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Abstract

We investigate a nonautonomous predator—prey
model system with a Crowley—Martin functional
response. We perform rigorous mathematical
analysis and obtain conditions for (a) global at-
tractivity and permanence in the form of integrals
which improve the traditional conditions obtained
by using bounds of involved parameters; and (b)
the existence of periodic solutions applying con-
tinuation theorem from coincidence degree theory
which has stronger results than using Brouwer
fixed point theorem. Our result also indicates that
the global attractivity of periodic solution is posi-
tively affected by the predator's density dependent
death rate. We employ partial rank correlation
coefficient method to focus on how the output of
the model system analysis is influenced by varia-
tions in a particular parameter disregarding the
uncertainty over the remaining parameters. We
discuss the relations between results (permanence
and global attractivity) for autonomous and non-
autonomous systems to get insights on the effects
of time-dependent parameters.
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Recommendations for Resource Managers:

« The natural environment fluctuates because of

several factors, for example, mating habits, food
supplies, seasonal effects of weathers, harvest-
ing, death rates, birth rates, and other important
population rates. The temporal fluctuations in
physical environment (periodicity) plays a major
role in community and population dynamics
along with the impacts of population densities.
Periodic system may suppress the permanence
of its corresponding autonomous system with
parameters being the averages of periodic
parameters.

As the human needs crosses a threshold level, then
we require to observe the sustainability of re-
sources of the associated exploited system. There-
fore, the concept of stability and permanence
become our main concern in an exploited model
system (system with harvesting).

The mutual interference at high prey density may
leave negative effect on the permanence of the
system.

In harvested system, permanence becomes an
important issue because if we harvest too many
individuals then species may be driven to ex-
tinction. Interestingly, in many biological/agri-
cultural systems, harvesting (due to fishing in
marine system, hunting or disease) of a parti-
cular species/crop can only be more beneficial at
certain times (e.g., the time and stage of harvest
of a particular crop play greater role in its pro-
duction and hence the particular crop is many
times harvested at its physiological maturity or

at harvest maturity).

KEYWORDS

almost periodic solution, coincidence degree, functional response,
global attractivity, periodic solution, sensitivity analysis
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1 | INTRODUCTION

The predator—prey model system has been one of the most important topics in biological systems
(Berryman, 1992; Lotka, 1956). The predator-prey relationships play significant roles in
determining the stability and persistence for a large number of species in ecosystems (Allesina &
Tang, 2012). The survival of species depends on how efficiently they eat/take their food resource
(like, prey for predators because prey serves as food resource and energy for associated predator).
Thus the respective predator directly influences the associated ecosystem including the prey
population via direct interactions. Such direct interactions between prey and predator have
been mathematically formulated via different functional responses. The functional response
(response function) is an important feature of the prey-predator interactions (Berryman, 1992).
The understanding of the role of functional responses helps to get more biological insight into the
predator—prey dynamics.

Functional responses describe how predator and prey interact in their ecosystems. The direct
interactions between predator and prey have been modeled via linear (L-V type functional response;
Berryman, 1992; Lotka, 1956), Holling type (IIL, II, and I) response functions (Holling, 1959; Xiao &
Ruan, 2001), and ratio-dependent functional responses (Arditi & Ginzburg, 1989; Banerjee &
Petrovskii, 2011). Recently, several authors have explored the dynamics of prey-predator system with
a ratio-dependent response function (see, e.g., Arditi & Ginzburg, 1989; Banerjee & Petrovskii, 2011;
Chen & Cao, 2008, and references therein). However, not only the direct interactions between prey
and predator influence the dynamics of associated model system but also direct interactions among
predators affect the overall dynamics of respective predator-prey system via modifying the functional
response based on spatial factors (Cosner et al., 1999; Crowley & Martin, 1989). Beddington (1975)
and DeAngelis et al. (1975) separately derived a response function that acclimate interference be-
tween predator (direct interactions in predators). Here the assumption is that individuals not only
assign time to forage and process prey but also use some time fetching in encounters with predator
(Beddington, 1975; DeAngelis et al., 1975; Tripathi et al., 2015). Thus, the expected consequence is
that feeding rate of predator becomes free from the density of predator at the high density of prey.

