
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

Formally Verified Memory Protection for a
Commodity Multiprocessor Hypervisor

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui, Columbia University

https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei

Formally Verified Memory Protection
for a Commodity Multiprocessor Hypervisor

Shih-Wei Li Xupeng Li Ronghui Gu Jason Nieh John Zhuang Hui
Department of Computer Science

Columbia University
{shihwei,xupeng.li,rgu,nieh,j-hui}@cs.columbia.edu

Abstract
Hypervisors are widely deployed by cloud computing

providers to support virtual machines, but their growing
complexity poses a security risk, as large codebases contain
many vulnerabilities. We present SeKVM, a layered Linux
KVM hypervisor architecture that has been formally verified
on multiprocessor hardware. Using layers, we isolate KVM’s
trusted computing base into a small core such that only the
core needs to be verified to ensure KVM’s security guarantees.
Using layers, we model hardware features at different levels
of abstraction tailored to each layer of software. Lower hyper-
visor layers that configure and control hardware are verified
using a novel machine model that includes multiprocessor
memory management hardware such as multi-level shared
page tables, tagged TLBs, and a coherent cache hierarchy
with cache bypass support. Higher hypervisor layers that
build on the lower layers are then verified using a more
abstract and simplified model, taking advantage of layer
encapsulation to reduce proof burden. Furthermore, layers
provide modularity to reduce verification effort across multi-
ple implementation versions. We have retrofitted and verified
multiple versions of KVM on Arm multiprocessor hardware,
proving the correctness of the implementations and that they
contain no vulnerabilities that can affect KVM’s security
guarantees. Our work is the first machine-checked proof
for a commodity hypervisor using multiprocessor memory
management hardware. SeKVM requires only modest KVM
modifications and incurs only modest performance overhead
versus unmodified KVM on real application workloads.

1 Introduction

Cloud computing providers rely on commodity hypervisors to
securely host and protect user applications and data in virtual
machines (VMs). However, commodity hypervisors are
complex pieces of software, in some cases integrated with an
entire host operating system (OS) kernel to leverage existing
kernel functionality. This complexity poses a significant

security risk as more complex software has more bugs,
allowing attackers to exploit hypervisor vulnerabilities to
compromise VMs [14–18].

Theoretically, formal verification offers a solution by
proving that a system is correctly implemented. However, pre-
viously verified systems, such as CertiKOS [33], seL4 [43,53],
Komodo [28], and Serval [54], were not verified using real-
istic hardware models that resemble what can be found in a
cloud computing setting. Most of them are limited to unipro-
cessor settings, and none of them model common hardware
features such as multi-level shared page tables, tagged TLBs,
or writeback caches. In other words, these verified implemen-
tations cannot be deployed to handle cloud applications and
workloads, and even if they could, their proofs may not hold
for hardware used in a cloud computing setting.

We present SeKVM, the first hypervisor that has been
formally verified on multiprocessor hardware with shared
page tables, tagged TLBs, and writeback caches. This is made
possible by introducing a layered hypervisor architecture
and verification methodology. We use layers in three ways.
First, we use layers to reduce the trusted computing base
(TCB) by splitting the hypervisor into two layers, a higher
layer consisting of a large set of untrusted hypervisor services
and a lower layer consisting of a small core that serves as
the hypervisor’s TCB. We build on our previous work on
HypSec [46] to retrofit the Linux KVM hypervisor in this
manner without compromising its functionality. Reducing the
hypervisor’s TCB reduces the amount of code that needs to be
trusted, thereby reducing code complexity and vulnerabilities.

Second, we use layers to modularize the implementation
and proof of the TCB. We structure the TCB’s implementa-
tion as a hierarchy of modules that build upon the hardware
and each other. Modularity enables us to decompose the ver-
ification of the TCB into simpler components that are easier
to prove. Once we prove that a lower layer module of the
implementation refines its specification, we can then hide its
implementation details and rely on its abstract specification
in proving the correctness of higher layer modules that rely
on the lower layer module. Furthermore, we can prove the

USENIX Association 30th USENIX Security Symposium 3953

correctness of the lower layer module once and then rely on it
in proving higher layer modules instead of needing to verify
its implementation each time it is used by a higher layer mod-
ule. We leverage our previous work on security-preserving
layers [48] to provide a deep specification of each layer of
the hypervisor implementation, and verify that the implemen-
tation refines a stack of layered specifications. Using layers
allows us to reduce the proof of a complex implementation
by composing a set of simpler proofs, one for each implemen-
tation module, reducing proof effort overall. As software is
updated, layers also help with proof maintainability, as only
the proofs for the implementation modules that change need
to be updated while the other proofs can remain the same.

Third, we use layers to modularize the model of the hard-
ware used for verification. We introduce a layered hardware
model that is accurate enough to model multiprocessor
hardware features yet simple enough to be used to verify
real software by tailoring the complexity of the hardware
model to the software using it. Lower layers of the hypervisor
tend to provide simpler, hardware-dependent functions that
configure and control hardware features. We verify these
layers using all the various hardware features provided by the
machine model, allowing us to verify low-level operations
such as TLB shootdown. Higher layers of the hypervisor
tend to provide complex, higher-level functions that are less
hardware dependent. We verify these layers using simpler,
more abstract machine models that hide lower-level hardware
details not used by the software at higher layers, reducing
proof burden for the more complex parts of the software.
We extend our layered verification approach to construct an
appropriately abstract machine model for each respective
layer of software. This allows us to verify the correctness
of the multiprocessor hypervisor TCB while accounting for
and taking advantage of widely-used multiprocessor features,
including multi-level shared page tables, tagged TLBs, and
multi-level caches with cache bypass support.

We have implemented and verified a SeKVM prototype
by retrofitting KVM on Armv8 multiprocessor hard-
ware [19, 23–25]. The implementation requires only modest
modifications to Linux and has a TCB of only a few thousand
lines of code, yet retains KVM’s full-featured commodity
hypervisor functionality, including multiprocessor, full device
I/O, multi-VM, VM management, and broad Arm hardware
support. SeKVM improves KVM security by verifying the
correctness of its TCB and the security guarantees of the en-
tire hypervisor. Our verification also accounts for multi-level
shared page tables, tagged TLBs, and multi-level caches.
Furthermore, the verification has been done for multiple
versions of KVM, specifically those in versions v4.18 and
v5.4 of the Linux kernel. Both the machine model and the
proofs that build upon it were formalized using the Coq proof
assistant [3]. We show that SeKVM provides its strong secu-
rity while providing similar performance to unmodified KVM,
with only modest overhead for real application workloads

VM

Kcore VM
Protection

Lowvisor

Kserv

VM
Kernel

Linux

KVM

Highvisor

VM
UserQEMU

EL2

EL1

EL0 Host User

Figure 1: SeKVM Design

and similar scalability when running multiple VMs.

Although SeKVM shares the same security properties as
HypSec, both the correctness of SeKVM’s TCB implemen-
tation and its security guarantees are formally verified. While
HypSec’s TCB may contain vulnerabilities that compromise
its security properties, we have proven that SeKVM’s TCB
contains no vulnerabilities. Furthermore, while HypSec
is designed to provide security properties to ensure VM
confidentiality and integrity, SeKVM has been proven
to guarantee those security properties on multiprocessor
hardware. Our work is the first, machine-checked correctness
proof of the TCB of a commodity hypervisor on a realistic
hardware model with shared page tables, tagged TLBs, and
writeback caches, and the first, machine-checked security
proof of a commodity hypervisor using multiprocessor
memory management hardware.

2 Threat Model and Assumptions

Our threat model is primarily concerned with hypervisor
vulnerabilities that may be exploited to compromise a VM’s
private data. For each VM we are trying to protect, an attacker
may control other VMs and exploit any hypervisor vulnerabil-
ities. We protect each VM from attacks by other compromised
VMs, but do not protect VMs that voluntarily reveal their own
private data. Attackers may control peripherals to perform
malicious memory accesses via DMA [61]. Side-channel
attacks [6,38,51,55,71,72] are beyond the scope of the paper.

We assume a secure persistent storage to store keys. We
assume the hardware is bug-free and the system is initially
benign, allowing signatures and keys to be securely stored
before the system is compromised. We trust the machine
model, compiler, and Coq.

3954 30th USENIX Security Symposium USENIX Association

3 SeKVM Design

SeKVM uses HypSec’s design to retrofit the Linux KVM
hypervisor, reducing its TCB while protecting the confiden-
tiality and integrity of VMs. As shown in Figure 1, we split
KVM into two layers, a small trusted and privileged KCore
that is the TCB with full access to VM data, and an untrusted
and deprivileged KServ delegated with most hypervisor
functionality including the Linux kernel integrated with
KVM. The result is a hypervisor with a significantly smaller
TCB that still supports KVM’s rich hypervisor features.

KCore is kept small by only performing VM data access
control, including saving and restoring CPU register state and
page table management to limit access to a VM’s CPU state
and memory to only KCore and the VM itself. Other hyper-
visor functionality, including I/O and interrupt virtualization
and resource management such as CPU scheduling and mem-
ory allocation, are delegated to KServ. SeKVM leverages
hardware virtualization support to enforce this separation.
SeKVM runs KCore at a higher privilege CPU mode designed
for running hypervisors, giving it full control of hardware, in-
cluding virtualization hardware mechanisms such as nested
page tables (NPTs) [8]; KServ runs at a lower privilege mode.

KCore configures virtualization hardware to enforce its
access control. KCore enables NPTs for KServ and VMs
so that they do not have direct access to physical memory.
KCore can limit KServ’s or a VM’s access to pages of physical
memory by unmapping those pages from the respective NPT.
KCore ensures its own memory is not mapped into any of
the NPTs, protecting its memory by making it inaccessible to
KServ and other VMs. KCore also uses NPTs to make each
VM’s memory inaccessible to KServ and other VMs.

KCore interposes on all VM transitions, namely exiting or
entering a VM. When a VM exits, KCore saves the VM’s
execution context from CPU hardware registers to its pri-
vate memory, then restores KServ’s execution context to the
hardware before switching to KServ. KServ therefore can-
not access a VM’s CPU state from the hardware or memory,
which the state is saved in KCore memory inaccessible to
KServ. Since KServ must run to switch a CPU from running
one VM to another, a VM’s CPU state is also not accessible
by any other VM. A compromised KServ or VM can neither
control hardware virtualization mechanisms nor access KCore
memory and thus cannot disable SeKVM.

Specifically, SeKVM uses Arm Virtualization Extensions
(VE) to run KCore in hypervisor (EL2) mode while KServ
runs in a less privileged kernel (EL1) mode. VM operations
that need hypervisor intervention trap to EL2 and run KCore.
KCore either handles the trap directly to protect VM data or
world switches the hardware to EL1 to run KServ if more
complex handling is necessary, KCore context switches to
KServ. When KServ finishes its work, it makes a hypercall
to trap to EL2 so KCore can securely restore the VM state
to hardware. KCore interposes on every switch between the

VM and KServ, thus protecting the VM’s execution context.
SeKVM ensures that KServ cannot invoke arbitrary KCore
functions via hypercalls.

