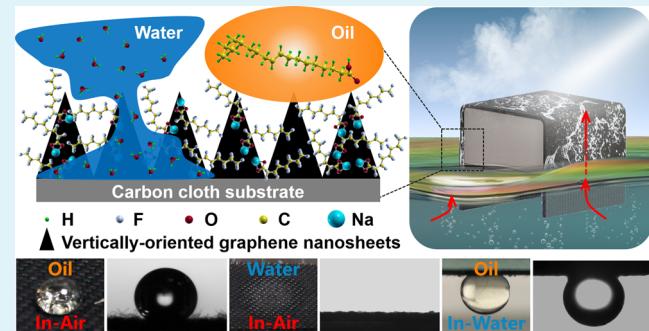


1 Plasma-Made Graphene Nanostructures with Molecularly Dispersed 2 F and Na Sites for Solar Desalination of Oil-Contaminated Seawater 3 with Complete In-Water and In-Air Oil Rejection

4 Shenghao Wu, Biyao Gong, Huachao Yang, Yikuan Tian, Chenxuan Xu, Xinzhen Guo, Guoping Xiong,
5 Tengfei Luo, Jianhua Yan, Kefa Cen, Zheng Bo,* Kostya Ken Ostrikov, and Timothy S. Fisher

Cite This: <https://dx.doi.org/10.1021/acsami.0c07921>

Read Online


ACCESS |

Metrics & More

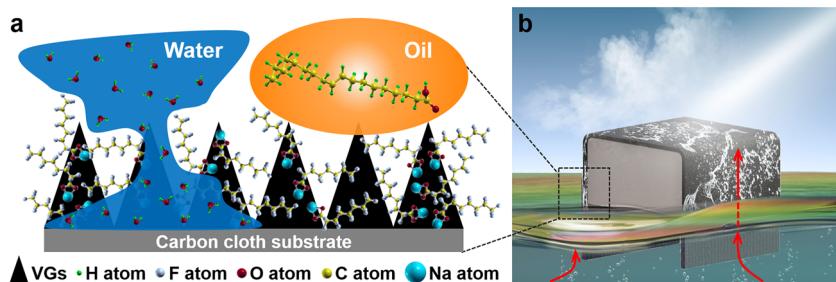
Article Recommendations

Supporting Information

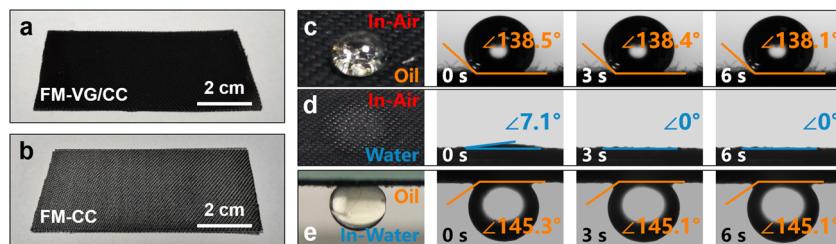
6 **ABSTRACT:** Solar desalination that exploits interfacial evapo-
7 ration represents a promising solution to global water scarcity.
8 Real-world feedstocks (e.g., natural seawater and contaminated
9 water) include oil contamination issues, raising a compelling need
10 for desalination systems that offer anti-oil-fouling capability;
11 however, it is still challenging to prepare oil-repellent and
12 meanwhile water-attracting surfaces. This work demonstrates a
13 concept of molecularly dispersing functional F and Na sites on
14 plasma-made vertically oriented graphene nanosheets to achieve an
15 in-air and in-water oleophobic, hydrophilic surface. The graphene
16 architecture presents high in-air (138°) and in-water (145°) oil
17 contact angles, with simultaneously high water affinity (0°). Such
18 surface wettability is enabled by oleophobic, hydrophobic $-\text{CF}_x$, and hydrophilic $-\text{COONa}$ groups of the molecules that disperse on
19 graphene surfaces; low-dispersion (0.439 mJ m^{-2}) and high-polarity (95.199 mJ m^{-2}) components of the solid surface tension; and
20 increased surface roughness produced by graphene edges. The graphene nanostructures pump water upward by capillary action but
21 repel oil from the surface, leading to complete in-water and in-air oil rejection and universal anti-oil-fouling capability for solar
22 desalination. Consequently, stable solar–vapor energy efficiency of more than 85% is achieved regardless of whether the feedstock is
23 pure or oil-contaminated water (e.g., a mixture of oil floating on water, an oil-in-water emulsion), resulting in the efficient production
24 of clean water over several days. This outstanding performance is attributed to the universal (both in-water and in-air) oleophobic
25 wettability, together with high light absorptance contributed by nanotrap, fast interfacial heat transfer enhanced by finlike
26 nanostructures, and accelerated evaporation enabled by sharp graphene edges.

27 **KEYWORDS:** solar–thermal energy, plasma-made nanostructures, in-air and in-water oleophobicity, molecular dispersion,
28 solar evaporation, water desalination

29 **W**ater scarcity, driven by constantly increasing economic
30 development and global environmental pollution, has
31 elicited much demand for new, technology-driven solutions.^{1–3}
32 Solar desalination, based on evaporating seawater using solar
33 energy to produce clean water, represents a promising solution
34 to the global water scarcity.⁴ Conventional desalination
35 systems typically heat the entire bulk liquid, leading to
36 significant heat losses to the environment by conduction,
37 convection, and radiation.⁵ Recently, a solar-driven interfacial
38 evaporation method, based on locally heating the water–air
39 interface by solar–thermal conversion, was proposed and it
40 reduced the heat loss to less than 15%.^{6,7} This efficient solar
41 desalination approach was further advanced by subsequent
42 works and enhanced *via* improved evaporating materials and
43 optimized structures.^{8–21} However, prior work has typically
44 used pure water and/or artificially saline water as the
45 feedstocks in testing solar-evaporating performance. Con-
46 versely, feedstocks in real-world conditions, such as natural


seawater and contaminated water collected from urban
47 waterways, are more complicated and require additional
48 progress to improve the antifouling behavior of the evaporating
49 surface.^{22–27}

50 Oil is a typical contaminant in natural seawater and urban
51 waterways due to industrial and residential effluents.^{28–31} Oil
52 causes severe fouling issues when oil-containing water is used
53 as the feedstock in solar desalination systems.³² As shown in
54 Figure S1, a typical solar absorber made of carbonized wood
55 possesses an oleophilic, hydrophilic surface. When the


Received: April 30, 2020

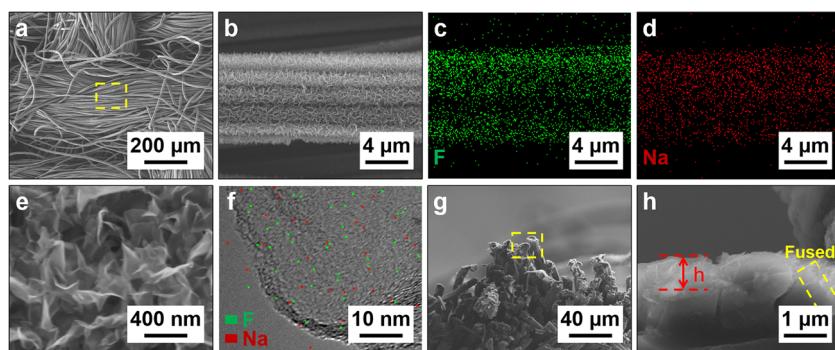
Accepted: July 13, 2020

Published: July 13, 2020

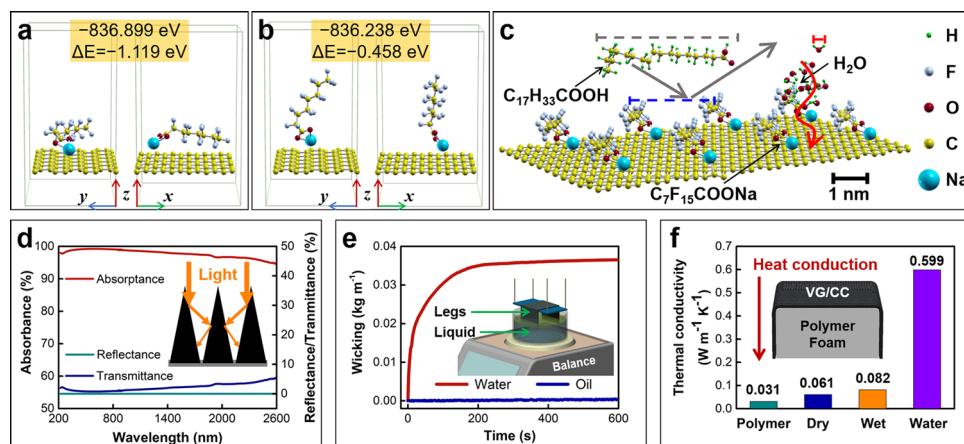
Figure 1. Design of an oleophobic, hydrophilic surface by dispersing fluorinated molecules on graphene nanostructures to achieve anti-oil-fouling solar desalination. (a) Schematic of dispersing fluorinated molecules on graphene surfaces. (b) Schematic of anti-oil-fouling solar desalination. The oil (rainbow-colored) is afloat on the seawater surface (dark green).

Figure 2. Surface wettability characterization. (a) Optical images of an FM-VG/CC sample. (b) Optical images of a fluorinated-molecule-coated carbon cloth (FM-CC) sample. (c) Oil contact angle in the air. (d) Water contact angle in the air. (e) Oil contact angle under water.

