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1 Introduction

A great challenge in theories of gravity is the construction of physical solutions with multi-
ple sources that are smooth and free from any singularities. In supergravity theories, such
a challenge is surmountable. With the help of supersymmetry, the non-linear higher order
partial differential equations of Einstein’s equations can be replaced with linear, and often
first order, systems that provide broad and diverse families of solutions. For example, there
is a non-exhaustive list of multicenter BPS black holes [1, 2], and large families of smooth
and horizonless microstate geometries with interesting topologies have been obtained in
higher dimensions [3–9]. An important objective is to understand how to systematically
generalize these solutions in general theories of gravity without the use of supersymmetry.

Much effort has been devoted to developing techniques to treat Einstein’s equations
in four dimensions (see [10, 11] for an extensive review). The Weyl formalism is one of
the oldest method [12], and has allowed to derive linear equations for static axisymmetric
backgrounds in vacuum. Generic solutions correspond to black holes on a line that are held
apart by struts. These are cosmic strings with negative tension that counterbalance the
attractive force of gravity. They appear in spacetime as regions with conical excess and
hence are singular. Struts a priori do not have any consistent UV description and a way
must be found to replace them with smooth objects in order to build physical solutions.

Emparan and Reall initiated the classification of vacuum Weyl solutions, that is static
and axisymmetric geometries, in higher dimensions where extra compact dimensions are
added to the four-dimensional spacetime [13]. The greater diversity of gravity in higher
dimensions allows the solutions to be sourced not only by black objects but also by smooth
Kaluza-Klein (KK) bubbles corresponding to a region where extra compact dimensions
degenerates. In this way, Elvang and Horowitz were able to show that the struts separating
the chain of four-dimensional black holes can be classically replaced by KK bubbles in
five dimensions [14]. In these solutions, the gravitational attraction of the black holes is
counterbalanced by the instability of vacuum KK bubbles to expand [15].

An interesting question arises: can the method of Elvang and Horowitz be used to
construct smooth bubbling geometries without black holes? This is particularly challenging
since any construction with KK bubbles only will have some that suffer from their inherent
quantum instability to forever expand [15]. However, KK bubbles can be stabilized by
electromagnetic fluxes [16]. In a previous paper, we successfully generalized the Weyl
formalism by adding non-trivial gauge-field degrees of freedom while preserving the linearity
structure of the equations of motion [17].

In this paper, we derive a Weyl ansatz of linear equations of motion that allows for the
construction of entirely-smooth static solutions made of multiple charged KK bubbles. Due
to the presence of non-trivial gauge-field degrees of freedom, the ansatz will have a specific
BPS limit where the equations reduce to the supergravity equations of motion. Generic
solutions, however, will be non-BPS and in the non-extremal regime of black-hole charges.

Our construction is an important step forward in the microstate geometry program,
and in understanding the available mechanisms to construct non-trivial smooth geometries
with interesting topology beyond supersymmetry.
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In what follow, we start with a summary of the main results. In section 2, we review
various aspects of Weyl solutions in four and five dimensions with struts. In section 3,
we describe our general six-dimensional framework and discuss the species of bubbles and
black objects that can be used to construct solutions. In section 4, we analyze smooth
Weyl solutions in vacuum and then generalize these systems by turning on various electro-
magnetic gauge fields in section 5. We end with a discussion on how to embed our system
in type IIB supergravity in section 6.

1.1 Summary

In this paper, we classify static axisymmetric solutions using the Weyl formalism in six
dimensions with two compact directions [12, 13]. We extend the method of [17] to turn on
a two-form gauge field and a Kaluza-Klein gauge field along one of the compact dimensions.

Generic Weyl solutions consist of bound states of black branes, and two species of
smooth bubbles stacked on a line, wrapped by non-trivial electromagnetic fluxes. If the
sources do not touch, they are separated by struts, i.e. segments with a conical excess [18].
A strut is a singularity that represents the repulsive force needed to compensate for the
self-attraction between the sources. However, they disappear when the sources touch.
Motivated by the work of [14], we show that struts can be classically replaced by smooth
bubbles in six dimensions. The physical interpretation is that bubbles, whether neutral or
charged, are reluctant to be squeezed, and can provide the same repulsive force as a strut
when compressed. Moreover, we argue that the role of the electromagnetic fluxes is to
support the overall structure from instability of the vacuum bubbles [15]. Indeed, a single
KK bubble is stabilized when wrapped by fluxes [16]. Therefore, Weyl solutions in six
dimensions can be prevented from collapsing by pure topology without the aid of conical
singularities and from expanding by electromagnetic fluxes.

We focus on the specific subclass of solutions that are completely smooth and hori-
zonless. These are bubbling solutions consisting of a chain of different bubble species. We
detail their construction and regularity, which involves as many bubble equations as the
number of bubbles in the chain. Once these equations are satisfied, the geometry of the
bubbles is frozen as all internal degrees of freedom, except the number of bubbles and some
gauge field parameters, are fixed. In this paper, we explicitly construct smooth and hori-
zonless solutions with one and three bubbles, both charged and neutral. This allows us to
better illustrate the classical replacement of struts by a smooth degeneracy of an extra di-
mension and to better discuss their stability. In a subsequent paper [19], we construct and
analyze bubbling Weyl solutions with a large number of bubbles, nicknamed Weyl stars.

Finally, we embed our Weyl construction into type IIB string theory on T4. Our
generic Weyl solutions correspond to static D1-D5-KKm solutions, and the smooth bub-
bling geometries correspond to a chain of non-BPS D1-D5-KKm and KKm bubbles. The
latter have the same conserved charges as a static non-BPS non-extremal D1-D5-KKm
black hole.

Moreover, in a certain limit, our Weyl construction gives the BPS equations of motion
for axisymmetric D1-D5-KKm multicenter solutions. It thus encompasses the ansatz of
the three-charge BPS floating branes and offers a non-trivial extension into the non-BPS,
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Figure 1. Schematic description of a static axisymmetric Weyl solution in four dimensions and
the behavior of the φ-circle on the z-axis. Solutions are sourced by black rods with a S2 horizon
that can be wrapped by electromagnetic fluxes. The multiple black holes are separated by struts.

non-extremal black hole regime. It is the first linear ansatz that allows the construction of
smooth horizonless geometries in such a regime that treats only the Einstein’s equations.

2 The strut problem in four and five dimensions

We first review the state of art about classification of static and axisymmetric Einstein
solutions in four and five dimensions. From its initial construction [12], the Weyl formalism
has allowed to treat Einstein’s equations as a succession of linear differential equations for
static solutions [13, 14, 18, 20–23]. In [17, 24], the Weyl formalism has been generalized to
also include Maxwell fields of various kinds in such a way to preserve the linear structure of
equations. This allows for solutions with superposition of multiple charged sources along
a line consistent with the axisymmetry present in the Weyl formalism.

2.1 The four-dimensional paradigm

The static charged black hole is the unique spherically symmetric physical source in asymp-
totically flat spacetime in four dimensions. Vacuum solutions of multiple four-dimensional
black holes stacked on a line have been pioneered in [20, 21]. These are static systems that
break the spherical symmetry of individual black holes. In order to support such struc-
tures from collapse, the black holes are welded together by a series of struts, i.e. strings
with negative tension (see figure 1), between them. In cylindrical coordinates parametrized
by (ρ, z, φ), a strut on the z-axis is a segment for which the axisymmetry circle φ with
period 2π shrinks in the three-dimensional space as

ds2
strut = dρ2 + dz2 + ρ2

d2 dφ
2 , (2.1)

– 3 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
8

where 0 < d < 1. Therefore, the local angle, φloc = φ
d , has period 2π

d > 2π and the local
geometry has a conical excess. This can be contrasted to when d > 1 and integral, where
there is a conical deficit corresponding to an orbifold fixed point. These can be resolved in
various ways. Such resolutions are not available for the strut. A non-trivial stress tensor
can be associated to these objects since they provide sources for the Ricci scalar [18, 25].
The strut will have a negative energy density which captures the binding energy for the
chain of black holes that they hold together from gravitational attraction. This is reviewed
below in section 2.3 and appendix A.2.

2.2 The five-dimensional paradigm

The classification of Weyl solutions in five dimensions with one compact dimension, that
we will review in this section, can be found in [13, 14, 17, 18, 22, 23]. We are interested in
static five-dimensional solutions that are asymptotic to R1,3×S1 of the following Einstein-
Maxwell action1

(16πG5) S5 =
∫

d5x
√
− det g

(
R− 1

2
∣∣∣F (m)

∣∣∣2 − 1
2
∣∣∣F (e)

∣∣∣2) , (2.2)

where G5 is the five-dimensional Newton’s constant, F (m) and F (e) are field strengths for a
one-form and a two-form gauge fields. We refer to them as magnetic two-form and electric
three-form field strengths respectively. This naming will be clear below.

There can exist a richer and more diverse family of solutions of the five-dimensional the-
ory in (2.2) than in four dimensions. In particular, static Weyl solutions can be constructed
from two types of physical objects: smooth Kaluza-Klein (KK) bubbles, dubbed topological
stars when they are wrapped by fluxes [17, 26] and black strings. These objects individually
preserve spherical symmetry and can be uniformly described by the two-parameter family
of metrics:

ds2
5 = −

(
1− rS

r

)
dt2 +

(
1− rB

r

)
dy2

1 + r2 dr2

(r − rB)(r − rS) + r2
(
dθ2 + sin2 θdφ2

)
,

F (e) = Q

r2 dr ∧ dt ∧ dy, F (m) = P sin θ dθ ∧ dφ , P 2 +Q2 = 3rSrB .

(2.3)

If rB > rS, the solution is a topological star, and the extra dimension, y1-circle with period
2πRy1 , shrinks at r = rB. This region corresponds to a smooth end of space with a finite
size S2 bubble sitting at the origin of an R2-plane composed of (r, y1). One can also allow
for a conical singularity by having R2/Zk with regularity condition

R2
y1 = 4r3

B
k2 (rB − rS) k ∈ N . (2.4)

Note that when the topological star is free from conical defect, k = 1, the radius of the
bubble given by rB is of order the size of the extra dimension, Ry1 . This gives another
motivation to construct stack of topological stars on a line in order to build an object whose
size can be parametrically larger than the Kaluza-Klein scale.

1The norm is defined as follows: |F|2 = F ∧ ?5F .
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(a) Weyl solutions with disconnected rods. (b) Weyl solutions with connected rods.

Figure 2. Schematic description of static axisymmetric Weyl solutions in five dimensions and the
behavior of the φ and y1 circles on the z-axis. Solutions can be sourced by black rods or bubble
rods (topological stars) that can be wrapped by electromagnetic fluxes. At each rod, the φ circle
has a finite size on the z-axis. The multiple objects are separated by struts (a) except if two rods
of different nature are connected (b).

When rS ≥ rB, the solution corresponds to a black string with a S1×S2 horizon at
r = rS. This black string solution does not have any curvature singularities but admits a
bubble behind the horizon [26].

Finally there are vacuum solutions when one of the parameters of (rS, rB) van-
ishes. There is the bubble of nothing solution when rS = 0 [15] and a four-dimensional
Schwarzschild solution times S1 when rB = 0.

Generic static axisymmetric Weyl solutions can be obtained by stacking topological
stars and black strings along a line as depicted in figure 2. Vacuum solutions in this class
have been classified in [13, 14, 18, 22, 23] while generalization with non-trivial gauge fields
has been obtained in [17].

As in four dimensions, two disconnected objects are necessarily separated by a strut
(see figure 2(a)). However, since there are rods of different nature, one can connect two
different rods without forming a unique rod (see figure 2(b)). The φ-circle does not shrink
anymore in between and the solutions are free from struts. The physics of connected black
holes and bubbles as in figure 2(b) has been studied in details in [14].

These solutions can be seen as classical resolutions of the struts appearing for the four-
dimensional Weyl solutions of figure 1. In five dimensions, the segment that separates two
black holes is replaced by a smooth region in figure 2(b), where the y1-circle shrinks as a KK
bubble, free from conical excess and its associate curvature singularity. Under KK reduction
along y1, the metric is singular there and the component along the y1-circle gives a singular
dilaton. Therefore, the work in [14] points out something interesting in that black holes in

– 5 –
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Figure 3. Rod profile of a solution with two topological stars and the behavior of the circles on
the z-axis.

four-dimensions along a line can be supported with a bubble instead of a struts. Excitingly
this implies that struts can be replaced by bubbles by going to higher dimensions.

The main issue with the strut-free five-dimensional solutions of figure 2(b) is that they
are not entirely smooth solutions as they require a succession of black holes with bubbles.
One needs an other species of smooth bubbles that can alternate with our present five-
dimensional topological stars. This can be ultimately done by considering not one but two
extra dimensions, that is a six-dimensional Einstein-Maxwell theory.

Before going through the main construction in six dimensions, we briefly discuss the
physics of Weyl solutions in five dimensions and the physics of struts with a simple example
of two smooth topological stars on a line separated by a strut. This example will be useful
later in the paper when we construct solutions that substitute the strut that separates
the two bubbles with another species of bubbles that come from the degeneracy of a sixth
dimension in a manner similar to the two black holes described in figure 2(b) [14]. The
interested reader can find a summary of generic charged Weyl solutions in five dimensions
as constructed in [17] in the appendix A.

2.3 Strut between two bubbles

We consider a Weyl solution of the five-dimensional action (2.2) that is sourced by two
identical topological stars of size M on the z-axis separated by a distance δ (see figure 3).
We keep the possibility of having conical defects at the bubbles, parametrized by an orbifold
parameter k. The Weyl formalism is usually presented in cylindrical coordinates (ρ, z, φ)
for the three-dimensional base as in (2.1) (see appendix A for more details). However, due
to the symmetry of the configuration, it is convenient to consider spherical coordinates
centered on the middle segment:

ρ ≡
√
r(r − δ) sin θ , z ≡

(
r − δ

2

)
cos θ , (2.5)

– 6 –
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with r ≥ δ and 0 ≤ θ ≤ π. The metric and gauge fields can be given as

ds2
5 = 1

Z̄

[
− dt2 + U1 dy

2
1

]
+ Z̄2

U1

[
e2ν̄

(
dr2 + r(r − δ)dθ2

)
+ r(r − δ) sin2 θ dφ2

]
,

F (e) = dT ∧ dt ∧ dy1 , F (m) = dH ∧ dφ .
(2.6)

From the general expressions (A.10), we have for the rod configuration in figure 3

U1 =
(

1−M
r+

)(
1−M

r−

)
, Z̄ = eb−e−bU1

2sinhb ,

e2ν̄ = 1
2

1+
(M+r)(r−δ−M)− δ2

4 sin2 θ(
2r−−(M+r)+δ sin2 θ

2

)(
2r+−(M+r)+δ cos2 θ

2

)
 (2.7)

×

(
r−δ sin2 θ

2

)
r−−M(r−δ)sin2 θ

2(
r−δ cos2 θ

2

)
r−−

(
Mr+δ2 cos2 θ

2

)
sin2 θ

2

(
r−δ cos2 θ

2

)
r+−M(r−δ)cos2 θ

2(
r−δ sin2 θ

2

)
r+−

(
Mr+δ2 sin2 θ

2

)
cos2 θ

2

,

H =
√

3√
1+q2

r−−r+−δ cosθ
sinhb , T =−

√
3q sinhb√

1+q2
eb+e−bU1
eb−e−bU1

,

where we have defined the distance to the upper and lower topological stars such as

r+ ≡
1
2

r +M − δ cos2 θ

2 +

√(
r cos θ −M − δ cos2 θ

2

)2
+ r(r − δ) sin2 θ

 ,

r− ≡
1
2

r +M − δ sin2 θ

2 +

√(
r cos θ +M + δ sin2 θ

2

)2
+ r(r − δ) sin2 θ

 ,

(2.8)

and (q, b) are gauge field parameters with b ≥ 0. The quantity q gives the ratio between the
electric charges and the magnetic charges carried by T and H respectively. The vacuum
limit is obtained by taking b → +∞. The four-dimensional ADM mass, electric and
magnetic charges of the configuration are given by2

M = 1
4G4

M (3 coth b− 1) , Qe = qQm =
√

3 q
4
√

(1 + q2)πG4

M

sinh b , (2.9)

where G4 is the four-dimensional Newton’s constant given by G5 = G4
2πRy1

.
The y1-circle degenerates when r± = M (r ≤ M + δ, cos θ = ±1) defining the loci

of the two topological stars. The (r, y1)-subspace corresponds to an origin of a smooth
discrete quotient R2/Zk providing that Ry1 satisfies (A.18),

Ry1 = 2M (2M + δ)
k (1− e−2b)

3
2 (M + δ)

, k ∈ N . (2.10)

The (θ, φ)-subspace at this loci defines the surface of the topological stars with a S2

topology.
2We used the conventions of [27] to derive the charges: Qe = 1√

16πG4

∫
S2

∞
?4(F (e)|y1 ) and Qm =

1√
16πG4

∫
S2

∞
F (m).