KCore leverages Arm VE’s stage 2 memory translation sup-
port, Arm’s NPTs, to virtualize both KServ and VM memory.
Stage 2 page tables translate from guest physical addresses
(gPAs) in a VM to the actual physical memory addresses on
the host (PAs). Free physical memory is mapped into KServ’s
stage 2 page tables so KServ can allocate it to VMs. Once it
is allocated to a VM, KCore maps the memory into the VM’s
stage 2 page tables and unmaps the memory from KServ’s
stage 2 page tables to make the physical memory inaccessible
to KServ. KCore routes stage 2 page faults to EL2 and rejects
illegal KServ and VM memory accesses. KCore allocates
KServ’s and VMs’ stage 2 page tables from its own protected
physical memory and manages the page tables, preventing
KServ from accessing them. When a VM is terminated and is
done with its allocated memory, KCore scrubs the memory
before mapping it back into KServ’s stage 2 page tables as
free memory which can be allocated again to another VM.
Further details are described in [46].

SeKVM by default ensures that KServ has no access to
any VM memory. However, a VM may want to share its
memory with KServ in some cases. For example, a VM
may encrypt its data for use with paravirtualized I/O, in
which a memory region owned by the VM has to be shared
with KServ for communication and efficient data copying
since KServ handles paravirtualized I/O. SeKVM provides
GRANT_MEM and REVOKE_MEM hypercalls which a guest OS can
use to share its memory with KServ. The VM passes the start
of a guest physical frame number, the size of the memory
region, and the specified access permission to KCore via
the hypercalls. KCore enforces the access control policy by
controlling the memory region’s mapping in stage 2 page
tables. Only VMs can use these two hypercalls; KServ cannot
use them to gain access to VM pages.

SeKVM delegates device management to KServ. Devices
are untrusted and KCore ensures that devices cannot
compromise VM data using DMA protection. Like HypSec,
SeKVM assumes VMs do not voluntarily leak data, and
assumes that they encrypt I/O data for end-to-end security.

Using hardware features. Like KVM, SeKVM leverages
standard multiprocessor hardware features for its function-
ality and performance, including multi-level shared page
tables, tagged TLBs, caches, and IOMMU hardware. KCore
supports multi-level shared NPTs to support standard KVM
functionality. KCore supports dynamically allocated 4-level
NPTs as used in KVM, which is essential on Arm 64-bit hard-
ware. KCore supports huge (2MB) and regular (4KB) pages,
also standard in KVM, which is crucial for virtualization
performance. KCore supports shared NPTs that can be con-
currently accessed by multiple CPUs as this is a requirement
for multiprocessor VMs, each of which has a shared NPT.

USENIX Association 30th USENIX Security Symposium 3955

KCore uses Arm’s tagged TLBs to improve paging perfor-
mance, avoiding the need to flush TLBs on context switches
between VMs and KServ. KCore assigns an identifier to each
VM and KServ which it uses to tag TLB entries so address
translation can be properly disambiguated on TLB accesses
from multiple VMs and KServ. When updating a page table
entry, KCore flushes corresponding TLB entries to ensure
the TLB does not include stale page table entries that could
potentially compromise VM security. For instance, when a
VM page is evicted from its stage 2 page tables, KCore has
to flush the TLB entries correlated to the translation used
for the evicted page. Otherwise, a VM could use the cached
TLB entry to access the evicted page that KServ may now
allocate to the other VMs. Correct TLB maintenance while
avoiding unnecessary TLB flushes is crucial for VM security
and performance.

KCore takes advantage of Arm’s hardware cache coherence
architecture to maximize system performance, but needs to
ensure that caching does not violate the confidentiality and
integrity of VM data. Architectures like Arm allow software
to manage cached data. In particular, Arm’s hardware cache
coherence ensures that all cached memory accesses across
different CPUs and different level caches get the same syn-
chronized value, but it does not guarantee that what is in the
cache is the same as main memory. Memory accesses that
are configured to bypass the cache may therefore obtain stale
data if the latest value is cached. To ensure this does not re-
sult in any possible leakage of VM data, when KCore scrubs
memory pages, it executes cache management instructions
to force those writes to cached data to also be written back
to main memory to ensure there is no way for any VMs or
KServ to access VM data directly from main memory.

KCore leverages the System Memory Management Unit
(SMMU) [4], Arm’s IOMMU, to ensure that a VM’s private
memory cannot be accessed by devices assigned to KServ or
other VMs, including protecting against DMA attacks. KCore
ensures the SMMU is unmapped from all NPTs so it can
fully control the hardware to ensure devices can only access
memory through the SMMU page tables it manages. It uses
the SMMU page tables to enforce memory isolation. KCore
validates all SMMU operations by only allowing the driver in
KServ to program the SMMU through Memory Mapped IO
(MMIO) accesses, which trap to KCore, and SMMU hyper-
calls. MMIO accesses are trapped by unmapping the SMMU
from KServ’s stage 2 page tables. SMMU hypercalls (1) allo-
cate/deallocate an SMMU translation unit, and its associated
page tables, for a device, and (2) map/unmap/walk the SMMU
page tables for a given device. As part of validating a KServ
page allocation proposal for a VM, KCore also ensures that
the page being allocated is not mapped by any SMMU page
table for any device assigned to KServ or other VMs.

Layered implementation. While SeKVM’s design
significantly reduces the size of the its TCB and therefore

also reduces the proof effort to verify the TCB, proving
the correctness of the smaller hypervisor TCB, KCore, still
remains a challenge, especially on Arm multiprocessor
hardware. To further reduce the proof burden, KCore itself
uses a layered architecture to facilitate a layered approach
to verification. The implementation is constructed as a set
of layers such that functions defined in higher layers of
the implementation can only call functions at lower layers
of the implementation. Layers can then be verified in an
incremental and modular way. Once we verify the lower
layers of the implementation, we can compose them together
to simplify the verification of higher layers.

The specific layers in KCore’s implementation are not
determined in a vacuum, but with verification in mind based
on the following layer design principles. First, we introduce
layers to simplify abstractions, when functionality needed
by lower layers is not needed by higher layers. Second, we
introduce layers to hide complexity, when low-level details
are not needed by higher layers. Third, we introduce layers
to consolidate functionality, so that such functionality only
needs to be verified once against its specification. For in-
stance, by treating a module used by other modules as its own
separate layer, we do not have to redo the proof of that module
for all of the other modules, simplifying verification. Finally,
we introduce layers to enforce invariants, which are used to
prove high-level properties. Introducing layers modularizes
verification, reducing proof effort and maintenance.

Figure 2 shows the KCore layered architecture. The top
layer is TrapHandler, which defines KCore’s interface to
KServ and VMs, such as KServ hypercalls and VM exit han-
dlers. Exceptions caused by KServ and VMs cause a context
switch to KCore, calling CtxtSwitch to save CPU register
state to memory, then TrapDispatcher or FaultHandler

to handle the respective exception. On a KServ hypercall,
TrapDispatcher calls VCPUOps to handle the VM_ENTER

hypercall to execute a VM, and MemHandler, BootOps and
SmmuOps to use their respective hypercall handlers. On a
VM exit, TrapDispatcher calls functions at lower layers if
the exception can be handled directly by KCore, otherwise
CtxtSwitch is called again, protecting VM CPU data and
switching to KServ to handle the exception. On other KServ
exceptions, FaultHandler calls MemOps to handle KServ
stage 2 page faults and SmmuOps to handle any KServ accesses
to SMMU hardware. FaultHandler also calls MemOps to
handle VM GRANT_MEM and REVOKE_MEM hypercalls. KCore
implements basic page table operations in the layers in MMU

PT, including page table walk, map or clear a pfn in page
table, and page table allocation. KCore implements own-
ership tracking for each page in PageMgmt, PageIndex, and
Memblock for memory access control. MemOps and MemAux

provide memory protection APIs to other layers. KCore
provides SMMU page table operations in layers in SMMT PT.
KCore provides VM boot protection in BootOps, BootAux,
and BootCore. BootOps calls the Ed25519 libary from the

3956 30th USENIX Security Symposium USENIX Association

Exit
Handler

TrapHandler

TrapHandlerRaw

TrapDispatcher

FaultHandler

MemHandler

VCPU

CtxtSwitch

VCPUOps

VCPUAux

SmmuOps

SmmuAux

SmmuCore

SmmuCoreAux

SmmuRawSMMUVM
Boot

BootOps

BootAux

BootCore

VMPower

MmioSPTOps

MmioSPTWalk

MmioPTWalk

MmioPTAlloc
SMMU
PT

NPTOps

NPTWalk

PTWalk

PTAlloc
MMU
PT

MemOps

MemAux

PageMgmt

PageIndex

Memblock
VM
Mem

Ed25519

AESHACL*

Lock

LockOpsH

LockOpsQ

LockOps

Figure 2: KCore Layered Implementation

verified Hacl* [74] library to authenticate signed VM boot
images. BootOps and MemOps call to the AES implementation
in Hacl* to encrypt or decrypt VM data to support VM
management. Finally, four layers implement locks.

4 SeKVM Verification

We combine the layered implementation of SeKVM’s
TCB, KCore, with a layered hardware model to verify its
correctness using Coq. We start with a bottom machine
model that supports real multiprocessor hardware features
such as multi-level shared page tables, tagged TLBs, and a
coherent cache hierarchy with bypass support. We use layers
to gradually refine the detailed low-level machine model to
a higher-level and simpler abstract model. Finally, we verify
each layer of software by matching it with the simplest level
of machine model abstraction, reducing proof burden to make
it possible for the first time to verify commodity software
using these hardware features.

Each abstraction layer [31, 34] consists of three compo-
nents: the underlay interface, the layer’s implementation,
and its overlay interface. Each interface exposes abstract
primitives, encapsulating the implementation of lower-level
routines, so that each layer’s implementation may invoke the
primitives of the underlay interface as part of its execution.

For each layer I of KCore’s implementation, we prove that I
running on top of the underlay interface L refines its (overlay)
specification S, I@L v S. Because the layer refinement
relation v is transitive, we can incrementally refine KCore’s
entire implementation as a stack of layer specifications. For
example, given a system comprising of layer implementations
I3, I2, and I1, their respective layer specifications S3, S2, and
S1, and a base machine model specified by S0, we prove
I1@S0 v S1, I2@S1 v S2, and I3@S2 v S3. We compose
these layers to obtain (I3⊕ I2⊕ I1)@S0 v S3, proving that
the behavior of the system’s linked modules together refine
the top-level specification S3.

All KCore interface specifications and refinement proofs
are manually written in Coq, with 34 interface specifications
matching the layers in Figure 2. We use CompCert [45]
to parse each layer of the C implementation into Clight
representation, an abstract syntax tree defined in Coq; the
same is done manually for assembly code. We then use that
Coq representation to prove that the layer implementation
refines its respective interface specification at the C and
assembly level. Note that the C functions that we verify may
invoke primitives implemented in assembly and introduced
in the bottom machine model. We enforce that these
assembly primitives do not violate C calling conventions and
parameters are correctly passed. For example, we verify the
correctness of TLB maintenance code, which is implemented
in C, but invokes primitives implemented in assembly.

We prove, layer by layer, that the KCore implementation
using a detailed machine model refines its top-level specifica-
tion using a simpler abstract model. We then use the top-level
specification to prove that KCore guarantees VM confiden-
tiality and integrity for any KServ implementation, thereby
proving security guarantees for the entire SeKVM hypervisor.

