M5-branes wrapping
a sphere with an irregular puncture of type A(b=N)

N−1 [k] — which alone correspond to the
(AN−1, Ak−1) SCFTs discussed above — with an additional regular puncture whose Young
diagram consists of a box with ` columns and N/` rows, contributing an SU(`) flavor
symmetry. We denote the resulting field theories by (A(N)

N−1[k], Y`). One example of this
class is to take the regular puncture to be maximal, with Young diagram consisting of
a single row of length N (` = N) contributing an SU(N) flavor symmetry. These are
also known as the Db=N

p=k+N (SU(N)) theories, and were studied in [56–58]. The case ` = 1
is the “non-puncture”, reducing to the (AN−1, Ak−1) class with no regular puncture on
the sphere.

E Lagrangian description of the (A
(N)
N−1[k], Y1) SCFTs

In this appendix, we review the RG flow described in [25, 26] between quiver Lagrangians
that ends at the (AN−1, A(k=mN)−1) (` = 1) theories at low energies.

One begins with an N = 2 conformal quiver gauge theory with gauge group∏N−1
`=1 SU(lm). The quiver is depicted at the top of figure 7.18 The quiver has N − 1

nodes corresponding to the l = 1, . . . , N − 1 gauge groups, and one final node associated
to an SU(mN = k) flavor symmetry. Each gauge node has an N = 2 vector multiplet with
associated N = 1 chiral multiplet φl that transforms in the adjoint representation of the
SU(lm) gauge group. Bifundamental hypermultipletsHl = (Ql, Q̃l) connect the nodes, with
Ql transforming in the (�,�) and Q̃l in the (�,�) of the adjacent SU(lm)× SU((l+ 1)m)
gauge groups. At the final gauge node, mN hypermultiplets HN−1 transform in the fun-
damental representation of the SU(m(N − 1)) gauge group, and resulting in an SU(mN)
flavor symmetry. The quiver is thus balanced, since the number of colors nl = lm satisfies
2nl − nl−1 − nl+1 = 0 at each node except the last, where 2(m(N − 1))−m(N − 2) = mN

the number of fundamental hypermultiplets at that node. Indeed this is by construction,
since the quiver is built by successively adding (l + 1)m hypermultiplets to the l’th gauge
node, and gauging the resulting SU((l + 1)m) flavor symmetry.

Denote the scalar chiral primary operators at the bottom of the SU(lm) would-be flavor
current multiplets — i.e., the SU(lm) moment map operators — by (µl, µ̃l−1), with the µl
formed from the Hl hypermultiplets and the µ̃l−1 formed from the Hl−1 hypermultiplets
at that node. For example, we are treating Ql as an lm × (l + 1)m matrix and Q̃l as
an (l + 1)m × lm matrix, with µl = QlQ̃l − 1

lm trQlQ̃l. There is an N = 2 preserving
superpotential that couples the vector multiplets and moment map operators as

WN=2 =
√

2
N−1∑
l=1

trφl(µl − µ̃l−1) , (E.1)

where in writing (E.1) we have defined µ̃0 = 0.
18The dictionary with [25] is: mthem = N , and Nthem = m. The dictionary with [26] is: kthem = N − 1,

Nthem = m, αr = Mj=mN−1−r, and they refer to the (Q, Q̃) bifundamentals as (b, b̃).
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Figure 7. The upper figure is the UV quiver with matter content summarized in table 2, and the
lower figure is the IR quiver with matter content summarized in table 3. The circles are special
unitary gauge groups and the squares are flavor symmetry groups, where the upper square denotes
SU(Nm) and the lower square is meant to denote a global U(1) symmetry.

SU(lm) SU((l + 1)m) U(1)l (J+, J−)
φl adj 1 0 (0, 2)
Ql � � 1 (1, 0)
Q̃l � � −1 (1, 0)

Table 2. l = 1, . . . , N − 1. The first two columns denote the gauge group factors, except that the
last l = N−1 entry SU(mN) is a flavor symmetry group. The U(1)l are baryonic flavor symmetries
acting on the hypermultiplets.

The charges of the fields are listed in table 2. The UVN = 2 SCFT has an R-symmetry
SU(2)RUV ×U(1)rUV , whose Cartan generators (I3

UV, rUV) we denote

J+ = 2I3
UV , J− = rUV . (E.2)

(We reserve the labels (I3, r) without subscripts for the R-symmetry of the Argyres-Douglas
SCFTs at the end of the flow.) Note that each hypermultiplet Hl comes with a baryonic
U(1)l global symmetry under which the (Ql, Q̃l) have charges ±1, since only the SU(ml)
part of the U(ml) global symmetry acting on the hypermultiplets has been gauged in the
construction of the quiver.