However, empirical results suggest that the predator feeding rate is decreased with respect to the
higher density of predator even when the density of its prey is high (Collazo et al., 2010; Skalski &
Gilliam, 2001; Zimmermann et al, 2015). This concept was modeled mathematically by
Crowley—-Martin (1989) (hereafter the CM model system; Crowley & Martin, 1989). Also in Skalski
and Gilliam (2001), a statistical inference from 19 prey-predator systems ensures that three predator-
dependent response functions (viz., Hassel-Varley, Beddington-DeAngelis, and Crowley-Martin)
give a better explanation of predator's feeding over the range of prey-predator richness. We would
like to point out that the Crowley-Martin response function is akin to the Beddington-DeAngelis
response function but it includes one more term explaining mutual interferences of predators at the
high density of its prey (Parshad et al., 2017; Tripathi et al., 2020, 2016).

Thus incorporating the above idea, the per capita feeding rate for a particular predator (y) in
ax

Tt ooy Here x denotes the density of prey. The three

CMFR is given by, 7(x,y) =

parameters c, b, and a have similar interpretations as in Beddingtion-DeAngelis type functional
response (Beddington, 1975; DeAngelis et al., 1975; Skalski & Gilliam, 2001). A notable dif-
ference between the Crowley-Martin and Beddington-DeAngelis functional responses is:
Beddington-DeAngelis predicts that the impacts of predator's interference on feeding rate is
much less under the conditions of high abundance of prey while Crowley—Martin considers the
interference effects on feeding rate (Hassell, 1971). The limiting value of 5(x, y) depends on x
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only, as y — 0 (almost no interference amongst predators) and 7(x,y) - 0 when y — oo,
(showing maximum interference among predators).

In theoretical ecology, there are many work on Lotka-Volterra systems in the constant
environment. However in real life, the constant environment is a rare case (see, e.g., Chesson,
2003; Cushing, 1977; Fan & Kuang, 2004; Lin & Chen, 2009; Tripathi, 2016; Tripathi &
Abbas, 2016). The natural environment fluctuates because of several factors, for example,
mating habits, food supplies, seasonal effects of weathers, harvesting, death rates, birth rates,
and other important population rates (Fan & Kuang, 2004). In an experiment on a
host-parasite system, Utida (1957) has given suggestions an explanation for oscillatory data
(Cushing, 1977). Moreover, in Utida (1953), cyclic fluctuations of population have also been
demonstrated by taking 25 generations of interactions between populations of Heterospilus
prosopidi (a larval parasite) and azuki bean weevil. This indicates that the physical environ-
ment plays a major role in community and population dynamics along with the impacts of
population densities. Though the past studies reveal the fact that the temporal fluctuations in
physical environment (temporal inhomogeneity in the model parameters) are key drivers of
population fluctuations, yet only few theoretical attempts are found to forecast the char-
acteristics of the consequential population fluctuation (Chesson, 2003; Fan & Kuang, 2004).
Thus, there is a need to study ecosystems in the temporal inhomogeneous environment.