4.1 AbsMachine: Abstract Hardware Model

Each of KCore’s layer modules successively builds upon Ab-
sMachine, our bottom machine model. This abstract multipro-
cessor hardware model constitutes the foundation of our cor-
rectness proof. As shown in Figure 3a, AbsMachine includes
multiple CPUs and a shared main memory. AbsMachine mod-
els general purpose and systems registers for each CPU. It also
models Arm hardware features relevant to modern hypervisor
implementation, including stage 1 and stage 2 page tables,
a physically indexed, physically tagged (PIPT) shared data
cache, and SMMU page tables, and TLBs. The shared data
cache is semantically equivalent to Arm’s multi-level cache
hierarchy with coherent caches. KCore uses stage 2 page ta-
bles to translate guest physical addresses to actual physical
addresses on the host, and uses its own EL2 stage 1 page
table to translate its virtual addresses to physical addresses.
AbsMachine models the particular hardware configuration of
KCore which we verify. For example, although Arm supports
1GB, 2MB, and 4KB mappings in stage 2 page tables, KCore

USENIX Association 30th USENIX Security Symposium 3957

CPU0
VA/gPA

PA

PA

Main Memory

Coherent Data Caches

VA/gPA

PA

DEV1DEV0

IOVA

IOVA

PA

IOVA

IOVA

PA

VA/gPA

TLB

PTs
SMMU
PTs

CPU1

VA/gPA

PA TLB

SMMU TLB

PTs

PA

(a) The bottom machine model: AbsMachine

CPU0

PA

Main Memory

CPU1

Shared Data Cache

VA/gPA

PA

DEV1DEV0

IOVA

PA

IOVA

PA

VA/gPA

PTs PTs

SMMU
PTs

(b) The machine model after the layer refinement

Figure 3: Refinement of machine models. (a) The bottom machine model that includes TLBs, multi-level page tables, and PIPT writeback
caches. (b) The layered refinement of machine models abstracts away TLBs, consolidates multi-level page tables into a single-level flat page
map, and enforces the well-formedness of data caches.

only uses 4KB and 2MB mappings in stage 2 page tables,
since 1GB mappings result in fragmentation. Thus, we model
a VM’s memory load and store accesses in AbsMachine over
stage 1 and stage 2 page tables using 4KB and 2MB mappings.

Our abstract machine is formalized as a transition system,
where each state transition is the result of some atomic com-
putational step by a single CPU, such as executing a single
machine instruction or invoking a primitive; concurrency is
realized by the nondeterministic interleaving of each CPU’s
steps. To simplify reasoning about all possible interleavings,
we borrow the ideas of CertiKOS to lift multiprocessor
execution to a CPU-local model [33]. The machine state
σ for our model consists of per-physical CPU private state
(e.g., CPU registers) and a global logical log, a serial list of
events generated by all CPUs throughout their execution. σ

does not explicitly model shared objects, including anything
stored in physical memory. Instead, events incrementally
convey interactions with shared objects, whose state may be
calculated by replaying the logical log. An event is emitted by
a CPU and appended to the log whenever that CPU invokes a
primitive that interacts with a shared object. All effects com-
ing from the environment are encapsulated by and conveyed
through an event oracle, which yields events emitted by other
CPUs when queried. To account for all possible concurrent
interleaving, how the event oracle synchronizes these events
is left abstract, its behavior constrained only by rely-guarantee
conditions [40]. CPUs need only query the event oracle (a
query move) before interacting with shared objects, since
its private state is not affected by these events. Querying
the event oracle will result in a composite event trace of the
events from other CPUs interleaved with events from the local
CPU. A local CPU makes a step via the CPU-local move.

For simplicity, we describe AbsMachine as a sequentially
consistent model – writes always take effect in program order,
and reads always read from the most recent write. Although
Arm supports relaxed memory, we prove that all shared

memory accesses in the KCore implementation are correctly
protected by spinlocks. Because the spinlocks use barriers
that prevent memory accesses from being reordered beyond
their critical sections, we can show that KCore only exhibits
sequentially consistent behavior. As a result, our guarantees
over KCore verified using a sequentially consistent model
still hold on Arm’s relaxed memory model. This proof is
beyond the scope of this paper.

Although the abstract machine model is specified in the
bottom machine model of our proof, each successive layer
implicitly has a machine model which is used to express how
events at that layer affect machine state. For example, each
layer has some notion of memory to support memory load
and store primitives. For many layers, most primitives and
their effect on the machine model at the overlay interface
are the same as those at the underlay interface. These
passthrough primitives and their effects on machine state
do not need to be respecified for each higher layer. On the
other hand, each layer may define new primitives based on
a higher-level machine model, so long as a refinement can be
proven between the layer’s implementation over the underlay
interface and the overlay interface.

A key aspect of our proofs is to abstract away the low-level
details of the machine model, layer by layer, by proving
refinement between the software implementation using a
lower-level machine model and its specification based on
a higher-level machine model. Specifically, by proving
refinement relations between adjacent layers, we successively
verify that KCore’s implementation over AbsMachine
refines the abstract top-level specification defined by
TrapHandler, as shown in Figure 2. For example, we verify
that the TLB behavior exposed by AbsMachine is wholly
encapsulated by our implementation, and is thus abstracted
from TrapHandler’s specification.

3958 30th USENIX Security Symposium USENIX Association

4.2 Page Table Management
As shown in Figure 3a, AbsMachine models Arm hardware’s
multi-level page tables. A page table can include up to four
levels, referred to using Linux terminology as pgd, pud, pmd,
and pte. AbsMachine models both regular and huge page
table mappings, as used by KVM and also employed by
KCore. KCore maintains stage 2 page tables — one per VM
and one for KServ — as well as its own EL2 stage 1 page
table. The functions for KCore to manipulate page tables
are implemented and verified at the four layers of the MMU PT

module, shown in Figure 2. The PTAlloc layer dynamically
allocates page table levels, e.g.,pud, pmd, and pte. The
PTWalk layer provides helper functions for walking an
individual level of the page table, e.g., walk_pgd, walk_pud,
etc. The NPTWalk layer uses PTWalk’s primitives to perform
a full page table walk. The NPTOps layer grabs and releases
page table locks to perform page table operations, such as the
map_page function that maps a VM’s guest physical frame
number (gfn) to a physical frame number (pfn) by calling
the set_s2pt function in the NPTWalk layer to create a new
mapping in the VM’s stage 2 page table:
void map_page(u32 vmid, u64 gfn, u64 pfn, u64 attr) {
acq_lock_s2pt();
if (!get_s2pt(vmid, gfn)) {
set_s2pt(vmid, gfn, pfn, 4K, attr);

}
rel_lock_s2pt();

}

void set_s2pt(u32 vmid, u64 gfn, u64 pfn, u32 size,
u64 attr) {

u64 pgd, pud, pmd, pte;
pgd = walk_pgd(vmid, gfn);
pud = walk_pud(vmid, pgd, gfn);
pmd = walk_pmd(vmid, pud, gfn);
if (size == 2M) {
/* make sure pmd is not mapped to a pte */
if (pmd_table(pmd) != PMD_TYPE_TABLE)
set_pmd(vmid, pmd, gfn, pfn, attr);

} else if (size == 4K) {
if (pmd_table(pmd) == PMD_TYPE_TABLE) {
pte = walk_pte(vmid, pud, gfn);
set_pte(vmid, pte, gfn, pfn, attr);

}
}

}

We need to prove that KCore correctly manages its own
stage 1 page table and all stage 2 page tables to enforce
memory isolation among VMs, regardless of how KServ and
VMs manage their own stage 1 page tables. To simplify this
proof and the reasoning related to page tables at higher layers,
we first abstract away the underlying implementation details
and refine the multi-level page table into a flat map, as shown
in Figure 3b, at the layer NPTWalk. For example, we refine
the stage 2 page table into a flat map from gfn to a physical
frame tuple (pfn, size, attr), where size is the size of
the page, 4KB or 2MB, and attr encompasses attributes of
the page, such as its memory access permissions.

This refinement is proven by first showing that the
multi-level page table managed by KCore always forms a

tree data structure—every page table at lower levels (pud,
pmd, and pte) is referenced by only one page table entry at
higher levels. We verify that KCore enforces the following
two properties: (1) a lower-level page table can only be
allocated and inserted during the page table walk when the
target page table level does not exist, and (2) the allocated
page table is a free and empty page. The allocated page is
free such that no page table entry references it before the
insertion. The allocated page is empty such that it does not
contain any existing page tables. In this way, if the page table
initially forms a tree, inserting this allocated page still results
in a tree. The first property ensures that each edge of the tree
before insertion remains unchanged after the insertion.

We then verify that the tree structure can be refined to a flat
map by showing that updating the mapping for a gfn does
not affect the mapping for any other gfn’ 6= gfn. Suppose
both gfn and gfn’ are regular or huge pages. If the page
walks for gfn and gfn’ diverge at some level, they will fall
into different leaf nodes due to the tree structure. If gfn and
gfn’ have the same page walk path, their pte indices will
be different if they are regular pages, and their pmd indices
will be different if they are huge pages, since gfn’ 6= gfn.

The proof becomes more complicated when one page is
a regular page and the other is a huge page. We have to prove
that, once a pmd is allocated to store huge page mappings, it
cannot be used to store lower-level pte pointers for regular
pages, and vice versa. This is ensured by checking the size

argument and the type of pmd during the page walk, as shown
in the above example.

To unify the representation for the flat map at higher
layers, we logically treat a 2MB huge page as 512 4KB pages.
Changing one mapping for a 2MB huge page will cause
updates to the mappings for all of its 512 4KB pages.

After the refinement proof at the layer NPTWalk, all the
modules and their properties at higher layers can be reasoned
about using this flat map without the need to deal with the
implementation details of the multi-level page tables. For
example, the memory isolation proof can be simplified
significantly using the flat page map.

4.3 TLB Management

As shown in Figure 3a, AbsMachine models Arm’s tagged
TLB for each CPU, which caches page translations to regular
and huge pages. In AbsMachine, each CPU is associated with
an abstract TLB mapping, which maps VMIDs as tags to a set
of TLB entries.

Arm TLBs cache three types of entries: (1) a stage 1
translation from a VM’s virtual address to a gPA, (2) a stage
2 translation from a gPA to a PA, and (3) a translation from a
VM’s virtual address to a PA that combines stage 1 and stage
2 translations. AbsMachine models all three types of TLB
entries, respectively, as: (1) a mapping from a virtual page
number vpn to a tuple (gfn, size, attr), and (2) a mapping

USENIX Association 30th USENIX Security Symposium 3959

from a gfn to a physical frame tuple (pfn, size, attr), and
(3) a mapping from a vpn to a gfn to a physical frame tuple
(pfn, size, attr), where size and attr are used the same
way as in AbsMachine’s page tables, described in Section 4.2.
Mappings are aligned to size (4KB or 2MB) of the mapped
page. AbsMachine provides the following four basic TLB
operations reflecting Arm’s hardware behavior:
• TLB lookup. For a given memory load or store made

by a VM VMID to access an address addr (gfn or vpn),
AbsMachine searches the running CPU’s TLB tagged with
VMID, and checks if any entry translates addr. AbsMachine
first checks if addr maps to an exact 4KB pfn, If no
such mapping exists, it then checks if addr maps to a
2MB pfn by aligning addr to its 2MB base, pfn_2m, and
searching the TLB using pfn_2m. If a matching entry is
found, a TLB hits, the TLB returns the respective physical
frame number if the VM memory operation is permitted,
otherwise generates a permission fault. If no matching
entry is found, the TLB returns None to indicate a TLB
miss, and AbsMachine will then perform the address
translation using page tables directly.

