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Abstract

A flag is a nested sequence of vector spaces. The type of the flag encodes the sequence of dimensions of the vector spaces
making up the flag. A flag manifold is a manifold whose points parameterize all flags of a fixed type in a fixed vector space.
This paper provides the mathematical framework necessary for implementing self-organizing mappings on flag manifolds.
Flags arise implicitly in many data analysis contexts including wavelet, Fourier, and singular value decompositions. The
proposed geometric framework in this paper enables the computation of distances between flags, the computation of
geodesics between flags, and the ability to move one flag a prescribed distance in the direction of another flag. Using these
operations as building blocks, we implement the SOM algorithm on a flag manifold. The basic algorithm is applied to the

problem of parameterizing a set of flags of a fixed type.

Keywords Self-organizing mappings - SOM - Flag manifolds - Geodesic - Visualization

1 Introduction

Self-Organizing Mappings (SOMs) were introduced as a
means to see data in high-dimensions [8—11]. This com-
petitive learning algorithm effectively transports the notion
of proximity in the data space to proximity in the index
space (which may in turn be endowed with its own
geometry). As a tool, SOMs have been widely applied and
extended [5]. The goal of the SOM algorithm is to produce
a topology preserving mapping from a high-dimensional
space to a low-dimensional space in the sense that points
that are neighbors in the high-dimensional space are also
represented as neighbors in the low-dimensional index
space.

The geometric framework of the vanilla version of the
SOM algorithm is Euclidean space. In this setting, the
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distance between points is simply the standard 2-norm of
the vector difference. The movement of a center toward a
pattern takes place on a line segment in the ambient space.
The only additional ingredient to the algorithm is a metric
on the index space. Some additional treatments are needed
when data are living on a high-dimensional manifold rather
than Euclidean space. In [20], the author proposed a
modification of the Self-organizing map algorithm to learn
the manifold structure in the high-dimensional observation
coordinates. Motivated by the subspace approach to data
analytics we proposed a version of SOM using the geo-
metric framework of the Grassmannian [3, 17-19]. This
subspace approach has proven to be effective in settings
where you have a collection of subspaces built up from a
set of patterns drawn from a given family. Given that one
can compute distances between points on a Grassmann
manifold and that one can move one point in the direction
of another, it is possible to transport the SOM algorithm on
Euclidean space to an SOM algorithm on a Grassmannian
[7, 14].

An interesting structure that generalizes Grassmannians
and encodes additional geometry in data is known as the
flag manifold. The points of a flag manifold parameterize
the flags of a given type. Thus, a single point on a flag
manifold corresponds to a sequence of nested subspaces.
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As an example, the wavelet transform applied to a data
vector produces a sequence of approximations that live in
nested scaling subspaces [6]. The nested sequence of
scaling subspaces is a flag and corresponds to a single point
on an appropriate flag manifold. As a second example,
consider an ordered basis, vy, Vv,,...,v; for a set of data
produced, for instance, as the output of a principal com-
ponent analysis computation. The ordered basis induces the
flag Sy C S, C ... C S where §; is the span of vy, ...,v;.
Again, this nested sequence of vector spaces is a flag thus
corresponds to a point on a flag manifold. In this paper we
extend SOM to perform a topology preserving mapping on
points that correspond to nested subspaces such as those
arising, for instance, from ordered bases or wavelet scaling
spaces. To accomplish this, we show how to compute the
distance between two points on a flag manifold and
demonstrate how to move a flag a prescribed distance in the
direction of another. Given these building blocks, we
illustrate how one may extend SOM to the geometric
framework of a flag manifold.

This paper provides an extension to [13]. The outline of
this paper is as follows: In Sect. 2, we provide a formal
definition of the flag manifold and illustrate with concrete
examples. In Sect. 3, we introduce the numerical repre-
sentation of flag manifolds. Here we indicate explicitly
how distances can be computed between flags, and further,
how a flag can be moved in the direction of another flag. In
Sect. 4 we put the pieces together to realize the SOM
algorithm on flag manifolds. We demonstrate the algorithm
with a preliminary computational example. Section 5
consists of a numerical example utilizing the algorithm.
Finally, in Sect. 6 we summarize the results of the paper
and point toward future directions of research.