If we consider the temporal inhomogeneity of environment, a model system becomes non-
autonomous (Fan & Kuang, 2004; Fan et al., 2003; Li & Takeuchi, 2015; Tripathi & Abbas, 2016).
For nonautonomous model systems, researchers consider periodic and almost periodic coeffi-
cients. One can also find several important studies on neural networks with time-dependent
parameters (nonautonomous neural networks). Recently, Yang et al. (2018) investigated the
discontinuous nonautonomous networks and associated exponential synchronization control.
Other significant studies related to important nonautonomous model systems on similar topics
can be found in Duan et al. (2018, 2017), Huang and Bingwen (2019), Huang and Zhang (2019),
and Huang et al. (2016, 2019). However, in ecology, the nonautonomous phenomenon occurs
mainly due to seasonal variations, which make the population to grow periodically or almost
periodically. More precisely, the model systems are also considered with time-varying parameters
if the relevant environmental factors fluctuate periodically with time (Abbas et al., 2012; Rinaldi
et al., 1993; Tripathi, 2016). This paper concerns complex delayed neural networks with dis-
continuous activations. Permanence, almost periodic and periodic solutions of Lotka-Volterra
systems have been discussed by several authors (see Chen, 2006; Chen & Shi, 2006; Fan &
Kuang, 2004). In particular, Li and Takeuchi (2015) established the existence of periodic solutions
of a prey-predator system with a Beddington-DeAngelis response function. Recently, Tripathi
and Abbas in Tripathi and Abbas (2015) discussed a nonautonomous model system with a
modified Leslie-Gower response function. The global attractivity and permanence of a
Lotka-Volterra competitive system was investigated in Chen (2006).

In this paper, we consider the following nonautonomous predator—-prey model system with
a CMFR and density-dependent death rates in both predator and prey:

oNa ) Oy (0)

dt ‘x(t)( bx(t) + a() az(r)xa)+a1<t)+a3<t>y<t)+a4(r)y(t)x(r))’ o
v (. ) FOx@)

a (t)( Wy —d@) + az(r>x(r)+a1<t>+a3(t)y<r)+m(r)x(r)y(r))’
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where y(t) and x(t) represent predator and prey densities at time t, respectively. Here we
assume that f(t), e(t), d(¢), c(t), b(t), a(t), a;(t) (i =1,2,3,4) are continuous and bounded
functions by positive constants with the following ecological interpretations: f(t) (the coeffi-
cient of conversion from prey to predator); e(t) (the predator population decreases due to
competition among the predators); d(¢) (in the absence of prey, the predator population de-
creases); c(t) (predator populations feed upon the prey population); b(t) (due to competition
amongst the preys, the prey population decreases); a(t) (in the absence of predators, the prey
population increases); a;(t) (measures the half saturation of prey species); a,(¢) (measures the
handling time); as(t) (coefficient of interference among predators); as(t) (the coefficient of
interference among predators at the high density of prey).

The main goal of this study is to present the complete dynamics and to establish the
conditions of existence of a unique global attractive almost periodic (periodic) solution of the
model system (1) using a suitable Lyapunov functional and continuation theorem in degree
theory. In present study, we have obtained the following important results and improvements:

« A nonautonomous prey-predator model system with a CMFR has been considered. All time-
dependent parameter functions are considered bounded below and above by positive constants.
Nonautonomous system has more reasonable biological interpretation than the corresponding
autonomous system Tripathi et al. (2016).

« The conditions of extinction of both prey and predator and the global stability of boundary periodic
solutions are given in both parametric and integral forms. The conditions in integral forms reflect
the effects of the long-term predation behaviors on the number of species. The results have more
reasonable biological interpretation rather than those for the corresponding autonomous system.

« The permanence conditions of the considered model are more flexible than usual conditions
obtained by using supremum and infimum of the time-dependent model parameters.
Moreover, flexible conditions involving integrals have been obtained rather than conditions
obtained using lower and upper bounds of model parameter. Thus the persistence results of
the present study improves the conditions from traditional methods (e.g., refer Fan &
Kuang, 2004; Fan et al., 2003; Li & Takeuchi, 2015).

« Numerical examples show that periodic system may suppress the permanence of its corre-
sponding autonomous system with parameters being the averages of periodic parameters.

The remaining part of manuscript is organized as follows. We establish permanence, bound-
edness, and global asymptotic stability of the considered model system in Section 2. Sufficient
conditions for the global asymptotic stability and existence of a periodic solution have been
discussed in Section 3. In Section 4, the existence of a unique almost periodic solution have been
established. In Section 5, to support our analytical findings, numerical examples are demonstrated.
Following numerical evaluations, we have performed the sensitivity analysis in Section 6. A brief
discussion followed by ecological implications and future scope are given in the final section. Some
preliminary results along with some conventional proofs have been presented in the appendix.