• TLB refill. If a TLB miss occurs on a memory access, Abs-
Machine refills the TLB with information from the ensuing
page table walk, either a 4KB or 2MB translation to the
CPU’s tagged TLB. As previously mentioned, the refilled
pfn must be aligned to the corresponding mapping size.

• TLB eviction. In AbsMachine, a memory load or store
operation randomly invalidates a TLB entry before the
actual memory access to account for all possible TLB
eviction policies.

• TLB flush. Like Arm, AbsMachine exposes two primitives,
mmu_tlb_flush1 and mmu_tlb_flush2, to flush TLB
entries. mmu_tlb_flush2 takes a gfn and a VMID as
arguments and invalidates the second type of TLB entry
that maps the gfn. mmu_tlb_flush1 takes a VMID as an
argument and invalidates all TLB entries associated with
VMID that are either the first or third type of TLB entry.
Hypervisors like KVM must use mmu_tlb_flush1 to
conservatively flush all of a VM’s TLB entries related to
stage 1 translations when they update stage 2 page tables
because they do not track how VMs manage their own stage
1 page tables. Like KVM, KCore uses both primitives to
flush TLB entries as needed when updating a VM’s stage 2
page tables. For simplicity, we use mmu_tlb_flush to refer
to a call to both mmu_tlb_flush1 and mmu_tlb_flush2.
Note that the first three operations, TLB lookup, refill, and

eviction, model Arm’s TLB hardware behavior during the
memory access, while the last operation, TLB flush, provides
a set of primitives for the KCore software to perform TLB
maintenance, implemented and verified at the NPTOps layer
of the MMU PT module shown in Figure 2.

At the layer NPTOps, we verify that TLB entries are
correctly maintained by KCore and that no principal, a VM
or KServ, can use the TLB to access a physical page that

does not belong to it, regardless of the behavior of KServ
or any VM. In this way, we can hide TLB and TLB-related
operations from all the layers above NPTOps, as shown in
Figure 3b, to simplify the reasoning at higher layers.

This verification step introduces a concept of page ob-
servers to represent the set of all possible principals that can
observe a pfn through TLBs or page tables. We write {pfn:

n kserv}@TLB to denote that VM n and KServ are page
observers to pfn through TLBs. As an example, consider the
unmap_pfn_kserv primitive in NPTOps. When a page pfn is
allocated by KServ to a VM n, KCore first calls unmap_pfn_-
kserv to remove the pfn from KServ’s stage 2 page table,
then inserts pfn in n’s stage 2 page table. The page observers
before and after each step can be computed as follows:
// {pfn: kserv}@TLB {pfn: kserv}@PT
unmap_pfn_kserv (pfn);
// {pfn: kserv}@TLB {pfn: _}@PT
mmu_tlb_flush (pfn, kserv);
// {pfn: _}@TLB {pfn: _}@PT
map_page (n, gfn, pfn, attr);
// {pfn: n}@TLB {pfn: n}@PT

A TLB can be refilled using page tables’ contents at
any point due to a memory access on another CPU, so the
(possible) page observers through TLBs must be a superset of
the ones through page tables. That is why VM n can observe
pfn through TLBs right after inserting pfn to n’s page table.
Intuitively, the superset relationship is because a TLB can
contain the earlier and current cached page table translations
while page tables contains only the current translations. The
TLB flush collapses all possible (cached) observers to pfn

to the observers defined by the page table.
The above example generates the following sequence of

page observers through TLB:

{pfn: kserv}, {pfn: kserv}, {pfn: _}, {pfn: n}

If we merge consecutive identical page observers into a page
observer group, we get the following page observer groups:

{pfn: kserv}, {pfn: _}, {pfn: n} (1)

To prove that TLBs are maintained correctly and can be
hidden at higher layers, we just need to show that TLBs and
page tables generate the same sequence of page observer
groups, even if page tables’ observers are a subset of TLBs’
observers. In the above example, the page observers through
page tables are:

{pfn: kserv}, {pfn: _}, {pfn: _}, {pfn: n}

which can be merged to the same sequence of page observer
groups shown in Eq. (1).

This property can be generally proven as follows. Starting
with the same observer group through TLBs and page tables,
the resulting observer groups produced by operations such as
memory accesses, creating new page mappings in page tables,
and TLB flushes are still the same. The only non-trivial case

3960 30th USENIX Security Symposium USENIX Association

is unmapping pages, which introduces a new observer group
through page tables, while a TLB would still show the old
observer group. To avoid missing this new observer group, the
TLBs must be invalidated by KCore calling mmu_tlb_flush.

Using this approach, incorrect maintenance of TLBs can
be detected by a mismatch of page observer groups. Consider
the following insecure implementation that invalidates the
TLB before unmapping pfn.
// {pfn: kserv}@TLB {pfn: kserv}@PT
mmu_tlb_flush (gfn, kserv);
// {pfn: kserv}@TLB {pfn: kserv}@PT
unmap_pfn_kserv (pfn);
// {pfn: kserv}@TLB {pfn: _}@PT
map_page (n, gfn, pfn, attr);
// {pfn: kserv n}@TLB {pfn: n}@PT

Since TLBs can be refilled by page tables’ contents, the
page observers through TLBs remain the same after the TLB
flush. The subsequent page unmapping does not invalidate
TLBs such that the sequence of page observer groups through
TLB for this insecure implementation is as follows:

{pfn: kserv}, {pfn: kserv n}

which is different from the one in Eq. (1), meaning that more
information can be released through TLBs than page tables.

4.4 Cache Management
As shown in Figure 3a, AbsMachine includes PIPT writeback
caches. Arm adopts MESI/MOESI cache coherence protocols,
guaranteeing that all levels’ of cache are consistent, meaning
the hardware can retrieve the same contents from the cache
located at different levels, and the updates to the cache are syn-
chronized to the cache at different levels. Arm’s multi-level
caches can be modeled by AbsMachine as a uniform global
cache. To model hardware that will invalidate and write back
cached entries unbeknownst to software, for example, due to
cache line replacement, AbsMachine exposes a cache-sync

primitive that randomly evicts a cache entry and writes it
back to memory. In KCore’s specification, memory load and
store operations call cache-sync before the actual memory
accesses to account for all possible cache eviction policies.
While caches are coherent, Arm hardware does not guarantee
that cached data is always coherent with main memory;
caches may write back dirty lines at any time. Like other
architectures, Arm provides cache maintenance instructions
to allow software to flush cache lines to ensure what is stored
in main memory is up-to-date with what is stored in cache.
AbsMachine provides a cache-flush primitive that models
Arm’s clean and invalidate instruction. The primitive takes
a pfn as an argument, copies the val of pfn from cache
to main memory if the entry is present in the cache, then
removes pfn’s entry from the cache. Cache mismanagement
could result in security vulnerabilities, so hypervisors must
use these instructions to ensure that data accesses across all
of its cores remain coherent, preventing stale data leaks.

S1PT

VM1

Hypervisor

S2PT

SMain
memory

pfn

……

0

Data cache

pfn

S1PT

S2PT

VM2

Non-cacheable

Cacheable

scrub pfn

Figure 4: Attack Based on Mismatched Memory Attributes

Figure 4 shows how a malicious VM could leverage cache
mismanagement on Arm hardware to potentially obtain
confidential data of another VM from main memory. Suppose
the hypervisor decides to evict a VM1’s page pfn. It unmaps
the page from VM1 and scrubs the page by zeroing out any
residual data. Since the page no longer can be used by VM1,
the hypervisor is free to reassign it to another VM, VM2,
by mapping pfn to VM2’s stage 2 page tables (S2PT). Arm
hardware guarantees the scrubbing is synchronized across
all CPU caches, but does not guarantee it is written back to
main memory. Arm allows software to mark whether a page
is cacheable or not by setting the memory attributes in the re-
spective page table entry. When stage 2 translation is enabled,
Arm combines memory attribute settings in stage 1 and stage
2 page tables. For a given mapping, caching is only enabled
when both stages of page tables enable caching. Hypervisors
allow VMs to manage their own stage 1 page tables for perfor-
mance reasons. Although KCore always enables caching in
stage 2 page tables, an attacker in VM2 could disable caching
for the mapping to pfn in its stage 1 page table, allow it to
bypass the caches and directly access pfn in main memory,
which could contain VM1’s confidential data. To protect VM
memory against this attack, the hypervisor should flush pfn’s
associated cache line after scrubbing the page to ensure that
the changes are written back to main memory. This ensures
VM2 can never retrieve VM1’s secret in main memory.

To ensure that KCore correctly manages caches, we verify
it over AbsMachine, which models writeback caches and
cache bypass. AbsMachine models both cache and main mem-
ory as partial maps pfn7→val, where val is the content stored
in a given pfn. As a pfn moves between cache and main mem-
ory, AbsMachine propagates its content with it. For example,
on a cacheable memory access, AbsMachine checks if the
cache contains a mapping for pfn. If it does not, AbsMachine
populates the cache with val from main memory. It then re-
turns val for memory loads, and updates the cached value for

USENIX Association 30th USENIX Security Symposium 3961

memory stores. Similarly, on a cache-flush or cache-sync,
AbsMachine flushes the pfn to main memory, populating
main memory with the respective val from the cache.

Using AbsMachine, we prove that KCore always sets
the memory attributes in the page tables that it manages to
enable caching, maximizing performance. We then prove that
KCore flushes caches in the primitives that can change page
ownership, verifying that KCore’s implementation refines its
specification. Finally, we use KCore’s specification to prove
that KCore’s cache management has no security vulnerabil-
ities and does not compromise VM data. We discuss the first
two proofs here, but defer the latter proof to Section 4.6.

We first prove that KCore always sets the memory
attributes in the stage 2 page tables for VMs and KServ to
enable caching. KCore updates stage 2 page table entries
by calling the verified map_page primitive, as discussed in
Section 4.2. map_page is passed the attr parameter to set
the page table entry attributes. We verify the primitives that
call map_page pass in the correct attr to enable caching.
Specifically, we verify the implementation of map_pfn_vm

and map_pfn_host in the MemAux layer, which call map_page
to map a pfn to a VM’s and KServ’s stage 2 page tables,
respectively refine their specifications that pass an attr value
with caching enabled to map_page. We also prove that KCore
always sets the memory attributes in its own EL2 stage 1
page tables to enable caching. Similar to map_page, NPTOps
provides a map_page_core primitive for updating EL2 stage
1 page tables, which in turn calls set_s1pt in NPTWalk to
update the multi-level page tables — we prove the correctness
of these primitives similarly to the proofs for map_page

and set_s2pt. We then verify the primitives that call
map_page_core pass in the correct attr to enable caching.

We then prove that KCore correctly flushes the cache in
the primitives that change page ownership. In the MemAux

layer, we prove the correctness of assign_pfn_vm and
clear_vm_page. assign_pfn_vm unmaps pfn from KServ
and assigns the owner of a newly allocated pfn to a VM.
clear_vm_page reclaims a pfn from a VM upon the VM’s
termination, scrubs the pfn, and assigns the owner of the
pfn to KServ. We prove that the implementations of both
primitives refine their specifications that call cache-flush.