2 Introduction to flag manifold with data
analysis examples

In this section, we introduce the basics of the flag manifold,
fix some terminology and notation, and provide examples
of its appearance in the context of data analysis.

A flag of subspaces in R" is a nested sequence of sub-
spaces {0} C V; C V, C --- C Vq = R". The signature or
type of the flag refers to the dimensions of the V;. There are
two standard ways to encode this dimension information.
One way is as the sequence (dim Vi,dimV,, ..., dim V).
A second way to encode this dimension information is as
the sequence (dim Vy,dimV, — dim V;, dim V3 — dim V5,
...,dimV,; —dimV,_;). In this paper, we will use this
second encoding for the type of flag. We let
FL(ny,ny,...,ng) denote the flag manifold whose points
parameterize all flags of type (n1,na,...,ng). Thus, a point
on this flag manifold corresponds to a nested sequence of
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subspaces {0} C Vi CV,C---CVg=R" with the

dimension of V; equal to n; + ... + n;. As a special case, a

flag of type (1,1,...,1) is referred to as a full flag and

FL(1,1,...,1) denotes the manifold whose points param-

eterize all full flags in R". Figure 1 illustrates the nested

structure of the first three low-dimensional elements com-

prising a full flag in R".

A flag of type (k,n — k) is simply a k—dimensional
subspace of R" (which can be considered as a point on the
Grassmann manifold Gr(k, n)). Hence
FL(k,n — k) = Gr(k,n). The Grassmannian-SOM algo-
rithm is developed in [7, 14]. The idea that the flag man-
ifold is a generalization of the Grassmann manifold will be
utilized later to introduce the geodesic formula on the flag
manifold. The nested structure inherent in a flag shows up
naturally in the context of data analysis.

1. Wavelet analysis: Wavelet analysis and its associated
multiresolution representation produces a nested
sequence of vector spaces that approximate data with
increasing resolution [2, 15, 16]. Each scaling subspace
V; is a dilation of its adjacent neighbor V., in the
sense that if f(x) € V; then a reduced resolution copy
f(x/2) € Vj;1. The scaling subspaces are nested

-CcV,cVicVoCVyC--

and in the finite-dimensional setting can be considered
as a point on a flag manifold. In Fig. 2, we visualize
points on the geodesic between the flags associated
with Daubechies2 (Haar) and Daubechies4 as they are
applied to a particular image of size 32 x 32. To be
more specific, for each timestamp 7 (0 <7< 1), we have
a flag corresponding to a point on the geodesic between
Daubechies2 and Daubechies4. Using the flag corre-
sponding to one of these time steps, we can transform
an MNIST image (considered as a 32 x 32 matrix) by
multiplying on both the left and the right by the pro-
jection matrices associated to each subspace in the flag.
In this figure, each row is showing how this transfor-
mation affects the 32 x 32 MNIST image while mor-
phing along this geodesic. Each column is a
visualization of the nested scaling subspaces, i.e., a
4-dimensional scaling subspace living in an 8-dimen-
sional scaling subspace living in a 16-dimensional

/c Tc - ..

Fig. 1 Illustration of a nested sequence of subspaces corresponding to
a point on the flag manifold FL(1,1,...,1)
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Fig. 2 A visualization of the
geodesic between the flags
associated with Daubechies2
(Haar) and Daubechies4
transform matrix of size

32 x 32

scaling subspace living in a 32-dimensional ambient
space. Note that the last column remains constant for
all 7 since it recovers the original MNIST image.

2. SVD basis of a real data matrix: Let X € R™* be a real
data matrix consisting of k samples in R". Let UXVT =
X be the thin SVD of X. The columns of the n-by-d
orthonormal matrix U is an ordered basis for the
column span of X. This basis is ordered by the
magnitude of the singular values of X. This order
provides a straightforward way to associate to U a
point on a flag manifold. If U = [u;|uz]. . .|Juy] then the
nested subspaces span([u]) Sspan([uy |u2]) S
- Cspan([uy] -+ lug)) SR is a flag of type
(1,1,...,1,n—d) in R". After we introduce the
distance metric on the flag manifold in Sect. 3.2, one
could consider computing the distance between two
flags, perhaps derived from a thin SVD of two different
data sets, which takes the order of the bases into
consideration.