– 7 –
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The strut region. The region r = δ describes the section between the topological stars,
and the φ-circle shrinks with a conical excess corresponding to a strut. The metric in this
region can be written as

ds2
5 = ds2(M3) + d2 Z̄2

U1

[
dρ2 + ρ2

d2dφ
2
]
,

ds2(M3) = 1
Z̄

[
−dt2 + U1 dy

2
1 + Z̄3

U1

d2δ2

4 dτ2
]
, d = (2M + δ)δ

(M + δ)2 . (2.11)

U1 = δ2(1− τ2)
[2M + δ(1 + τ)][2M + δ(1− τ)] , Z̄ = eb − e−bU1

2 sinh b .

The M3 space is the world-volume directions of the strut with coordinate τ = 2z
δ = cos θ

ranging in |τ | ≤ 1. We consider d as an independent parameter and solve the regularity
condition (2.10) as

M = 1−
√

1− d
2d

(
1− e−2b

) 3
2 k Ry1 , δ =

(
1−
√

1− d
)2

2d
√

1− d

(
1− e−2b

) 3
2 k Ry1 . (2.12)

It is important to note that both M and δ are increasing functions of d, and in particular
the mass parameter M increases with the separation distance δ. The mass difference when
the bubbles are far away compared to when they are close to each other can be interpreted
as the binding energy of the final state when two bubbles merge and transition to a single
bubble. This mass difference also corresponds to the energy released when two bubbles
collide and transition to a single bubble. At a fixed separation, the binding energy is
measured by the strut itself.

The conical excess is measured by d and it corresponds to the tension of the strut. In
appendix A.2 we describe the general stress tensor for conical deficits. We specialize these
results for the two-bubble system to obtain a stress tensor for the strut as

Tmn = −d− 1
4G5d

U1

Z̄2 gmn
δ(ρ)

2πρ d, Tµν = 0 (2.13)

where (m,n) correspond to world-volume directions on M3 with metric gmn, while (µ, ν)
correspond to (ρ, φ) directions. The stress tensor is localized on the strut as indicated by
the delta-function δ(ρ). First, we observe that the overall tension of the strut is negative
and given by

Strut Tension = d− 1
4G5d

. (2.14)

The tension vanishes when d → 1 corresponding to the limit when the bubbles are in-
finitely far away (δ → ∞). When the bubbles approached each other (δ → 0), the deficit
angle vanish and the tension goes to infinity. However the stress energy tensor is actually
vanishing due to the warp factor U1.

We can also consider the total energy of the strut by integrating the energy density
(see appendix A.2 for details) to obtain

E = − M2δ

(M + δ)2
2πRy1

4G5
= − M2δ

4G4(M + δ)2 . (2.15)

– 8 –
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In the large δ limit, the energy of the strut approximates the Newtonian potential
between two particles of mass, M

2G4
, in four dimensions. From this perspective, the strut

measures the binding energy between the two bubbles, or rather the potential energy needed
to keep the two bubbles from collapsing on each other.

An important observation is that the effective masses of the bubbles, from the Newto-
nian point of view, depend on b, which is associated to the charge of the bubbles as given
in (2.12). This implies the binding energy as measured by the strut also accounts for effects
due to the electromagnetic fields of the bubbles.

It is interesting to consider the vanishing limit of charges (b→∞) in order to make a
more precise statement on the dynamics of the bubbles. The radius of the neutral bubbles
and ADM mass in four dimensions are respectively, M and M = M

4G4
. Immediately we

observe that the masses that appear in the Newtonian potential for interacting two bubbles
is twice the individual ADM masses of the bubbles. The physical reason for this is that
from a four dimensional perspective, the dynamics of the bubbles and their effective masses
depend greatly on the scalar cloud due to the dilaton in the KK reduction [28–31]. The
dilaton seems to make the bubbles more attractive.

The neutral bubble with ADMmass,M = M
4G4

in four dimensions, has a radius twice of
its Schwarzschild radius. Since its effective mass in the Newtonian potential is twice that of
the ADM mass, its apparent Schwarzschild radius is actually located at the bubble surface.

In general when b is finite, the effective mass from the Newtonian potential depends
on the charges of the bubble in a non-trivial way. This accounts for the electromagnetic
interactions of the bubbles. For finite separation between the two bubbles, the gravita-
tional potential between them deviates significantly from that of the Newtonian limit. In
particular, the gravitational potential between two bubbles vanish when δ → 0. In this
limit, the two rod sources that make the bubbles merge into one and the two bubbles sys-
tem becomes a single bubble. A similar phenomenon occurs when one considers two black
holes separated by a strut as discussed in [18].

3 Six-dimensional framework

In this section, we discuss our six-dimensional framework used to construct and classify
Weyl solutions. We work with the following six-dimensional theory

(16πG6) S6 =
∫
d6x

√
− det g

(
R− 1

2 |F3|2
)
, (3.1)

where F3 = dC2,3 is a three-form field strength for a two-form gauge field C2. The equations
of motion are

d ?6 F3 = 0, Rµν = 1
2

(
Tµν −

gµν
4 T α

α

)
, Tµν = 1

2
[
F3µαβF

αβ
3 ν − gµν |F3|2

]
(3.2)

3Its norm is given as
|F3|2 = 1

3! F3µνσ F
µνσ

3 .

– 9 –
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Our objective is to build solutions that generalize the five-dimensional Weyl system
in 2.2 and in appendix A that are asymptotic to T2 × R1,3. The general ansatz that can
accommodate these structures in six dimensions is

ds2
6 = −U0 dt

2 + U1 dy
2
1 + U2 (dy2 +H0 dφ)2 + 1

U0U1U2
ds(B)2 ,

F3 = F (m1) ∧ (dy2 +H0 dφ) + F (e1) ∧ dy1 .

(3.3)

The coordinates {ya}a=1,2 parametrize the T2 with 2πRya periodicities, ds(B)2 is the metric
of the asymptotically-R3 three-dimensional base. We assume that the base metric is axially
symmetric and admits a U(1) action whose orbits are parametrized with the coordinate φ.
The extra KK circle also admits a KK vector parametrized by H0. All warp factors and
gauge fields depend on the base metric. It may seem intriguing at first sight to impose
an asymmetry between the two compact directions by allowing a KK vector field in the
y2 fiber. This is motivated by the observation, which will be clarified later, that one can
freely add such a vector field without compromising the linearization of the equations of
motion. This vector field is therefore a free degree of freedom that can be turned on and
does not couple to the other fields. Therefore, we could have perfectly well considered two
symmetric fibers but this would not have made the equations any simpler and would have
turned off one degree of freedom of the gauge fields.

3.1 Kaluza-Klein reduction

In this section, we describe the truncation of the six-dimensional theory in (3.1) to five
and four dimensions that will provide lower-dimensional descriptions of our constructions.
In particular we will also derive the four-dimensional conserved quantities: the ADM mass
and charges associated to the various gauge fields.

Reduction to five dimensions. The KK reduction of the action (3.1) on y2 gives the
following five-dimensional theory

SKK
5 = 1

16πG5

∫
d5x

√
− det g (R− L5) (3.4)

L5 = 1
2 ∂µΦ2 ∂

µΦ2 + e
−2
√

2√
3

Φ2

2
∣∣∣F (m0)

∣∣∣2 + e

√
2√
3

Φ2

2
∣∣∣F (m1)

∣∣∣2 + e
−
√

2√
3

Φ2

2
∣∣∣F (e)

∣∣∣2
with G5 ≡ G6

2πRy2
. The five-dimensional theory contains a dilaton, Φ2, a pair of one-

form gauge fields with field strength (F (m0), F (m1)), and a two-form gauge fields with field
strength F (e). These are identified with the six-dimensional frame as

F (m0) = dH0 ∧ dφ , F3 = F (m1) ∧ (dy2 +H0 dφ) + F (e). (3.5)

In this framework, our ansatz reduces to

ds2
5 = U

1
3

2

[
−U0 dt

2 + U1 dy
2
1 + 1

U0U1U2
ds(B)2

]
, e

1√
6

Φ2 = U
− 1

3
2 . (3.6)

Note that we retrieve the five-dimensional action (2.2) if we consider the subclass of solu-
tions that have Φ2 = 0 and the equations of motion for Φ2 requires in addition∣∣∣F (m0)

∣∣∣2 = 1
2

(∣∣∣F (m1)
∣∣∣2 − ∣∣∣F (e)

∣∣∣2) . (3.7)
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Reduction to four dimensions. After compactification on y1, we restrict to a trunca-
tion of the KK theory to the Einstein-Maxwell-Dilaton theory

SKK
4 = 1

(16πG4)

∫
d4x

√
− det g (R− L4) , (3.8)

L4 = 1
2 ∂µΦ2 ∂

µΦ2 + 1
2 ∂µΦ1 ∂

µΦ1 −
e
−2
√

2√
3

Φ2− 1√
3

Φ1

2
∣∣∣F (m0)

∣∣∣2
+ e

√
2√
3

Φ2− 1√
3

Φ1

2
∣∣∣F (m1)

∣∣∣2 + e
−
√

2√
3

Φ2+ 1√
3

Φ1

2
∣∣∣F (e1)

∣∣∣2 .
with G4 ≡ G6

(2π)2Ry1Ry2
. The gauge fields are identified as

F (m0) = dH0 ∧ dφ, F3 = F (m1) ∧ (dy2 +H0 dφ) + F (e1) ∧ dy1. (3.9)

Note that we have turned off a KK vector associated to y1 and the components of F3
orthogonal to y1 and y2 in the truncation. Our ansatz is

ds2
4 =

√
U1U2

[
−U0 dt

2 + 1
U0U1U2

ds(B)2
]
, (3.10)

e
1√
3

Φ1 = U
− 1

2
1 U

− 1
6

2 , e
1√
6

Φ2 = U
− 1

3
2 .

For the specific solutions we will construct, F (m1) and F (m0) will be magnetically
sourced and F (e1) will be electrically sourced. Moreover, the scalars will be asymptotic to
zero. More concretely, the asymptotic behaviors of the relevant quantities are

UI ∼
r→∞

1− M
(I)

r
, F (mI) = −PI sin θ

(
1 +O

(1
r

))
dθ ∧ dφ+ . . . ,

F (e1) = Q1
r2

(
1 +O

(1
r

))
dt ∧ dr + . . . .

(3.11)

Therefore, the solutions correspond to four-dimensional three-charge static solutions with
non-trivial scalar fields. The four-dimensional ADM mass, M, the electric and magnetic
charges, (Q(1)

e ,Q(0)
m ,Q(1)

m ), are given by4

M = 1
4G4

(
2M(0) +M(1) +M(2)

)
, Q(1)

e = Q1√
16πG4

, Q(I)
m = PI√

16πG4
. (3.12)

3.2 Spherically symmetric solutions

We consider spherically symmetric static solutions of the action (3.1) where F (mI) and
F (e1) are magnetically and electrically sourced. This allows to describe the basic physical
sources of the theory before constructing multi-body solutions with the Weyl formalism.
The spherical symmetry constrains the three-form field strength and the KK gauge field
such that

F3 = Q1
r2 dt ∧ dr ∧ dy1 − P1 sin θ dθ ∧ dφ ∧ dy2 , H0 dφ = P0 cos θ dφ , (3.13)

where (r, θ, φ) are the spherical coordinates of the three-dimensional base. We find three
types of physical solutions that we can decompose in two categories.

4We used the conventions of [27] to derive the charges: Q(1)
e = 1√

16πG4

∫
S2

∞
?4F

(e1) and Q(I)
m =

1√
16πG4

∫
S2

∞
F (mI).

– 11 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
8

3.2.1 Species-1 bubble and black brane

The equations of motion are solved by considering a metric given by three parameters
(rS, rB, rC):

ds2
6 = −

(
1− rS

r

)
dt2 +

(
1− rB

r

)
dy2

1 +
(

1− rC
r

)−1
(dy2 + P0 cos θdφ)2

+
(

1− rC
r

) [
r2 dr2

(r − rS)(r − rB) + r2 dΩ2
2

]
,

(3.14)

and with the charges fixed to satisfy

P 2
1 +Q2

1 = 2 rB rS , P 2
0 = (rB − rC) (rS − rC) . (3.15)

In the four-dimensional framework (3.10), the solutions have two magnetic and one electric
charges, and the conserved charges are (3.12)

M = 1
4G4

(2rS + rB − rC) , Q(1)
e = Q1√

16πG4
, Q(I)

m = PI√
16πG4

. (3.16)

The domain of validity requires rBrS ≥ 0 and (rB− rC) (rS− rC) ≥ 0. Without restriction,
we assume that rB and rS are positive and rC ≤ rS/B with the possibility of being negative.
Therefore, we have two types of solutions:

– When rB > rS:

The outermost coordinate singularity is r = rB, where the y1-circle shrinks forming an
end to spacetime. The local geometry is given by

ds2
6 ∼
ρ→0
− rB − rS

rB
dt2 + dρ2 + ρ2 (rB − rS)

4r2
B(rB − rC)dy

2
1

+ rB
rB − rC

(dy2 + P0 cos θ dφ)2 + rB(rB − rC)dΩ2
2 ,

(3.17)

with ρ2 ≡ 4rB(rB−rC)
rB−rS

(r − rB). The line element dΩ2
2 describes a round S2 of radius√

rB(rB − rC) while the (ρ, y1)-subspace corresponds to an origin of R2/Zk, k ∈ N,
providing that

Ry1 = 2rB
k

√
rB − rC
rB − rS

. (3.18)

The geometry at the coordinate singularity corresponds to a bolt, a smooth Sy2×S2

bubble sitting at an origin of a R2 with a conical defect of order k. One can check that
the gauge fields are regular at this locus and that the geometry is regular elsewhere.

If k = 1, the bubble is free from conical defect and we have 2rB ≤ Ry1 . Therefore, the
mass, the conserved charges of the solution and the area of the bubble are bounded by
the KK scale.

Finally, by taking rC = 0, the metric along the y2 circle is trivial and one has a six-
dimensional embedding of the single-center topological star (2.3), studied in [17, 26].

– 12 –
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– When rS ≥ rB:

The outermost coordinate singularity is now r = rS, where the timelike Killing vector
∂t vanishes. It corresponds to a horizon with a S2×T2 topology. The local geometry
can be obtained from (3.17) by Wick rotation of t and y1 and changing the role of rB
and rS. The Bekenstein-Hawking entropy, S = A

4G6
, and the temperature, T , are

S = π

G4
rS

√
(rS − rC)(rS − rB) , T = 1

4πrS

√
rS − rB
rS − rC

. (3.19)

The second critical radius r = rB is part of the interior and corresponds to an origin
of a Milne space [17, 26]. The extremal limit is obtained by taking rS = rB > rC,
and we recognize a two-dimensional BPS extremal black brane with an AdS3×S2×S1

near-horizon geometry.

3.2.2 Species-2 bubble

The remaining spherically symmetric solutions are given by two parameters (rB1, rB2):

ds2
6 = −dt2 + dy2

1 + (r − rB1)(r − rB2)
r2 − rB1rB2

(dy2 + P0 cos θ dφ)2

+ r2 − rB1rB2
(r − rB1)(r − rB2) dr

2 +
(
r2 − rB1rB2

)
dΩ2

2.