57 carbonized wood floats on the oil–water mixture, oil migrates
58 to the wood surface. Upon exposure to solar illumination,
59 water is heated by the carbonized wood and then evaporates.
60 However, to escape from the evaporating surface, the water
61 vapor must permeate through the oil layer, which impedes the
62 release of water vapor to the environment. As a result, the
63 evaporation flux ($0.55 \text{ kg m}^{-2} \text{ h}^{-1}$) decreases dramatically
64 compared with systems fed with pure water ($1.26 \text{ kg m}^{-2} \text{ h}^{-1}$),
65 leading to a large reduction in solar–vapor energy efficiency
66 (<40%).


67 Recent work has drawn attention to these oil-fouling issues
68 and developed underwater oleophobic surfaces to address the
69 fouling issues caused by the oil dispersed in water, *e.g.*, oil-in-
70 water emulsions.^{23,33} Nevertheless, such underwater oleopho-
71 bic surfaces may become oleophilic when exposed to air, thus
72 failing to prevent oil fouling. Moreover, in real-world
73 applications, oil exists in water (*e.g.*, oil-in-water emulsions),
74 floats on the water surface (*e.g.*, floating oil layers), and even
75 splatters from the environment. Therefore, practical desalina-
76 tion solutions require further advances. Developing an in-water
77 and simultaneously in-air oleophobic, hydrophilic surface
78 represents a promising solution to address the oil-fouling
79 challenge. Usually, an oil-repellent surface with extremely low
80 surface tension is more likely to repel water because the surface
81 tension of water (72.8 mJ m^{-2}) is much higher than that of oil
82 (commonly $<30 \text{ mJ m}^{-2}$).³⁴ As such, a universal oleophobic,
83 hydrophilic surface is attractive but very challenging to prepare.
84 In earlier works, external stimuli, such as moisture, electricity,
85 and ammonia vapor, were applied to achieve temporary
86 oleophobicity/hydrophilicity.^{35–37} Subsequent works devel-
87 oped various surface engineering methods to obtain durable
88 oleophobic/hydrophilic surfaces. Li et al. fabricated nano-
89 meter-thick polymer networks that are more wettable to water
90 than to oil.^{38,39} Pan et al. developed a fluorinated nanoparticle
91 coating to make oil-repellent/water-spreading surfaces.^{34,40} Lin
92 et al. employed a chemical coating method to prepare
93 oleophobic/hydrophilic fabrics.⁴¹ Nevertheless, such oil-

repellent and simultaneously water-attracting surfaces need
94 further development to satisfy practical applications, *e.g.*, solar
95 desalination.
96


The present work demonstrates an in-water and simulta-
97 neously in-air oleophobic, hydrophilic surface by dispersing
98 functional molecules on vertically oriented graphene nano-
99 sheets (VGs) to realize an anti-oil-fouling solar desalination
100 system. As shown in Figure 1, VGs (black triangles) are
101 fi perpendicularly oriented on a carbon cloth substrate (gray) by
102 plasma-enhanced chemical vapor deposition (PECVD). The
103 VGs are purposely introduced to enhance light absorptance
104 and solid–liquid interfacial heat transfer, as well as to increase
105 the surface roughness to improve the anti-oil-fouling behavior.
106 Fluorinated molecules (FMs, sodium perfluorooctanoate,
107 $\text{C}_7\text{F}_{15}\text{COONa}$) that possess both oleophobic, hydrophobic
108 $-\text{CF}_x$ and hydrophilic $-\text{COONa}$ groups are uniformly
109 dispersed on graphene nanosheets, thus achieving simulta-
110 neously in-air and in-water (termed for simplicity universal
111 below) oleophobicity and hydrophilic wettability. As a result,
112 water wets the graphene structures, while oil is repelled from
113 the surface. The oleophobic, hydrophilic graphene architecture
114 is applied to solar-driven interfacial evaporation and exhibits a
115 durable anti-oil-fouling ability with complete in-water and in-
116 air oil rejection. Stable solar–vapor conversion efficiency of
117 more than 85% is achieved regardless of whether the feedstock
118 is pure or oil-contaminated water (*e.g.*, a mixture of oil floating
119 on water, an oil-in-water emulsion), leading to the long-term
120 efficient production of clean water over several days.
121

RESULTS AND DISCUSSION

Surface Wettability Characterization. An in-water and
123 simultaneously in-air oleophobic, hydrophilic surface is
124 achieved by growing VGs on commercial carbon cloth,
125 followed by dispersing fluorinated molecules on the graphene
126 surfaces. The VGs are synthesized by a customized PECVD
127 system based on 13.56 MHz inductively coupled plasmas
128 (ICPs) operated in a tubular reactor geometry. A piece of
129

Figure 3. Molecular dispersion on graphene nanosheets. (a, b) Top-view SEM images of an FM-VG/CC sample. (c) EDS mapping image of fluorine. (d) EDS mapping image of sodium. (e) Top-view high-magnification SEM image. (f) High-magnification TEM image integrating EDS elemental mapping results. The color dots were expanded and highlighted to make them more visible. (g, h) Cross-sectional SEM images of the FM-VG/CC sample.

Figure 4. DFT calculations and material characterizations. (a) Relaxed structure of DFT conformation 1 with the carbon backbone nearly parallel to the graphene plane. (b) Relaxed structure of DFT conformation 2 with the carbon backbone nearly perpendicular to the graphene plane. (c) Mechanistic illustration of H_2O (water) and $\text{C}_{17}\text{H}_{33}\text{COOH}$ (oil) penetrating through the $\text{C}_7\text{F}_{15}\text{COONa}$ layer. (d) Photonic properties of the FM-VG/CC film. (e) Wicking measurements of the FM-VG/CC film. (f) Characterization of thermal conductivities.

130 carbon cloth (CC) sheet (with a thickness of 0.32 mm) is used
131 as the substrate for the growth of VGs, producing a graphene-
132 based hybrid structure (denoted VG/CC). Subsequently,
133 fluorinated molecules are dispersed to the VGs through
134 immersion in ethanol solution and then dried at room
135 environment to obtain the final product (denoted FM-VG/
136 CC). As shown in Figure 2a, the FM-VG/CC sample presents
137 a black surface caused by the growth of VGs. In contrast, a
138 fluorinated-molecule-coated carbon cloth sample presents a
139 gray surface (see Figure 2b).

140 The surface wettability of the FM-VG/CC has been
141 measured. As shown in Figure 2c, when an oil droplet is
142 placed on the sample in the air, it maintains a large contact
143 angle ($>138^\circ$), suggesting in-air oleophobicity. As shown in
144 Figure 2d, when a water droplet contacts the FM-VG/CC
145 surface, it quickly permeates into the sample, indicating in-air
146 hydrophilicity. As shown in Figure 2e, when the FM-VG/CC
147 sample is immersed in water, the oil contact angle increases to
148 145° , showing in-water oleophobic wettability. Such universal
149 oleophobic wettability is purposely designed to address oil
150 fouling issues in desalination systems, which can occur in both
151 air and water environments. Meanwhile, the hydrophilic
152 surface can serve as a capillary pump to supply water in the
153 desalination process, which will be described below.

Molecular Dispersion of Functional Sites on Gra- 154
phene Nanosheets. One of the key factors in realizing 155
simultaneous in-air and in-water oleophobicity and hydro- 156
philicity is the layer of fluorinated molecules covering graphene 157
nanosheets. As shown in the scanning electron microscopy 158
(SEM) images in Figure 3a–e, graphene nanosheets are 159 f3
uniformly distributed on the interlaced fibers of carbon cloth 160
whose diameters range from several to tens of microns. These 161
fibers are composed of elemental carbon and maintain the 162
interlaced structures well during the PECVD process (see the 163
comparison with the SEM images of bare carbon cloth in 164
Figure S2). Fluorine-containing functional groups ($-\text{CF}_3$ and 165
 $-\text{CF}_2$) and polar end groups ($-\text{COONa}$) are introduced by 166
coating the $\text{C}_7\text{F}_{15}\text{COONa}$ molecules on graphene surfaces. As 167
shown by X-ray photoelectron spectroscopy (XPS) in Figure 168
S3, a fluorine peak is observed after the coating process. 169
Subsequently, energy-dispersive X-ray spectroscopy (EDS) is 170
used to observe the elemental distributions, as shown in Figure 171
3c,d. The EDS elemental maps reveal that fluorine sites and 172
sodium sites are evenly distributed on the sample surface. In a 173
high-magnification image (see Figure 3f) obtained by trans- 174
mission electron microscopy (TEM), it is observed that green 175
dots (F) and red dots (Na) are sparsely dispersed on the 176
graphene nanosheets. 177

178 Density functional theory (DFT) calculations were conducted to explore the possible conformations of the fluorinated 179 molecule absorbed on the graphene surface. Five conformations with the $C_7F_{15}COONa$ molecule carbon backbone 180 parallel to (conformation 1, see Figure 4a), perpendicular to 181 (conformation 2 with the $-COONa$ group inward to, see 182 Figure 4b; conformation 3 with the $-COONa$ group outward 183 from, see Figure S4a), and tilted away from (conformation 4, 184 see Figure S4b; conformation 5, see Figure S4c) a single-layer 185 graphene surface are created. All conformations were relaxed 186 based on energy minimization. Note that van der Waals 187 interaction proposed by Langreth and Lundqvist groups was 188 included during the relaxation process.⁴² The details of the 189 calculations setup and relaxed atomic positions are available in 190 Note S4. The Gibbs free energy of conformation 1 is calculated 191 to be -836.899 eV, which is lower than those of conformation 192 2 (-836.238 eV), conformation 3 (-835.730 eV), conformation 4 (-836.549 eV), and conformation 5 (-836.447 eV). Conformation 1 presents the lowest Gibbs free energy 193 and thus is considered as the most stable one among the five, 194 also indicating the high probability of existence.