3 Numerical representation and geodesics

A point in the vector space R" can be naturally represented
by an n x 1 vector. For a more abstract object like a
Grassmann or flag manifold, we need a way to represent
points in such a way that we can do computations. In this
section, we describe how we can represent points and we
describe how to determine and express geodesic paths
between points. Note that in this paper we are using exp
and log to denote the matrix exponential and the matrix
logarithm.

3.1 Flag manifold
The flag manifold FL(ny,n,,...,ny) is a manifold whose
points parameterize the set of all flags of type

(ny,n2,...,n4). The presentation in [4] describes how to
view the Grassmann manifold Gr(k, n) as the quotient
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manifold O(n)/O0(k) x O(n — k) where O(n) denotes the
orthogonal group and O(k) x O(n — k) denotes the block
diagonal matrix with elements from O(k) in the first block
and elements from O(n — k) in the second block. If we let
SO(n) denote the special orthogonal group and S(O(k) x
O(n —k)) denote the subgroup of O(k) x O(n — k) con-
sisting of matrices having determinant 1, then an equiva-
lent description of Gr(k, n) is as the quotient manifold

SO(n)/S(O(k) x O(n—k)). In the same way,
FL(ny,na,...,ng) is the quotient manifold
SO(n)/S(0(ny) x O(np) x -+ x O(ng)) where

n +ny+---+ng =n. Let P € SO(n) be an n-by-n spe-
cial orthogonal matrix, the equivalence class [P], repre-
senting a point on the flag manifold, is the set of special
orthogonal matrices

P, 0 - 0
0 P,
[Pl=<P P € O(n), [[der(P)=1
B . . i
0 e P[I

A manifold closely related to FL(ny,ny, .. .,n,) is the fully
oriented flag manifold FLo(ni,na,....ng) =
SO(n)/SO(ny) x SO(ny) X - -+ x SO(ny). There is a natu-
ral map ¢ : FLo(nl,ng, .. .,I’ld) — FL(I’ll,I/IQ, .. .,nd). This
map is subjective and is a 2¢~! cover of FL(ny,ny, . ..,ny).
Thus, the inverse image of a point in the flag manifold is a
collection of 2¢~! points in the fully oriented flag manifold.

It is well known that the geodesic paths on SO(n) are
given by exponential flows P(r) = Pexp(tA) where A €
R™" is any skew symmetric matrix and P(0) = P. The
geodesics on SO(n), i.e., P(t) = Pexp(tA), continue to be
geodesics on FL(ny,ny,...,ng) as long as they are per-
pendicular to the orbits generated by
S(0O(ny) x O(nz) x -+- x O(ng)), which requires further
constraints on the tangent vector A. FL(ny,n,,...,ng) is a
quotient manifold of SO(n). Let [P] € FL(ny,ny, .. .,ng).
The tangent space to SO(n) at P, TpSO(n), can be
decomposed into a vertical space Vp and a horizontal space
Hp. The vertical space is the set of vectors in the tangent
space corresponding to motions flowing along the equiva-
lence class [P] at P. The horizontal space is defined as the
orthogonal (with respect to the Euclidean metric) com-
plement of the vertical space in TpSO(n). The Euclidean
metric is defined as a function d : TpSO(n) x TpSO(n)—R:

d(U,V)=Tr(U"V)
= vec(U) vec(V)
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Intuitively, the vectors in the vertical space can be thought
of as the set of velocity vectors which preserve the
equivalence class, while the vectors in the horizontal space
modify the equivalence class. Therefore, tangent vectors to
geodesics need to be further constrained to the horizontal
space. If V is a tangent vector to FL(ny,ny,...,ng), then
there is a horizontal vector V € Hp which represents
V uniquely, which gives a numerical/matrix representation
to the tangent vectors.
The vertical space at a point P is the set of matrices

A, 0 - 0
0 A, --- 0

Vp=4qP| . ) ) ;
0 ... Ay

where A; is a n;-by-n; skew symmetric matrix. The hori-
zontal space Hp is the set of matrices which are orthogonal
to the vertical space and living in TpSO(n). Consider the
following set of equations