2 | A GENERAL NONAUTONOMOUS CASE: POSITIVITY,
PERMANENCE, AND GLOBAL ATTRACTIVITY

Here, we establish the positive invariance, boundedness, permanence, and global asymptotic stability.
LetR2 = {(x,y) € R%:y > 0, x > 0}. Suppose g (¢) be a bounded and continuous function on R and
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g, and g,, denote inf,cp g(¢t) and sup,., g(¢), respectively. Based on the biological context of the
proposed model system (1), we assume that its coefficients satisfy the following conditions:

min {aLr bL’ Cr, dL9 eL;fLa . IP;% 4{aiL}} > 0
1=1,2,5,

and

max {aM’ bM7 CM» dM7 eMsfM’ X ?2?4{6111\/1}} < co.
1=1,2,5,

Thus, we could have the following positive invariance of the model system (1).
Lemma 1. For the model system (1), the positive cone is positively invariant.
Proof. Refer to the appendix. |

Now define the following notations:

a 1 e M.
Mf::—M+e, mf::—aL—L — ¢,
bL bM ay, + (13LM2
1 M,
M2€ = — _dL + L + ¢, (2)
er, a; + azLMl
1 m
m; = —|—dy + Jum — ¢
em ay, + az,m; + a3MM2 + ay,, m M,

Then we obtain the subsequent theorem:

Theorem 1. If time-dependent coefficients of the model system (1) satisfy

SuMi ey M; fumi
dL<—€, aL>—E, dM< < . pnp)
ay, + ax M ay, + a3 M; ay, + ax, my + az, M; + as,myM;
©)
then the set
Ke = Ji(x, VER:mS <y<Ms,mf<x< Mf}, @

is positively invariant with respect to the model system (1), where € > 0 is sufficiently small
so that m{ > 0 and m; > 0.

Using the Definition Al, we summarize the above theorem as the following result of the
system (1) on permanence:

Theorem 2. If the time-dependent coefficients of the model system (1) satisfy
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Jubh e M Jom
7’ aL > 7’ dM < bl
a; + azLMl a, + Cl3LM2 ay, + az,m + a3MM2 + ag,, m M,

(5

dr <

then the system (1) is permanent.

Remark 1. The detailed proofs of Theorems 1 and 2 have been given in the appendix. If
all the parameters in the model system (1) are constants (positive), then autonomous
version of the model system (1) (also given in Tripathi et al., 2016) provides the following
result on permanence:

L
d< L, a > C—’ d< fK ) (6)
a + (12M a + a3L a + a2K + (13L + a4KL

where lim sup,_,,  ¥(t) <L, limsup,_  x(t) <M, liminf_,oy(t) >N, lim inf, o x(t)
> K. Note that these conditions are different to those conditions given in Tripathi et al. (2016).

Remark 2. All solutions of the model system (1) are eventually bounded (refer the
Definition A2) under the conditions (5). One can also prove that the set x. # ¢ that is
there exists at least one positive bounded solution for the model system (1)
(Definition A2). The proof follows similarly as in Du and Lv (2013).

Remark 3. For the same value of coefficient functions as in Example 1 (Section 5) with
sufficiently small value of ¢, the sufficient conditions of Theorem 1 would be well
satisfied. Moreover, one can also compute the set x.. Here for € = 0, (3) is same as (5).
Hence the model system (1) is permanent if k. is positively invariant in model system (1).
Here it is important to mention that permanence ensures for all the solutions to satisfy
the property given in Definition Al.