195 As shown in Figure 4a, the $C_7F_{15}COONa$ carbon backbone 196 of conformation 1 is nearly parallel to the graphene plane, 197 which is slightly different from the descriptions in prior 198 literature.^{34,40} Although a schematic was shown to illustrate the 199 absorption conformation in the prior reports, in which the 200 $C_7F_{15}COONa$ carbon backbone was nearly perpendicular to 201 metal–oxide substrates (that was similar to conformation 2 in 202 the current work), the prior work did not explain the detailed 203 mechanism.^{34,40} Consequently, the absorption mechanism 204 remains unclear. In the current work, the angle and direction 205 of the $C_7F_{15}COONa$ carbon backbone to the graphene 206 substrate are varied and compared based on DFT calculations. 207 Because there are no effective means to experimentally 208 visualize individual molecules, we must rely on the DFT 209 results and believe that conformation 1 is the most populated 210 among the five. It is worth noting that other, higher-energy 211 states can become populated at higher temperatures. The 212 conformation of the absorbed fluorinated molecule might also 213 largely depend on the property of the solid surface (e.g., 214 graphene, TiO_2 , or Al_2O_3) and the interaction between the 215 molecule and surface atoms.⁴³

216 Indeed, the F sites (*i.e.*, $-CF_3$ and $-CF_2$ groups) of the 217 $C_7F_{15}COONa$ molecule are both oleophobic and hydrophobic, 218 by which both oil and water should be repelled.^{38,39} These 219 fluorine-containing groups create high-density intermolecular 220 voids that serve as filters to separate small water molecules and 221 large oil molecules. As shown in Figure 4c, the water molecules 222 (*i.e.*, H_2O) are intrinsically much smaller than the oil molecules 223 (*e.g.*, oleic acid, $C_{17}H_{33}COOH$, which is a major constituent of 224 canola oil) so that it is possible to tune the intermolecular 225 voids to allow the penetration of small water molecules while 226 preventing the penetration of large oil molecules.³⁸ Usually, a 227 higher packing density of the F sites leads to smaller 228 intermolecular voids that result in higher resistance for oil 229 penetration. The detailed elucidation is available in Note S6. 230 Thus, by engineering the $C_7F_{15}COONa$ molecule layer, water 231 can pass through the voids, while oil is precluded. Moreover, 232 the Na sites (*i.e.*, polar $-COONa$ groups) have a high affinity 233 to water and can facilitate the penetrated water molecules to 234 wet the solid surface. Furthermore, there are no functional 235 groups on the graphene surface that are particularly attractive 236 to the nonpolar oil molecules. Additionally, a wettability test

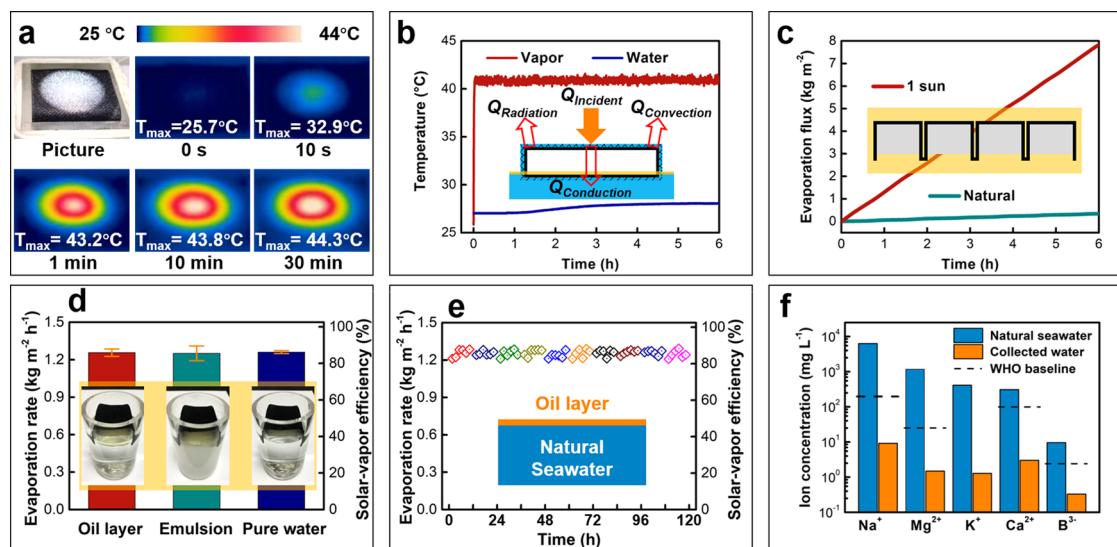
237 using a VG/CC sample without a fluorinated coating was 238 performed and exhibited an oleophilic, hydrophobic nature 239 (see Figure S6). The wettability comparison between the 240 samples with and without the fluorinated coating further 241 clarifies the functions of the molecular sites.

Unique Wettability Enabled by Tuning Solid Surface Tension.

242 The simultaneous oleophobic and hydrophilic 243 characteristics can be explained by Owens–Wendt’s surface 244 energy theory, in which surface tension balances the sum of the 245 dispersion and polarity force components.^{44,45} Young’s 246 equation can be written as

$$\cos \theta = \frac{2\sqrt{\gamma_s^d \gamma_l^d} + 2\sqrt{\gamma_s^p \gamma_l^p}}{\gamma_l^d + \gamma_l^p} - 1 \quad (1)$$

276 where θ is the contact angle, γ_s^d and γ_s^p are the dispersion and 277 polarity components of the solid surface tension, respectively, 278 and γ_l^d and γ_l^p are the dispersion and polarity components of 279 the liquid (water and oil, respectively) surface tension. γ_s^d is 280 measured to be 0.439 mJ m^{-2} , while γ_s^p is measured to be 281 95.199 mJ m^{-2} (see the measurement method in Note S8) for 282 the FM-VG/CC sample. Because both γ_s^d and the polarity 283 components (γ_{oil}^p) of oil are close to zero, we find that $\cos \theta \rightarrow 284 -1$, *i.e.*, $\theta \rightarrow 180^\circ$ for oil. On the one hand, the dual 285 oleophobic, hydrophobic fluorine-containing groups ($-CF_3$ 286 and $-CF_2$) only make small contributions to γ_s^d and γ_s^p , while 287 the γ_s^d of the $-COONa$ group is small too. On the other hand, 288 the polar $-COONa$ groups result in a high γ_s^p .^{34,40} Therefore, 289 the fluorinated molecules (with low γ_s^d and high γ_s^p) coupled by 290 bimodal sites can attract polar molecules (like water) and 291 meanwhile repel nonpolar molecules (like oil).


Increased Surface Roughness Produced by Graphene Edges.

292 Our results suggest that surface roughness is also a 293 critical factor for the observed in-air oleophobicity. To increase 294 the surface roughness, nanoparticles, such as TiO_2 , Al_2O_3 , were 295 previously used.^{34,40} The effect of surface roughness can be 296 explained by the Wenzel relation⁴⁶

$$\cos \theta^* = r \cos \theta \quad (2)$$

297 where r is the roughness factor of a solid surface, θ is the 298 contact angle of a smooth surface, and θ^* is the contact angle 299 of a rough surface. If $r = 1$, the solid surface is smooth; if $r > 1$, 300 the surface is rough. As such, increasing the surface roughness 301 can lead to increased surface wettability, which means an 302 oleophobic surface can be more oleophobic ($\theta^* > \theta > 90^\circ$).

303 In the current work, the rough surface is achieved by 304 introducing VGs that own sharp, exposed, and high-density 305 graphene edges. As shown in the high-magnification SEM 306 image of Figure 3e, the VGs present wall-like, interconnected 307 nanosheets (with a span ranging from 200 to 400 nm), open 308 channels, and exposed graphene edges. In contrast, the surface 309 of bare carbon cloth fibers is smooth, as shown by the SEM 310 images in Figure S2. Meanwhile, atomic force microscopy 311 (AFM) analysis was applied to quantitatively evaluate the surface 312 roughness (see details in Note S9). In the three-dimensional 313 (3D) AFM image of a bare carbon cloth sample, the surface in 314 a $2 \mu\text{m} \times 2 \mu\text{m}$ area is a plane with a height variation smaller 315 than 30 nm (see Figure S8a). Correspondingly, the root-mean- 316 square roughness (R_{rms}) of this flat surface is calculated to be 317 2.78 nm. On the contrary, the 3D AFM image of the FM-VG/ 318 CC film shows a significant surface height variation of 99.7 nm 319 (see Figure S8b). The R_{rms} is then calculated to be 14.05 nm, 320 which is five-fold higher than that of the bare carbon cloth 321

Figure 5. Solar-driven interfacial evaporation performance. (a) Infrared images of temperature evolution on the evaporating surface. (b) Temperature evolution of the hot vapor (red) and the pool water (blue). (c) Evaporation flux under solar illumination of 1 sun (red) and natural evaporation (green) in a dark environment. (d) Comparison of evaporation performance using different feedstocks including a mixture of oil floating on water, an oil-in-water emulsion, and pure water. (e) Solar desalination fed by oil-contaminated natural seawater. (f) Ion concentrations in the condensed, collected water compared with those in the oil-contaminated natural seawater.