4.5 SMMU Management

As shown in Figure 3a, AbsMachine models Arm’s SMMU,
which supports a shared SMMU TLB and SMMU multi-level
page tables, that can be allocated for each device devk. The
TLB is tagged, and page tables can support up to four levels of
paging with regular and huge page support, similar to the page
tables and TLBs discussed in Sections 4.2 and 4.3. Unlike
memory accesses from CPUs, there are no caches involved in
memory accesses through the SMMU. For simplicity, we only
describe the SMMU stage 2 page tables, used by the SMMU
implementation [5] on the Arm Seattle server hardware we

used for evaluation in Section 6. AbsMachine also provides
dev_load and dev_store operations to model memory ac-
cesses of DMA-capable devices attached to the SMMU.

KCore controls the SMMU and maintains the SMMU TLB
and SMMU page tables for each devk. TLB entries are tagged
by VMID. The parts of KCore that manipulate page tables are
the four layers of SMMU PT shown in Figure 2. Similar to how
we refine multi-level page tables in NPTWalk as discussed
in Section 4.2, we refine the SMMU multi-level page table
and its multi-level page table walk in MmioSPTWalk in SMMU

PT into a layer specification with a partial map that maps an
input page frame from device address space, devfn 7→ (pfn,
size, attr), where size is the size of the page, 4KB or 2MB,
and attr encompasses attributes of the page. Once we prove
this refinement, higher layers that depend on SMMU page
tables can be verified against the abstract page table, enabling
us to prove the correctness of KCore’s SMMU page table
management.

Similar to how we refine CPU TLBs as discussed in
Section 4.3, we refine the SMMU TLB in MmioSPTOps so
that it is abstracted away from higher layers. We model the
SMMU TLB as a set of partial maps, each map identified
by VMID and mapping devfn 7→ (pfn, size, attr). Abs-
Machine models SMMU TLB invalidation by exposing a
smmu-tlb-flush primitive to flush all entries associated
with a VMID [5]. We prove the correctness of KCore with
the SMMU TLB by verifying it correctly flushes entries
to ensure consistency with the SMMU page tables, then
abstract away the TLB by proving that the MmioSPTOps

implementation using the SMMU TLB refines a simpler,
higher-level specification without the SMMU TLB. We
prove unmap_spt in MmioSPTOps calls smmu-tlb-flush after
unmapping a pfn from the SMMU page table.

4.6 Security Guarantees

By proving that KCore’s implementation refines its top-level
Coq specification, we can then use the high-level specification
to prove higher-level security guarantees. Proving security
guarantees is much easier using the specification because we
can avoid being inundated with the details of KCore’s entire
implementation, and we can use the simplified machine
model refined from the lower layers. For instance, to prove the
security properties for VM’s memory accesses, we can reason
over the memory load and store primitives at KCore’s top
layer based on the abstract single-level page tables without
TLB, instead of the primitives defined in AbsMachine using
multi-level page tables with TLB. We ensure the specification
soundly captures all behaviors of the KCore implementation
so the proven guarantees hold on the implementation.

We prove that SeKVM protects their VMs’ data confi-
dentiality—adversaries should not be privy to private VM
data—and integrity—adversaries should not be able to tamper
with private VM data. For some particular VM, potential

3962 30th USENIX Security Symposium USENIX Association

adversaries are other VMs hosted on the same physical
machine, as well as the hypervisor itself—specifically,
HypSec’s untrusted KServ. Our goal here is to verify that,
irrespective of how any principal, KServ or another VM,
behaves, KCore protects the security of each VMs’ data. We
formulate confidentiality and integrity as noninterference
assertions [30]—invariants on how principals’ behavior may
influence one another. For confidentiality, we show the behav-
iors of all other VMs and KServ remains unaffected despite
any changes the VM made to its data. For integrity, we prove
that a VM’s behavior acting upon its data is unaffected by
other VMs’ or KServ’s behaviors, therefore its data is intact.

We can prove noninterference by showing state indistin-
guishability, which means that two machine states observable
to a principal are the same. Machine states include a princi-
pal’s data in CPU registers and memory. Data in memory in-
cludes data in main memory and caches as well as metadata in
the principal’s page tables. We want to prove that starting from
any two indistinguishable states to principal p, the abstract
machine should only transition to a pair of states that are still
indistinguishable to p. We leverage previous work to prove
this for data in CPU registers [48] and focus our discussion on
proving this for memory. In particular, we need to prove that
primitives that are part of the top-level specification that affect
the management of page tables, caches, and SMMU preserve
state indistinguishability since they can all affect memory.
Since we have proven that TLBs do not need to be considered
as part of the abstract machine model used by the top-level
specification, TLBs do not need to be considered as part of our
noninterference proofs. Note that pages explicitly shared via
GRANT_MEM are not considered private and not included in the
VM data protected by SeKVM until sharing is revoked using
the REVOKE_MEM hypercall. While our proofs do account for
this dynamically changing sharing of pages [48], we omit fur-
ther discussion of GRANT_MEM and REVOKE_MEM for simplicity
and focus on protecting memory private to each principal.

We prove that the use of page tables by top-level primitives
preserves state indistinguishability by first proving a page
table isolation invariant that any page mapped by a principal’s
stage 2 page table must be owned by itself. As discussed in
Section 3, KCore assigns an owner for each page. Since each
page has at most one owner, page tables, and address spaces,
are isolated. With this invariant, we can prove that a principal
p’s states are not changed by any other principal q’s operations
on q’s own address space. In a similar vein, we also prove that
primitives that cause a page to be transferred from principal p
to another principal q also do not affect state indistinguishabil-
ity; one principal must be KServ on all transfers. If the transfer
is from KServ to a VM, KCore ensures that such a page is first
unmapped from KServ’s stage 2 page table before the page’s
ownership is changed to the VM, and is only mapped to the
VM’s stage 2 page table after the ownership is changed to the
VM. If the transfer is from a terminated VM to KServ, KCore
clears the contents of the page before it is transferred so VM

data is not leaked to KServ. Since KServ never has private
VM data, it cannot leak such data when transferring a page
to another VM. As a result, the use of page tables preserves
state indistinguishability with respect to VM memory.

We prove that the use of caches by top-level memory load
and store primitives preserves state indistinguishability so
that the potential attack shown in Figure 4 cannot happen.
We first prove noninterference when the ownership of a page
does not change. If a principal p always owns a page pfn,
only p can access that page. If only p can access pfn, pfn
will only be cached as a result of being accessed by p. Based
on the page table isolation invariant, the pages owned by p
that can be in the cache must be a subset of the pages mapped
in p’s stage 2 page table. Since page tables and address space
are isolated, so are each principal’s entries in the cache. We
can thereby prove that a principal p’s states are not changed
by any other principal’s q load and store operations on q’s
own address space even if those operations involve the cache.

We then prove noninterference when KCore changes
the principal associated with a pfn, which occurs when
KServ allocates a new page to handle a VM’s page fault,
and reclaims the pages from a terminated VM. The former
occurs when KServ calls the run_vcpu hypercall to execute
a VM’s VCPU after allocating a new pfn to the faulting VM,
in which KCore unmaps the pfn from KServ’s stage 2 page
table, calls assign_pfn_vm to assign the owner of the pfn to
the faulting VM, and maps the pfn to the VM’s stage 2 page
table before switching to the VM. The latter occurs when
KServ calls the clear_vm hypercall to reclaim all pfns from
a terminated VM, in which KCore calls clear_vm_page to
scrub and assign the owner of these pfns to KServ.

When allocating a new page to handle a VM’s page fault,
KCore calls cache-flush on the pfn in assign_pfn_vm be-
fore mapping the pfn to p stage 2 page table. If pfn is cached,
this causes pfn to be invalidated in the cache and its content is
synchronized to main memory; otherwise it has no effect. We
prove noninterference for KServ. Starting from two indistin-
guishable states for KServ, run_vcpu in two executions will
unmap the same pfn from KServ’s stage 2 page tables; thus,
the resulting states remain indistinguishable to KServ since it
cannot access pfn after the unmap. We prove noninterference
for VMs other than p. Consider a VM q different from VM
p. We prove that KServ never allocates the pfn owned by
VM q to p, and executing run_vcpu does not affect q’s states.
Therefore, the resulting states of q remain indistinguishable.
Finally, we prove noninterference for the VM p. Starting from
two indistinguishable states for p, the resulting cache will
not contain an entry for pfn, and pfn’s contents in memory
contains the same value, while the pfn is mapped to p’s stage
2 page tables. The resulting states are indistinguishable to p.

When reclaiming pages from a terminated VM p, KCore
scrubs each reclaimed pfn and calls cache-flush on the pfn

in clear_vm_page, which invalidates the pfn in the cache and
writes the scrubbed pfn to main memory; cache-flush has

USENIX Association 30th USENIX Security Symposium 3963

no effect if the pfn is not cached. We prove noninterference
for KServ. From two states indistinguishable to KServ, after
making the hypercall, the pfns reclaimed from p will be
owned by KServ. These pages will not be cached, and their
contents in memory are scrubbed. The resulting states remain
indistinguishable to KServ. This ensures that an attacker in
KServ that bypasses the cache, as shown in Figure 4, cannot
access VM p data. We prove noninterference for all VMs
other than p. Consider a VM q different from VM p, starting
from two indistinguishable states, KCore does not change
any of q’s states when handling the hypercall for KServ, thus
the resulting states of q remain indistinguishable.

We prove that the use of SMMU page tables by top-level
primitives preserves state indistinguishability. Similar to page
tables, we verify an SMMU page table isolation invariant that
any page mapped by a device’s SMMU page table must be
owned by the device’s owner. With this invariant, we prove
that a principal p’s states are not changed by load and store
operations from a device owned by any other principal q
using their SMMU page tables. Similarly, we prove that
SMMU primitives that transfer page ownership also do not
affect state indistinguishability. The transfer only happens
when KServ calls the SMMU hypercall to map a pfn to
the SMMU page table used by a VM p’s device. KCore
ensures the pfn is unmapped from KServ’s stage 2 page table
before transferring the owner of pfn from KServ to p. We
thus ensure that use of SMMU page tables preserves state
indistinguishability with respect to VM memory.

Although SeKVM’s implementation was based on the
codebase of HypSec, we have verified the correctness of
KCore, SeKVM’s TCB, and verified the security guarantees
of SeKVM. We verified that KCore contains no vulnerabili-
ties and that any vulnerabilities in KServ cannot compromise
SeKVM’s guarantees of VM confidentiality and integrity.
In fact, while verifying SeKVM, we found various bugs in
HypSec’s TCB that affect HypSec’s security guarantees. For
example, we found a TLB management bug in which HypSec
did not flush the SMMU TLB after unmapping a page from
the SMMU page tables. We fixed the bug in KCore by adding
a SMMU TLB flush after the unmap. As another example,
we found a cache management bug in HypSec in which a
VM boot image may be cached when loaded from the file
system but not written back to main memory. As VMs are
booted with paging and caching disabled, it is possible that
the VMs access the page content in memory, thereby not
using the correct VM images. We fixed the bug in KCore
by flushing the corresponding cache lines for memory that
contain the pre-loaded VM image before booting the VM,
ensuring the use of the correct VM image loaded in memory.