(3.20)

Without loss of generality, we take rB1 ≥ rB2. The charges are fixed as

P1 = Q1 = 0 , P 2
0 = 4rB1rB2 . (3.21)

In the four-dimensional framework (3.10), the solutions have one magnetic charge only,
and the conserved charges are (3.12)

M = 1
4G4

(rB1 + rB2) , Q(1)
e = Q(1)

m = 0 , Q(0)
m = P0√

16πG4
. (3.22)

If rB1 = rB2 = rB, the solutions correspond to BPS solutions with a Taub-NUT base of
charge 2rB. The space ends at r = rB as a Sy1 fibration over an origin of R4/Z 2rB

Ry2

. If
rB1 6= rB2, the y2-circle shrinks at r = rB1, while the other circles have finite size. The
local geometry corresponds to a Sy1×S2 bubble sitting at an origin of R2 with potential
conical defect if

Ry2 = 2 rB1
k

, k ∈ N . (3.23)

Now we have described the three types of physical sources of the theory, we can discuss
the axisymmetric generalization corresponding to such sources stacked on a line.

4 Vacuum Weyl solutions

Motivated by the work of Elvang and Horowitz [14] we propose to use bubbles from extra
dimensions as substitutes of struts to construct bound states of black holes and bubble
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geometries. This is akin to providing a resolution for struts by using degrees of freedom
from extra dimensions. To construct entirely smooth and regular spacetimes, we need to
consider Weyl solutions that are made of connecting bubbles of different species, which
requires two extra compact dimensions. As a warm-up and to illustrate the physics of the
resolution, we consider vacuum solutions of our six-dimensional theory first. More precisely,
we aim to construct neutral axisymmetric static Weyl solutions of the six-dimensional
action (3.1) with the gauge field turned off, F3 = 0.

4.1 Weyl ansatz

We consider canonical Weyl coordinates (ρ, z, φ) for the three-dimensional base and the
ansatz of metric for neutral solutions is then

ds2
6 = −U0 dt

2 + U1 dy
2
1 + U2 dy

2
2 + 1

U0U1U2

[
e2ν

(
dρ2 + dz2

)
+ ρ2dφ2

]
, (4.1)

where the warp factors, (U0,U1,U2,ν), are functions of (ρ,z). We define the two-dimensional
cylindrical Laplacian

L ≡ 1
ρ
∂ρ (ρ ∂ρ) + ∂2

z , (4.2)

and the Einstein equations can be decomposed into

L logUI = 0 , I = 0, 1, 2 , 1
ρ
∂zν = 1

4
∑
I<J

∂ρ log(UIUJ) ∂z log(UIUJ) ,

1
ρ
∂ρν = 1

8
∑
I<J

(∂ρ log(UIUJ))2 − (∂z log(UIUJ))2 .
(4.3)

The system of equations is entirely integrable. One can source the warp factors, UI , by rod
segments on the z-axis,5 and the equations for ν are simple integral equations for which
the integrability is guaranteed by the harmonicity of logUI .

4.1.1 Rod sources: generic solutions

We consider n distinct rods of length Mi > 0 along the z-axis centered on z = zi. Without
loss of generality we can order them as zi < zj for i < j. Our conventions are illustrated
in figure 4. The coordinates of the endpoints of the rods on the z-axis are given by

z±i ≡ zi ±
Mi

2 . (4.4)

We define the distances to the endpoints r(i)
± , the distances R(i)

± and the generating functions
E

(i,j)
±± such as

r
(i)
± ≡

√
ρ2 +

(
z − z±i

)2
, R

(i)
± ≡ r

(i)
+ + r

(i)
− ±Mi , (4.5)

E
(i,j)
±± ≡ r

(i)
± r

(j)
± +

(
z − z±i

) (
z − z±j

)
+ ρ2 , νij ≡ log E

(i,j)
+− E

(i,j)
−+

E
(i,j)
++ E

(i,j)
−−

.

5Sourcing logUI by point particles does not lead to any physical solutions.
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Figure 4. Schematic description of axisymmetric rod sources.

The warp factors associated to such sources are

UI =
n∏
i=1

R(i)
+

R
(i)
−

G
(I)
i

, ν = 1
8
∑
I<J

n∑
i,j=1

(
G

(I)
i +G

(J)
i

) (
G

(I)
j +G

(J)
j

)
νij , (4.6)

where G(I)
i defines the weight of the ith rod on the warp factor UI . The solutions are

directly asymptotic to T2 × R1,3 as R
(i)
+

R
(i)
−
→ 1 and νij → 1 at large distance.

4.1.2 Regularity

Potential singularities arise on the z-axis: at the rod sources and elsewhere where the φ-
circle shrinks. We discuss the regularity analysis in details in the appendix B. Regularity
at the rods fixes the weights G(I)

i to three choices corresponding to the three categories of
physical sources highlighted in section 3.2 (see figure 5 for a schematic description). To
elucidate the regularity conditions, we define

αjk ≡
1
2
∑
I<J

(
G

(I)
j +G

(J)
j

) (
G

(I)
k +G

(J)
k

)
. (4.7)

This appears in the solution of ν in (4.6) and in the various regularity constraints below.
These parameters take specific values depending on the three species of object that can
exist at the rods:

αjk =

1 if the jth and kth same object species,
1
2 otherwise.

(4.8)
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We also introduce the parameters di appearing in the regularity conditions

d1 ≡ 1 , di ≡
i−1∏
j=1

n∏
k=i

(
(z−k − z

+
j )(z+

k − z
−
j )

(z+
k − z

+
j )(z−k − z

−
j )

)αjk
when i = 2, . . . n . (4.9)

The three categories of possible objects that can live on the rods are (see appendix B.1.1
for more details):

• Black rod. The ith rod corresponds to the horizon of a static two-dimensional black
brane or black string6 providing that

G
(0)
i = −1 , G

(1)
i = G

(2)
i = 0 . (4.10)

At the rod, ρ = 0 and z−i ≤ z ≤ z+
i , the timelike Killing vector ∂t vanishes and the

local geometry defines the locus of a horizon with a T2×S2 or S1×S3 topology (see
figure 5 and figure 6).6 The surface gravity and horizon area associated to this black
brane or black string is

κi = 1
2diMi

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(i−j)αij

, Ai = (2π)3

κi
MiRy1Ry2 , (4.11)

• Species-1 bubble rod. The ith rod corresponds to a static KK bubble where the y1-
circle shrinks providing that

G
(1)
i = −1 , G

(0)
i = G

(2)
i = 0 . (4.12)

At the rod, ρ = 0 and z−i ≤ z ≤ z+
i , the orbits of the spacelike Killing vector ∂y1

shrink. The local geometry corresponds to a bubble with a S1×S2 or S3 topology7 at
the origin of a R2 space parametrized by (ρ, y1) (see figure 5 and figure 6), and the
internal parameters must be related to the radius of the extra dimension:

Ry1 = 2diMi

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(j−i)αij

. (4.13)

One can also consider that the R2 has a conical defect by introducing a positive
integer ki ∈ N and replacing Ry1 → kiRy1 in the above expression.

• Species-2 bubble rod. The last category of physical source is identical to the previous
one by inverting the role of y1 and y2. If we consider

G
(2)
i = −1 , G

(0)
i = G

(1)
i = 0 , (4.14)

6The horizon topology depends on the close environment of the black rod. If the rod is disconnected as
in figure 5, it corresponds to the T2×S2 horizon of a two-dimensional black brane. If the rod is connected
on one side only as in figure 6, it corresponds to the S1×S3 horizon of a black string.

7As for a black rod, the local topology of the bubble depends if the bubble rod is disconnected (figure 5)
or connected (figure 6).
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Figure 5. Schematic description of the three possible categories of physical rods and the behavior
of the circles on the z-axis when the rod are disconnected. The black rod sources a two-dimensional
static black brane with a T2×S2 horizon. The species-1 bubble rod corresponds to the degeneracy
of the y1-circle inducing a Sy2×S2 bubble and reversely for the species-2 bubble rod. Each section
between sources has a conical excess.

then the ith rod corresponds to a S1×S2 or S3 bubble7 at the origin of a R2 space
parametrized by (ρ, y2) (see figure 5 and figure 6). The regularity fixes similarly

Ry2 = 2diMi

ki

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(j−i)αij

, (4.15)

where ki ∈ N is an orbifold parameter defining a potential conical defect at the
bubble.

Regularity elsewhere on the z-axis. Out of the rods but still on the z-axis, the φ-
circle degenerates as the cylindrical coordinate degeneracy (4.1). The warp factor e2ν can
induce conical singularities. As discussed in the appendix B.1.2, we found that:

• The semi-infinite segments above and below the rod configuration, z > z+
n and z < z−1 ,

are free from conical singularity and the geometry is smooth.

• If the two successive (i − 1)th and ith rods, with i = 2 . . . n, are disconnected, then
they are separated by a segment with a conical excess given by the orbifold parameter
di < 1 (4.9). More concretely, the local metric for z+

i−1 < z < z−i and ρ ∼ 0, behaves as

ds2
6 ∼ −ft dt2 + f1 dy

2
1 + f2 dy

2
2 + fz

(
dρ2 + dz2 + ρ2

d2
i

dφ2
)
, (4.16)

where the f ’s are regular functions of z. Therefore, the local angle, φi = φ
di
, has a

periodicity of 2π
di
> 2π.
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Figure 6. Schematic description of connected rods by making the rods of figure 5 to touch. The
φ-circle describes now a single bubble without struts. The black rod sources a black string where the
φ-circle and the y1-circle degenerate at its north and south poles respectively. At the intersection
of the bubble rods, both the y1 and y2 circles shrink defining an origin of R4.

• If the two successive (i − 1)th and ith rods, with i = 2 . . . n, are connected, then their
separation is reduced to a point on the z-axis,8 z = z+

i−1 = z−i . We have shown in
the appendix B.1.2 that the φ-circle keeps a finite size there and the local geometry
is free from struts. The local geometry depends on the nature of the connecting rods.
If a black rod is touching a bubble rod, the intersection corresponds to a pole of the
horizon (B.34) (see figure 6). If we have two touching bubbles of different species, the
intersection corresponds to a Sφ fibration over an origin of R4 (B.35). The R4 has the
same conical defects as the individual bubbles. If the bubbles are free from conical
defect, we obtain a smooth Sφ × R4 local geometry.

We have seen that the struts between the rods can be replaced with bubble rods. The
resulting geometry will be free from conical excess. This geometric replacement has been
discussed in section 2.2 and in [14] for five-dimensional solutions. However, fully smooth
solutions can be constructed by building a succession of species-1 and species-2 KK bubbles
in six dimensions. We will demonstrate such a solution in detail by an explicit construction
in the next section.

Note also that if we consider multiple KK bubbles, their regularity conditions (4.13)
and (4.15) constrain non-trivially the geometry and the size of the rods. These constraints
are the equivalent of the bubble equations for BPS multicenter solutions [32–34].

After reduction to four dimensions, the class of solutions correspond to massive and
neutral solutions with two scalars (3.10). The black rods reduce to the horizons of regular

8Note that two touching rods are necessarily of a different nature. Indeed, two touching rods of the same
nature form a single rod.
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black holes with non-trivial scalar profiles while the bubble rods correspond to singularities
where the scalars diverge. The four-dimensional ADM mass (3.12) gives

M = 1
4G4

n∑
i=1

Mi

(
1−G(0)

i

)
. (4.17)

Thus, black rods (G(0)
i = −1) contributes more to the mass than bubble rods (G(0)

i = 0).
More concretely, a bubble rod of length Mi contributes to the total mass as half of a black
rod with the same length.9

4.2 Smooth bubbling Weyl solutions

In this section, we apply the generic construction to an explicit illustrative strut-free ex-
ample of six-dimensional Weyl solutions. As already said, this requires to deal with con-
figurations of connected bubble rods.

The solution here is the six-dimensional counterpart of the five-dimensional two-bubble
solutions with a strut constructed in section 2.3, and the strut will be replaced by a smooth
species-2 bubble. This simple example gives a nice illustration of the classical replacement
of struts by the degeneracy of extra dimensions.

4.2.1 Three connected bubbles

We consider the same rod configuration as in section 2.3, that is two identical species-1
bubble rods of size M separated by a distance δ, but with an additional species-2 bubble
rod of size δ in between (see figure 7). We keep the possibility of having conical defects
at the bubbles by considering the same integer k for the three bubbles. We also use the
spherical coordinates centered on the species-2 bubble:

ρ ≡
√
r(r − δ) sin θ , z ≡

(
r − δ

2

)
cos θ , (4.18)

with r ≥ δ and 0 ≤ θ ≤ π. The six-dimensional metric (4.1) is now given by

ds2
6 = −U0 dt

2 + U1 dy
2
1 + U2 dy

2
2 (4.19)

+ 1
U0U1U2

[
e2ν̄

(
dr2 + r(r − δ)dθ2

)
+ r(r − δ) sin2 θ dφ2

]
,

where

e2ν̄ ≡

(
r − δ sin2 θ

2

) (
r − δ cos2 θ

2

)
r(r − δ) e2ν .

9However, note that the physical size of the objects in six dimensions,
∫

rod
√
−g|rod, can be very different

from the rod lengths,
∫

rod 1 = Mi, due to warping effects in six dimensions.
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Figure 7. Rod profile of the three-bubble solutions and the behavior of the circles on the z-axis.

From the generic expressions (4.6) with the rod configuration considered, we have

U0 = 1 , U1 =
(

1− M

r+

)(
1− M

r−

)
, U2 = 1− δ

r
,

e2ν̄ = 1
2

1 +
(M + r)(r − δ −M)− δ2

4 sin2 θ(
2r− − (M + r) + δ sin2 θ

2

) (
2r+ − (M + r) + δ cos2 θ

2

)


×

√√√√√
(
r − δ sin2 θ

2

)
r− −M(r − δ) sin2 θ

2(
r − δ cos2 θ

2

)
r− −

(
Mr + δ2 cos2 θ

2

)
sin2 θ

2

×

√√√√√
(
r − δ cos2 θ

2

)
r+ −M(r − δ) cos2 θ

2(
r − δ sin2 θ

2

)
r+ −

(
Mr + δ2 sin2 θ

2

)
cos2 θ

2

,

(4.20)

where the distances to the upper and lower species-1 bubble, r±, are sill given by (2.8).
The y2-circle degenerates at r = δ and the (r, y2)-subspace corresponds to an origin of

a smooth discrete quotient R2/Zk providing that the radius Ry2 satisfies (4.15)

Ry2 = 2δ(2M + δ)
k (M + δ) . (4.21)

The (y1, θ, φ)-subspace at this locus defines the surface of the species-2 bubble with a finite
Sφ×S2.

Moreover, the y1-circle degenerates when r± = M (r ≤ M + δ, cos θ = ±1) defining
the loci of both species-1 bubbles. The (r, y1)-subspace corresponds to origins of smooth
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Figure 8. Sizes of the φ, y1 and y2 circles on the z-axis.

discrete quotients R2/Zk providing that Ry1 satisfies (4.13),

Ry1 = 2
√
M (2M + δ)
k
√
M + δ

. (4.22)

The (y2, θ, φ)-subspace at this loci defines the surface of the species-1 bubbles with a finite
S3. By inverting both bubble equations, we find

M = 1
2

k R2
y1√

4R2
y1 +R2

y2

, δ = k Ry2

4

 Ry2√
4R2

y1 +R2
y2

+ 1

 . (4.23)

The bubbles are connected at the north and south poles of the species-2 bubble,
θ = 0, π and r = δ, as depicted in figure 7. Both the y1 and y2 circle degenerate and
the (r, θ, y1, y2)-subspace defines origins of R4/(Zk × Zk). For the interested reader, we
have plotted the size of the φ, y1 and y2 circles on the z-axis in figure 8.

We have constructed a smooth horizonless Weyl solution without conical singularities
if k = 1. If k > 1, the solutions is free from conical excess but have conical defects
at the bubbles. However, conical defects are rather benign singularities that are nicely
resolved in string theory, and such geometries are usually viewed as regular. On one hand,
conical defects have a well-known classical resolution by blowing up smooth Gibbons-
Hawking cycles [6, 35]. On the other hand, in AdS/CFT the corresponding worldsheet
conformal field theory is completely well-defined and there are many examples, for instance
in AdS3/CFT2 [36–38], where regular CFT states have bulk duals with conical defects.