A 0 .0
0 A - 0

Tr| A"P| _ _ =0
o ... Ay

A =PA

where A € R™" and A; € R"*" are skew symmetric
matrices. By solving the above system of equations, we can
conclude that the horizontal space at P is the set of matrices

0,, *
0,,

—xT 0,,

where 0,, denotes an n; x n; matrix of zeros. This leads one

to conclude that the geodesic paths on FL(n,ny,...,ng)
are exponential flows:
P(t) = Pexp(tC) (1)

where C is any skew symmetric matrix of the form
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0,
_ Vi Xn;
, 0, = 0",

—xT 0,,

3.2 Skew symmetric matrix determines
a geodesic between two points

By Eq. (1), one may trace out the geodesic path on a flag
manifold emanating from P in the direction of €. In this
section, we utilize Eq. (1) to solve the inverse problem:

Given two points Q;,0, € SO(n), whose equivalence
classes [Q1], [Q,] represent flags of type (ny,na, . .., n4), the
goal is to obtain a factorization

0> = Q; -exp(H) -M (2)

for H and M where H and M are constrained to be of the
form

0,, * My 0 -+ 0
0,, 0 M, - 0

H = . and M =
—xT 0,, o .- M,

where H is skew symmetric, M; € O(n;), and M € SO(n).
However, related to the covering map mentioned above,
this factorization has multiple solutions. The expression
Q(t) = Q1 exptH, as ¢ varies from 0 to 1, traces out a
geodesic path between Q; and Q) exp(H). The length of
the geodesic path between Q) and Q;exp(H) can be
computed as a function of the eigenvalues of H which can
be simplified to the expression

Q:exp(H)M =- Q2

M

Jo:exp(i)

Q1 exp(H)

0] [02)

Fig. 3 Illustration of Eq. (2). The vertical lines represent the
equivalence classes [Q;] and [Q,], respectively. Q; is mapped to an
element in [Q,] by right multiplication with exp(H) which is then sent
to O, by multiplying with M

Length of Path = %trace(HTH). 3)
For additional details on this formula, see [4, 21]. If one
starts with two special orthogonal matrices Q; and O, one
can consider their equivalence classes [Q],[Q>] as two
points on a flag manifold. In order to compute their dis-
tance apart on the flag manifold FL(ny,ny,...,ng), we
consider the inverse image of [Q;] and [Q,] under the map
¢. The inverse image of each determines 2¢~! points on
FLo(ni,na,...,ng). The algorithms that we propose in the
next section compute the shortest length of a geodesic
between a point in the inverse image of [Q;] and a point in
the inverse image of [Q,]. The length of this shortest
geodesic is the distance between [Q;] and [Q5] as points on
FL(n] SN2y et ey nd).

Equation (2) can be interpreted in the following way.
First, we map Q; to a representative in [Q,] via the geo-
desic determined by the velocity matrix H. Second, we map
this element in [Q] to Q, via the matrix M. Figure 3 is a
pictorial illustration of the idea behind Eq. (2).

For FL(k,n — k), i.e., the Grassmannian Gr(k, n), one
can solve for H analytically. See [4] for details.

For the more general case of computing the length of the
geodesic between [Q;] and [Q,] (as shown in Fig. 3), we
will present an iterative algorithm to obtain a numerical
approximation of H and M in Sect. 3.3. Before we proceed
to the algorithm, let us further simplify Eq. (2) by letting
0= QlTQQ. This allows us to rewrite (1) as

Q =exp(H)-M (4)

Here we define WV as the vector space of all n-by-n skew
symmetric matrices. Let p = (n,nz,...,ny). We define
Wp to be the set of all block diagonal skew symmetric
matrices of type p and its orthogonal complement W; in
W, ie.,

G - 0

We={GeW|G= : , (5)
0 Gy
0, *

W, =¢HeW |H= : (6)
—xT 0,,

where by definition, G; € R"*" is skew symmetric for each
i. Instead of solving Eq. (4) directly, we propose to solve
the following alternative equation:
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Q = exp(H) - exp(G) (7)

where G € W, and H € Wlf. However, it is important to
note that exp(G) will produce an element in
SO(ny) x SO(ny) x -+ x §O(ny). As a consequence, in
these computations we implicitly work on the fully ori-
ented flag manifold SO(n)/SO(ny) x SO(ny)
X -+ x SO(n,). The fact that there is the natural 297! to 1
map from the fully oriented flag manifold to the flag
manifold means we must compute values for H and G for
many different representatives. As the output of the algo-
rithm (Algorithm 2), we must pick the “optimal” H giving
the shortest distance arising from this map.