5 Implementation

We refactored KVM into SeKVM, starting with the HypSec
codebase and structuring its TCB into layers. We first did this

Component C+Asm Spec Code Refine CodeAll RefineAll
Exit Handler 0.4K 1.7K 0.2K 1.1K 1K 1.4K
VCPU 0.8K 0.5K 2.4K 0.9K 3.3K 1.3K
VM Boot 0.9K 1.0K 0.6K 1.1K 2.8K 1.5K
SMMU 0.5K 0.7K 0.2K 1.0K 1.8K 1.4K
VM Mem 0.5K 0.9K 0.6K 2.2K 2.3K 2.6K
SMMU PT 0.2K 0.5K 0.1K 2.3K 1.6K 2.7K
MMU PT 0.4K 0.5K 0.1K 4.3K 1.7K 4.7K
Lock 0.1K 0.2K 1.2K 1.8K 2K 2.2K
Total 3.8K 6.0K 5.4K 14.7K 16.5K 17.8K

Table 1: KCore Implementation and Proof Effort in Lines of Code

with KVM in the v4.18 Linux kernel, which involved modi-
fying or adding roughly 15K lines of code (LOC) across both
KCore and KServ. Most of the added code was 10.1K LOC
in KCore for the implementation of Ed25519 and AES from
the verified HACL* crypto library [74]. Other than HACL*,
KCore consisted of 3.8K LOC, of which 3.4K LOC was in C
and 0.4K was in Arm assembly. Table 1 shows the 3.8K LOC
categorized by the modules shown in Figure 2 (C+Asm).

We then retrofitted KVM in the v5.4 Linux kernel, which
involved reusing much of the same 15K LOC. Of the 15K
LOC, less than 100 LOC needed to be changed in KServ
going from v4.18 to v5.4, mostly to support installing and
initializing KCore on a different codebase before KCore
starts running in EL2. No code changes were required in
KCore in going from v4.18 to v5.4. These results indicate
that the changes needed to retrofit a widely-used, commodity
hypervisor so it can be verified and integrated with multiple
versions of a commodity host kernel were modest overall.

We verified all of KCore’s C and assembly code. Table 1
shows the LOC in Coq for proving the correctness of KCore’s
code, categorized by the modules shown in Figure 2. The
proof effort for each module consists of writing the Coq
specifications (Spec), code proofs (Code) to verify the C and
assembly code refines the Coq specifications, and layer refine-
ments (Refine) to verify at each layer the implementation on
the underlay interface refines the overlay interface, thereby
linking the layers together to refine the top-level specification.

Some modules required much more manual effort than
others. For the specifications, the LOC for the Exit Handler

module is higher than other modules because it includes the
top layer TrapHandler specification that encompasses all
of KCore’s behavior. For code proofs, the LOC for the VCPU

module is higher than other modules because it has both
loops and assembly code. This is because we used automated
reasoning to reduce manual effort, but our methods do not
support automating loop verification or assembly code. For
layer refinement, the LOC for the MMU PT proof is higher
than other modules because refining the multi-level page
table implementation to a flat map specification was the most
complex refinement proof.

Table 1 also shows all of the resulting code in Coq for

3964 30th USENIX Security Symposium USENIX Association

code proofs (CodeAll) and layer refinement (RefineAll), by
adding automatically generated LOC to the manually written
LOC. For some modules, the use of automated reasoning
significantly simplified the manual effort, such as for the
code proofs for the MMU PT, SMMU PT, and SMMU modules.
However, we did not apply automated reasoning uniformly
for all modules because different parts of the system were
verified by different authors who took different approaches.
For example, we did not use Coq tactics to automate the
proofs for the Lock module, resulting in more LOC for its
code proofs, but this could have been done. While automated
tools helped significantly with code proofs, they did not help
much with layer refinement, as shown by comparing the
manually written versus total LOC for each in Table 1.

In addition to the Coq code for proving the correctness
of each module, we implemented the machine model and
proved the security guarantees in Coq. 1.8K LOC were used
to implement AbsMachine, which models the multiprocessor
hardware behaviors including multi-level page tables for the
MMU and SMMU, TLBs, and write-back caches with bypass
support. AbsMachine primitives used by higher layers were
passed through to those layers then verified as part of each
layer. The security proofs, including the invariant and non-
interference proofs, consist of 4.8K LOC. Roughly 1K LOC
were used to verify the isolation invariants mentioned in Sec-
tion 4.6 for the MMU and SMMU page tables. The rest of the
3.8K LOC were noninterference proofs for KCore’s top-level
primitives; for example, these proofs involved proving state
indistinguishability with respect to caches. We did not link
HACL’s F* proofs with our Coq proofs, or our Coq proofs
for C code with those for Arm assembly code. The latter
requires a verified compiler for Arm multiprocessor code; no
such compiler exists. No changes were required to the proofs
used to verify KVM in the Linux kernel v4.18 versus v5.4.

6 Performance

We quantify the performance of SeKVM against unmodified
KVM as well as HypSec highlighting how a commodity
hypervisor with a verified TCB performs against unverified
versions. All experiments were run on a 64-bit Armv8 AMD
Seattle (Rev.B0) server with 8 Cortex-A57 CPU cores, 16 GB
of RAM, a 512 GB SATA3 HDD for storage, an AMD
10 GbE (AMD XGBE) NIC device. The hardware we used
supports Arm VE, but not VHE [21, 22]. For client-server
experiments, the clients ran on an x86 machine with 24 Intel
Xeon CPU 2.20 GHz cores and 96 GB RAM. The clients and
the server communicated via a 10 GbE network connection.

To provide comparable measurements across the systems,
we kept the software environments across all platforms the
same as much as possible. We tested unmodified KVM,
HypSec, and SeKVM based on two different versions of
mainline Linux, 4.18.0 and 5.4.0, both with QEMU 2.3.50.
VMs used the same kernel version as the host, and all hosts

Name Description
Kernbench Compilation of the Linux 4.9 kernel using allnoconfig

for Arm with GCC 5.4.0.
Hackbench hackbench [56] using Unix domain sockets and 100

process groups running in 500 loops.
Netperf netperf v2.6.0 [41] running netserver on the server

and the client with its default parameters in three
modes: TCP_STREAM (throughput), TCP_MAERTS
(throughput), and TCP_RR (latency).

Apache Apache v2.4.18 Web server running ApacheBench [1]
v2.3 on the remote client, which measures number of
handled requests per second when serving the 41 KB
index.html file of the GCC 4.4 manual using 100
concurrent requests.

Memcached memcached v1.4.25 using the memtier benchmark v1.2.3
with its default parameters.

MySQL MySQL v14.14 (distrib 5.7.26) running SysBench
v.0.4.12 using the default configuration with 200 parallel
transactions.

Table 2: Application Benchmarks

and VMs ran Ubuntu 16.04.06. We modified virtio front-end
drivers in the VM kernel on SeKVM and HypSec to use
the GRANT_MEM and REVOKE_MEM hypercalls to enable shared
memory communication with back-end drivers in KServ.
All VMs used paravirtualized I/O (virtio), typical of cloud
infrastructure deployments such as Amazon EC2.

We ran benchmarks in each VM and compared their perfor-
mance to native hardware. Each native or VM instance was
configured as a 4-way SMP with 12 GB of RAM to provide
a common basis for comparison. Specifically, we used the
following configurations: (1) native Linux capped at 4 cores
and 12 GB RAM, and (2) a VM using KVM with 8 cores and
16 GB RAM, with the VM capped at 4 virtual CPUs (VCPUs)
and 12 GB RAM. We measured multi-core configurations to
reflect real-world server deployments. For VMs, we pinned
each VCPU to a specific physical CPU (PCPU) and ensured
that no other work was scheduled on that PCPU [20,21,49,50].
For client-server benchmarks, the clients ran natively on
Linux and used the full hardware available.

We ran real application workloads to compare SeKVM with
HypSec and unmodified KVM. Table 2 lists the workloads, a
mix of widely-used CPU and I/O intensive benchmarks. For
the v4.18 configuration, we compared the following five sys-
tem configurations with HypSec: (1) Native unmodified Linux
host kernel without Full Disk Encryption (FDE), (2) Unmodi-
fied KVM and guest kernel with FDE (KVM), (3) HypSec and
paravirtualized guest kernel with FDE (HypSec), (4) SeKVM
and paravirtualized guest kernel with FDE (SeKVM),
(5) SeKVM and paravirtualized guest kernel with FDE and
TLB flushes during world switches (SeKVM-TLB-FLUSH).

We compared VM performance with FDE to bare-metal
execution without FDE, to conservatively quantify the
performance overhead in the presence of end-to-end I/O
protection. We also compared the performance of SeKVM
versus SeKVM while flushing all entries from the TLB in

USENIX Association 30th USENIX Security Symposium 3965

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

Ker
nbe

nch

Hac
kbe

nch

TCP
_ST

REA
M

TCP
_M

AER
TS
TCP

_RR

Apa
che

 En
cryp

t
Apa

che

Me
mca

che
d

My
SQL

 Enc
ryp

t
My

SQL

KVM HypSec SeKVM SeKVM-TLB-FLUSH

Figure 5: Application Benchmark Performance - Linux v4.18

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

Ker
nbe

nch

Hac
kbe

nch

TCP
_ST

REA
M

TCP
_M

AER
TS
TCP

_RR

Apa
che

 En
cryp

t
Apa

che

Me
mca

che
d

My
SQL

 Enc
ryp

t
My

SQL

KVM HypSec SeKVM SeKVM-TLB-FLUSH

Figure 6: Application Benchmark Performance - Linux v5.4

each world switch to remove all cached entries used by EL0
and EL1, to measure the performance impact of a verified
implementation that models tagged TLB behavior versus one
that does not (and must therefore perform additional TLB
flushes for verified correctness).

Figures 5 and 6 show the relative overhead of executing
in a VM in our v4.18 and v5.4 hypervisor configurations. We
normalize the performance results to native execution on the
respective unmodified Linux kernel, with 1.0 indicating the
same performance as native hardware. Lower numbers mean
less overhead. We report results for Apache and MySQL
both with and without TLS/SSL to show performance
with network encryption as well. Both figures show that
SeKVM has only modest performance overhead compared
to unmodified KVM. Figure 5 also shows that SeKVM
has comparable performance to HypSec, but the HypSec
implementation was not available for v5.4, so Figure 6 shows
no HypSec v5.4 measurements. Overall, the measurements
show that a commodity hypervisor with a verified TCB on
multiprocessor hardware can achieve excellent performance.

As shown in Figures 5 and 6, flushing the TLB during each
world switch results in significant performance overhead.
The overhead is especially pronounced in I/O intensive
workloads, where frequent world switches between VMs and

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0

1 2 4 8 16 32

KVM-4.18 HypSec SeKVM-4.18 KVM-5.4 SeKVM-5.4

Figure 7: Multi-VM Performance with Hackbench

KServ result in more frequent TLB flushes. This comparison
quantifies the cost of not modeling a tagged TLB, which
would force TLB flushes on each world switch to ensure
correctness. Our measurements show that this can result in
an additional 70% overhead for some application workloads
such as Memcached compared to using a tagged TLB as is
standard practice for commodity hypervisors.