300 sample (2.78 nm). Thus, the surface roughness can be
 301 increased by VGs. On the other hand, the wettability of a
 302 fluorinated-molecule-coated carbon cloth sample was tested
 303 and exhibited an in-air oil contact angle of 131° (see Figure
 304 S9), lower than that of the FM-VG/CC sample (138°). The
 305 comparison further supports that the in-air oleophobic
 306 wettability is enhanced by increasing surface roughness. Note
 307 that the coating process does not change the morphology since
 308 the molecules (<2 nm) are far smaller than the VGs, as
 309 evidenced by the comparison of SEM images with VG/CC
 310 (see Figure S10).

311 Moreover, the surface roughness is very stable because of the
 312 chemical bonding between the VGs and the carbon cloth. As
 313 shown in the cross-sectional SEM images of Figure 3g,h, the
 314 VGs extend from the hosting structures (i.e., carbon fibers),
 315 forming a fused, mechanically stable junction. According to our
 316 prior work, the junction formation is attributed to chemical
 317 bonds formed upon exposure to energetic plasma species and
 318 produces a mechanically robust connection between the VGs
 319 and substrates in practical applications (e.g., solar desalination
 320 and oil-spill recovery).^{47,48} The dense graphene nanosheets
 321 grow perpendicularly on the surface of hosting structures and
 322 possess a typical height from hundreds of nanometers to
 323 microns. Furthermore, the unique, oriented structures and
 324 open channels are favorable for building light traps to increase
 325 light absorption.^{12,47}

326 **Characterization of the FM-VG/CC Nanostructures.**
 327 The optical properties including reflectance (R) and trans-
 328mittance (T) have been experimentally measured. The
 329 absorptance (A) is calculated by $A = 1 - R - T$. As shown
 330 in Figure 4d, the FM-VG/CC sample exhibits high
 331 absorptance across a broad wavelength range from 200 to
 332 2600 nm, which covers the most energetic part of the solar
 333 spectrum (i.e., ultraviolet-visible-near-infrared region). The
 334 average absorptance is calculated to be 97.65%, which means
 335 only 2.35% of light is reflected from or transmits through FM-
 336 VG/CC. Meanwhile, the absorptance of a VG/CC sample
 337 without fluorination is measured to be 98.03% (see Figure

338 S11a). A carbon cloth sample with a fluorinated coating shows
 339 an absorptance of 85.63% (see Figure S11b). The results
 340 indicate that the fluorinated coating slightly reduces the
 341 absorptance (from 98.03 to 97.65%), but the reduction is
 342 small. The high light absorptance is mainly attributed to the
 343 VG growth. The roles of VGs in harvesting light have been
 344 systematically studied in our prior work.^{47,49} The unique
 345 orientation that is nearly paralleled to the direction of the
 346 incident light and the wall-like structures enhance light
 347 trapping, as schematically shown in the inset of Figure 4d.
 348 When light reaches the open graphene channels, it undergoes
 349 multiple reflections inside the nanotrap until it is completely
 350 absorbed by the graphene nanosheets.

351 In solar desalination applications, a thin FM-VG/CC film
 352 covers a polystyrene foam, forming the solar evaporator (see
 353 Figure 1b). Two FM-VG/CC film legs insert into the
 354 underneath liquid (e.g., water, oil, and oil-water mixture)
 355 and serve as water-wicking paths to pump water upward by the
 356 capillary. Since water is repelled by the hydrophobic polymer
 357 foam and can only flow through the FM-VG/CC film, a two-
 358 dimensional (2D) waterway is created. Importantly, sufficient
 359 water supply is crucial for evaporation applications and is now
 360 demonstrated by a wicking test (see the inset in Figure 4e).
 361 The wicking mass is monitored by a precision balance and
 362 divided by the total width of the two legs (40 mm × 2 mm).
 363 More details on the experimental setup are available in Note
 364 S13. As shown by the red curve in Figure 4e, when the FM-
 365 VG/CC sample contacts water, the water-wicking mass
 366 increases quickly within the first 200 s and eventually plateaus
 367 at 0.037 kg m^{-2} . The half-saturated wicking rate (calculated by
 368 fitting the data from 16 to 180 s) is calculated to be $0.331 \text{ kg m}^{-2} \text{ h}^{-1}$.
 369 Assuming the length of the evaporation area to be w ,
 370 the area wicking rate is $0.331/w \text{ kg m}^{-2} \text{ h}^{-1}$. In the current
 371 work, w is 0.04 m. On the other hand, when the FM-VG/CC
 372 sample contacts oil, the two legs float on the oil surface due to
 373 the repulsion from oil. The oil wicking mass always remains
 374 zero (see the blue curve in Figure 4e), indicating the complete
 375 oil rejection. Therefore, the FM-VG/CC film has the ability to

376 separate water from the oil–water mixture and then deliver the
377 water upward. Additional results using oil–water mixtures are
378 summarized in Figure S12.

379 In addition to wicking behavior, top-down thermal
380 conduction is another important factor in interfacial evapo-
381 ration performance. The heat generated by solar–thermal
382 conversion is localized at the water–air interface by hindering
383 the top-down thermal conduction. As shown in the inset of
384 Figure 4f, the effective top-down thermal conductivity of the
385 evaporator with 2D waterways has been measured. The
386 effective thermal conductivity at the dry state is $0.0609\text{ W m}^{-1}\text{ K}^{-1}$, which is greater than that of a bare polymer foam
387 ($0.0311\text{ W m}^{-1}\text{ K}^{-1}$). Thereafter, the FM-VG/CC sample was
388 wetted by water before the measurement to simulate a working
389 condition (*i.e.*, evaporating with a wet surface). The effective
390 thermal conductivity at the wet state was measured to be
391 $0.0818\text{ W m}^{-1}\text{ K}^{-1}$, which is slightly higher than that at the dry
392 state but still far lower than that of water ($0.599\text{ W m}^{-1}\text{ K}^{-1}$).
393 Thus, such an FM-VG/CC–polymer evaporator can efficiently
394 insulate against top-down heat conduction from the water–air
395 interface.

396 **Solar-Driven Interfacial Evaporation.** Solar-driven in-
397 terfacial evaporation tests have been conducted using the FM-
398 VG/CC–polymer composite. An oil–water mixture was
399 produced by adding canola oil on the water surface and used
400 as a feedstock. Simulated solar light with a diameter of 3 cm
401 and an average intensity of 1 kW m^{-2} illuminate the top surface
402 of the FM-VG/CC film. The thin FM-VG/CC film with two
403 legs inserted into the oil–water mixture absorbs light and
404 converts it to thermal energy. Then, the water is heated by the
405 FM-VG/CC surface, generating water vapor at the water–air
406 interface. The FM-VG/CC surface temperature is recorded by
407 an infrared camera. The vapor temperature (at $\sim 2\text{ mm}$ above
408 the center of the FM-VG/CC film) and the pool water
409 temperature (at $\sim 5\text{ mm}$ below the bottom of the polymer
410 foam) are monitored by thermocouples with a diameter of
411 $\sim 0.3\text{ mm}$.

412 As shown in Figure 5a, when exposed to 1 sun irradiation,
413 the surface temperature quickly increases to $43.2\text{ }^\circ\text{C}$ in the first
414 1 min and then gradually reaches a plateau of $44.0 \pm 0.3\text{ }^\circ\text{C}$. As
415 shown in Figure 5b, the vapor temperature (red curve) rapidly
416 increases at a rate of $0.23\text{ }^\circ\text{C s}^{-1}$ in the first 1 min and then
417 fluctuates around $40.87 \pm 0.20\text{ }^\circ\text{C}$. In contrast, the pool water
418 temperature (blue curve) changes slowly. After 6 h of
419 continuous evaporation, only a small increase of $1.02\text{ }^\circ\text{C}$ in
420 temperature is observed. This result suggests that conductive
421 heat loss to the bulk water is small, confirming the excellent
422 top-down insulating performance. The real-time evaporation
423 flux is monitored by a precision balance. As shown in Figure
424 5c, the evaporation flux increases smoothly, indicating good
425 process stability. The measured evaporation rate is linearly
426 fitted to be $1.314 \pm 0.030\text{ kg m}^{-2}\text{ h}^{-1}$, while the real
427 evaporation rate over 6 h is calculated to be $1.256 \pm 0.030\text{ kg}$
428 $\text{m}^{-2}\text{ h}^{-1}$ after subtracting natural evaporation (0.058 kg m^{-2}
429 h^{-1}). The solar–vapor energy conversion efficiency is
430 calculated based on

$$431 \quad H_{\text{solar-vapor}} = m_{\text{evap}}(h_{\text{lv}} + C(T_{\text{v}} - T_{\text{l}}))/q_i \quad (3)$$

432 where m_{evap} is the real evaporation rate (in the unit of kg m^{-2}
433 s^{-1}), h_{lv} is the temperature-dependent latent heat (2403.86 kJ
434 kg^{-1} at $40.85\text{ }^\circ\text{C}$ when assuming the partial pressure of water
435 vapor equal to saturated pressure at a certain temperature) for
436 liquid–vapor phase change, C is the specific heat of liquid