3.3 Iterative alternating algorithm

The idea of the Iterative Alternating algorithm is straight-
forward. Given an initial guess GI¥ € W, since Q and Gl
are known, we can solve for H numerically. Let
H =log(Q - exp(G”)"). Since H is generally not of the
desired form (i.e., H ¢ Wlf), we project H onto Wlf to
obtain an update for H. This projection has the effect of
zeroing out entries in a certain pattern in H. We let
H = Projwé (H). Then we start updating G. Let G =
log(exp(H!")" Q) then project G onto W, to obtain an
update for G. This projection has the effect of zeroing out
entries in a pattern complementary to what we did to obtain
an update for H. We let G!) = Proj;(G). Now iterate this
process obtaining H? then G? and continue until the
values stabilize. The pseudo code of our Iterative Alter-

nating algorithm is presented in Algorithm 1 and
Algorithm 2.
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Algorithm 1: Tterative Alternating algorithm

Input Data: X1, X> € SO(n), p= (n1,n2,...,n4)
Output Data: H*, G*
Define: d(H) = %Tr(HTH)
1 Function Flaglog(Xi, Xo, p):
2 Q=XTXs
s | {Qi}25)" = generateQi(Q,p)
4 for Q in {Q; ?(:d;l) do
5 fori=1,---,m do
6 Generate random GI0)
7 k=0
8 while k < itermax and err < € do
9 k=k+1
10 HM) = P (1og(Q exp(=GIF1)))
11 G = Pg(log(exp(—HM)Q))
12 err = [|Q — exp(H) exp(G)||F
13 end
14 if d* > d(H*]) then
15 | a*,H*G* = d(HI),HIF Gk
16 end
17 end
18 return H* G*

Algorithm 2: Fully-oriented flag representations

1 Function generateQi(Q,p):
colHeader = [0,cumsum(ni,na, - -
m = length(colHeader)
n = floor(d/2)
1=1
Qi=Q
for j =1 :ndo
C = nchoosek(colHeader, 2*j)
for k = 1: size(C,1) do
i=14i4+1
Qi =Q
Qi(:, C(k,)) = -Qi(:, C(k,))

end

s nd—1)]+1

© 0N O oA WN

HoR e e
2 VI ]

end

-
IN

2(d,1))

15 return {Qi}gzl

We walk through two examples as an illustration of the
numerical computation of the geodesic formula and dis-
tance between two points on a flag manifold. Here two
types of flag manifolds are utilized to illustrate how the
geometry of a Grassmann manifold differs from that of a
related flag manifold.
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Algorithm 3: Flag SOM algorithm
Input Data: {X*) € SO)}E_, {C1%}icz, M €N, p = (n1,n2,-+ ,ng),
oo €ER,ep €R
Output Data: Updated SOM network
Define: d(H) = /X! _, A? where +i);’s are eigenvalues of H.
1 Function flagSOM():
2 Q=XTX>
s | {Qi)25" = generateQi(Q,p)
4 for m =1,2,--- ,M do
5 = randi(P)
6 for i € Z do
7 H™ ,G™ = FlagLog(X (W ,C™)
8 s =svd(H™)
9 d =+/(sTs)/2
10 end
11 iy, = argmin;{d}"}
12 for i € 7 do
13 idxDist = ||i — i, ||2
14 em = €o(1 — m/M)
15 om =0o0(1 —m/M)
16 tm = €m - exp(—idxDist?/o2,)
17 Ot = O exp(tm HI™) exp(GT?)
18 end
19 end
20 return {CM};c7
Let 0 0 hy hy
SIS N
V2 V3 Tl -m =k 00
1o 0 L —/’12 - h4 0 0
0 1 V3
X = 0 0 and let Y = 1 The unique singular values of output H are A, = 1.0172
0 WG and A, = 0.5536. The geodesic distance is therefore
0 0 V3 2 g
1 0 d([01],[Q2]) = \/43 + 23 = 1.1581. One thing to note
V2

be two data matrices. Let X = QR and Y = Q,R, be the
full QR-decomposition of X and Y. Here we look at two
different flag structures:

1. Flag manifold of type p = (2,2): Let Q = QITQZ. The
initial Gy (and any other G; in the iterative procedure)
should be of the form

0 g 0 0
—g1 0 0 0
0 0 0 g
0 0 —g O

Gi =

The output velocity matrix H (and any other H; in the
iterative procedure) should be of the form

is that FL(2, 2) is equivalent to Gr(2, 4). It is easy to
verify that 1;,/, are exactly the principal angles
between X and Y.

Flag manifold of type p = (1, 1,2): For this example,
the G;’s and H,’s should be of the form

0 0 0 0

0 0 0 0
G, =

0 0 0 g1

00 —g O
and

0 hy hy hy
H, — —hy 0 hy s

~h, —h 0 0|
—hy —hs 0 0

respectively. The unique singular values of output H
are A; = 1.0469, A, = 0.5404 and the geodesic distance
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6t & O 000 A 6l 0 A O A A 6 A A
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4t 0 A A 4 000 4 0 A A
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A AA 0000 O A 00 0000 A
0 : : : : 0 ‘ ‘ 0
0 2 4 6 8 10 0 2 4 6 8 10 0 5 10
0 Corn-notill 2 Grass/Trees

Fig. 4 Flag-SOM visualization results of Corn-notill and Grass/Trees. Left: 5 pixels used to form the SVD basis. Middle: 10 pixels are used to

form the SVD basis. Right: 15 pixels are used to form the SVD basis

is therefore d([Q1], [Q2]) = 1.1782. The geodesic dis-
tance is larger than the previous example since we have
imposed more structure in this example.

4 SOM on flag manifolds

In this section we extend the SOM algorithm to the setting
of flag manifolds. The general setting of SOM starts with a
set of training data x*) with u = 1,...,p and an initial set
of randomized centers {C;} where the subscript i is asso-
ciated to the label of the low-dimensional index a;. The
standard SOM center update equation is given by,

Crtt = O+ eh(d(ai, a0 ) (X — C1).

The superscript m is indicating the m-th iteration in the
SOM algorithm. Here i* is the winning center of data point
X, i.e.,

i* = argmin | X — C|,.
We also set the localization function as the standard
h(s) =e >/

and d is the metric which induces the geometry on the
index set. Here we mainly focus on the simple one,

d(ai,aj) = ||la; — aj|,

where the indices are enumerated by subscript, i.e., the
index set contains ap,as, ...,ay. On the flag manifold,
points are no longer living in a Euclidean space thus cannot
be moved using the standard update equation. For a given
data point X from a flag manifold of type

@ Springer
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Fig. 5 Flag-SOM visualization results of Corn-notill, corn and Grass/
Trees with only 5 bands selected (bands:100, 125, 149, 206, 207).
We used 15 pixels to form the SVD basis

p = (n,n2,...,ny), we identify the winning center, from
the set of all nested subspaces of type p which represent
centers {C;}, that is closest via

i* = arg mind, (X, C;)

where d, is defined in Eq. (3). To move the centers toward
the nested subspace pattern X according to the SOM update
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Fig. 6 Grassmann-SOM visualization results of Corn-notill, corn and
Grass/Trees with only 5 bands selected (bands:100, 125, 149, 206,
207). We used 15 pixels to form the SVD basis

we compute the geodesic, using the Iterative Alternating
algorithm described in Algorithm 1 and 2, between each
center C; and nested subspace pattern X.

Our localization term now becomes

ty = €h,(d(a;, ai)).
We now take
ha(s) = exp(—s*/a7)

where €, = ¢g(1 —n/T) and o, = go(1 —n/T). The cen-
ters thus change along the geodesic by moving from C;(0)
to C;(r) where ¢ is adjusted for the step size. The algo-
rithm for SOM on a flag manifold is summarized in
Algorithm 3.