In the four-dimensional framework (3.10), the solution is singular at the bubble loci
since the dilatons diverge and the four-dimensional metric degenerates there. The four-
dimensional ADM mass (4.17) gives

M = 1
4G4

(2M + δ) = k

16G4

(
Ry2 +

√
4R2

y1 +R2
y2

)
. (4.24)

The mass is bounded by the sum of the extra-dimension radii if k = 1. As for the solutions
of [17, 26] and the single-bubble solutions in section 3.2, one needs large conical defects at
the bubbles to have macroscopic objects. These defects highlight a much richer space of
states via the classical resolution of the orbifold singularity by blowing up Gibbons-Hawking
cycles at the poles of the bubbles [17, 26].
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The strut of the neutral two-bubble solution in five dimensions, obtained from the
solution of section 2.3,10 has been replaced by a smooth bubble where the sixth dimension
degenerates. It is rather surprising that the strut, which gives the necessary pressure to
keep the two bubbles apart, can be replaced by a vacuum KK bubble that does not interact
at first sight and does not carry energy in six dimensions. Our interpretation can be made
in the line of [14]. The bubble in the middle has an inherent nature to expand since it is
vacuum bubble [15]. Therefore, this gives the pressure that allows the two bubbles to stay
away from each other and compensates for their attraction. The nucleation of a smooth
KK bubble at the location of a strut singularity is then a perfectly viable scenario.

Under compactification along y2, our six-dimensional solutions are given by (3.6), and
have a singularity at the place of the species-2 bubble r = δ. In order to evaluate which
of the two solutions with two bubbles and a strut or three bubbles are preferred, one
should a priori compute the free energy of both euclideanized versions in six dimensions
and compare in the manner of [39–42]. If the three-bubble solution has a lower free energy
than the two-bubble one, it would suggest that a phase transition from the latter to the
former can occur where the third bubble nucleates. We reserve this for future projects and
focus in this article on the simple replacement of the struts with smooth bubbles.

As a final comment, a major drawback of the viability of neutral smooth Weyl solutions
is related to their stability (which also undermines any free energy analysis). As we already
argued, a single KK bubble in vacuum, or bubble-of-nothing, has a quantum instability that
forces the bubble to grow in size [15, 42]. Studying similar instability with our axisymmetric
configurations is a difficult task, but, because the main ingredients are KK bubbles stacked
on a line, it is expected that the whole geometry is also suffering from such an instability
and decays to nothing. The expansion of the bubble in the middle can be compensated by
the attraction of the two species-1 bubbles, but the two species-1 bubbles have nothing to
stop them from expanding, and hence the expected instability.

In [16, 43], it has been argued that KK bubbles are stabilized by adding suitable elec-
tromagnetic fluxes wrapping the bubbles. This has allowed the construction of topological
stars and charged Weyl solutions with struts in five dimensions as reviewed in section 2.2
and appendix A [17, 26]. In the next section, we will therefore construct charged Weyl
solutions in six dimensions and replace the struts by a smooth degeneracy of the sixth
dimension.

5 Three-charge Weyl solutions

We now apply the Weyl formalism to construct charged Weyl solutions of the six-
dimensional action (3.1). As presented in section 3, we consider that the solutions can
carry Kaluza-Klein monopole charges along the y2 fiber and that F3 can carry electric and
magnetic line charges along y1 (3.3).

10The two-bubble solution of section 2.3 has non-trivial charges, so one needs to take their neutral
limit b→∞.
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5.1 Weyl ansatz

We consider Weyl canonical coordinates (ρ, z, φ) for the three-dimensional base and the
following ansatz for the metric and gauge fields

ds2
6 = 1

Z1

[
−W0 dt

2 + dy2
1

W0

]
+ Z1
Z0

(dy2 +H0 dφ)2 + Z0Z1
(
e2ν

(
dρ2 + dz2

)
+ ρ2dφ2

)
,

F3 = d [H1 dφ ∧ dy2 + T1 dt ∧ dy1] , (5.1)

where the warp factors (Z0, Z1,W0, ν) and the gauge potentials (H0, H1, T1) are functions
of ρ and z. Moreover, we restrict F3 to have two electromagnetic dual contributions

dT1 ∧ dt ∧ dy1 = q ?6 (dH1 ∧ dφ ∧ dy2) ⇒ dT1 = 1
ρZ2

1
?2 dH1 , (5.2)

and q is an overall constant corresponding to the ratio between both charges. This will
restrict the sources of the solutions to carry electric and magnetic charges for which the
ratio is fixed and given by q. This restriction simplifies the form of the Einstein and
Maxwell equations. Moreover, the technique of linearization of these equations, that we
will review in a moment, also requires this “almost” self-duality of F3. We are therefore
anticipating a constraint in our ansatz that is necessary for the linearity of the equations.

The choice of warp factors have been appropriately made for solving the equations of
motion: ZI are sourced by HI while W0 is governed by the same equations as in vacuum.
The equations of motion can be decomposed into three almost-linear layers:

Vacuum layer: L logW0 = 0 ,

Maxwell layer: L logZI = − γ−2
I

ρZI
2

[
(∂ρHI)2 + (∂zHI)2

]
, (γ0, γ1) =

(
1,
√

2
1 + q2

)
,

∂ρ

( 1
ρZI

2 ∂ρHI

)
+ ∂z

( 1
ρZI

2 ∂zHI

)
= 0 , (5.3)

Base layer: 1
ρ
∂zν = Sz (W0, ZI , HI) ,

1
ρ
∂ρν = Sρ (W0, ZI , HI) ,

where L is the cylindrical Laplacian (4.2) and Sx are source functions that are quadratic
in (W0, ZI , HI) (C.2). The equations can be treated in a similar fashion as in vacuum
except for the Maxwell layer which is a non-trivial set of non-linear coupled differential
equations. In [17], a procedure have been found to extract closed-form solutions. The
solutions are determined by three arbitrary axisymmetric functions that solve a cylindrical
Laplace equation

L (logW0) = L (L0) = L (L1) = 0 . (5.4)

The scalars (ZI , HI , T1) are given by

ZI = G(I)
` (LI) , ?3d (HI dφ) = γI dLI , dT1 = q γ1

dL1

G(1)
` (L1)2

, (5.5)
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where G(I)
` is one of the four generating functions of one variable given by

G1(x) = sinh(ax+ b)
a

, G2(x) = i
cosh(ax+ b)

a
, G3(x) = x+ b,

G4(x) = sin(ax+ b)
a

, G5(x) = cos(ax+ b)
a

, a ∈ R+, b ∈ R . (5.6)

The equations for ν are integrable and given as

1
ρ
∂zν = 1

2 ∂ρ logW0 ∂z logW0 + ε
(0)
` a2

0
2 ∂ρL0 ∂zL0 + ε

(1)
` a2

1 ∂ρL1 ∂zL1,

1
ρ
∂ρν = 1

4
(
(∂ρ logW0)2 − (∂z logW0)2

)
+ ε

(0)
` a2

0
4

(
(∂ρL0)2 − (∂zL0)2

)
(5.7)

+ ε
(1)
` a2

1
2

(
(∂ρL1)2 − (∂zL1)2

)
,

where ε(I)` is a constant that depends on the choice of generating functions, G(I)
` , for the

pair (Z0, H0) and (Z1, H1, T1) in (5.5)

ε` =


1 , if ` = 1, 2 ,
0 , if ` = 3 ,
−1 , if ` = 4, 5 .

(5.8)

The integrability of the equations for ν is guaranteed by the harmonicity of the functions
on the right-hand sides. These equations can be integrated in a case-by-case manner
depending on the choice of sources for the harmonic functions.

The different choices of generating functions G(I)
` (5.6) for the warp factors ZI dras-

tically change the solutions. The choices ` = 4 and ` = 5 seem to lead to unphysical
solutions. Indeed, the sin and cos has too many zeroes to avoid, and this constrains too
much the harmonic functions. The choice ` = 2 is imaginary but the metric can be still
real by taking W0 imaginary. However, it changes the signature of the metric. We will
therefore focus on the two other branches ` = 1 and ` = 3.

5.1.1 Rod sources: generic solutions

The harmonic functions (logW0, L0, L1) are sourced by n distinct rods of size Mi on the
z-axis as depicted in figure 4. The construction is similar to the neutral solutions in
section 4.1.1. The warp factors are given according to distance functions R(i)

± , that are
defined in (4.5), and weights (Gi, P (0)

i , P
(1)
i ) associated to each rod such that

logW0 =
n∑
i=1

Gi log R
(i)
+

R
(i)
−
, L0 =

n∑
i=1

P
(0)
i log R

(i)
+

R
(i)
−
, L1 =

n∑
i=1

P
(1)
i log R

(i)
+

R
(i)
−
. (5.9)

– 24 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
8

We restrict our study to the branch of solutions (5.5) with ` = 1. The metric and gauge
fields are then given by

ZI = 1
2aI

ebI n∏
i=1

R(i)
+

R
(i)
−

aIP
(I)
i

−e−bI
n∏
i=1

R(i)
−

R
(i)
+

aIP
(I)
i

 , W0 =
n∏
i=1

R(i)
+

R
(i)
−

Gi ,
H1 =

√
2

1+q2

n∑
i=1

P
(1)
i

(
r

(i)
− −r

(i)
+

)
, T1 =−qa1

√
2

1+q2 coth

 n∑
i=1

a1P
(1)
i log R

(i)
+

R
(i)
−

+b1

 ,
H0 =

n∑
i=1

P
(0)
i

(
r

(i)
− −r

(i)
+

)
, e2ν =

n∏
i,j=1

E(i,j)
+− E

(i,j)
−+

E
(i,j)
++ E

(i,j)
−−

 1
2 αij

, (5.10)

where the generating functions E(i,j)
±± have been defined in (4.5) and the exponents αij are

αij ≡ GiGj + 2a2
1P

(1)
i P

(1)
j + a2

0P
(0)
i P

(0)
j . (5.11)

The solutions are asymptotic to T2 × R1,3 if ZI → 1, which fixes

aI = sinh bI . (5.12)

Moreover, we can assume without restriction that bI ≥ 0. Finally, one can retrieve the
neutral Weyl solutions of section 4.1.1 by taking the limit (bI →∞, P (I)

i → 0) while keeping
all P (I)

i sinh bI constant.

5.1.2 Regularity
As in vacuum, the regularity on the z-axis fixes the weights, (Gi, P (0)

i , P
(1)
i ). There will be

three types of physical rod sources that have the same nature as the three spherically sym-
metric solutions detailed in section 3.2. An exhaustive analysis is given in the appendix C.
The figure 5 and figure 6 used for neutral Weyl solutions also illustrate appropriately the
physics of charged solutions with non-trivial electromagnetic fluxes wrapping the S2 and a
choice of a circle from the T2. The exponents αij will simplify for the physical sources and
it will be convenient to use the aspect ratios di that we remind to be

αjk =

1 if the jth and kth rods are of same species.
1
2 otherwise,

d1 ≡ 1 , di ≡
i−1∏
j=1

n∏
k=i

(
(z−k − z

+
j )(z+

k − z
−
j )

(z+
k − z

+
j )(z−k − z

−
j )

)αjk
when i = 2, . . . n .

(5.13)

The regularity at each rod requires that the sources are in one of these three categories:

• Black rod. The ith rod corresponds to the horizon of a static three-charge black brane
with a T2×S2 horizon topology or black string with a S1×S3 topology11 providing
that

P
(0)
i = 1

2 sinh b0
, P

(1)
i = 1

2 sinh b1
, Gi = −1

2 . (5.14)

11The local topology depends on whether the rod is connected to other rods, as for the Weyl neutral
solutions constructed in section 4.1.2.
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The surface gravity and horizon area associated to this black brane is

Ai = (2π)3

κi
MiRy1Ry2 , (5.15)

κi ≡
sinh b1
eb1

√
2 sinh b0
eb0

1
diMi

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(i−j)αij

where we remind that Mi is the size of the rod and z±j are the rod endpoints (4.4).

• Species-1 bubble rod. The ith rod corresponds to a static three-charge bubble where
the y1-circle shrinks providing that

P
(0)
i = 1

2 sinh b0
, P

(1)
i = 1

2 sinh b1
, Gi = 1

2 . (5.16)

At the rod, ρ = 0 and z−i ≤ z ≤ z+
i , the orbits of the spacelike Killing vector ∂y1

shrink and the local geometry defines the locus of a bubble with a S1×S2 or S3

topology11 at the origin of a R2 space. The subspace (ρ, y1) defines the R2 with a
potential conical defect of order ki ∈ N if the following bubble equation relating the
internal parameters to the radius of the extra dimension is satisfied:

kiRy1 = eb1

sinh b1

√
eb0

2 sinh b0
diMi

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(j−i)αij

. (5.17)

• Species-2 bubble rod. The ith rod corresponds to a static one-charge bubble where
the y2-circle shrinks providing that

P
(0)
i = 1

sinh b0
, P

(1)
i = Gi = 0 . (5.18)

The local geometry defines the locus of a bubble with a S1×S2 or S3 topology11 at
the origin of a R2 space with a potential conical defect of order ki ∈ N if

kiRy2 = eb0

sinh b0
diMi

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(j−i)αij

. (5.19)

Because P (1)
i = 0, the field strength F3 is not charged at the rod and the bubble

carries a magnetic charge in the KK gauge field, H0 dφ, only.

Out of the rods, the φ-circle shrinks on the z-axis. The regularity analysis is identical
to the one led for neutral solutions in section 4.1.2. The semi-infinite segments above and
below the rod configuration are free from conical singularities while any segments that
separate two rods are struts and have a conical excess of order di < 1 given in (5.13) (as
depicted in figure 5). If two rods of different nature touch, the strut that separates them
disappears and the intersection is free from conical excess (as depicted in figure 6). For
instance, the intersection between two touching species-1 and species-2 charged bubbles is
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free from conical excess and the local topology correspond to a Sφ at an origin of an R4

with the same potential orbifold defects as at each bubble.
As for neutral solutions, if we consider solutions sourced by bubble rods, the regularity

conditions (5.17) and (5.19) correspond to bubble equations that strongly constrain the
geometry of the bubbles. Moreover, note that the effect of the gauge fields on these
equations can be absorbed by considering the rescaled extra-dimensional radii

R̃y1 ≡
2 sinh b1
eb1

√
2 sinh b0
eb0

Ry1 , R̃y2 ≡
2 sinh b0
eb0

Ry2 , (5.20)

and the bubble equations are identical to the neutral ones (4.13) and (4.15). Therefore,
the gauge fields do not affect the bubble equations but rather act as a flux decoration on
top of the neutral backgrounds.

5.1.3 Profile in four dimensions and conserved charges

In the four-dimensional framework obtained by compactification along y1 and y2 (3.10),
the solutions correspond to asymptotically-flat three-charge static solutions with non-trivial
scalar profiles given by

ds2
4 = −

√
W0 dt

2

Z1
√
Z0

+ Z1
√
Z0√

W0

(
e2ν

(
dρ2 + dz2

)
+ ρ2dφ2

)
,

e
1√
3

Φ1 =
√
W0Z1

1
3Z0

1
6 , e

1√
6

Φ2 =
(
Z0
Z1

) 1
3
,

F (m0) = dH0 ∧ dφ , F (m1) = dH1 ∧ dφ , F (e1) = dT1 ∧ dt .

(5.21)

We use the generic expressions, (3.11) and (3.12) and the asymptotic spherical coordinates,
ρ ≡ r sin θ , z ≡ r cos θ, to compute the conserved charges:

M = 1
4G4

∑
i

(
−Gi + P

(0)
i cosh b0 + 2P (1)

i cosh b1
)
Mi , (5.22)

Q(1)
e = qQ(1)

m = q√
16πG4

√
2

1 + q2

∑
i

Mi P
(1)
i , Q(0)

m = 1√
16πG4

∑
i

Mi P
(0)
i .

As for neutral solutions, a black rod (5.14) will contribute twice more to the four-
dimensional mass than a bubble with the same rod length (5.16) and (5.18). However, this
does not mean that the bubble is twice less compact than a black brane as the physical
size in six dimensions can be very different from the rod lengths Mi.

Note that the five-dimensional Weyl solutions discussed in section 2.2 and in the ap-
pendix A are a subclass of this family of solutions. Assuming

Z1 = Z0 ⇔ H1 =
√

2
1 + q2H0 ⇔ P

(0)
i = P

(1)
i , b1 = b0 ,

the condition (3.7) is satisfied and the solutions solve Einstein-Maxwell equations of the
five-dimensional action (2.2) with F (m) =

√
3+q2

1+q2 F
(m0).
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5.2 Smooth bubbling Weyl solutions

In this section, we apply the generic construction of six-dimensional charged Weyl solutions
to an explicit strut-free bubbling geometry. We will consider the six-dimensional counter-
part of the five-dimensional two-bubble solutions with a strut constructed in section 2.3,
and the strut will be replaced by a species-2 bubble. This example can also be seen as the
charged version of the three-bubble neutral solutions of section 4.2. The physics will then
be similar and we will discuss the effect of the electromagnetic fluxes.