437 water ($4.2\text{ kJ kg}^{-1}\text{ K}^{-1}$, assuming no sensible heating of the
438 vapor), T_{v} is the average vapor temperature ($40.85\text{ }^\circ\text{C}$) over 6
439 h, T_{l} is the average water temperature ($27.64\text{ }^\circ\text{C}$) over 6 h, and
440 q_i is the incident solar intensity (*i.e.*, 1 kW m^{-2}). $\eta_{\text{solar-vapor}}$ is
441 calculated to be $85.81 \pm 2.05\%$. The thermal analysis was
442 conducted based on a simplified model (see calculations in
443 Note S14), as shown in the inset of Figure 5b. It is estimated
444 that 1.8% of the energy dissipates to the pool bulk liquid
445 through top-down heat conduction ($Q_{\text{conduction}}$), 3.1% of the
446 heat dissipates by convection ($Q_{\text{convection}}$), and 2.2–12.3%
447 dissipates through radiation ($Q_{\text{radiation}}$) to the surroundings (in
448 which the maximum and minimum limits correspond to the
449 hot vapor and air, respectively). This range is reasonable since
450 the total loss is 7.1–17.2% given the overall solar to vapor
451 efficiency (85.81%). A rational energy balance between the
452 input energy (*i.e.*, 976 W m^{-2} from light) and the estimated
453 output energy (*i.e.*, $929\text{--}1030\text{ W m}^{-2}$ to heat) is obtained in
454 the current system. 455

456 Efficient solar-driven evaporation can be attributed to several
457 factors. First, high light absorptance (97.65%) is the result of
458 the VGs with open channels, wall-like structures, and exposed
459 edges to create high-density light traps. Second, the excellent
460 top-down thermal insulation produced by combining the
461 external FM-VG/CC layer and the internal low-conductance
462 polymer foam leads to very little heat leakage from the top
463 surface to the bulk liquid, which is prone to dissipating heat to
464 the environment. Third, the interfacial heat transfer is
465 enhanced by finlike graphene nanosheets to increase the
466 effective interface area.^{25,47,50} Consequently, the heat gen-
467 erated in VGs can transfer to the surrounding water with high
468 efficiency. Finally, sharp VG edges provide abundant tips at the
469 solid–liquid–air three-phase contact lines. These tips may
470 facilitate the water molecules to escape from liquid to air,
471 enabling fast evaporation.⁵¹ 472

473 Additional solar evaporation tests fed by oil–water emulsion
474 and pure water have been conducted and compared, as shown
475 in Figure 5d. When fed by an oil–water emulsion, the real
476 evaporation rate and solar–vapor efficiency are measured to be
477 $1.251 \pm 0.059\text{ kg m}^{-2}\text{ h}^{-1}$ and $85.46 \pm 4.03\%$, respectively.
478 When fed by pure water, the real evaporation rate and solar–
479 vapor efficiency are measured to be $1.261 \pm 0.012\text{ kg m}^{-2}\text{ h}^{-1}$
480 and $86.15 \pm 0.82\%$, respectively. The detailed measurements
481 of the evaporation fluxes are available in Note S15. Apparently,
482 the FM-VG/CC architecture is able to maintain high solar
483 evaporation performance regardless of whether the feedstock is
484 pure water or oil-contaminated water. These results further
485 confirm the excellent anti-oil-fouling capability of our
486 engineered material. It is worth noting that when assuming
487 that all vapor is generated at room temperature (*i.e.*, $25\text{ }^\circ\text{C}$
488 with a latent heat of 2441.5 kJ kg^{-1} , which is the minimum
489 energy used for the phase change of water without heating for
490 temperature increase),¹⁷ the upper limit of evaporation rate at
491 1 sun is calculated to be $1.475\text{ kg m}^{-2}\text{ h}^{-1}$ at $25\text{ }^\circ\text{C}$. In the
492 above wicking test, the amount of water supplied by the
493 wicking legs is measured to be $0.331\text{ kg m}^{-1}\text{ h}^{-1}$. To ensure the
494 sufficient water supply for evaporation at 1 sun, the length (l)
495 of the evaporating area should suffice: $2 \times 0.331 \times w > 1.475 \times$
496 $l \times w$, where w is the width of evaporation area (*i.e.*, the width
497 of two wicking legs). Thus, l is suggested to be no more than
498 0.45 m. In the current work, l is 0.04 m, indicating the
499 sufficient water supply. In future scalable applications, we
500 expect to drill holes in the polymer foam and insert more
501 wicking legs, as shown in the inset of Figure 5c, to ensure

501 sufficient water supply. Assuming a $10\text{ m} \times 10\text{ m}$ evaporation
502 surface is equipped with a solar desalination system in Los
503 Angeles, California that has abundant solar energy (with an
504 average monthly global horizontal irradiance of 5.3 kWh m^{-2}
505 day $^{-1}$) but suffers from water stress,⁵² nearly 68 000 gallons of
506 clean water will be produced for 1 year.

507 **Solar Desalination with Oil-Contaminated Natural
508 Seawater.** The FM-VG/CC architecture has been further
509 applied to solar desalination at 1 sun. Natural seawater
510 collected from the South China Sea (20.0°N 110.1°E) was
511 used without pretreatment, with a thin layer of canola oil
512 added on the surface. During the desalination process, water
513 evaporates, while nonvolatile salts reside on the surface of the
514 FM-VG/CC film. The salt residues usually present white color
515 that reduces light absorption and thus degrades the
516 evaporation performance. Due to the accumulation of salt,
517 the ion concentration on the evaporating surface increases to
518 become higher than that of the underlying seawater.
519 Interestingly, the dissolvable salt ions spontaneously diffuse
520 from a high-concentration region to a relatively low-
521 concentration region due to the concentration gradient. As a
522 result, when the FM-VG/CC film freely floats on seawater, the
523 white salt spots gradually disappear because of ion diffusion
524 from the FM-VG/CC film to the underneath liquid, which is
525 noted as a self-salt-cleaning process. When the solar simulator
526 is turned on, white salts gradually accumulate on the
527 evaporating surface, are first observed at the second hour,
528 and then slowly grow as time prolongs further (see Figure
529 S15a). When the solar simulator is turned off at the sixth hour,
530 the self-salt-cleaning begins. As shown in Figure S15b, the
531 white salt spots become smaller and smaller and completely
532 disappear at the 11th hour. To avoid the negative effect of salt
533 accumulation on long-term performance, the duration of
534 continuous evaporation is set as 6 h to simulate practical
535 desalination in daylight hours (assuming 6 h under normal
536 solar irradiation), followed by 6 h of self-salt-cleaning that
537 simulates free floating during night hours. Thus, each cycle
538 consists of 12 h, and the long-term test consists of 10 cycles,
539 corresponding to 120 h.

540 As shown in Figure 5e, the hourly evaporation rate fluctuates
541 from 1.208 to $1.293\text{ kg m}^{-2}\text{ h}^{-1}$ without obvious performance
542 degradation. Subsequently, hot vapor/condensed water is
543 collected by a transparent quartz dome. Ion concentrations
544 were detected and are shown in Figure 5f. The concentrations
545 of Na^+ , Mg^+ , K^+ , Ca^{2+} , and B^{3-} in the collected water are
546 measured to be 9.21 , 1.49 , 1.29 , 3.01 , and 0.33 mg L^{-1} ,
547 respectively, all of which meet the World Health Organization
548 (WHO) drinking water standards (200 , 25 , 100 , and 2.4 mg L^{-1}
549 for Na^+ , Mg^{2+} , Ca^{2+} , and B^{3-} , respectively),^{53,54} and are
550 dramatically lower than those in the natural seawater (6331 ,
551 1177 , 413 , 311 , and 9.6 mg L^{-1} for Na^+ , Mg^+ , K^+ , Ca^{2+} , and
552 B^{3-} , respectively). This result shows that the ions existing in
553 natural seawater are efficiently separated from the hot vapor/
554 condensed water. Moreover, reusability is another important
555 feature in practical applications. After the desalination process,
556 the oil contact angle of the FM-VG/CC film shows a small
557 decline but is still greater than 120° (see Figure S17),
558 indicating stable and reproducible oleophobicity. However, the
559 slow deterioration could become dramatic after months or
560 years of operation. A feasible method to remediate the
561 deteriorated wettability is to recoat the $\text{C}_7\text{F}_{15}\text{COONa}$ layer
562 after long-term operations. As shown in Figure S17, the oil

563 contact angle rebounds to 140° after employing the coating
564 process again. More details are available in Note S17.

■ CONCLUSIONS

566 An in-air and in-water oleophobic, hydrophilic surface is
567 devised by dispersing functional F and Na sites on graphene
568 nanosheets. The fabricated FM-VG/CC graphene architecture
569 shows high in-air ($\sim 138^\circ$) and in-water ($\sim 145^\circ$) oil contact
570 angles and simultaneously high water affinity (0°). Such
571 surface wettability is attributed to the following factors: (1)
572 oleophobic, hydrophobic F sites ($-\text{CF}_x$ groups), and hydro-
573 philic Na sites ($-\text{COONa}$ groups) can preclude large oil
574 molecules from traversing and meanwhile allow small water
575 molecules penetrating through the $\text{C}_7\text{F}_{15}\text{COONa}$ molecule
576 layer; (2) the low-dispersion (0.439 mJ m^{-2}) and high-polarity
577 (95.199 mJ m^{-2}) components of the solid surface tension lead
578 to the repulsion of nonpolar oil molecules and the attraction of
579 polar water molecules; and (3) the increased surface roughness
580 produced by high-density graphene edges further enhance the
581 in-air oleophobicity.