Lemma 2. If q(t) and p(t) are continuous functions defined on R and bounded by
constants (positive) and dl;—?) <G u@®)(=p@®u(t) + q@)), t € [tg, +0), then we obtain

. q(t) . q(t) . . q(t)
lim sup,_, , , u(t) < sup,cp @) if 0 <u(ty) < SUPrer > OF lim inf,_, , u(t) > 1nfteRm,
q(®)

. S a0
ifu(ty) > 1nfteRp(t)

Define
7 —sun?® W - sun | = _ Mi®
M=oy M= op e(t)[ 4+ a2<t)M1+a1<t>]’
~ . L _ Mzc(t)
= [a(t) a(OM, + a (t)]’ 2

w L[
mz_zlgnge(t)[ d(®) +

uf (t) ]
a (O + ay(t) + az ()M + a, ()M |



gof49 | @ Natural Resource Modeling TRIPATHI E AL

and

K :={(x,y) € R|1ity <y < N, iy < x < My},

Now define the following conditions:

ek | a)(t) + ay(HM;

-0

| @ + axont, T a(t)] >0 ®)
inf _ fOm, ___ d(t)] >0,

t€r | a)(O)my + ay(t) + ax(HOM, + a,(t)im,M,

which ensures that M is greater than 1y and 1, is less than M.

Remark 4. The conditions given in Equation (8) are important for the model system (1)
being permanent. The permanence of the model system (1) ensures the following
ecological interpretations:

1. At any time ¢, the death rate d(t) of predator y in the absence of prey is smaller than
the benefits due to eating its prey x.
2. At any time ¢, the intrinsic growth rate a(¢) of prey x in the absence of predator y is

large enough such that infteR[a ) — %] >0
1 3 2

Remark 5. By the comparison between conditions (5) and (8) and conditions (6) of the
corresponding autonomous system, one can see that conditions (8) are more flexible than (5)
and (6).

Theorem 3. If the conditions (8) holds, then for model system (1), the set K. is positively
invariant, and the model system (1) is permanent and the set K. is defined by

Ke={(,y) ER|imy —e <y <My + ¢,y —e < x < M + ¢}

is an ultimate bounded region. Here € is a sufficiently small number such that m; — € > 0
and m, — € > 0.

Theorem 4. If the following condition holds

M
—— < 4, ©)

then the predator y goes extinct.

Theorem 5. If the following condition holds

Ly
ay <

(10

~ ~ ~ ~
ay,, + azMMl + as,, mp + ag,, WI2M1
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then the prey x goes extinct.

Remark 6. If all the parameters in the model system (1) are time-independent, then the
conditions for extinction of corresponding autonomous model system are given by

T ¥
1. The predator y goes extinct if PR VIR d.

cN
a + M+ asN+ay,NM®

2. The prey x goes extinct if a <

Theorem 6.

(1) If the following condition holds

f+°°(—d(t) + ﬂ)dt = —o0 11)
0 a () + ()M

then the predator y goes extinct.

2 If

j0‘+°°(a(t> ) e (t) )d[ — oo, 12)

@ (OM; + ai (1) + a3 (), + ag(H) My,

holds then the prey X become extinct.

Remark 7. Conditions (11) and (12) have more reasonable biological interpretations
than conditions with infimum and supremum of parameter functions given in (9) and
(10) and those for corresponding autonomous model system.

Remark 8. Condition (11) shows that if for a long period of time the benefit of predator
y from predating its prey x is less than the death rate of predator y, the predator y goes
to extinction in the system (1). Condition (12) indicates that if long term effects of
the predation behavior to prey x is larger than its intrinsic growth rate, the prey x goes
extinct in the model system (1). Conditions (11) and (12) also show that a(t) —

c ) - _ foM e
DTN T e e O and —d(t) + e+ oo e allowed to change their signs.

For the boundary solution of model system (1), in the absence of predator, the model system
(1) becomes (Riccatti equation):

dx (t)

e x(D(=bOx (1) + a(r)) 13)

Obviously, x(t) =0 is a solution of Equation (13). Moreover, solution X(t) such that
X(0) = x0(0) is given by

(@) = (./O‘tb(s)exp{—./o‘ta(f)dr}ds + xioexp{—./o‘ta(s)ds})_1 14
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Hence, the existence of the boundary solution is guaranteed.