5.2.1 Three connected bubbles
We consider two identical species-1 bubble rods of size M with a species-2 bubble rod of
size δ in between. Moreover, we allow the three bubbles to have the same conical defects
parametrized by the orbifold parameter k ∈ N. Since the topology is identical to the neutral
three-bubble solutions in section 4.2.1, we refer to figure 7 for a schematic description of
the topology. The only difference is that the circles are now wrapped by fluxes. We
use the spherical coordinates centered on the species-2 bubble, ρ ≡

√
r(r − δ) sin θ, z ≡(

r − δ
2

)
cos θ, with r ≥ δ and 0 ≤ θ ≤ π. The six-dimensional metric and gauge fields (5.1)

can be decomposed into

ds2
6 = 1

Z̄1

[
−dt2 + U1 dy

2
1

]
+ U2

Z̄1

Z̄0
(dy2 +H0 dφ)2

+ Z̄0Z̄1
U1U2

[
e2ν̄

(
dr2 + r(r − δ)dθ2

)
+ r(r − δ) sin2 θ dφ2

]
,

F3 = dH1 ∧ dφ ∧ dy2 + dT1 ∧ dt ∧ dy1 ,

(5.23)

We obtain from (5.10)

U1 =
(

1− M

r+

)(
1− M

r−

)
, U2 =

(
1− δ

r

)
, Z̄0 = eb0 − e−b0 U1 U2

2

2 sinh b0
,

Z̄1 = eb1 − e−b1 U1
2 sinh b1

, H0 = 1
sinh b0

(r− − r+) ,

H1 =
√

2
1 + q2

r− − r+ − δ cos θ
sinh b1

, T1 = −q sinh b1

√
2

1 + q2
eb1 + e−b1 U1
eb1 − e−b1 U1

,

e2ν̄ = 1
2

1 +
(M + r)(r − δ −M)− δ2

4 sin2 θ(
2r− − (M + r) + δ sin2 θ

2

) (
2r+ − (M + r) + δ cos2 θ

2

)
 (5.24)

×

√√√√√
(
r − δ sin2 θ

2

)
r− −M(r − δ) sin2 θ

2(
r − δ cos2 θ

2

)
r− −

(
Mr + δ2 cos2 θ

2

)
sin2 θ

2

×

√√√√√
(
r − δ cos2 θ

2

)
r+ −M(r − δ) cos2 θ

2(
r − δ sin2 θ

2

)
r+ −

(
Mr + δ2 sin2 θ

2

)
cos2 θ

2

,

where the distances to the upper and lower species-1 bubbles, r±, have been defined in (2.8).
Note that the warp factor e2ν̄ is identical to the neutral solutions (4.20), and thus the three-
dimensional bases are identical. This was far from certain as the equations of motion for
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ν are very different with gauge fields (C.2) than in vacuum (4.3). An important lesson is
that the regularity conditions constrain the effect of gauge fields to a flux decoration on
the top of a topology dictates by the base.

The y2-circle degenerates at r = δ defining a Sφ×S2 bubble wrapped by fluxes while the
y1-circle degenerates at r± = M defining the loci of two S3 bubbles. The bubble equations,
obtained from the regularity at each bubble (5.17) and (5.19), are identical to the neutral
ones by considering the rescaled radii (5.20). Using (4.23), we find

M = 1
2

k R̃2
y1√

4R̃2
y1 + R̃2

y2

, δ = k R̃y2

4

 R̃y2√
4R̃2

y1 + R̃2
y2

+ 1

 . (5.25)

Since R̃ya ≤ Rya , the gauge field parameters bI makes the rod lengths smaller compared to
the three neutral bubbles. We also note the physical sizes of the bubbles in six dimensions
(see (C.14)) given as

AB-1 = 4π2k

√
eb1

2 sinh b1
M Ry1Ry2 , AB-2 = 4π2k

√
eb1

2 sinh b1
δ Ry1Ry2 . (5.26)

We observe that the structure reaches its maximum size in the neutral limit bI → ∞ and
shrinks when bI → 0.12 The latter limit will be specified in the next section. The overall
effect of the charges is to squeeze the bubbles to smaller sizes. This is consistent with the
expectation that the fluxes provide a counterbalance to the expansion of the bubbles.

It can be verified through this example that the solutions are regular outside the bubble
loci as are the gauge fields. We refer the reader to the generic regularity analysis conducted
in the appendix C.1.

We have then constructed smooth horizonless three-charge solutions without struts.13

In the four-dimensional framework (3.10), they correspond to Einstein-Maxwell-dilaton
solutions with conserved charges (5.22)

M = 1
4G4

[(M + δ) coth b0 +M (2 coth b1 − 1)] ,

Q(1)
e = qQ(1)

m = qM

2
√

2πG4 (1 + q2) sinh b1
, Q(0)

m = M + δ

4
√
πG4 sinh b0

.
(5.27)

By expressing the mass and charges according to the extra-dimension radii with (5.25),
one can check that they are bounded by the sum of the radii in the absence of conical defects
at the bubbles, k = 1, as expected. The conical defects are then necessary for the solutions
to be macroscopic.

The strut of the two-bubble solution in five dimensions, constructed in section 2.3, has
been classically replaced by a third bubble where an extra dimension degenerates.

12Even if the coefficient eb1
2 sinh b1

is greater than 1, so greater than the neutral limit bI → ∞, the scaling
of M and δ in terms of bI still makes the area of the bubbles smaller than their neutral values.

13As for neutral solutions, the solutions can be considered smooth even with conical defects at the bubbles,
k > 1.
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Moreover, unlike the smooth neutral bubbling solutions of section 4.2.1, it is most
likely that the present solutions are stable. Indeed, it has been argued that single KK
bubbles can be quantumly stabilized by electromagnetic fluxes [16]. Although we have
more than one bubble in our configuration and performing a similar analysis to that of [16]
is a challenge with our solutions, the main ingredients are charged KK bubbles that are
stable by themselves. Therefore, we do expect that the charged bubbling Weyl solutions
are stable.

One might wonder how the strut in five dimensions can be replaced by a stable bubble in
six dimensions. Indeed, our argument for neutral solutions was that the inherent instability
of the middle KK bubble gives the same pressure as a strut to push the two outer bubbles
away. If the bubbles are now stable, one may wonder how the energy of the strut can
be replaced by a stable charged bubble. However, even if the charged bubble is stable
by itself, it can still induce pressure if it is squeezed to a size smaller than its equilibrium
configuration. To make this statement clear, we first isolate the contribution of the species-2
bubble in the three bubble configuration. It carries the following charges

q(0)
m = δ

4
√
πG4 sinh b0

, q(1)
e = q(1)

m = 0 , (5.28)

and δ is expressed in terms of b0 and Ry2 in (5.25). If the bubble was alone, that is if we con-
sider a configuration with a single species-2 bubble of size δ̄, the regularity condition (5.19)
and the charges would be

q(0)
m = δ̄

4
√
πG4 sinh b̄0

, q(1)
e = q(1)

m = 0 , δ̄ = k sinh b̄0Ry2

eb̄0
. (5.29)

By fixing b̄0 to have the same charges, our middle bubble has then the same charges as a
single bubble of size

δ̄ = δ

sinh

b0 − log

1
2

 R̃y2√
4R̃2

y1+R̃2
y2

+ 1


sinh b0

(5.30)

It is clear from the arguments of the sinh that δ̄ > δ. As a result, the middle bubble
is compressed more in the presence of the other two bubbles than if it were alone. This
results in a pressure that pushes the two outer bubbles away from each other. Moreover,
note that δ̄ ∼ δ when R̃y2 � R̃y1 , and the pressure from the middle bubble should be then
almost zero. However, in this limit δ �M (5.25) and therefore the outer bubbles are very
far from each other. This matches the strut picture where the binding energy goes to zero
when the bubbles are infinitely separated (2.15).

In conclusion, a smooth bubble can replace a strut and the artificial binding energy
induced by a strut is smoothly substituted by the reluctance of a KK bubble to be com-
pressed and its nature to grow. This is a completely new approach to constructing objects
that repel each other without imposing BPS conditions that fix “Mass=Charge”. In the
present construction, objects are repelled by pure topology. Therefore, Weyl’s formalism
gives the tools to linearly construct smooth bubbling geometries in a non-BPS regime. The
solutions require some charges to guarantee their quantum stability.
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5.2.2 A BPS limit

We have already highlighted that taking bI →∞ makes the charges (5.27) to vanish, and
one can check more precisely that the solutions (5.24) indeed converges to the neutral
three-bubble solutions given in (4.20). An other interesting limit is in the other side of the
parameter space, by taking bI → 0. We consider the limit b0 → 0 with b1 = β b0

x, where x
and β are constant. The three-bubble solutions converge to

ds2
6 = −dt2 + dy2

1 + 1
1 + Q0

r

(dy2 +Q0 cos θ dφ)2 (5.31)

+
(

1 + Q0
r

) [
dr2 + r2

(
dθ2 + sin2 θ dφ2

)]
, F3 = 0 , (5.32)

where

Q0 =


k Ry2 , if x > 1

2 ,

k
4

√
8β2R2

y1 +R2
y2

(
1 + Ry2√

8β2R2
y1+R2

y2

)2
, if x = 1

2 ,

O
(
b
x− 1

2
0

)
, if x < 1

2 .

(5.33)

We recognize a Taub-NUT space in six dimensions with charge Q0 if x ≥ 1
2 , while Q0

diverges and the limit is singular if x < 1
2 . The former corresponds to a BPS solution that

is asymptotic to R1,3×T2 and the space caps off smoothly as a S1 × R4/ZQ0/Ry2
.

One can reverse the argument and interpret the parameters bI as gauge field parameters
that blow up a Taub-NUT center into non-trivial bubbling geometries. It allows one to
interpolate from the BPS to the non-BPS regime while keeping the solutions smooth. This
is a non-trivial process in the phase space of Einstein solutions. The standard lore for
constructing smooth solutions with multiple objects is that one needs strong gauge field
potentials to compensate for the gravitational attraction between them. For our present
construction, this is not the case as the solutions are supported by topology, and the gauge
fields do not play the role of supporting individual bubbles. The structure is non-collapsing
even in the limit where we turn off the gauge fields (bI →∞). Their main role is to support
the overall topological structure and prevent them from expanding. This further contrast
with the standard lore where gauge fields are used to prevent BPS bubbling geometry from
collapsing. Our work shows that one can construct “floating” objects from pure topology
in classical gravity theories without requiring the “Mass=Charge” that has made BPS
bubbling geometries so successful [3–6, 8, 9].

6 Embedding in type IIB

Until now, we have taken on purpose a bottom-up approach to highlight that smooth
bubbling geometries can be constructed from classical theories of gravity without the help
of supersymmetry. However, our six-dimensional action (3.1) arises as a specific truncation
of type IIB string theory on a four-dimensional torus [44]. In this section, we describe the
Weyl solutions from a type IIB supergravity perspective.
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6.1 D1-D5-KKm Weyl ansatz

The action (3.1) can be seen as the minimal pure N = (2, 0) six-dimensional supergravity
with the extra assumption that F3 is self-dual, ?6F3 = F3. This theory arises as a consistent
truncation of type IIB supergravity on T4 where the non-trivial ten-dimensional fields are
the metric and the Ramond-Ramond two-form C2 only, F3 = dC2.

The ansatz for axisymmetric Weyl solutions (5.1) translates to

ds2
10 = 1

Z1

[
−W0 dt

2 + dy2
1

W0

]
+ Z1
Z0

(dy2 +H0 dφ)2 (6.1)

+ Z0Z1
(
e2ν

(
dρ2 + dz2

)
+ ρ2dφ2

)
+ ds(T 4)2,

F3 = d [H1 dφ ∧ dy2 + T1 dt ∧ dy1] . (6.2)

The equations of motion and the solutions we found in section 5.1 are then identical with
the extra assumption that q = 1 in order for F3 to be self-dual. Weyl solutions are then
determined by three arbitrary functions that solve a cylindrical Laplace equation

L (logW0) = L (L0) = L (L1) = 0 , L ≡ 1
ρ
∂ρ (ρ ∂ρ) + ∂2

z (6.3)

The scalars (ZI , HI , T1) are given by

ZI = G(I)
` (LI) , ?3d (HI dφ) = dLI , dT1 = dL1

G(1)
` (L1)2

, (6.4)

where G(I)
` is one of the four generating functions of one variable given in (5.6). The

equations for ν are still given by (5.7).
The harmonic functions (logW0, L0, L1) can be freely sourced by point or rod sources

on the z-axis. The sources for L0 induce Kaluza-Klein monopoles (KKm) along the y2-
fiber. The sources for L1 induce equal electric and magnetic charges in F3. From the form
of F3, the magnetic charges correspond to D5-branes wrapping the T4 and the y1-circle,
while the electric charges correspond to D1-branes along the y1-circle. As for the sources of
logW0, they correspond to pure vacuum sources that modify the topology of the solutions.
To conclude, our Weyl solutions correspond to axisymmetric static D1-D5-KKm solutions
when embedded in type IIB.

6.2 A BPS limit

So far in this paper, we have restricted our analysis to the branch ` = 1 for G(I)
` (5.6) and

to rod sources. In this section, we investigate the branch ` = 3, G(I)
3 (x) = x+ bI . For such

a choice, the ZI are also harmonic functions, and the equations of motion simplify to

L (logW0) = L (Z0) = L (Z1) = 0 , ?3d (HI dφ) = dZI , T1 = − 1
Z1

. (6.5)

We recognize partially the BPS equations of motion for axisymmetric D1-D5-KKm systems.
More precisely, one can show that the sources leading to physical solutions correspond to
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point particles and require that we fix W0 = 1. This also fixes ν = 0 (5.7). This choice
for G(I)

` then corresponds to the ansatz for axisymmetric static BPS multicenter solutions
with D1-D5-KKm charges on a flat three-dimensional base [6].

Note that in this limit, the electric potential of the D1-branes T1 is proportional to
the induced gravitational potential Z−1

1 , and a similar argument can be made for the D5-
branes and KKm charges. This is a specific property of the BPS system that has allowed
the construction of non-collapsing solutions with multiple sources via the floating-brane
ansatz [3, 6]. Moreover, it was also thought that having TI = Z−1

I should remain to
have a valid non-BPS floating-brane ansatz [45]. Our specific Weyl ansatz contradicts this
assertion; T1 can be very different from Z−1

1 for the other choices of generating functions
G(1)
` (6.4). As we have seen in previous sections, Weyl solutions can always have multiple

sources that do not collapse under their own gravitational attraction with the gauge fields
playing the role of stabilizing the overall structure. We will examine this class of solutions
and their physics from a type IIB perspective in the next section.