To provide a measure of multi-VM performance, we
also measured the performance of SeKVM compared to
HypSec and unmodified KVM running multiple VMs, each
running Hackbench. We tested five hypervisor configurations:
KVM and SeKVM on Linux v4.18 and v5.4, and HypSec
on only v4.18. To scale the experiment on the same Seattle
Arm server host, we made some changes to the VM and
Hackbench configurations. Each VM was configured in
a similar manner as our previous experiments, except we
reduced the number of cores and RAM of each VM to two
cores and 256 MB of RAM, respectively. We changed the
parameters in Hackbench from the previous setup to run 20
process groups in 500 loops, so that it could run successfully
in the more resource-constrained VMs. In addition, we did
not use FDE given the limited memory assigned to each VM.
We measured the performance of 1, 2, 4, 8, 16, and 32 VMs.

Figure 7 shows the average results from each VM running
on HypSec and SeKVM normalized to native execution
of one instance of Hackbench using the respective Linux
version with the same configuration, though there was
minimal difference in native execution performance between
kernel versions. The results show that SeKVM incurs modest
performance overhead over KVM and HypSec, even as the
number of VMs scales. The overhead versus one instance
of Hackbench natively executed is of course higher when
running many instances of Hackbench instead of just one, but
the relative overhead of SeKVM versus KVM remains small.
Note that although KCore’s data race-free implementation
does not take full advantage of Armv8 relaxed memory
behavior, the performance impact on SeKVM is minimal.

3966 30th USENIX Security Symposium USENIX Association

7 Related Work

Previous work has verified uniprocessor systems, including
seL4 [43], Nickel [59], Serval [54], and Komodo [28].
None of these approaches can be directly applied to verify
multiprocessor systems such as SeKVM. CertiKOS has
verified a series of uniprocessor and multiprocessor OS ker-
nels [9, 10, 13, 31–34], but like previous verified uniprocessor
systems, did not model common hardware features including
shared page tables, tagged TLBs or caches. In contrast,
SeKVM is verified on a multiprocessor abstract machine that
models these widely-used hardware features.

Various verified systems can be used as hypervisors, but
are limited in their functionality and what has been verified.
A version of seL4 verifies the functional correctness of some
hypervisor features, but not the MMU functionality [2, 42].
CertiKOS verifies the correctness of the mC2 kernel that
provides some virtualization functionality. Both of these
systems lack common hypervisor features such as support for
multiprocessor VMs. The üXMHF hypervisor [65,66] verifies
simple properties, such as memory integrity of their multipro-
cessor microhypervisor implementation, but does not verify
its functional correctness. Unlike SeKVM, the proofs were
reasoned on a simple abstract hardware that does not model
concrete MMU features. The Verisoft team [44] applies the
VCC framework [12] to verify Hyper-V. VCC does not in-
clude a realistic hardware model. Only 20% of the hypervisor
code is verified for function contracts and type invariants at
the source code level, with no correctness guarantees of the
overall hypervisor’s behavior. In contrast, SeKVM’s security
guarantees and its TCB are fully verified while supporting
commodity hypervisor features inherited from KVM.

We build on our previous work [47, 48] that introduced
security-preserving layers and microverification to verify the
security guarantees of a KVM hypervisor. We describe here
for the first time (1) a new layered hardware model, (2) the
construction of a layered implementation of SeKVM’s TCB,
KCore, (3) how the layered hardware can be used in conjunc-
tion with the layered software to verify KCore’s functional
correctness in the presence of widely-used multiprocessor
hardware features such as tagged TLBs and coherent caches,
and (4) how to account for all of these hardware features
in verifying the security guarantees of SeKVM. We also
demonstrate for the first time how both the implementation
and verification of SeKVM can be extended to integrate with
multiple versions of Linux as a host kernel with modest effort.

Formal shim verification [39] reduces the proof effort in
verifying security guarantees about a large and untrusted code.
Their techniques focus on proving that a small, sequential
browser kernel, consisting of a few hundred LOC, enforces
noninterference properties between components running in
sandboxes. This approach is insufficient for SeKVM, whose
multiprocessor core consists of a few thousand LOC, and
leverages hardware virtualization features to implement

hypervisor functionality.
Some work [57, 64, 73] has verified the MMU subsystem

within an OS kernel. Unlike SeKVM, the verified component
does not make any guarantees about the overall behavior of
the system. Other work [62, 63] integrates the specifications
of their abstract TLB into the Cambridge Arm model [29],
but only uses it for proving the program logic of the system’s
execution, not the correctness of the actual implementation.

Microhypervisors [35, 60] take a microkernel approach
to build clean-slate small hypervisors from scratch. These
architectures mitigate vulnerabilities, but are not verified to be
correct. In contrast, SeKVM retrofits KVM using microkernel
principles to reduce its TCB and verifies its implementation,
providing verified correctness and security guarantees with
full-featured commodity hypervisor functionality. Nested
virtualization [70] and special hardware features [7, 37, 68]
have been used to protect VM data in memory against an
untrusted hypervisor. Privileged code, such as a hypervi-
sor, has been used to protect OS kernels [26, 58, 67] or
applications [11, 27, 36, 52, 69] against untrusted software
components. Unlike SeKVM, none of these systems verify
their TCBs or prove the security properties of their designs.

8 Conclusions

We have presented SeKVM, the first Linux KVM hypervisor
that has been formally verified. This is made possible using a
layered design and verification methodology. We use layers to
isolate KVM’s TCB into a small core, then construct the core
with layers such that we can modularize the proofs to reduce
proof effort, modeling hardware features at different levels
of abstraction tailored to each layer of software. We can then
gradually refine detailed hardware and software behaviors
at lower layers into simpler abstract specifications at higher
layers, which can in turn be used to prove security guarantees
for the entire hypervisor. Using this approach, we prove the
correctness of KVM across two versions of Linux, using a
novel layered machine model that accounts for realistic mul-
tiprocessor features including multi-level shared page tables,
tagged TLBs, and a coherent cache hierarchy with cache by-
pass support. The layering requires only modest modifications
to KVM and only incurs modest overhead versus unmodified
KVM on real application workloads. Our work is the first
machine-checked proof of the correctness and security of a
commodity hypervisor on multiprocessor server hardware.

9 Acknowledgments

Xuheng Li helped with assembly code and layer refinement
proofs. Nathan Dautenhahn provided helpful comments on
earlier drafts. This work was supported in part by a Guggen-
heim Fellowship, DARPA contract N6600121C4018, and
NSF grants CCF-1918400, CNS-2052947, and CCF-2124080.

USENIX Association 30th USENIX Security Symposium 3967

References

[1] ab - Apache HTTP server benchmarking tool. https:
//httpd.apache.org/docs/2.4/programs/ab.html
[Accessed: Mar 8, 2021].

[2] seL4 Supported Platforms. https://docs.sel4.systems/
Hardware [Accessed: Mar 8, 2021].

[3] The Coq Proof Assistant. https://coq.inria.fr [Ac-
cessed: Dec 16, 2020].

[4] ARM System Memory Management Unit Architecture Speci-
fication - SMMU architecture version 2.0, June 2016.

[5] ARM Ltd. ARM CoreLink MMU-401 System Memory Man-
agement Unit Technical Reference Manual, July 2014.

[6] Michael Backes, Goran Doychev, and Boris Kopf. Preventing
Side-Channel Leaks in Web Traffic: A Formal Approach.
In 20th Annual Network and Distributed System Security
Symposium (NDSS 2013), San Diego, CA, February 2013.

[7] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shield-
ing Applications from an Untrusted Cloud with Haven. In
Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2014), pages
267–283, Broomfield, CO, October 2014.

[8] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hardware
and Software Support for Virtualization. Synthesis Lectures
on Computer Architecture. Morgan and Claypool Publishers,
February 2017.

[9] Hao Chen, Xiongnan Wu, Zhong Shao, Joshua Lockerman,
and Ronghui Gu. Toward compositional verification of
interruptible os kernels and device drivers. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 431–447, 2016.

[10] Hao Chen, Xiongnan Wu, Zhong Shao, Joshua Lockerman,
and Ronghui Gu. Toward compositional verification of
interruptible os kernels and device drivers. Journal of
Automated Reasoning, 61(1):141–189, 2018.

[11] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap
Subrahmanyam, Carl A. Waldspurger, Dan Boneh, Jeffrey
Dwoskin, and Dan R.K. Ports. Overshadow: A Virtualization-
based Approach to Retrofitting Protection in Commodity
Operating Systems. In Proceedings of the 13th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2008), pages
2–13, Seattle, WA, March 2008.

[12] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk
Leinenbach, Michał Moskal, Thomas Santen, Wolfram
Schulte, and Stephan Tobies. VCC: A Practical System for
Verifying Concurrent C. In Proceedings of the 22nd Inter-
national Conference on Theorem Proving in Higher Order
Logics (TPHOLs 2009), pages 23–42, Munich, Germany,
August 2009.

[13] David Costanzo, Zhong Shao, and Ronghui Gu. End-to-End
Verification of Information-Flow Security for C and Assembly
Programs. In Proceedings of the 37th ACM Conference on
Programming Language Design and Implementation (PLDI
2016), pages 648–664, Santa Barbara, CA, June 2016.

[14] CVE. CVE-2009-3234. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2009-3234, September
2009.

[15] CVE. CVE-2010-4258. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-4258, November
2010.

[16] CVE. CVE-2013-1943. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2013-1943, February
2013.

[17] CVE. CVE-2016-9756. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-9756, December
2016.

[18] CVE. CVE-2017-17741. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-17741, December
2017.

[19] Christoffer Dall. The Design, Implementation, and Evaluation
of the Linux ARM Hypervisor. PhD thesis, Columbia
University, February 2018.

[20] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, and Jason
Nieh. ARM Virtualization: Performance and Architectural
Implications. ACM SIGOPS Operating Systems Review,
52(1):45–56, July 2018.

[21] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and
Georgios Koloventzos. ARM Virtualization: Performance
and Architectural Implications. In Proceedings of the 43rd
International Symposium on Computer Architecture (ISCA
2016), pages 304–316, Seoul, South Korea, June 2016.

[22] Christoffer Dall, Shih-Wei Li, and Jason Nieh. Optimizing the
Design and Implementation of the Linux ARM Hypervisor.
In Proceedings of the 2017 USENIX Annual Technical
Conference (USENIX ATC 2017), pages 221–234, Santa Clara,
CA, July 2017.

[23] Christoffer Dall and Jason Nieh. KVM/ARM: Experiences
Building the Linux ARM Hypervisor. Technical Report
CUCS-010-13, Department of Computer Science, Columbia
University, June 2013.

[24] Christoffer Dall and Jason Nieh. Supporting KVM on the
ARM Architecture. LWN Weekly Edition, pages 18–22, July
2013.

[25] Christoffer Dall and Jason Nieh. KVM/ARM: The Design and
Implementation of the Linux ARM Hypervisor. In Proceed-
ings of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (AS-
PLOS 2014), pages 333–347, Salt Lake City, UT, March 2014.

[26] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John
Criswell, and Vikram Adve. Nested Kernel: An Operating
System Architecture for Intra-Kernel Privilege Separation.
In Proceedings of the 20th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2015), pages 191–206, Istanbul,
Turkey, March 2015.

[27] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L. Cox,
and Sandhya Dwarkadas. Shielding Software From Privileged
Side-Channel Attacks. In Proceedings of the 27th USENIX
Security Symposium (USENIX Security 18), pages 1441–1458,
Baltimore, MD, August 2018.

[28] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel,
and Bryan Parno. Komodo: Using verification to disentangle
secure-enclave hardware from software. In Proceedings of
the 26th ACM Symposium on Operating Systems Principles
(SOSP 2017), pages 287–305, Shanghai, China, October 2017.