Now introduce an N = 1 chiral multiplet M that transforms in the adjoint represen-
tation of the SU(mN) flavor symmetry group, and couple it to the moment map operator
µ̃N−1 of SU(mN) via the superpotential

δW = tr µ̃N−1M . (E.3)
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This superpotential breaks the N = 2 supersymmetry to N = 1, with the N = 1 R-
symmetry corresponding to the subalgebra19

RN=1 = 1
3(2J+ + J−) . (E.4)

The moment map operator µ̃N−1 ∼ QN−1Q̃N−1 has charges (J+, J−) = (2, 0), and M has
charges (0, 2), such that the superpotential W has charge RN=1(W ) = 2.

Next give M a nilpotent VEV 〈M〉 which corresponds to the principal embedding of
su(2) into the flavor symmetry algebra su(mN), completely breaking the SU(mN) global
symmetry. Explicitly, 〈M〉 is given by the mN × mN matrix with 1’s along the entire
upper diagonal. Using results from [69] (based on the methods of [67]), one can show that
many of the modes decouple in the IR, including Nambu-Goldstone modes corresponding
to broken flavor symmetry generators, and chiral multiplets that become massive due to
the VEV, resulting in a “fan” superpotential. Decomposing the adjoint indices of the
operators M and µ̃N−1 in terms (j,m) indices of the principal embedding of su(2), and
denoting by M̃j,m the fluctuations about the vev 〈M〉 in this basis, the result is that the
only modes M̃j,m that remain coupled at low energies are those with lowest weight m = −j
and j = 1, . . . ,mN − 1. The remaining superpotential takes the form

δW = (µ̃N−1)1,−1 +
mN−1∑
j=1

M̃jµ̂j , M̃j ≡ M̃j,m=−j , µ̂j ≡ (µ̃N−1)j,m=j . (E.5)

Due to the first term, the J− charge shifts to J ′− = J− − 2ρ(σ3) while the J+ charge
remains unshifted, J ′+ = J+, such that the superpotential has (J ′+, J ′−) = (2, 2). Then,
(J ′+, J ′−)(M̃j) = (0, 2 + 2j), and (J ′+, J ′−)(µ̂j) = (2,−2j).

Of the mN pairs of fundamental quarks (antiquarks) in the fundamental (anti-
fundamental) representation of the SU(m(N − 1)) gauge symmetry, all but one pair
which we denote (q, q̃) receive a mass due to the VEV 〈M〉. The charges of (q, q̃) are
(J ′+, J ′−)(q, q̃) = (1, 1−mN). The remaining mN − 1 components µ̂j of the SU(mN) mo-
ment map correspond to traces of products of qq̃ with powers of the vector multiplet φN−1,

µ̂j = tr qφmN−1−j
N−1 q̃ , j = 1, . . . ,mN − 1 . (E.6)

The field content and charges after removing all of the decoupled modes and massive fields
is summarized in table 3, and the IR quiver is depicted at the bottom of figure 7.

After Higgsing, the N = 1 theory flows to a fixed point whose superconformal
R-symmetry is given by a linear combination of J ′+ and J ′− that is determined by a-
maximization [92],

RN=1(ε) = 1
2
(
(1 + ε)J ′+ + (1− ε)J ′−

)
. (E.7)

19One can in general fix an N = 1 subalgebra in the N = 2 algebra, with N = 1 R-symmetry generated by

RN=1 = 1
3 (r + 2R) .

The dimensions of chiral primary operators satisfy ∆ = 3
2RN=1.
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In the UV before nilpotent Higgsing, εUV = 1
3 . Performing a-maximization, the authors

of [25, 26] find that various gauge-invariant operators seemingly violate the unitarity bound,
and thus decouple as free fields acted on by an accidental U(1) global symmetry [93]. The
operators that decouple are trφil with i = 2, . . . ,m + 1 and l = 2, . . . , N − 1, and trφil=1
with i = 2, . . . ,m, along with the gauge singlets M̃j with j = 1, . . . ,m. After decoupling
all the necessary fields and repeating the a-maximization procedure, εIR is determined as

εIR = 3m+ 1
3(m+ 1) ,

2
3 ≤ εIR < 1 . (E.8)

The dimensions of chiral operators at the IR fixed point are thus given by ∆(εIR) =
3
2RN=1(εIR). Computing the central charges at the fixed point, the authors of [25, 26] find
agreement with (4.20).

The remaining fields are coupled together in a superpotential

W =
N−1∑
l=1

trφl(QlQ̃l − Q̃l−1Ql−1) +
mN−1∑
j=m+1

M̃j tr
(
qφmN−1−j

N−1 q̃
)

+
m∑
i=2

β1,i trφi1 +
N−1∑
l=2

m+1∑
i=2

βl,i trφil .
(E.9)

One can verify that every term has (J ′+, J ′−) = (2, 2) and thus RN=1 = 2. We have included
the flipping fields βl,i that enforce decoupling of the operators trφi` that become free [94],
whose charges are listed in table 3.