5 Numerical experiment

In this section, to illustrate the proposed method for visu-
alizing real world data, we implement it on the well known
Indian Pine hyper-spectral image data set [12]. This data
set was collected over an agricultural area in Northwestern
Indiana in 1992. It consists of 145 x 145 pixels by 220
bands from 0.4um to 2.4um. This data set has been pre-
viously studied within the context of band selection [1],

which will be utilized here to show the advantage of the
flag manifold as a refined version of the Grassmann man-
ifold. For the illustration of the algorithm, we consider a
two-class problem and a three-class problem. We prepro-
cessed data via mean centering, i.e., each pixel is sub-
tracted by the mean value of the pixels for the whole scene
(spectrum). In this application we selected only 5 bands
(hence the ambient space is R’) to form 5 x 5 ordered
orthogonal SVD basis matrices. Each SVD basis represents
a data point within a specific class. The number of pixels
(with the same class labels) required to form a robust SVD
basis is also explored in this experiment.

For the two class problem we initialized the centers for
flag-SOM by selecting 100 5 x 5 orthogonal matrices at
random, corresponding to a 10 x 10 integer lattice. This
was done by computing the singular value decomposition
of matrices of size 5 x 5 from the uniform distribution. We
also assemble 15 5 x k matrices Y; from both classes,
which results in constructing 30 data points U; living on the
flag manifold Fi(1, 1, 3). Here U; is the ordered set of left
singular vectors of the corresponding data matrix Y;, i.e.,
U;2;VI =SVD(Y;). In Fig. 4, we observe that as we
increase the number of pixels (k) used to form SVD bases,
more robust and clear separation is achieved via flag-SOM
between two classes, namely Corn—notill and Grass/Trees.
When k = 15 pixels are used to construct SVD bases, there
is a linear separation between two classes. With smaller
values of k (e.g. k=5 or kK = 10), we observe a lack of
linear separability.

In Fig. 5, we see the results of flag-SOM on the three
class problem when the data points reside on Fi(1, 1, 3).
225 centers (5 x5 orthogonal matrices) are randomly
generated as the centers of the 15 x 15 integer lattice. 15
SVD bases from each class is generated as described pre-
viously. We observe in Fig. 5 that with only 5 bands
selected from 220 bands, we still obtain an excellent
clustering with all three classes. Here we also measure the
quality of the flag-SOM by computing the topographic
error. First, we define two centers to be adjacent in their
index space if their indices has distance 1 (Note that indices
are defined on the integer grid). We obtain a topographical
error of 0.22. If we relax the definition of adjacency by
allowing the surrounding 8 nodes on the integer grid to be
considered as adjacent, the topographical error becomes
0.04.

For a numerical comparison of SOM visualizations, we
introduce a distortion error to measure the separation and
compactness for the class distributions on the SOM grid, in
our case, the integer grid. Let a € R* be the coordinates of
the winning centers on the integer grid, which belong to
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one of the k classes {Si}f:r Let ¢; be the mean coordinate
of winning center for each class, i.e.,

The visualization distortion error is defined as

k
D=>"> Ja-cl

i=1 acs;

In Fig. 6, we demonstrate the Grassmannian-SOM on the
same data set for the purpose of comparison. We observe
that with low ambient dimension, the Grassmannian-SOM
shows poor separation on the 2D grid with a distortion
error of 2023. The flag-SOM visualization obtains well
separated classes with a much lower distortion error of 981.
Note that the Grassmannian-SOM suffers from the low
ambient dimension while flag-SOM is still separating
classes well thanks to the refined structure of the flag
manifold.

6 Conclusions and future work

We have presented algorithms for Self-Organizing Map-
pings on flag manifolds. Techniques for computing the key
ingredients of the SOM on flags are determining distances
between flags and moving one flag a prescribed distance in
the direction of another flag. The algorithm was tested on a
sample problem that involves computing an ordering of
points on a flag manifold. The flag-SOM algorithm has
been demonstrated on hyper-spectral image data, in which
case the algorithm organizes the hyper-spectral image data
in the index space and separates 5 x 5 SVD bases when
only 5 out of 220 bands are utilized.

Note that we have yet to explore the impact of the flag
structure for the flag-SOM algorithm. Searching for an
optimal flag structure has the potential to improve the
visualization results.
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