3968 30th USENIX Security Symposium USENIX Association

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://docs.sel4.systems/Hardware
https://docs.sel4.systems/Hardware
https://coq.inria.fr
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3234
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3234
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4258
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4258
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1943
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1943
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9756
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9756
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17741
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17741

[29] Anthony Fox. Formal specification and verification of arm6.
In International Conference on Theorem Proving in Higher
Order Logics (TPHOLs 2003), pages 25–40, Rome, Italy,
September 2003.

[30] Joseph A Goguen and José Meseguer. Unwinding and
Inference Control. In Proceedings of the 1984 IEEE
Symposium on Security and Privacy (IEEE S&P 1984), pages
75–86, Oakland, CA, April 1984.

[31] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro,
Zhong Shao, Xiongnan Newman Wu, Shu-Chun Weng,
and Haozhong Zhang. Deep Specifications and Certified
Abstraction Layers. In Proceedings of the 42nd ACM
Symposium on Principles of Programming Languages (POPL
2015), pages 595–608, Mumbai, India, January 2015.

[32] Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie
Koenig, Xiongnan Wu, Vilhelm Sjöberg, and David Costanzo.
Building Certified Concurrent OS Kernels. Communications
of the ACM, 62(10):89–99, September 2019.

[33] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman Wu,
Jieung Kim, Vilhelm Sjöberg, and David Costanzo. CertiKOS:
An Extensible Architecture for Building Certified Concurrent
OS Kernels. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
2016), pages 653–669, Savannah, GA, November 2016.

[34] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan Newman
Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David
Costanzo, and Tahina Ramananandro. Certified Concurrent
Abstraction Layers. In Proceedings of the 39th ACM Confer-
ence on Programming Language Design and Implementation
(PLDI 2018), pages 646–661, Philadelphia, PA, June 2018.

[35] Gernot Heiser and Ben Leslie. The OKL4 Microvisor: Conver-
gence Point of Microkernels and Hypervisors. In Proceedings
of the 1st ACM Asia-pacific Workshop on Workshop on Systems
(APSys 2010), pages 19–24, New Delhi, India, August 2010.

[36] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z.
Lee, and Emmett Witchel. InkTag: Secure Applications
on an Untrusted Operating System. In Proceedings of the
18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2013), pages 265–278, Houston, TX, March 2013.

[37] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu
Zang, and Haibing. vTZ: Virtualizing ARM Trustzone.
In Proceedings of the 26th USENIX Security Symposium
(USENIX Security 2017), pages 541–556, Vancouver, BC,
Canada, August 2017.

[38] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A:
A Shared Cache Attack That Works Across Cores and Defies
VM Sandboxing – and Its Application to AES. In Proceedings
of the 2015 IEEE Symposium on Security and Privacy (IEEE
S&P 2015), pages 591–604, San Jose, CA, May 2015.

[39] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Es-
tablishing Browser Security Guarantees through Formal
Shim Verification. In Proceedings of the 21st USENIX
Security Symposium (USENIX Security 2012), pages 113–128,
Bellevue, WA, August 2012.

[40] Cliff Jones. Tentative Steps Toward a Development Method
for Interfering Programs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 5:596–619, October 1983.

[41] Rick Jones. Netperf. https://github.com/
HewlettPackard/netperf [Accessed: Mar 8, 2021].

[42] Gerwin Klein, June Andronick, Matthew Fernandez, Ihor
Kuz, Toby Murray, and Gernot Heiser. Formally Verified
Software in the Real World. Communications of the ACM,
61(10):68–77, September 2018.

[43] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
Verification of an OS Kernel. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles (SOSP
2009), pages 207–220, Big Sky, MT, October 2009.

[44] Dirk Leinenbach and Thomas Santen. Verifying the Microsoft
Hyper-V hypervisor with VCC. In Proceedings of the 16th
International Symposium on Formal Methods (FM 2009),
pages 806–809, Eindhoven, The Netherlands, November 2009.

[45] Xavier Leroy. The CompCert Verified Compiler.
https://compcert.org [Accessed: Mar 8, 2021].

[46] Shih-Wei Li, John S. Koh, and Jason Nieh. Protecting Cloud
Virtual Machines from Commodity Hypervisor and Host
Operating System Exploits. In Proceedings of the 28th
USENIX Security Symposium (USENIX Security 2019), pages
1357–1374, Santa Clara, CA, August 2019.

[47] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. Microverification of the Linux KVM
Hypervisor: Proving VM Confidentiality and Integrity.
Technical Report CUCS-003-20, Department of Computer
Science, Columbia University, June 2020.

[48] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. A Secure and Formally Verified Linux
KVM Hypervisor. In Proceedings of the 2021 IEEE Sympo-
sium on Security and Privacy (IEEE S&P 2021), May 2021.

[49] Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh,
and Marc Zyngier. NEVE: Nested Virtualization Extensions
for ARM. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP 2017), pages 201–217,
Shanghai, China, October 2017.

[50] Jin Tack Lim and Jason Nieh. Optimizing Nested Vir-
tualization Performance Using Direct Virtual Hardware.
In Proceedings of the 25th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2020), pages 557–574, Lausanne,
Switzerland, March 2020.

[51] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-Level Cache Side-Channel Attacks Are
Practical. In Proceedings of the 2015 IEEE Symposium on
Security and Privacy (IEEE S&P 2015), pages 605–622, San
Jose, CA, May 2015.

[52] Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei Zhou,
Anupam Datta, Virgil Gligor, and Adrian Perrig. TrustVisor:
Efficient TCB Reduction and Attestation. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy (IEEE
S&P 2010), pages 143–158, Oakland, CA, May 2010.

[53] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter
Gammie, and Gerwin Klein. Noninterference for Operating
System Kernels. In Proceedings of the 2nd International
Conference on Certified Programs and Proofs (CPP 2012),

USENIX Association 30th USENIX Security Symposium 3969

https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://compcert.org

pages 126–142, Kyoto, Japan, December 2012.
[54] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann,

Emina Torlak, and Xi Wang. Scaling Symbolic Evaluation
for Automated Verification of Systems Code with Serval.
In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP 2019), pages 225–242, Huntsville,
Ontario, Canada, October 2019.

[55] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, You, Get Off of My Cloud: Exploring
Information Leakage in Third-party Compute Clouds. In
Proceedings of the 2009 ACM Conference on Computer
and Communications Security (CCS 2009), pages 199–212,
Chicago, IL, November 2009.

[56] Rusty Russell, Zhang Yanmin, Ingo Molnar, and
David Sommerseth. Improve hackbench. http:
//people.redhat.com/mingo/cfs-scheduler/tools/
hackbench.c, January 2008.

[57] Oliver Schwarz and Mads Dam. Formal verification of secure
user mode device execution with DMA. In Proceedings of
the 10th International Haifa Verification Conference (HVC
2014), pages 236–251, Haifa, Israel, November 2014.

[58] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig.
SecVisor: A Tiny Hypervisor to Provide Lifetime Kernel
Code Integrity for Commodity OSes. In Proceedings of 21st
ACM Symposium on Operating Systems Principles (SOSP
2007), pages 335–350, Stevenson, WA, October 2007.

[59] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney,
James Bornholt, Emina Torlak, and Xi Wang. Nickel: A
Framework for Design and Verification of Information Flow
Control Systems. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 2018), pages 287–305, Carlsbad, CA, October 2018.

[60] Udo Steinberg and Bernhard Kauer. NOVA: A
Microhypervisor-based Secure Virtualization Architec-
ture. In Proceedings of the 5th European Conference on
Computer Systems (EuroSys 2010), pages 209–222, Paris,
France, April 2010.

[61] Patrick Stewin and Iurii Bystrov. Understanding DMA
Malware. In Proceedings of the 9th International Conference
on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA 2012), pages 21–41, Heraklion, Crete,
Greece, July 2013.

[62] Hira Taqdees Syeda and Gerwin Klein. Program verification
in the presence of cached address translation. In Proceedings
of the 2018 International Conference on Interactive Theorem
Proving (ITP 2018), pages 542–559, Oxford, United Kingdom,
July 2018.

[63] Syeda Hira Taqdees and Gerwin Klein. Reasoning about
Translation Lookaside Buffers. In Proceedings of the 21st
International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR 2017), pages 490–508,
Maun, Botswana, May 2017.

[64] Harvey Tuch and Gerwin Klein. Verifying the L4 virtual
memory subsystem. In Proceedings of the NICTA Foraml
Methods Workshop on OS Verification, pages 73–97, Sydney,
Australia, October 2004.

[65] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune,
James Newsome, and Anupam Datta. Design, Implementation

and Verification of an eXtensible and Modular Hypervisor
Framework. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy (IEEE S&P 2013), pages 430–444,
San Francisco, CA, May 2013.

[66] Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia,
and Anupam Datta. überSpark: Enforcing Verifiable Object
Abstractions for Automated Compositional Security Analysis
of a Hypervisor. In Proceedings of the 25th USENIX Security
Symposium (USENIX Security 2016), pages 87–104, Austin,
TX, August 2016.

[67] Xiaoguang Wang, Yue Chen, Zhi Wang, Yong Qi, and Yajin
Zhou. SecPod: A Framework for Virtualization-based
Security Systems. In Proceedings of the 2015 USENIX
Annual Technical Conference (USENIX ATC 2015), pages
347–360, Santa Clara, CA, July 2015.

[68] Yuming Wu, Yutao Liu, Ruifeng Liu, Haibo Chen, Binyu
Zang, and Haibing Guan. Comprehensive VM Protection
Against Untrusted Hypervisor Through Retrofitted AMD
Memory Encryption. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA 2018),
pages 441–453, Vienna, Austria, February 2018.

[69] Jisoo Yang and Kang G. Shin. Using Hypervisor to Provide
Data Secrecy for User Applications on a Per-page Basis. In
Proceedings of the 4th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2008),
pages 71–80, Seattle, WA, March 2008.

[70] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang.
CloudVisor: Retrofitting Protection of Virtual Machines in
Multi-tenant Cloud with Nested Virtualization. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles
(SOSP 2011), pages 203–216, Cascais, Portugal, October 2011.

[71] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Cross-VM Side Channels and Their Use to Extract
Private Keys. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security (CCS 2012), pages
305–316, Raleigh, NC, October 2012.

[72] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Cross-Tenant Side-Channel Attacks in Paas
Clouds. In Proceedings of the 2014 ACM Conference on
Computer and Communications Security (CCS 2014), pages
990–1003, Scottsdale, AZ, November 2014.

[73] Yongwang Zhao and David Sanán. Rely-Guarantee Reasoning
About Concurrent Memory Management in Zephyr RTOS. In
Proceedings of the 31st International Conference (CAV 2019),
pages 515–533, New York, NY, July 2019.

[74] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. HACL*: A Verified
Modern Cryptographic Library. In Proceedings of the 2017
ACM Conference on Computer and Communications Security
(CCS 2017), pages 1789–1806, Dallas, TX, October 2017.

3970 30th USENIX Security Symposium USENIX Association

http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c

	Introduction
	Threat Model and Assumptions
	SeKVM Design
	SeKVM Verification
	AbsMachine: Abstract Hardware Model
	Page Table Management
	TLB Management
	Cache Management
	SMMU Management
	Security Guarantees

	Implementation
	Performance
	Related Work
	Conclusions
	Acknowledgments