Theorem 7. Let Y(t) = (x(t), y,(t)) be a positive bounded solution of system (1). If
conditions in Equation (8) and

teR

{ [a0M5 + a,OMg e
inf < —

(@®ms + & + asOms + a,Omims)’

[0 + a5 ] (0 }
> + b)) >0,

(a®) + a(Omf + asOm; + ay(Omims) 5
15
[a® + aOM |e®

inf § —
< { (a:mf + & + as©ms + a,Omims)

[as(OmF + as@me2 ] ;
>0,
(@(® + aOM; + as(OM; + ayOMMS)

+e(t) +

hold, then (x,(t), y,(t)) is globally attractive.

Proof. Suppose X(t) = (x(t),y(t)) be any positive bounded solution (refer the
Definition A2) of model system (1). Hence there exists a positive number T such that

Ca(), » (), x(@®),y(t)) € K., for all t>ty+ T. Define ¢t x(t),y)) = (a(t)+
as()y(t) + ay(O)x(@)y(t) + ax(£)x(1))(@(t) + ax()x(t) + as()x @)y, (t) + as(t)y (1))

Let Si(t) = | Inx(t) — Inx(¢)l.

For Si(t), the upper right Dini derivative Chen and Jinde (2003) is given by

D*S;(t) = sgn(x(t) — X1(f))(_§1_§g + %)
1
= sgn(x(t) - xl(t)>[—b(t)(x(f) —x0) = C(t)[‘m;(lt—()i)yl(t))
L0 )]
¢t x (1), y(0)
==b(®)| x(t) — x ()|

—sgn(x(t) — xl(t))C(t)(

<=b(@®)| x(t) — x (1)]
e (t)[ OOy @) + a (1))
St x (), y, (). (@, x (), y(t))

(@()x @) + a () B
¢t x (1), y, (). $ (&, x(0), y(1)) |y (©) yl(t)l).

N (O x®), () + y (S, xl(t)’yl(t))]
(€&, x (), y(O)NE @, x (6, y1 (D))

lx(£) = x (0]
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Moreover, consider S,(t) = |Iny(t) — Iny,(¢)l. For S,(¢), we have

D*S,(t) = sgn(y(t) — yl([))(_Y1(t) + MJ

n@®  y@©

x (1)

= sgn( (1) - yla))[—e(r)(y(t) ) +f @[‘m

__x®
* g(r,xo:),y(t))ﬂ
=—e®ly®) -y @®!

+sgn(y(t) - yl(t))f(f)(

<—e®ly(®) =y @)l
a; (1) + as(t)y, (1)
+f(t)(§(t’ x(6), y(£)). $ (&, x (1), y(£))

X (0)(as(t) + as(Oxi (1))
- | -Nn Il
S, xa(0), y, (). § (2, x(2), y(¢)) y(®) =n@® )

—x (DS, x(0), y () + xS, x1(t),yl(f)))
(€ (&, x(0), y(ONE (&, x1.(1), y, (1))

Ix(t) — x ()]

Combining the two functions S;(t), for i = 1, 2, we find S(¢) = S;(¢t) + S,(t). For t > t,,
we have

D*S(t) = D*S,(t) + D*S,(t)
[ c@[asOMS + a (M5 |

a(Om; + ar(t) + a(Om3 + ay(O)mims)

< —

S+ b(0)

f(t)[al(t) + a3(t)M§] _ _
_ )2 =% () + X% ()]

(@1 + a2(Omf + as(Ym5 + ayOmim;

(w®mf + @@ + a@ms + aOmims)

_[_ c[a® + a M)

f ©]asOms + as(®mi?]