6.3 D1-D5-KKm Weyl solutions

Generic D1-D5-KKmWeyl solutions can be derived from the six-dimensional Weyl solutions
of section 5.1.1 sourced by n rods on the z-axis with q = 1, that is

ZI = 1
2sinhbI

ebI n∏
i=1

R(i)
+

R
(i)
−

sinhbIP
(I)
i

−e−bI
n∏
i=1

R(i)
−

R
(i)
+

sinhbIP
(I)
i

 , (6.6)

W0 =
n∏
i=1

R(i)
+

R
(i)
−

Gi , e2ν =
n∏

i,j=1

E(i,j)
+− E

(i,j)
−+

E
(i,j)
++ E

(i,j)
−−

 1
2

(
GiGj+2sinh2 b1P

(1)
i P

(1)
j +sinh2 b0P

(0)
i P

(0)
j

)

HI =
n∑
i=1

P
(I)
i

(
r

(i)
− −r

(i)
+

)
, T1 =−sinhb1 coth

 n∑
i=1

sinhb1P (1)
i log R

(i)
+

R
(i)
−

+b1

 .
where the (ρ, z)-dependent functions R(i)

± and E(i,j)
±± are defined in (4.5), and bI ≥ 0. The

weights (P (0)
i , P

(1)
i , Gi) are fixed such that the ith rod corresponds to either the horizon of

a D1-D5-KKm black hole (if sinh bIP (I)
i = −Gi = 1

2), or the locus of a D1-D5-KKm bubble
where the y1 circle shrinks (if sinh bIP (I)

i = Gi = 1
2) or the locus of a KKm bubble where

the y2 circle shrinks (if P (1)
i = Gi = 0 and sinh b0P (0)

i = 1).
As said earlier, T1 is not proportional to Z−1

1 for generic Weyl solutions. More precisely,
we have

T1 = − 1
Z1

√
1 + sinh2 b1 Z1

2 . (6.7)

It is more difficult to read the gravitational potential induced by the D1-branes than in the
BPS regime since part of it should come from e2ν . One would a priori have to do a D1-probe
calculation to extract this quantity. However, we know for sure that the electric potential
does not compensate the gravitational attraction. Indeed, we have already highlighted a
neutral limit bI → ∞ where the solutions become neutral without collapsing. One can
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therefore ask what are the mechanisms that allow the brane sources to stay away from
each other in the Weyl construction. There are essentially two, which have been the main
topics of this paper:

• If the brane sources are separated from each other (as in figure 5), the solutions
develop struts between them, i.e. strings with a negative tension. As discussed in
the section 2 and in [18], the strut compensates for the repulsion deficit between the
sources. This can be rightly seen as an artificial mechanism to avoid solutions to
collapse. It is not well understood what UV degrees of freedom for string theory can
account for struts. One possible set of objects can be O-planes, however this has
yet to be studied in these cases. The configurations are still physically interesting to
describe as they capture aspects of the interaction between non-trivial string theory
objects. For example, one can study the interaction between two non-extremal static
D1-D5-KKm black holes by considering a configuration of two separate black rods
and analyzing the strut that emerges between them in the manner of [18].

• If the brane sources are touching (as in figure 6 or figure 7), the solutions have
no struts and are not collapsing. For such configuration, the sources balance each
other from their desire to expand. One can therefore study and construct D1-D5-
KKm black holes supported by D1-D5-KKm bubbles or KKm bubbles in the manner
of [14], or chains of D1-D5-KKm bubbles and KKm bubbles, which we have done in
section 5.2. For the latter, we have already argued that the solutions are supported
by pure topology and stabilized by electromagnetic fluxes. Our interpretation is that
Kaluza-Klein bubbles are tempted to expand [15]. Therefore, even in the presence
of electromagnetic fluxes that stabilize them, each bubble in the chain is further
compressed from its stable radius and exert sufficient pressure to prevent the collapse
of the whole structure. It would be interesting in future projects to analyse how the
pressure of the bubbles, their gravitational and electromagnetic interactions prevent
the whole structure from collapsing or expanding.

The smooth bubbling Weyl solutions constructed in section 5.2 correspond to the first
large family of non-BPS bubbling geometries that have the same conserved charges as non-
extremal static D1-D5-KKm black holes. The three-bubble examples constructed can be
easily embedded in type IIB from (5.24) by taking q = 1. The conserved charges are given
in (5.27), where the D1 and D5 charges are

√
16πG4Q

(1)
e and

√
16πG4Q

(1)
m respectively

and the KKm charges is
√

16πG4Q
(0)
m . Note that these specific examples have a large sizes

compared to the extra-dimension radii and then correspond to a macroscopic black hole if
and only if we impose a large conical defect at the three bubbles. It would be interesting
to investigate further more sophisticated bubbling solutions in this new non-BPS floating
brane ansatz [19].

It is also questionable whether the constructed geometries can correspond to classical
D1-D5-KKm non-BPS black hole microstates. At this level, the solutions in this paper and
in [19] do not have a black hole throat, i.e. an AdS region, and they do not have internal
parameters to be fine-tuned so that the bubble structure scales towards the horizon of a
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black hole of the same charges. Therefore, they may correspond at best to very atypical
microstates. However, they possess the same fundamental ingredients as BPS microstate
geometries, and are therefore good prototypes of non-BPS microstate geometries, if they
exist. We believe that turning on more degrees of freedom, which will allow for example
Chern-Simons interactions, could yield more relevant bubbling geometries that could cor-
respond to classical microstate geometries. Another direction we wish to investigate is to
try to construct bubbling geometries that are asymptotic to the near-horizon region of a
non-BPS D1-D5-KKm black hole with the present ansatz.
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A Charged Weyl solutions in five dimensions

We review the construction of [17] and more details can be found there. Weyl solutions of
the five-dimensional action (2.2) are obtained by the following ansatz of metric and gauge
fields

ds2
5 = Z−1

[
−W0 dt

2 +W−1
0 dy2

1

]
+ Z2

[
e2ν

(
dρ2 + dz2

)
+ ρ2dφ2

]
,

F (m) = dH ∧ dφ , F (e) = dT ∧ dt ∧ dy1 , (A.1)

where (ρ, z, φ) correspond to the Weyl’s canonical coordinates of the three-dimensional
base, y1 parametrizes the extra dimension with 2πRy1 periodicity and the warp factors and
gauge potential are functions of (ρ, z).

A.1 The solutions

The solutions are determined by two arbitrary functions that solve a Laplace equation on
the three-dimensional base

L (logW0) = 0 , L (L) = 0 , with L ≡ 1
ρ
∂ρ (ρ∂ρ) + ∂2

z . (A.2)

The warp factor and the gauge potentials (Z,H, T ) are given by

Z = G` (L) , ?3d(H dφ) =
√

6
2(1 + q2) dL , dT = q

√
6

2(1 + q2)
dL

G`(L)2 , (A.3)

where q is a constant giving the ratio between the magnetic and electric charges and G` is
one of the following generating functions of one variable

G1(x) = sinh(ax+ b)
a

, G2(x) = i
cosh(ax+ b)

a
, G3(x) = x+ b,

G4(x) = sin(ax+ b)
a

, G5(x) = cos(ax+ b)
a

, a ∈ R+, b ∈ R . (A.4)
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The base scalar ν is obtained by integrating
1
ρ
∂zν = 1

2 ∂ρ logW0 ∂z logW0 + 3ε` a2

2 ∂ρL∂zL,

1
ρ
∂ρν = 1

4
(
(∂ρ logW0)2 − (∂z logW0)2

)
+ 3ε` a2

4
(
(∂ρL)2 − (∂zL)2

)
(A.5)

where ε` is a constant that depends on which choice of generating functions, G`, has been
made:

ε` =


1 , if ` = 1, 2 ,
0 , if ` = 3 ,
−1 , if ` = 4, 5 .

(A.6)

These integrals are simple to integrate but must be treated in a case-by-case manner
depending on the type of sources chosen for logW0 and L.

One can retrieve vacuum Weyl solutions by considering ` = 1, L = λL̄ and the limit
λ→ 0, aλ→ 1 and a−1 eb → 1. If we take ` = 3, physical sources must be point particles
and the gauge field part will not modify the base scalar ν. Physical solutions correspond
to well-known BPS multicenter solutions in five dimensions with a flat base.

Our interest relies on non-supersymmetric solutions and therefore on the choice G1 for
a generating function. For such a function, physical sources are necessarily rod sources.
We therefore consider n distinct rods of length Mi > 0 along the z-axis centered on z = zi.
Without loss of generality we can order them such that zi < zj for i < j. The conventions
are illustrated in figure 4. The coordinates of the endpoints of the rods on the z-axis are
given by

z±i ≡ zi ±
Mi

2 . (A.7)

We define the distances to the endpoints r(i)
± and the distances R(i)

± as

r
(i)
± ≡

√
ρ2 +

(
z − z±i

)2
, R

(i)
± ≡ r

(i)
+ + r

(i)
− ±Mi . (A.8)

Generating solutions of Laplace equation associated to such sources are given by log R
(i)
+

R
(i)
−

and solutions are given by

logW0 =
n∑
i=1

Gi log R
(i)
+

R
(i)
−
, L =

n∑
i=1

Pi log R
(i)
+

R
(i)
−
, (A.9)

where (Gi, Pi) corresponds to the weights of the ith rod on the harmonic functions. The
warp factors and the gauge field potentials (A.1) are then given by

Z = 1
2a

eb n∏
i=1

R(i)
+

R
(i)
−

aPi − e−b n∏
i=1

R(i)
−

R
(i)
+

aPi
 , W0 =

n∏
i=1

R(i)
+

R
(i)
−

Gi , (A.10)

H =
√

6
2(1 + q2)

n∑
i=1

Pi
(
r

(i)
− − r

(i)
+

)
, T = −

√
6 q a√

2(1 + q2)
coth

 n∑
i=1

aPi log R
(i)
+

R
(i)
−

+ b

 ,
ν = 1

4

n∑
i,j=1

(
GiGj + 3a2 PiPj

)
νij ,
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where we have also defined

E
(i,j)
±± ≡ r

(i)
± r

(j)
± +

(
z − z±i

) (
z − z±j

)
+ ρ2 , νij ≡ log E

(i,j)
+− E

(i,j)
−+

E
(i,j)
++ E

(i,j)
−−

. (A.11)

We have constructed a family of solutions given by 4n+ 2 parameters (Mi, Gi, Pi, zi, a, b).
We now have to study the regularity of the solutions that constrains the parameter space.
The potential constraints arise from coordinate singularities on the z-axis, regularity of the
spacetime elsewhere and from conditions on the asymptotics.

• The solutions are asymptotic to R1,3×S1 at large distance and regular everywhere out
of the z-axis if

a = sinh b , Pi > 0 . (A.12)

• Two types of physical rod sources.

– Black rods. If the weights at the ith rod satisfy

Gi = −1
2 , Pi = 1

2 sinh b , (A.13)

the timelike Killing vector ∂t shrinks at the rod and it corresponds to a regular
S2×S1 horizon of a two-charge black string or a S3 horizon of a two-charge black
holes. These two different topologies depend if the rod is connected with other rod
or not (see figure 2). Its contribution to the four-dimensional ADM mass after KK
reduction along y1,M(i), its electric and magnetic charges, Q(i)

e and Q(i)
m , are given by

M(i) = Mi

8G4
(3 coth b+ 1) , Q(i)

e

2 = q2Q(i)
m

2 = 3 q2

64π(1 + q2)G4

M2
i

sinh2 b
. (A.14)

The presence of a black string or black hole induces a temperature to the whole solu-
tion, T , which can be derived from regularity of the Euclidean metric. We find that

T −2 = 2π2M2
i e

3b

sinh3 b
d2
i

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(j−i)
3−2Gj

2

, (A.15)

where di corresponds to the following product of aspect ratios

d1 ≡ 1 , di ≡
i−1∏
j=1

n∏
k=i

(
(z−k − z

+
j )(z+

k − z
−
j )

(z+
k − z

+
j )(z−k − z

−
j )

) 3+4GjGk
4

when i = 2, . . . n . (A.16)

– Bubble rods. If the weights at the ith rod satisfy

Gi = 1
2 , Pi = 1

2 sinh b , (A.17)

the spacelike Killing vector ∂y1 shrinks and the rod corresponds to a degeneracy of
the y1-circle. The (ρ, y1) subspace corresponds to R2/Zki with ki ∈ Z+ if

R2
y1 = M2

i e
3b

2 k2
i sinh3 b

d2
i

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(j−i)
3+2Gj

2

. (A.18)

– 37 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
8

The rod corresponds to a S2 or S1×S1 bubble, depending if the rod is connected
with a black rod, and is wrapped by electromagnetic fluxes. Its contribution to the
four-dimensional ADM mass, M(i), its electric and magnetic charges, Q(i)

e and Q(i)
m ,

are given by

M(i) = Mi

8G4
(3 coth b− 1) , Q(i)

e

2 = q2Q(i)
m

2 = 3 q2

64π(1 + q2)G4

M2
i

sinh2 b
. (A.19)

• On the z-axis in between two disconnected rods, the φ-circle shrinks as the usual cylin-
drical degeneracy. The local three-dimensional base in between the (i− 1)th and ith has
a conical singularity given by the metric

ds2
3 ∼ dρ2 + dz2 + ρ2

d2
i

dφ2 . (A.20)

One can check that 0 < di < 1 for i ≥ 2 (A.16), and therefore corresponds to a conical
excess, i.e. a strut.

• If two rods of different nature are connected, the intersection is free from strut and the
φ-circle has a finite size there. More precisely, such an intersection can only appear
between a black rod touching a bubble rod (see figure 2).

Generic solutions have been depicted in figure 2. From far away, the solutions are
asymptotic to R1,3×S1 and have the following conserved charges in four dimensions after
KK reduction along y1

M = 1
8G4

n∑
i=1

Mi (3 coth b− 2Gi) , Qe = q Qm =
√

3 q
8
√
π(1 + q2)G4

∑n
i=1Mi

sinh b . (A.21)

A.2 Strut energy

If two successive rods are separated from each other, the section on the z-axis has a strut
between them (A.20). The strut carries negative energy density [18]. In this appendix, we
briefly review the computation of its stress tensor.

The strut or conical defects in general can be studied as a point source on a two
dimensional plane. In general it can be model by the Liouville system

ds2
Σ = e2A(x)

(
dx2

1 + dx2
2

)
,

(
∂2
x1 + ∂2

x2

)
A+ κe2A = 0 (A.22)

where κ is the curvature of the surface Σ. We are interested in the behavior of sources for
the Liouville potential, A, given as(

∂2
x1 + ∂2

x2

)
A = −2πS δ(x1, x2).14 (A.23)

The effect of the curvature can be ignored in the region near the source and we can fix
κ = 0 without loss of generality. The solution can be expressed in terms of cylindrical
coordinates around the source, (x1 = r cosφ, x2 = r sinφ), as

A = −S log r, ds2
Σ = r−2S

(
dr2 + r2dφ2

)
. (A.24)

14We normalize the delta function as
∫
δ(x1, x2) dx1 dx2 = 1.
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For S < 1, the space near the source has a conical deficit most easily seen with the
coordinates

ρ = r1−S , ds2
Σ = 1

(1− S)2dρ
2 + ρ2dφ2. (A.25)

The local angle is (1−S)φ and since φ has period 2π, there is a conical deficit given by the
source S. We can express the volume form of Σ and the δ function in the new coordinates as

dVΣ = e2Adx1 ∧ dx2 = ρ

1− Sdρ ∧ dφ, e−2Aδ(x1, x2) = 1− S
2πρ δ(ρ). (A.26)

These are such that ∫
Σ
e−2Aδ(x1, x2)dVΣ = 1. (A.27)

The Ricci curvatures of Σ with the source is given as

Rij = −
(
∂2
x1 + ∂2

x2

)
A δij = 2πS δ(x1, x2) δij , R = 4πS δ(x1, x2)e−2A (A.28)

Now, we consider a D dimensional spacetime with a conical deficit corresponding to a
codimension-two source. The metric near such source (ρ = 0) can be written as

ds2
D = ds2 (MD−2) + e2W

(
e2νdρ2 + ρ2dφ2

)
(A.29)

with φ ∼ φ + 2π and ν constant. The external spacetime MD−2 is the world volume di-
rections of the source. The warp function W generically depends on MD−2, while ν is a
constant. We can identify the two dimensional space where the source is localized with the
Liouville system Σ above. The deficit angle associate to the source is then

S = 1− e−ν . (A.30)

The contribution of the source to the Ricci curvature of the full system is

Rmn = 0 + . . . , Rij = 2πS δ(x1, x2) δij + . . . (A.31)

where the ellipses correspond to contributions from other sources in the spacetime, (i, j) to
the (ρ, φ) direction and (m,n) to MD−2 directions. By using Einsteins equation, we read
off the stress tensor for the co-dimension 2 source as

Tmn = − S

4GD

[
e−2Aδ(x1, x2)

]
e−2W gmn, Tij = 0. (A.32)

To obtain the energy density of the source, first we consider the conserved current

jµ = −Tµνkν , kµ = (∂t)µ . (A.33)

We can then write

jm = S

4G5

[
e−2Aδ(x1, x2)

]
e−2W δmt , ji = 0. (A.34)

To compute the energy density for an asymptotic observer, we consider the normalized
killing vector vµ = 1√

−k·kk
µ. In the static cases of interest, this gives

e = −jµvµ = S

4G5

[
e−2Aδ(x1, x2)

]
e−2W√−gtt. (A.35)
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We can integrate over a spacial slice to obtain the energy of the strut as

E =
∫
e ·
[
e−2Aδ(x1, x2)

]
·
√
ĝ e2WdVΣ dw1 · · · dwD−3 (A.36)

= 2πS
κ2
D

∫ √
gMD−2 dw1 · · · dwD−3, (A.37)

where the w’s are spacial coordinates of MD−2 and ĝ is the determinant of the induced
metric on the spacial slices of MD−2.