582 The in-air and in-water oleophobic, hydrophilic graphene
583 architecture is applied for solar desalination and presents a
584 universal anti-oil-fouling ability with complete oil rejection.
585 Consequently, stable solar–vapor energy efficiency of more
586 than 85% is achieved regardless of whether the feedstock is
587 pure or oil-contaminated water (e.g., a mixture of oil floating
588 on water, an oil-in-water emulsion), resulting in the efficient
589 production of clean water over several days. The reliable
590 performance is attributed to the universal (both in-water and
591 in-air) oleophobic wettability, together with high light
592 absorptance near 98% contributed by nanotrap, low top-
593 down thermal conductivity ($0.0609\text{ W m}^{-1}\text{ K}^{-1}$ at a dry state
594 and $0.0818\text{ W m}^{-1}\text{ K}^{-1}$ at a wet state) engineered by 2D
595 waterways, fast interfacial heat transfer enhanced by finlike
596 nanostructures, and accelerated evaporation enabled by sharp
597 graphene edges.

■ EXPERIMENTAL SECTION

598 **PECVD Growth.** Commercial carbon cloth (with a thickness of
599 $0.32 \pm 0.02\text{ mm}$) was used as the substrate of graphene nanosheets in
600 a customized inductively coupled plasma-enhanced chemical vapor
601 deposition (ICP-PECVD) system. In a typical procedure, the carbon
602 cloth with a plane size of $4\text{ cm} \times 8\text{ cm}$ was placed in a cylindrical
603 quartz tube, which was sealed and vacuumed to $<10\text{ Pa}$. Then, it was
604 heated to 700°C under the moderate-vacuum conditions, followed by
605 gas flow injection of a mixture of CH_4 (5 mL min^{-1}) and H_2 (5 mL min^{-1}). Subsequently, the pressure was tuned to $\sim 100\text{ Pa}$ and a radio
607 frequency source of 250 W was coupled into the quartz tube to carry
608 on the growth process. Finally, the VG/CC sample was extracted
609 from the growth chamber after cooling down to room temperature
610 under the protection of Ar flow (10 mL min^{-1}).

611 **Coating of Fluorinated Molecules.** Sodium perfluorooctanoate
612 ($\text{C}_7\text{F}_{15}\text{COONa}$, 97%) was purchased from Alfa Aesar. An ethanol
613 solution (0.1 M) was prepared by adding $\text{C}_7\text{F}_{15}\text{COONa}$ powders to
614 ethanol (99.5%), following by magnetically stirring and naturally
615 cooling to room temperature. The solid sample was immersed in the
616 as-prepared solution for 30 min and then dried at the room
617 environment overnight to obtain the fluorinated-molecule-coated
618 samples.

619 **DFT Calculations.** The Vienna *ab initio* simulation package
620 (VASP) is used for the DFT calculations under generalized gradient
621 approximation (GGA) and Perdew–Burke–Ernzerhof (PBE) func-
622 tions.^{55–58} The self-consistent field and force convergence criteria are
623 set as $1 \times 10^{-5}\text{ eV}$ and $1 \times 10^{-4}\text{ eV}\text{ \AA}^{-1}$, respectively. An energy cutoff
624 of 520 eV is used, and the spin polarization is considered for all
625

626 calculations. The Gaussian smearing method with a width of 0.05 eV
627 is employed to determine electron occupancies. Van der Waals
628 corrections enabled by the DFT-D2 method are also incorporated to
629 characterize the long-range interactions.⁵⁹ The *K*-point of $5 \times 5 \times 1$
630 ($x \times y \times z$) is used. A vacuum space of more than 20 Å is used along
631 the *z*-axis. All crystalline structures are visualized by XCrySDen.⁶⁰

632 **Material Characterization.** The morphology was observed by
633 SEM (SU-70, Hitachi) and TEM (JEM 2100F, JEOL). The surface
634 wettability was characterized by an optical contact angle measuring
635 instrument (DropMeter A-200). The photonic transmittance (*T*) and
636 reflectance (*R*) were measured by an ultraviolet-visible-near-infrared
637 spectrophotometer (UV-3150, Shimadzu) in which an integrating
638 sphere was used. The elemental composition was detected by XPS
639 (Escalab Mark II, VG) with a monochromatic Mg $K\alpha$ X-ray source
640 (1 253.6 eV). The surface roughness was measured by AFM
641 (MultiMode, VEECO). The thermal conductivity was measured by
642 a Hot Disk apparatus (TPS 2500 S, Hot Disk).

643 **Solar-Driven Interfacial Evaporation Test.** A solar simulator
644 (PLS-SXE300D, Beijing Perfect Light Technology) equipped with a
645 $<5^\circ$ collimated light source and an optical filter was used to obtain
646 standard AM 1.5 G spectrum irradiation. An optical power meter (PL-
647 MW2000, Beijing Perfect Light Technology) was used to monitor the
648 solar intensity. An infrared camera (T1050sc, FLIR) was used to map
649 the temperature distribution on the solid surface. Three T-type
650 thermocouples with an accuracy of 0.01 °C and a silvery surface were
651 used to measure the temperature of vapor and water. The mass flux
652 was measured by a precision balance (CPA225D, Sartorius) with an
653 accuracy of 0.01 mg. Canola oil was used. The oil-in-water emulsion
654 was prepared by mixing 4 mL of canola oil and 100 mL of water in a
655 beaker and then magnetically stirring for 12 h before solar-driven
656 evaporation tests. All tests were conducted at the ambient
657 temperature of ~ 25 °C and an atmospheric pressure of ~ 0.1 MPa,
658 with a humidity of $\sim 53\%$. Error bars were derived from multiple sets
659 of repeatable tests.

660 ■ ASSOCIATED CONTENT

661 ■ Supporting Information

662 The Supporting Information is available free of charge at
663 <https://pubs.acs.org/doi/10.1021/acsami.0c07921>.

664 Significance and urgency to address oil-fouling issues
665 (Note S1), SEM images of carbon cloth (Note S2), XPS
666 characterization (Note S3), setup and relaxed structures
667 of DFT calculations (Note S4), DFT conformations 3–
668 5 (Note S5), elucidation of the effect of F site packing
669 density on wettability (Note S6), surface wettability of a
670 VG/CC sample without the fluorinated coating (Note
671 S7), surface tension measurement (Note S8), AFM
672 characterization (Note S9), surface wettability of a
673 fluorinated-molecule-coated carbon cloth sample (Note
674 S10), SEM images of VG/CC without the fluorinated
675 coating (Note S11), comparison of photonic properties
676 (Note S12), experimental setup of wicking tests (Note
677 S13), analysis of the thermal balance (Note S14),
678 evaporation flux measurement (Note S15), self-salt-
679 cleaning test (Note S16), and reusability character-
680 ization of the FM-VG/CC film (Note S17) ([PDF](#))

681 ■ AUTHOR INFORMATION

682 Corresponding Author

683 **Zheng Bo** — State Key Laboratory of Clean Energy Utilization,
684 College of Energy Engineering and Hangzhou Global Scientific
685 and Technological Innovation Center, Zhejiang University,
686 Hangzhou, Zhejiang 310027, China; orcid.org/0000-0001-9308-7624; Email: bozh@zju.edu.cn

Authors

Shenghao Wu	— State Key Laboratory of Clean Energy Utilization, College of Energy Engineering and Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, China; Department of Mechanical & Aerospace Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States; orcid.org/0000-0001-9083-0785	688
Biya Gong	— State Key Laboratory of Clean Energy Utilization, College of Energy Engineering and Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, China	689
Huachao Yang	— State Key Laboratory of Clean Energy Utilization, College of Energy Engineering and Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, China	690
Yikuan Tian	— State Key Laboratory of Clean Energy Utilization, College of Energy Engineering and Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, China	691
Chenxuan Xu	— State Key Laboratory of Clean Energy Utilization, College of Energy Engineering and Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, China	692
Xinzheng Guo	— State Key Laboratory of Clean Energy Utilization, College of Energy Engineering and Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, China	693
Guoping Xiong	— Department of Mechanical Engineering, University of Nevada, Reno, Nevada 89557, United States	694
Tengfei Luo	— Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States; orcid.org/0000-0003-3940-8786	695
Jianhua Yan	— State Key Laboratory of Clean Energy Utilization, College of Energy Engineering and Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, China	696
Kefa Cen	— State Key Laboratory of Clean Energy Utilization, College of Energy Engineering and Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, China	697
Kostya Ken Ostrikov	— State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia; Joint CSIRO-QUT Sustainable Processes and Devices Laboratory, Lindfield, NSW 2070, Australia; orcid.org/0000-0001-8672-9297	698
Timothy S. Fisher	— Department of Mechanical & Aerospace Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States; orcid.org/0000-0002-8909-313X	699

700 Complete contact information is available at:
<https://pubs.acs.org/doi/10.1021/acsami.0c07921>

744 Author Contributions

745 Z.B., S.W., K.(K.)O., and T.F. conceived the project and
746 discussed on the conceptualization of the work and
747 experimental designs. S.W., B.G., Y.T., and C.X. fabricated
748 materials and performed experiments. S.W., H.Y., and X.G.
749 conducted the simulations. Z.B., S.W., G.X., T.L., J.Y., K.C., K.

750 (K.)O., and T.F. analyzed the data and interpreted the results.
751 All of the authors contributed to the writing of the manuscript.

752 Notes

753 The authors declare no competing financial interest.

754 ■ ACKNOWLEDGMENTS

755 This work is supported by the National Natural Science
756 Foundation of China (grant number 51722604) and the
757 Zhejiang Provincial Natural Science Foundation of China
758 (grant number LR17E060002). Z.B. thanks the National
759 Program for Support of Top-notch Young Professionals. S.W.
760 acknowledges the support from the China Scholarship Council
761 (grant number 201906320205), the 2019 Zhejiang University
762 Academic Award for Outstanding Doctoral Candidates (grant
763 number 2019029), Zhejiang University (grant number
764 419004A), and the University of California, Los Angeles.
765 H.Y. acknowledges the support from the China Postdoctoral
766 Science Foundation (grant number 2019M662048). G.X.
767 acknowledges the support of the start-up funding from the
768 University of Nevada, Reno. T.L. acknowledges the support
769 from the National Science Foundation (grant numbers
770 1706039, 1937949). K.(K.)O. acknowledges the support
771 from the Australian Research Council and the State Key
772 Laboratory of Clean Energy Utilization Open Fund (grant
773 numbers ZJUCEU2019002). S.W. thanks Qian Chen from
774 Zhejiang University for assisting in experiments.