+e(t) +
(@) + a(OMF + a;(OM5 + ay(OMFM;

)zll IOESAOIE

Equation (15) implies the existence of a positive constant p defined as follows:

e a(OM + a, ()M
p =minq inf< — 7 T b
B (@Oms + @@ + aOms + a(Omims)

FO[a® + as©Mms]
)2

(a2(Omf + @) + as(Om5 + au(©mims
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and

[ + @@ ]e®
inf

2
| (@@ + @O + a@Oms + aOmims)

|as(Omi + ay@m2 | ©

+e(t) + > > 0.
(a1() + & (OM; + ay(OMEMS + as()M3)
Hence, we obtain that
D*S(t) < —p[ly(®) =y O + 1x() = x(®I]. (16)

Integrating (16), from ¢y, + T to ¢, we find

p[:T[Ix(s) —x@) +1yE) —n@GIlds+ S{) < Sty + T) < + oo,
which gives

limsup‘/::—T[Iy(s) — ) + Ix(s) = x(s)I]ds < S(T + tp) <+ o0

Hence ly(t) — y, ()1, 1x(t) — x(t)| € LM([T + to, + o0)). Boundedness of y (), x(t), x(¢), ¥, (t)
imply the boundedness of their derivatives for ¢t > t, + T (see, model system (1)). Hence
one can easily observe that |y(t) — y,(£)| and Ix(t) — x(¢)| are uniformly continuous on
[T + to, + o). Thus using the Lemma A2, one can obtain

limly(£) —y, ()l =0, limlx(t) —x @) = 0.
t—o00 t—o00

Therefore Y(t) = (x(t), y,(t)) is globally attractive solution of the model system (1). []

Remark 9. One can also show that above property is satisfied by any two positive
solutions (with positive initial conditions) that is we can establish the global asymptotic
stability of the model system (1). For e(t) = 0 and a4(t) = 0, the model system (1)
becomes the nonautonomous Beddington-DeAngelis type prey—predator model discussed
by Fan and Kuang (2004). In this case, the above discussion remain valid.

3 | PERIODIC CASES

Apart from general nonautonomous models, here, the parameters in the system (1) are taken as
periodic functions as relevant environmental factors fluctuate periodically in time (Abbas
et al., 2010; Cushing, 1977; Rinaldi et al., 1993). The periodicity of parameters may incorporate
the periodicity of the environment. Periodicity of parameters is also reasonable assumption
in the aspect of seasonal factors, for example, harvesting, hunting, availability of food.
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There are several more mechanisms that causes periodic environment, for example,
phytoplankton-zooplankton populations with primary class fish feeding on zooplankton
throughout the summer and tree-insect pest systems regulated by migratory insectivores; var-
iations of the habitat facilitate the escape/capture of the prey in some particular seasons; the
relaxing time of the predator varies throughout the year, as populations characterized by some
degree of diapause; periodic existence of a super predator abusing the predator population causes
to the periodic variations of predator death rate; the caloric content of the prey fluctuates
throughout the year, such as, in some plant-herbivore communities, the availability of energy to
the predator for reproduction fluctuates consistently, excess in the prey mortality rate due to
competition at high densities, and so forth (Rinaldi et al., 1993). In this section, we will discuss the
existence of a periodic solution (positive) of the resulting periodic nonautonomous model system
followed by the global attractivity of the solution using Lemmas A3 and A4. Here we assume that

dt+w)=d(t), ct+w)=c(®), alt+w)=a(), b+ w)=>b(), e+ w)
=e(t), fU+w)=f~1), a(t+w)=as(t), a(t+w)=a(), a(+w)
=a(t), aq(+ w)=al), 17)

that is all the parameters of model system (1) are w-periodic in time (t). Let 3 = é _/;w P (t)dt
denotes the mean value of the periodic continuous function ¥ (t) with period w.

There are three natural phenomena to understand the evolution of dynamics of the autonomous
version of model system (1) under the periodic (almost-periodic) perturbation when model system (1)
exhibits a limit cycle. Let T be the period of limit cycle and w be the period of the periodic (almost-
periodic) perturbations. If T = w, then limit cycle may develop into a positive harmonic periodic
solution with period w. If T # w and rationally dependent, then the limit cycle may develop into a
positive harmonic or subharmonic periodic solution with the period of the least common multiple
(LCM) of T and w. If T # w and rationally independent, then the limit cycle may develop into an
almost periodic solution. The periodic nature of solution can also be observed in planar piecewise
linear systems of node saddle type Wang et al. (2019), in delayed Cai, Zuowei, Jianhua Huang, and
Lihong Huang, Periodic orbit analysis for the delayed Filippov system Cai et al. (2018).