We are now in a position to compute the stress energy of struts in between the rods
of a generic Weyl solutions in five dimensions. We consider then a Weyl solution sourced
by n rods as in (A.10) given by the metric (A.1). In the region near the strut in between
the (i− 1)th and ith rods, we have [17]

ds2(M3) = Z−1
[
−W0dt

2 +W−1
0 dy2

1 + Z3e2νdz2
]
, e2ν = di

2 , (A.38)

where 0 < di < 1 is given in (A.16). The energy of the strut is then

E = −2πRy
4G5

(1− di) = −1− di
4G4

. (A.39)

For the two-bubble configuration of the section 2.3, we find

E = − M2δ

(M + δ)2
2πRy
4G5

= − M2δ

4G4(M + δ)2 . (A.40)

B Vacuum Weyl solutions in six dimensions

In this section, we construct in details axisymmetric solutions of the six-dimensional the-
ory (3.1) considering that the gauge field is trivial. We remind that the ansatz for the
metric is

ds2
6 = −U0 dt

2 + U1 dy
2
1 + U2 dy

2
2 + 1

U0U1U2

[
e2ν

(
dρ2 + dz2

)
+ ρ2dφ2

]
, (B.1)

where UI and ν are (ρ, z)-dependent warp factors governed by the equations (4.3).
We consider n distinct rods of length Mi > 0 along the z-axis centered on z = zi.

Without loss of generality we can order them as zi < zj for i < j (see figure 4). The warp
factors are given by

UI =
n∏
i=1

R(i)
+

R
(i)
−

G
(I)
i

, ν = 1
8
∑
I<J

n∑
i,j=1

(
G

(I)
i +G

(J)
i

) (
G

(I)
j +G

(J)
j

)
νij , (B.2)

where G(I)
i defines the weight of the ith rod on the Ith warp factor that will be fixed by

regularity and (R(i)
± , νij) are function of (ρ, z) defined by (4.5).

To study the metric far away from the rods, it is appropriate to use spherical coordinates

ρ = r sin θ , z = r cos θ , (B.3)

and we have, at large r,
UI ∼ 1 , e2ν ∼ 1 . (B.4)

Therefore, the solutions are asymptotic to T2 × R1,3.
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It is rather straightforward from the expressions of (R(i)
± , νij), (4.5), that UI and e2ν

are finite and strictly positive out of the z-axis. The solutions are then regular and have
the topology of T2 × R1,3 out of the z-axis.

The φ-circle degenerates on the z-axis out of the rods. This degeneracy corresponds to
the usual cylindrical coordinate singularity on the axis but conical singularities can occur
depending on the value of e2ν in these regions. Moreover, on the z-axis but on a rod,
UI is either diverging or blowing and e2ν goes to zero. This requires a careful analysis
constraining the values of G(I)

i to induce either a coordinate singularity corresponding to
degeneracies of the extra circles (y1, y2) or a horizon.

B.1 Regularity on the z-axis

We will first discuss the regularity on the rods before discussing the regularity elsewhere
on the z axis.

B.1.1 At the ith rod

The local spherical coordinates around the ith rod are given by ri → 0 for 0 ≤ θi ≤ π with

ρ =
√
ri(ri +Mi) sin θi , z =

(
ri + Mi

2

)
cos θi + zi . (B.5)

The two-dimensional base behaves as

dρ2 + dz2 ∼ Mi sin2 θi
4

(
dr2
i

ri
+Mi dθ

2
i

)
. (B.6)

Moreover,

R
(i)
+

R
(i)
−
∼ Mi

ri
,

R
(j)
+

R
(j)
−
∼

z+
j −

(
zi + Mi

2 cos θi
)

z−j −
(
zi + Mi

2 cos θi
)
sign(j−i)

, j 6= i , (B.7)

where we remind that z±j are the rod endpoints (4.4). Thus,

UI ∼
(
Mi

ri

)G(I)
i ∏

j 6=i

R(j)
+

R
(j)
−

G
(I)
j

. (B.8)

To derive the behavior of e2ν we first need the limits for νjk. We have different situations:

eνii ∼ 16r2
i

M2
i sin4 θi

, eνjk ∼


1 if i < j ≤ k or j ≤ k < i

(z−k − z
+
j )2(z+

k − z
−
j )2

(z+
k − z

+
j )2(z−k − z

−
j )2 if j < i < k

,

eνij ∼



(z+
j − z

−
i )2

(
z−j −

(
zi + Mi

2 cos θi
))2

(z−j − z−i )2
(
z+
j −

(
zi + Mi

2 cos θi
))2 if j > i,

(z−j − z+
i )2

(
z+
j −

(
zi + Mi

2 cos θi
))2

(z+
j − z

+
i )2

(
z−j −

(
zi + Mi

2 cos θi
))2 if j < i,

. (B.9)
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We gather everything to derive the behavior of

2ν = 1
4
∑
I<J

n∑
j,k=1

(
G

(I)
j +G

(J)
j

) (
G

(I)
k +G

(J)
k

)
νjk ≡

1
2

n∑
j,k=1

αjk νjk ,

where we have defined αjk ≡ 1
2
∑
I<J

(
G

(I)
j +G

(J)
j

) (
G

(I)
k +G

(J)
k

)
. Finally, we have

e2ν ∼
( 4ri
Mi sin2 θi

)αii ∏
j 6=i

R(j)
+

R
(j)
−

−2αij

×
i−1∏
j=1

n∏
k=i

(
(z−k − z

+
j )(z+

k − z
−
j )

(z+
k − z

+
j )(z−k − z

−
j )

)2αjk ∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)2 sign(j−i)αij

,

(B.10)

and the θi-dependent expansion of R
(j)
+

R
(j)
−

is given in (B.7). We have also considered that the

product “∏i−1
j=1” is equal to 1 for the first rod, i = 1. We define the constants di which

depend only on the geometry of the rods and are independent of ri and θi.

d1 ≡ 1 , di ≡
i−1∏
j=1

n∏
k=i

(
(z−k − z

+
j )(z+

k − z
−
j )

(z+
k − z

+
j )(z−k − z

−
j )

)αjk
when i = 2, . . . n . (B.11)

Gathering all these expressions, the metric components behave around the ith rod as

gtt∼−
(
Mi

ri

)G(0)
i
∏
j 6=i

(
R

(j)
+

R
(j)
−

)G(0)
j

, gyaya ∼
(
Mi

ri

)G(a)
i
∏
j 6=i

(
R

(j)
+

R
(j)
−

)G(a)
j

,

gφφ∼M2
i sin2 θi

(
ri
Mi

)1+
∑

I
G

(I)
i
∏
j 6=i

(
R

(j)
+

R
(j)
−

)−∑
I
G

(I)
j

.

griri ∼ d2
i

(
ri
Mi

)∑
I
G

(I)
i
( 4ri
Mi sin2 θi

)αii−1 ∏
j 6=i

(
R

(j)
+

R
(j)
−

)−2αij−
∑

I
G

(I)
j ∏

j 6=i

(
z+
j −z

−
i

z−j −z
−
i

)2sign(j−i)αij
,

gθiθi ∼M
2
i d

2
i

(
ri
Mi

)1+
∑

I
G

(I)
i
( 4ri
Mi sin2 θi

)αii−1 ∏
j 6=i

(
R

(j)
+

R
(j)
−

)−2αij−
∑

I
G

(I)
j ∏

j 6=i

(
z+
j −z

−
i

z−j −z
−
i

)2sign(j−i)αij
.

(B.12)

To avoid singularity along the time and the extra dimensions, it is clear that all G(I)
i ≤ 0.

This necessarily implies that the S2 parametrized by (θi, φ) must have a finite size at the
rod. That is

G
(0)
i +G

(1)
i +G

(2)
i = −1 , (B.13)

which implies −1 ≤ G(I)
i ≤ 0. By studying carefully all the possibilities, we can check that

having two G(I)
i different from 0 leads to a singular metric. Therefore, we have only three

possible physical situations for the rod. We will first assume that the rod is disconnected
from the others.
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• G
(0)
i = −1 and G(1)

i = G
(2)
i = 0: a two-dimensional black brane.

Having only G(0)
i non-zero makes the time fiber to degenerate while the ya-fibers have

a finite size at the rod. More concretely, the ith rod corresponds to a horizon where
the timelike Killing vector ∂t shrinks. Indeed, we have

αii = 1 , αij = −1
2
(
2G(0)

j +G
(1)
j +G

(2)
j

)
,

which implies that the θi-dependent factors in gtt and griri are remarkably the same.
The local six-dimensional metric around the ith rod is then
ds2∣∣

ri=0 = gy1y1(θi) dy2
1 + gy2y2(θi) dy2

2 + gθiθi(θi)
(
dθ2
i + ḡφφ(θi) sin2 θi dφ

2
)

+ ḡriri(θi)
(
dρ2

i − κ2
i ρ

2
i dt

2
)
,

(B.14)

where ρ2
i ≡ 4ri, (gy1y1(θi), gy2y2(θi), gθiθi(θi), ḡφφ(θi), ḡriri(θi)) are all finite and non-

zero for 0 ≤ θi ≤ π (B.12) and the surface gravity, κi, is given by

κi ≡
1

2diMi

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(i−j)αij

. (B.15)

The metric corresponds then to the horizon of a two-dimensional black brane with
a S2×T2 topology where the T2 is parametrized by (y1, y2) and defined the world
volume of the black brane. One can relate the surface gravity to the temperature of
the black brane by requiring smoothness of the Euclideanized solution. We find

Ti = κi
2π . (B.16)

Note that if we study axisymmetric solutions with multiple black branes in thermal
equilibrium the temperature associated to each black rod must be fixed to be equal.
Moreover, as gy1y1(θi)gy2y2(θi)gθiθi(θi)2ḡφφ(θi) is remarkably independent of θi, the
area of the horizon is simple to derive. We find

Ai =
∫
S2×T 2

√
gy1y1(θi)gy2y2(θi)gθiθi(θi)gφφ(θi) = (2π)3

κi
MiRy1Ry2 . (B.17)

• G
(1)
i = −1 and G(0)

i = G
(2)
i = 0: a species-1 bubble.

For those values, the time and y2 fibers have a finite size while the y1-fiber degenerates.
More concretely, the spacelike Killing vector ∂y1 shrinks on the ith rod corresponding
to a coordinate singularity of an origin of R2 space. We have

αii = 1 , αij = −1
2
(
2G(1)

j +G
(0)
j +G

(2)
j

)
,

which implies that the θi-dependent factors in gy1y1 and griri are the same. The local
six-dimensional metric around the ith rod is then
ds2∣∣

ri=0 = −gtt(θi) dt2 + gy2y2(θi) dy2
2 + gθiθi(θi)

(
dθ2
i + ḡφφ(θi) sin2 θi dφ

2
)

+ ḡriri(θi)

dρ2
i + ρ2

i

C
(1)
i

2 dy
2
1

 ,
(B.18)
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where (gtt(θi), gy2y2(θi), gθiθi(θi), ḡφφ(θi), ḡriri(θi)) can be obtained from (B.12) and
are all finite and non-zero for 0 ≤ θi ≤ π. Moreover, we have defined ρ2

i ≡ 4ri and
the constant, C(1)

i , is given by

C
(1)
i ≡ 2diMi

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(j−i)αij

. (B.19)

The two dimensional subspace (ρi, y1) describes a smooth origin of R2 or a smooth
discrete quotient R2/Zki if the parameters are fixed according to the radius of the
y1-circle

Ry1 = C
(1)
i

ki
, ki ∈ N. (B.20)

To conclude, the time slices of the five-dimensional space at the ith rod is a bolt
described by a warped S2×Sy2 fibration over an origin of a R2/Zki space.
Moreover, one can check that gy2y2(θi)gθiθi(θi)2ḡφφ(θi) is remarkably independent of
θi if there is no black rods in the configuration. Therefore, one can easily derive the
area of the S2×Sy2 bubble for such configurations and we find

ABi =
∫
S2×Sy2

√
gy2y2(θi)gθiθi(θi)gφφ(θi) = (2π)2 kiMiRy1Ry2 . (B.21)

• G
(2)
i = −1 and G(0)

i = G
(1)
i = 0: a species-2 bubble.

This situation is similar to the previous one but the role of the y1 and y2 fibers are
inverted. On such a rod, the spacelike Killing vector ∂y2 shrinks defining a bolt.
The bolt corresponds to a warped S2×Sy1 at the origin of a R2/Zki space defined
by (ρi, y2). The orbifold parameter ki ∈ N relates the radius of the y2-circle to the
parameter of the solution such as

Ry2 = C
(2)
i

ki
, C

(2)
i ≡ 2diMi

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(j−i)αij

. (B.22)

If we assume now that the rod is connected, we still have the three same choices of
weights but the local topology might change. For instance, we consider that the ith rod
is a black rod given by G

(0)
i = −1 and G

(1)
i = G

(2)
i = 0. If the rod is connected from

above to a species-1 bubble rod and not connected from below, then the local metric at the
horizon is still given (B.14). However, gy1y1(θi) and ḡφφ(θi) are not finite for 0 ≤ θi ≤ π

anymore. More precisely, we have gy1y1(θi) ∼ 0 and ḡφφ(θi) sin2 θi finite around θi → 0.
Therefore, the y1-circle pinches off at the north pole and the horizon has a S3×S1 topology
corresponding to a black string. Note that the surface gravity computed in (B.15) is still
the same if the rod is connected and is still well-defined. If the rod is now connected from
above and below to two species-1 bubble rods, we have a S2×T2 horizon again but the S2

is now described by (θi, y1). Similar scenarios happen if the ith rod is a bubble rod: we can
have either an S2×S1 bubble or a S3 bubble depending on what is surrounding the rod.
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To conclude, we have three types of rods that can source physically our solutions on
the axis. For each type of rods the φ-circle has a finite size. The different rods and their
physics has been depicted in figure 5.

B.1.2 On the z-axis and out of the rods

We now study the behavior of the solutions on the z-axis, ρ→ 0, and out of the rods where
the φ-circle can shrink to zero size. On these segments, each R(i)

± (4.5) is non-zero and finite

R
(i)
± = 2|z − zi| ±Mi . (B.23)

Thus, all UI are also non-zero and finite there. The regularity reduces to the study of the
three-dimensional subspace (ρ, z, φ),

ds2
3 = e2ν

(
dρ2 + dz2

)
+ ρ2dφ2 . (B.24)

At ρ = 0 and out of the rods, we want this space to correspond to the cylindrical coordinate
degeneracy. First we have

eνjk ∼


1 if j ≤ k and z 6∈ [zj + Mj

2 , zk −
Mk
2 ]

(z−k − z
+
j )2(z+

k − z
−
j )2

(z+
k − z

+
j )2(z−k − z

−
j )2 if j < k and z ∈]zj + Mj

2 , zk −
Mk
2 [

. (B.25)

Therefore, we get

e2ν ∼

 1 if z < a1 − M1
2 and z > an + Mn

2

d2
i if z ∈ ]zi−1 + Mi−1

2 , zi − Mi
2 [ , ∀i

(B.26)

where di is given by the coordinate of the rod endpoints in (B.11). First we notice that
asymptotically, z > z+

n and z < z−1 , the base space is directly flat R3 without conical
singularity. Now, in between two rods, we have two possibilities if they are connected or
disconnected.

• Disconnected rods.

We consider the segment in between the disconnected (i − 1)th rod and ith rods, zi−1 +
Mi−1

2 < zi − Mi
2 . The three-dimensional base is then given by the metric

ds2
3 ∼ d2

i

(
dρ2 + dz2 + ρ2

d2
i

dφ2
)
. (B.27)

The segment corresponds to a R3 base with the local cylindrical angle φi ≡ φ
di
. Moreover,

note that, for the three species of physical rod sources, we have

(z−k − z
+
j )(z+

k − z
−
j )

(z+
k − z

+
j )(z−k − z

−
j )

=
(zk − zj)2 − 1

4(Mk +Mj)2

(zk − zj)2 − 1
4(Mk −Mj)2 < 1 , αjk = 1 or 1

2 > 0 . (B.28)

Then, we necessarily have d2
i < 1. Thus, the segment has a conical excess and the period of

the local angle, φi = φ
di
, is 2π

di
> 2π. This manifests itself as a string with negative tension,
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or strut, between the two rods. The strut exerts the necessary repulsion so that the whole
structure does not collapse. We can calculate the stress tensor and the energy of the strut
using the method described in section A.2, and we will similarly find that the energy is
given by

E = −1− di
4G4

, G4 = G6
(2π)2Ry1Ry2

. (B.29)

As we aim to construct regular solution, this situation must be prohibited and we will
then treat the case where the rods are connected.