775 ■ REFERENCES

776 (1) Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar Absorber
777 Material and System Designs for Photothermal Water Vaporization
778 Towards Clean Water and Energy Production. *Energy Environ. Sci.*
779 **2019**, *12*, 841–864.

780 (2) Pulizzi, F.; Sun, W. J. Treating Water with Nano. *Nat. Nanotechnol.*
781 **2018**, *13*, No. 633.

782 (3) Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Huang, Y. X.; Cheng, H.
783 H.; Qu, L. T. Direct Solar Steam Generation System for Clean Water
784 Production. *Energy Storage Mater.* **2019**, *18*, 429–446.

785 (4) Zhou, L.; Tan, Y.; Wang, J.; Xu, W.; Yuan, Y.; Cai, W.; Zhu, S.;
786 Zhu, J. 3d Self-Assembly of Aluminium Nanoparticles for Plasmon-
787 Enhanced Solar Desalination. *Nat. Photonics* **2016**, *10*, 393–398.

788 (5) Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen,
789 G.; Deng, T. Solar-Driven Interfacial Evaporation. *Nat. Energy* **2018**,
790 *3*, 1031–1041.

791 (6) Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.;
792 Miljkovic, N.; Chen, G. Solar Steam Generation by Heat Localization.
793 *Nat. Commun.* **2014**, *5*, No. 4449.

794 (7) Wang, Z.; Liu, Y. M.; Tao, P.; Shen, Q. C.; Yi, N.; Zhang, F. Y.;
795 Liu, Q. L.; Song, C. Y.; Zhang, D.; Shang, W.; Deng, T. Bio-Inspired
796 Evaporation through Plasmonic Film of Nanoparticles at the Air-
797 Water Interface. *Small* **2014**, *10*, 3234–3239.

798 (8) Jiang, Q.; Tian, L.; Liu, K.-K.; Tadepalli, S.; Raliya, R.; Biswas,
799 P.; Naik, R. R.; Singamaneni, S. Bilayered Biofoam for Highly Efficient
800 Solar Steam Generation. *Adv. Mater.* **2016**, *28*, 9400–9407.

801 (9) Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Zhang, Y.; Yu, G. H. A
802 Hydrogel-Based Antifouling Solar Evaporator for Highly Efficient
803 Water Desalination. *Energy Environ. Sci.* **2018**, *11*, 1985–1992.

804 (10) Li, X.; Xu, W.; Tang, M.; Zhou, L.; Zhu, B.; Zhu, S.; Zhu, J.
805 Graphene Oxide-Based Efficient and Scalable Solar Desalination
806 under One Sun with a Confined 2d Water Path. *Proc. Natl. Acad. Sci.*
807 U.S.A. **2016**, *113*, 13953–13958.

808 (11) Zhang, P.; Li, J.; Lv, L.; Zhao, Y.; Qu, L. Vertically Aligned
809 Graphene Sheets Membrane for Highly Efficient Solar Thermal
810 Generation of Clean Water. *ACS Nano* **2017**, *11*, 5087–5093.

811 (12) Ren, H.; Tang, M.; Guan, B.; Wang, K.; Yang, J.; Wang, F.;
812 Wang, M.; Shan, J.; Chen, Z.; Wei, D.; Peng, H.; Liu, Z. Hierarchical

Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy 813
Conversion. *Adv. Mater.* **2017**, *29*, No. 1702590. 814

(13) Li, Y.; Gao, T.; Yang, Z.; Chen, C.; Luo, W.; Song, J.; Hitz, E.; 815
Jia, C.; Zhou, Y.; Liu, B.; Yang, B.; Hu, L. 3d-Printed, All-in-One 816
Evaporator for High-Efficiency Solar Steam Generation under 1 Sun 817
Illumination. *Adv. Mater.* **2017**, *29*, No. 1700981. 818

(14) Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; 819
Qiu, J.; Chen, X.; Wu, T. High-Performance Photothermal 820
Conversion of Narrow-Bandgap Ti₂O₃ Nanoparticles. *Adv. Mater.* 821
2016, *29*, No. 1603730. 822

(15) Xu, N.; Hu, X.; Xu, W.; Li, X.; Zhou, L.; Zhu, S.; Zhu, J. 823
Mushrooms as Efficient Solar Steam-Generation Devices. *Adv. Mater.* 824
2017, *29*, No. 1606762. 825

(16) Yang, P. H.; Liu, K.; Chen, Q.; Li, J.; Duan, J. J.; Xue, G. B.; Xu, 826
Z. S.; Xie, W. K.; Zhou, J. Solar-Driven Simultaneous Steam 827
Production and Electricity Generation from Salinity. *Energy Environ. 828
Sci.* **2017**, *10*, 1923–1927. 829

(17) Liu, Z.; Song, H.; Ji, D.; Li, C.; Cheney, A.; Liu, Y.; Zhang, N.; 830
Zeng, X.; Chen, B.; Gao, J.; Li, Y.; Liu, X.; Aga, D.; Jiang, S.; Yu, Z.; 831
Gan, Q. Extremely Cost-Effective and Efficient Solar Vapor 832
Generation under Nonconcentrated Illumination Using Thermally 833
Isolated Black Paper. *Global Challenges* **2017**, *1*, No. 1600003. 834

(18) Li, Y.; Gao, T.; Yang, Z.; Chen, C.; Kuang, Y.; Song, J.; Jia, C.; 835
Hitz, E. M.; Yang, B.; Hu, L. Graphene Oxide-Based Evaporator with 836
One-Dimensional Water Transport Enabling High-Efficiency Solar 837
Desalination. *Nano Energy* **2017**, *41*, 201–209. 838

(19) Yi, L.; Ci, S.; Luo, S.; Shao, P.; Hou, Y.; Wen, Z. Scalable and 839
Low-Cost Synthesis of Black Amorphous Al-Ti-O Nanostructure for 840
High-Efficient Photothermal Desalination. *Nano Energy* **2017**, *41*, 841
600–608. 842

(20) Yang, Y.; Zhao, R.; Zhang, T.; Zhao, K.; Xiao, P.; Ma, Y.; 843
Ajayan, P. M.; Shi, G.; Chen, Y. Graphene-Based Standalone Solar 844
Energy Converter for Water Desalination and Purification. *ACS Nano* 845
2018, *12*, 829–835. 846

(21) Pang, Y. S.; Zhang, J. J.; Ma, R. M.; Qu, Z. G.; Lee, E.; Luo, T. 847
F. Solar-Thermal Water Evaporation: A Review. *ACS Energy Lett.* 848
2020, *5*, 437–456. 849

(22) Ni, G.; Zandavi, S. H.; Javid, S. M.; Boriskina, S. V.; Cooper, T. 850
A.; Chen, G. A Salt-Rejecting Floating Solar Still for Low-Cost 851
Desalination. *Energy Environ. Sci.* **2018**, *11*, 1510–1519. 852

(23) Ma, Q. L.; Yin, P. F.; Zhao, M. T.; Luo, Z. Y.; Huang, Y.; He, 853
Q. Y.; Yu, Y. F.; Liu, Z. Q.; Hu, Z. N.; Chen, B.; Zhang, H. Mof-Based 854
Hierarchical Structures for Solar-Thermal Clean Water Production. 855
Adv. Mater. **2019**, *31*, No. 1808249. 856

(24) Xia, Y.; Hou, Q. F.; Jubae, H.; Li, Y.; Kang, Y.; Yuan, S.; Liu, 857
H. Y.; Woo, M. W.; Zhang, L.; Gao, L.; Wang, H. T.; Zhang, X. W. 858
Spatially Isolating Salt Crystallisation from Water Evaporation for 859
Continuous Solar Steam Generation and Salt Harvesting. *Energy 860
Environ. Sci.* **2019**, *12*, 1840–1847. 861

(25) Wu, S. H.; Xiong, G. P.; Yang, H. C.; Gong, B. Y.; Tian, Y. K.; 862
Xu, C. X.; Wang, Y.; Fisher, T.; Yan, J. H.; Cen, K. F.; Luo, T. F.; Tu, 863
X.; Bo, Z.; Ostrikov, K. Multifunctional Solar Waterways: Plasma- 864
Enabled Self-Cleaning Nanoarchitectures for Energy-Efficient De- 865
salination. *Adv. Energy Mater.* **2019**, *9*, No. 1901286. 866

(26) Zhu, B.; Kou, H.; Liu, Z. X.; Wang, Z. J.; Macharia, D. K.; Zhu, 867
M. F.; Wu, B. H.; Liu, X. G.; Chen, Z. G. Flexible and Washable Cnt- 868
Embedded Pan Nonwoven Fabrics for Solar-Enabled Evaporation and 869
Desalination of Seawater. *ACS Appl. Mater. Interfaces* **2019**, *11*, 870
35005–35014. 871

(27) Zhang, P. P.; Liao, Q. H.; Zhang, T.; Cheng, H. H.; Huang, Y. 872
X.; Yang, C.; Li, C.; Jiang, L.; Qu, L. T. High Throughput of Clean 873
Water Excluding Ions, Organic Media, and Bacteria from Defect- 874
Abundant Graphene Aerogel under Sunlight. *Nano Energy* **2018**, *46*, 875
415–422. 876

(28) Ma, Q. L.; Cheng, H. F.; Fane, A. G.; Wang, R.; Zhang, H. 877
Recent Development of Advanced Materials with Special Wettability 878
for Selective Oil/Water Separation. *Small* **2016**, *12*, 2186–2202. 879

(29) Li, Y. Q.; Zhang, H.; Fan, M. Z.; Zheng, P. T.; Zhuang, J. D.; 880
Chen, L. H. A Robust Salt-Tolerant Superoleophobic Alginate/ 881

882 Graphene Oxide Aerogel for Efficient Oil/Water Separation in Marine
883 Environments. *Sci. Rep.* **2017**, *7*, No. 46379.