The IR fixed point is identified with the (AN−1, A(k=mN)−1) theories whose properties
are reviewed in section 4.1 (also see table 1 for a summary). In particular, the R-symmetry
at the fixed point is expected to enhance to SU(2)R × U(1)r, with Cartan generators
(I3 = R/2, r) identified as

r = 1
m+ 1

(
mJ ′+ + J ′−

)
, R = 2I3 = J ′+ . (E.10)

One can verify that these charges satisfy the analogue of (E.4),

RN=1(εIR) = 1
3 (2R+ r) , (E.11)

where εIR is given in (E.8). Then, the global symmetry of the IR SCFT is
N−1∏
l=1

U(1)l × SU(2)R ×U(1)r , (E.12)

where the U(1)l are baryonic.
One can verify that the following properties of this Lagrangian SCFT match onto those

of the (AN−1, A(k=mN)−1) theories, as summarized in table 1 (with ` = 1):

• Recall from around (4.6) that the Argyres-Douglas theories under consideration have
1
2(N − 1)(k − 2) Coulomb branch operators ui with dimension

∆(ul,i) = i

m+ 1 , i = m+ 2, . . . , `m , l = 2, . . . , N , (E.13)
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SU(lm) SU((l + 1)m) SU((N − 1)m) U(1)l U(1)N−1 (J ′+, J ′−)
φl adj 1 1 0 0 (0, 2)

φN−1 1 1 adj 0 0 (0, 2)
Ql � � 1 1 0 (1, 0)
Q̃l � � 1 −1 0 (1, 0)
q 1 1 � 0 1 (1, 1−mN)
q̃ 1 1 � 0 −1 (1, 1−mN)
M̃j 1 1 1 0 0 (0, 2 + 2j)
βl,i 1 1 1 0 0 (2, 2− 2i)

βN−1,i 1 1 1 0 0 (2, 2− 2i)

Table 3. The charges of fields in the Lagrangian description of the (AN−1, A(k=mN)−1) theories.
The gauge group and matter content with l = N − 1 have been singled out, such that in the table
l runs over 1, . . . , N − 2. The columns before the double vertical lines are the gauge groups in the
quiver, and the remaining three columns are the baryonic global symmetries and R-charges. The
operators M̃j that remain coupled at the fixed point have j = m + 1, . . . ,mN − 1. The singlets
βl,i are flipping fields, where for l = 1 i runs over 2, . . . ,m, and for l = 2, . . . , N − 1 i runs over
2, . . . ,m+ 1.

(here we are also including an additional l subscript on the ui to label the set of
operators with degenerate dimensions for a given i), and N = 2 R-charges r(ul,i) =

2i
m+1 and R(ul,i) = 0. The mapping of the Coulomb branch operators to the fields in
the quiver gauge theory description is given by [25, 26]

ul,i =
{

trφil i = m+ 2, . . . , lm ; l = 2, . . . , N − 1
Mj=i−1 i = m+ 2, . . . , Nm ; l = N

(E.14)

• One can also identify the superpartners O′l,i of the Coulomb branch operators that
correspond to the level-two descendants of the N = 2 chiral multiplet whose primary
is u`,i. Their dimensions satisfy ∆(O′l,i) = ∆(ul,i) + 1, and their N = 2 R-charges are
r(O′l,i) = r(ul,i)−2, and R(O′l,i) = 2. The authors of [26] find that the (N−1)(m−1)
operators βl,i with l = 1, . . . , N − 1 and i = 2, . . . ,m map to O′ operators, which are
paired with Coulomb branch operators as

{βl−1,2m+2−i} ↔ {ul,i} , i = m+ 2, . . . , 2m, l = 2, . . . , N . (E.15)

An additional m2 (N−1)(N−2) baryonic operators formed from traces of the product
of two quarks (Ql, Q̃l) with powers of vector multiplet scalars φl complete the set of
O′ operators.

• The complex dimension of the conformal manifold is N − 2 [26].

• The moment map operators at the N = 2 fixed point have dimension ∆ = 2, and
R-charges r = 0, R = 2, and correspond to the set of N − 1 operators

{trφmN−m−1
N−1 qq̃ , βl,m+1} , l = 2, . . . , N − 1 . (E.16)
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These are in correspondence with the N−1 mass deformations of the Argyres-Douglas
SCFTs [26].
An additional 2(2N−1 − 1) Higgs branch operators correspond to baryons composed
of gauge invariant products of N − 1 quarks and adjoints, and have dimension [26]

∆ = k − k

N
. (E.17)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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