• Connected rods.

We consider the intersection between the connected (i−1)th rod and ith rods, zi−1+Mi−1
2 =

zi − Mi
2 . The intersection then consists of a point with coordinates(ρ, z) = (0, z+

i−1) =
(0, z−i ). We first define local spherical coordinates as follows

ri ≡
√
ρ2 +

(
z − z−i

)2
, cos τi ≡

z − z−i
ri

, (B.30)

that is ρ = ri sin τi , z = ri cos τi + z−i . (B.31)

The two-dimensional base transforms to

dρ2 + dz2 = dr+i
2 + r+i

2
dτ+
i

2
. (B.32)

At ri → 0 we have

R
(i−1)
+

R
(i−1)
−

∼ 2Mi−1
(1+cosτi)ri

,
R

(i)
+

R
(i)
−
∼ 2Mi

(1−cosτi)ri
,

R
(j)
+

R
(j)
−
∼
(
z+
j −z

+
i

z−j −z
+
i

)sign(j−i)

, j 6= i−1, i ,

eνi−1 i−1 ∼ (1+cosτi)2

4 , eνii ∼ (1−cosτi)2

4 , eνi−1 i ∼
(z+
i −z

−
i−1)2

(z+
i −z

+
i−1)2(z−i −z−i−1)2 ri

2

eνjk ∼


(z−k −z

+
j )2(z+

k −z
−
j )2

(z+
k −z

+
j )2(z−k −z

−
j )2 if j < i−1 and i< k

1 otherwise
,

eνi−1j ∼


(z+
j −z

−
i−1)2

(
z−j −z

+
i−1

)2

(z−j −z−i−1)2
(
z+
j −z

+
i−1

)2 if j > i,

1 if j < i−1,

,

eνij ∼


1 if j > i,
(z+
i −z

−
j )2

(
z−i −z

+
j

)2

(z−i −z−j )2
(
z+
i −z

+
j

)2 if j < i−1,
, (B.33)

We can directly see that for any types of ith and (i− 1)th rods, the φ-circle keeps a finite
size at the intersection unlike the disconnected case. This means that the intersection is
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protected from the conical excess associated to the degeneracy of the φ-circle in between
two rods.

In order to determine the local topology, a distinction must be made between different
types of rods. Being connected, the ith and (i − 1)th rods are necessarily of a different
nature.15 Consequently, we have three possible scenario: an intersection between a black
rod and a species-1 bubble rod, between a black rod and a species-2 bubble rod and between
a species-1 bubble rod and a species-2 bubble rod. The two former gives the same topology
by inverting the role of the y1 and y2 fibers. From the above expressions we find that the
local six-dimensional metric is given by

ds2∣∣
ri=0∝ αi dφ

2 + βi dy
2
2 + dr2i

ri
+ ri

(
dτ2
i − 2κ2

i (1− cos τi) dt2 + 2(1 + cos τi)
dy2

1
R2
y1 ki−1

2

)
,

(B.34)
where αi and βi are irrelevant finite constants and the surface gravity of the black rod κi
and the orbifold parameter of the species-1 bubble rod ki−1 are given in (B.15) and (B.20).
This corresponds to the usual metric at the north pole of a horizon. At this type of loci, a
circle composing the surface of the horizon is degenerating which is here y1. In the present
case, it degenerates with a conical defect, parametrized by ki−1, related to the species-1
bubble that is connected to the black brane.

Now, if the two connected rods consist of a species-1 bubble rod and a species-2 bubble
rod, the local metric is

ds2∣∣
ri=0∝−βi dt

2+αi dφ2+ dr2i
ri

+ri

(
dτ2
i +2(1−cosτi)

dy2
2

R2
y2 ki

2 +2(1+cosτi)
dy2

1
R2
y1 ki−1

2

)
,

(B.35)
where αi and βi are irrelevant finite constants and (ki−1, ki) are the orbifold parameters of
the connected species-1 bubble and species-2 bubble rods. This corresponds to the metric
of the origin of an orbifolded R4 parametrized by (ri, τi, y1, y2). The two angles have the
same conical defects as the connected bubbles but the local topology is free from struts
and conical excess. Moreover, if ki−1 = ki = 1, the time slices of the metric corresponds to
the origin of a R4 with a Sφ fibration and the local spacetime is entirely smooth.

C Charged Weyl solutions in six dimensions

In this section, we construct in detail physical Weyl solutions of the six-dimensional
Einstein-Maxwell theory (3.1). We recall that the ansatz for the metric is

ds2
6 = 1

Z1

[
−W0 dt

2 + dy2
1

W0

]
+ Z1
Z0

(dy2 +H0 dφ)2 + Z0Z1
[
e2ν

(
dρ2 + dz2

)
+ ρ2dφ2

]
,

F3 = d [H1 dφ ∧ dy2 + T1 dt ∧ dy1] (C.1)

15Otherwise, they form a single rod.

– 47 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
8

The equations of motion obtained from the Maxwell equations and Einstein equations by
assuming an electromagnetic duality d(T1 dt∧dy1) = q ?6d(H1 dφ∧dy2) can be decomposed
into three almost-linear layers:

Vacuum layer: L logW0 = 0 ,

Maxwell layer: L logZI =− γ−2
I

ρZI
2

[
(∂ρHI)2+(∂zHI)2

]
, (γ0,γ1) =

(
1,
√

2
1+q2

)
,

∂ρ

( 1
ρZI

2 ∂ρHI

)
+∂z

( 1
ρZI

2 ∂zHI

)
= 0 ,

Base layer: ∂zν= ρ

2 ∂ρ logW0∂z logW0+ρ∂ρ logZ1∂z logZ1+ ρ

2 ∂ρ logZ0∂z logZ0

+ 1
2ρZ2

0
∂ρH0∂zH0+ 1+q2

2ρZ2
1
∂ρH1∂zH1 ,

∂ρν= ρ

4
(
(∂ρ logW0)2−(∂z logW0)2

)
+ ρ

2
(
(∂ρ logZ1)2−(∂z logZ1)2

)
ρ

4
(
(∂ρ logZ0)2−(∂z logZ0)2

)
+ 1

4ρZ2
0

(
(∂ρH0)2−(∂zH0)2

)
+ 1+q2

4ρZ2
1

(
(∂ρH1)2−(∂zH1)2

)
, (C.2)

We consider n distinct rod sources of lengthMi > 0 along the z-axis centered on z = zi such
as zi < zj for i < j. The warp factors and gauge field potentials that solve the equations
of motion are given in (5.10) where we have defined a set of weights, (Gi, P (0)

i , P
(1)
i ) and 5

gauge field parameters (aI , bI , q).
To study the metric far away from the rods, it is appropriate to use spherical coordi-

nates ρ = r sin θ, z = r cos θ, and we have, at large r,

W0 ∼ 1 , e2ν ∼ 1 , ZI ∼
sinh bI
aI

. (C.3)

Therefore, the solutions are asymptotic to T2 × R1,3 if

aI = sinh bI , bI ≥ 0. (C.4)

It is rather straightforward from the expressions of (R(i)
± , νij), (4.5), thatW0 and e2ν are

finite and strictly positive out of the z-axis. However, one must impose that ZI ≥ 0 (5.10)
everywhere which restricts to

P
(I)
i ≥ 0 , ∀i . (C.5)

C.1 Regularity on the z-axis

As for vacuum solutions, potential singularities arise on the z-axis. We first discuss the
regularity on the rods before the regularity elsewhere on the axis.
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C.1.1 At the ith rod

Using the local spherical coordinates around the ith rod, (ri, θi) (B.5), and the expansion
of the generating functions (B.7) and (B.9), we found that16

HI ∼ γI

−MiP
(I)
i cosθi+

∑
j 6=i

sign(j−i)MjP
(I)
j

 ,

T1∼−qγ1 sinhb1
[
1+O

(
r

2P (1)
i sinhbI

i

)]
,

gtt∼−
2sinhb1
eb1

(
Mi

ri

)Gi−P (1)
i sinhb1 ∏

j 6=i

R(j)
+

R
(j)
−

Gj−P
(1)
j sinhb1

,

gy1y1 ∼
2sinhb1
eb1

(
Mi

ri

)−Gi−P (1)
i sinhb1 ∏

j 6=i

R(j)
+

R
(j)
−

−Gj−P
(1)
j sinhb1

,

gy2y2 ∼
eb0 sinhb1
eb1 sinhb0

(
Mi

ri

)P (1)
i sinhb1−P (0)

i sinhb0 ∏
j 6=i

R(j)
+

R
(j)
−

P
(1)
j sinhb1−P (0)

j sinhb0

,

g̃φφ∼
M2
i e

b0+b1

4sinhb0 sinhb1
sin2 θi

(
ri
Mi

)1−P (1)
i sinhb1−P (0)

i sinhb0 ∏
j 6=i

R(j)
+

R
(j)
−

P
(1)
j sinhb1+P (0)

j sinhb0

.

griri ∼
d2
i e
b0+b1

4sinhb0 sinhb1

(
Mi

ri

)P (1)
i sinhb1+P (0)

i sinhb0 ( 4ri
Mi sin2 θi

)αii−1

×
∏
j 6=i

R(j)
+

R
(j)
−

−2αij+P (1)
j sinhb1+P (0)

j sinhb0 ∏
j 6=i

(
z+
j −z

−
i

z−j −z
−
i

)2sign(j−i)αij

,

gθiθi ∼
M2
i d

2
i e
b0+b1

4sinhb0 sinhb1

(
ri
Mi

)1−P (1)
i sinhb1−P (0)

i sinhb0 ( 4ri
Mi sin2 θi

)αii−1

×
∏
j 6=i

R(j)
+

R
(j)
−

−2αij+P (1)
j sinhb1+P (0)

j sinhb0 ∏
j 6=i

(
z+
j −z

−
i

z−j −z
−
i

)2sign(j−i)αij

. (C.6)

where R
(j)
+

R
(j)
−
, j 6= i, are finite functions of θi (B.7), the exponents αjk are defined according

to the weights in (5.11) and di is the function of aspect ratio given in (B.11). We have also
considered that the product “∏i−1

j=1” is equal to 1 for the first rod, i = 1. By investigating
each power in ri, we have three possible choice of physical weights. As for the vacuum
solutions, we first discuss the rod’s topology when the rod is disconnected from the others.

• P
(1)
i sinh b1 = P

(0)
i sinh b0 = −Gi = 1

2 : a three-charge black brane.

The ith rod corresponds to a horizon of a two-dimensional black brane with a S2×T2

topology. The local six-dimensional metric has the same form as in (B.14), and the
16We have denoted g̃φφ the metric component of φ without the connection in the y2 fiber, that is g̃φφ =

ρ2Z0Z1.
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surface gravity is now given by

κi ≡
sinh b1
eb1

√
2 sinh b0
eb0

1
diMi

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(i−j)αij

. (C.7)

The surface gravity can be associate to a temperature of the black brane by requiring
smoothness of the Euclideanized solution Ti = κi

2π . The gauge fields (C.6) are regular
at the horizon and carries two magnetic charges (one is coming from the Kaluza-Klein
monopole along y2) and an electric charge, that can be derived by integrating the
fluxes at the rod. We find

Q(1)
e i = qQ(1)

mi = q

4
√

2π(1 + q2)G4

Mi

sinh b1
, Q(0)

mi = Mi

8
√
πG4 sinh b0

. (C.8)

Moreover, the area of the horizon is simple to derive and we find

Ai =
∫
S2×T 2

√
gy1y1(θi)gy2y2(θi)gθiθi(θi)gφφ(θi) = (2π)3

κi
MiRy1Ry2 . (C.9)

Finally, one can compute the contribution of the ith rod to the four-dimensional
ADM mass following the procedure (3.11) and (3.12) and isolating the relevant term.
We find

Mi = Mi

8G4
(1 + coth b0 + 2 coth b1) , (C.10)

• P
(1)
i sinh b1 = P

(0)
i sinh b0 = Gi = 1

2 : a three-charge species-1 bubble.

The ith rod corresponds to a Sy2×S2 bubble where the y1-circle degenerates defining
an origin of an R2 space. The local metric has the same form as in (B.18) with a
constant C(1)

i given by

C
(1)
i ≡ eb1

sinh b1

√
eb0

2 sinh b0
diMi

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(j−i)αij

. (C.11)

As for vacuum solutions, the regularity (with potential conical defect at the bubble
locus) requires

Ry1 = C
(1)
i

ki
, ki ∈ N. (C.12)

Moreover, the component of the gauge field that has a leg along dy1 needs to vanish.
One can check from (C.6) that we have

Z1 = −qγ1 sinh b1
[
1 +O

(
ρ2
i

)]
⇒ F3|dy1 = O (ρi) dρi ∧ dt . (C.13)

Therefore, the gauge field is regular and carries an electric and two magnetic charges
at the bubble given by the same expression as in (C.8).
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As for neutral solutions, one can easily derive the area of the S2×Sy2 bubble if there
is no black rods in the configuration. We find

ABi =
∫
y2,θi,φ

√
gy2y2(θi)gθiθi(θi)gφφ(θi) = (2π)2

√
eb1

2 sinh b1
kiMiRy1Ry2 . (C.14)

The contribution of the rod to the four-dimensional ADM mass is given by

Mi = Mi

8G4
(−1 + coth b0 + 2 coth b1) , (C.15)

• Gi = P
(1)
i = 0 and P (0)

i sinh b0 = 1: a one-charge species-2 bubble.

This situation is similar to the previous one by inverting the role of the y1 and y2
fibers. On such a rod, the spacelike Killing vector ∂y2 shrinks corresponding to a
Sy1×S2 at an origin of a R2/Zki . The orbifold parameter ki ∈ N relates the radius of
the y2-circle to the parameter of the solution such as

Ry2 = C
(2)
i

ki
, C

(2)
i ≡ eb0

sinh b0
diMi

∏
j 6=i

(
z+
j − z

−
i

z−j − z
−
i

)sign(j−i)αij

. (C.16)

Because P (1)
i = 0, H1 and T1 are trivial on the rod and the rod is not charged under

the gauge field. However, the rod carries a magnetic charge for the KK gauge field
H0dφ:

Q(1)
e i = Q(1)

mi = 0 , Q(0)
mi = Mi

4
√
πG4 sinh b0

. (C.17)

The area of the bubble is also computable when there is no black rods and give the
same result as for a species-1 bubble (C.14).

When the rod is connected to other rods, the regularity conditions, the expressions of
the conserved charges are identical but the local topology can change. We refer the reader
to the end of the section B.1.1 since the discussion is identical to the vacuum case.

C.1.2 On the z-axis and out of the rods

The regularity of the solutions on the z-axis out of the rods is identical to the vacuum
Weyl solutions, and we refer the reader to section B.1.2 for all the details.

On the semi-infinite segments of the z-axis above and below the rod configuration, the
φ-circle shrinks smoothly as the usual coordinate singularity of the cylindrical coordinate
system.

The solutions have a strut at each section in between two disconnected rods. The strut
manifests itself as a conical excess on the three-dimensional base where the φ-circle shrinks:

ds2
3 ∼ d2

i

(
dρ2 + dz2 + ρ2

d2
i

dφ2
)
, (C.18)

where di is given in (B.11) and is smaller than one.
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If two rods of different nature are connected, the φ-circle does not shrink at the in-
tersection point and the local geometry is regular. For instance, the local geometry at the
intersection of two connected species-1 and species-2 bubble corresponds to the origin of a
R4 given by (B.35). The intersection between a black brane and a bubble gives the usual
metric at a pole of the horizon given by (B.34).

Charged Weyl solutions that are built from connected species-1 and species-2 smooth
bubbles are therefore smooth everywhere on the z-axis and elsewhere.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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