884 (30) Ma, W. C.; Liu, B.; Zhang, R. X.; Gu, T. B.; Ji, X.; Zhong, L.;
885 Chen, G. Y.; Ma, L. L.; Cheng, Z. J.; Li, X. P. Co-Upgrading of Raw
886 Bio-Oil with Kitchen Waste Oil through Fluid Catalytic Cracking
887 (Fcc). *Appl. Energy* **2018**, *217*, 233–240.

888 (31) Wu, S.; Yang, H.; Xiong, G.; Tian, Y.; Gong, B.; Luo, T.; Fisher,
889 T. S.; Yan, J.; Cen, K.; Bo, Z.; Ostrikov, K. K. Spill-Sos: Self-Pumping
890 Siphon-Capillary Oil Recovery. *ACS Nano* **2019**, *13*, 13027–13036.

891 (32) Al Malek, S. A.; Mohamed, A. M. O. Environmental Impact
892 Assessment of Off Shore Oil Spill on Desalination Plant. *Desalination*
893 **2005**, *185*, 9–30.

894 (33) Gong, B. Y.; Yang, H. C.; Wu, S. H.; Xiong, G. P.; Yan, J. H.;
895 Cen, K. F.; Bo, Z.; Ostrikov, K. Graphene Array-Based Anti-Fouling
896 Solar Vapour Gap Membrane Distillation with High Energy
897 Efficiency. *Nano-Micro Lett.* **2019**, *11*, No. 51.

898 (34) Li, F. R.; Bhushan, B.; Pan, Y. L.; Zhao, X. Z. Bioinspired
899 Superoleophobic/Superhydrophilic Functionalized Cotton for Effi-
900 cient Separation of Immiscible Oil-Water Mixtures and Oil-Water
901 Emulsions. *J. Colloid Interface Sci.* **2019**, *548*, 123–130.

902 (35) Kota, A. K.; Kwon, G.; Choi, W.; Mabry, J. M.; Tuteja, A.
903 Hygro-Responsive Membranes for Effective Oil-Water Separation.
904 *Nat. Commun.* **2012**, *3*, No. 1025.

905 (36) Kwon, G.; Kota, A. K.; Li, Y. X.; Sohani, A.; Mabry, J. M.;
906 Tuteja, A. On-Demand Separation of Oil-Water Mixtures. *Adv. Mater.*
907 **2012**, *24*, 3666–3671.

908 (37) Xu, Z. G.; Zhao, Y.; Wang, H. X.; Wang, X. G.; Lin, T. A
909 Superamphiphobic Coating with an Ammonia-Triggered Transition
910 to Superhydrophilic and Superoleophobic for Oil-Water Separation.
911 *Angew. Chem., Int. Ed.* **2015**, *54*, 4527–4530.

912 (38) Li, L.; Wang, Y. J.; Gallaschun, C.; Risch, T.; Sun, J. N. Why
913 Can a Nanometer-Thick Polymer Coated Surface Be More Wettable
914 to Water Than to Oil? *J. Mater. Chem.* **2012**, *22*, 16719–16722.

915 (39) Wang, Y. J.; Dugan, M.; Urbaniak, B.; Li, L. Fabricating
916 Nanometer-Thick Simultaneously Oleophobic/Hydrophilic Polymer
917 Coatings Via a Photochemical Approach. *Langmuir* **2016**, *32*, 6723–
918 6729.

919 (40) Li, F. R.; Wang, Z. R.; Huang, S. C.; Pan, Y. L.; Zhao, X. Z.
920 Flexible, Durable, and Unconditioned Superoleophobic/Superhydro-
921 philic Surfaces for Controllable Transport and Oil-Water Separation.
922 *Adv. Funct. Mater.* **2018**, *28*, No. 1706867.

923 (41) Zhou, H.; Wang, H. X.; Yang, W. D.; Niu, H. T.; Wei, X.; Fu, S.
924 D.; Liu, S.; Shao, H.; Lin, T. Durable Superoleophobic-Super-
925 hydrophilic Fabrics with High Anti-Oil-Fouling Property. *RSC Adv.*
926 **2018**, *8*, 26939–26947.

927 (42) Lee, K.; Murray, E. D.; Kong, L. Z.; Lundqvist, B. I.; Langreth,
928 D. C. Higher-Accuracy Van Der Waals Density Functional. *Phys. Rev.*
929 *B* **2010**, *82*, No. 081101.

930 (43) Luo, T. F.; Lloyd, J. R. Molecular Dynamics Study of Thermal
931 Transport in Gaas-Self-Assembly Monolayer-Gaas Junctions with Ab
932 Initio Characterization of Thiol-Gaas Bonds. *J. Appl. Phys.* **2011**, *109*,
933 No. 034301.

934 (44) Fowkes, F. M. Attractive Forces at Interfaces. *Ind. Eng. Chem.*
935 **1964**, *56*, 40–52.

936 (45) Owens, D. K.; Wendt, R. C. Estimation of the Surface Free
937 Energy of Polymers. *J. Appl. Polym. Sci.* **1969**, *13*, 1741–1747.

938 (46) Quéré, D. Wetting and Roughness. *Annu. Rev. Mater. Res.* **2008**,
939 *38*, 71–99.

940 (47) Wu, S.; Xiong, G.; Yang, H.; Tian, Y.; Gong, B.; Wan, H.;
941 Wang, Y.; Fisher, T. S.; Yan, J.; Cen, K.; Bo, Z.; Ostrikov, K. Scalable
942 Production of Integrated Graphene Nanoarchitectures for Ultrafast
943 Solar-Thermal Conversion and Vapor Generation. *Matter* **2019**, *1*,
944 1017–1032.

945 (48) Yu, K. H.; Bo, Z.; Lu, G. H.; Mao, S.; Cui, S. M.; Zhu, Y. W.;
946 Chen, X. Q.; Ruoff, R. S.; Chen, J. H. Growth of Carbon Nanowalls at
947 Atmospheric Pressure for One-Step Gas Sensor Fabrication. *Nano-*
948 *scale Res. Lett.* **2011**, *6*, No. 202.

949 (49) Bao, H.; Kumar, A.; Cai, Y.; Ji, Y.; Fisher, T. S.; Ruan, X. 949
Optical Properties of Thin Graphitic Nanopetal Arrays. *J. Quant.* 950
Spectrosc. Radiat. Transfer **2015**, *158*, 84–90. 951

950 (50) Wei, X. F.; Zhang, T.; Luo, T. F. Molecular Fin Effect from 952
Heterogeneous Self-Assembled Monolayer Enhances Thermal Con- 953
ductance across Hard-Soft Interfaces. *ACS Appl. Mater. Interfaces* 954
2017, *9*, 33740–33748. 955

955 (51) Yang, J.; Pang, Y.; Huang, W.; Shaw, S. K.; Schiffbauer, J.; 956
Pillers, M. A.; Mu, X.; Luo, S.; Zhang, T.; Huang, Y.; Li, G.; Ptasinska, 957
S.; Lieberman, M.; Luo, T. Functionalized Graphene Enables Highly 958
Efficient Solar Thermal Steam Generation. *ACS Nano* **2017**, *11*, 959
5510–5518. 960

960 (52) Solar Energy Analysis for Los Angeles, Ca. Solar Energy Local. 961
2020. <https://www.solarenergylocal.com/states/california/los-> 962
angels/. 963

963 (53) Calcium and Magnesium in Drinking-Water: Public Health 964
Significance; World Health Organization, 2009. http://www.who.int/water_sanitation_health/publications/publication_9789241563550/ 965
en/. 966

966 (54) Safe Drinking-Water from Desalination; World Health 968
Organization, 2011. http://www.who.int/water_sanitation_health/publications/desalination_guidance/en/. 969

969 (55) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab 971
Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys.* 972
Rev. B **1996**, *54*, 11169–11186. 973

973 (56) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy 974
Calculations for Metals and Semiconductors Using a Plane-Wave 975
Basis Set. *Comput. Mater. Sci.* **1996**, *6*, 15–50. 976

976 (57) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; 977
Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, 978
and Surfaces: Applications of the Generalized Gradient Approx- 979
imation for Exchange and Correlation. *Phys. Rev. B* **1992**, *46*, 6671– 980
6687. 981

981 (58) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient 982
Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865–3868. 983

983 (59) Grimme, S. Semiempirical Gga-Type Density Functional 984
Constructed with a Long-Range Dispersion Correction. *J. Comput.* 985
Chem. **2006**, *27*, 1787–1799. 986

986 (60) Kokalj, A. Xcrysden - a New Program for Displaying Crystalline 987
Structures and Electron Densities. *J. Mol. Graphics Modell.* **1999**, *17*, 988
176–179. 989