Theorem 8. If the condition (4) of the Theorem 2 holds, then the model system (1) has at
least one positive periodic solution (with period w), say, (x, y,), which lies in x..

Proof. The Theorem 8 can easily be proved by using Brouwer fixed point theorem (refer
the Lemma A3). O

Now in the next theorem, we use an alternative approach (continuation theorem) to prove
the existence of a positive periodic solution.

Theorem 9. If the following conditions holds:

Q> (i) exp{—2dw}(f — das,,) [d _ (i)]ﬂ; > day,, (18)
as a

then there exists at least one w-periodic positive solution for model system (1).
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Proof. Let y(t) = exp{v(t)}, x(¢t) = exp{u(t)}, the model system (1) is rewritten as
follows:

? =—b(t) exp{u(t)} + a(t)
B exp{v(t)}e(t)
a(t) exp{u (D)} + ar (1) + a3 (1) exp{v (D)} + as(t) exp{u ()} exp{v ()}’
d‘;—(tt) =—e(t) exp{v ()} — d(t)

+ exp{u(O)}f ()
a(t) exp{u (D)} + ar(t) + as(t) exp{v (D} + aq(t) exp{u (D)} expv()}’

19

Now we define the operators L, N, and projectors P and Q:

du
L: DomL C X — X, Lw:L[ﬁ]: g\‘) ,
dt
1 4]
2 d
P.O: X o X. PW:QW:[:;,]: c;‘/;wu(t) t |
;j:) v(t)dt
. N 7 B BT O9)
N:X— X,Nw= N[V] - [Nz(t)]
[ —b (1) exp{u()} + a(t) ]
c(t) exp{v(t)}

(D) expu (D + a1 (1) + a5 (1) exp(v () + as (1) exp{v ()} explu (D)}
~d(1) = e(t) explv ()}
s f (@) explu(®)}

| @O epu®) + 6 + a0 epiO} + a0 expi (O explu (D) |

Here, we have

KerL ={(u,v) € X I(u(t),v(t)) = (p,,p,) € R* for t € R},
ImL = {(u, V) € Xlﬁwv(t)dt =0, ‘/;wu(t)dt = 0},

and codim Im L =dim Ker L = 2. L is a Fredholm mapping of index zero as Im L is closed
in X. We observe that P is continuous projection such that Ker L =Im P, Im
L =Im(I - Q)= Ker P. Moreover, the generalized inverse (to L), Kp:Im L — Dom
L n KerP is given by
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Kp(w) = t/:w(s)ds — %‘/O,w‘/o'zw(s)dsdt = Kpl:l{)l]
‘/;tu(s)ds - lfw ft u(s)dsdt
f v(s)ds——f f v(s)dsdt ‘

Here, Kp(I — P)N and QN are continuous. For any open bounded set Q € X, one can
show that Kp(I — P)N (Q) is compact. Also PN (Q) is bounded. So N is L-compact on Q.
For Lx = ANx, for each 1 € (0, 1), we have

db;_gt) — ,1(—b(t) expiu(t)} + a(t)
. exp{v(t)}c(t) ]
a () exp{u (D} + a1 () + a; (D) exp{v (D} + a4 (1) expfv ()} exp{u ()} )
do(©) _

e A(—d(t) —e(t) exp{v(t)}

exp{u(H)}f () )

¥ a (1) exp{u(6)} + ar (1) + as(t) exp{v (D)} + as () exp{v (1)} exp{u ()} ) 0)
20

If (u(t), v(t)) € X be an arbitrary solution of the model system (20) for some 1 € (0, 1),
we obtain

i = [ ¢ (b(t) exp{u ()}

. exp{v (D} () ) i
@ (®) exp (D] + a () + a5 () explv (O] + @ (0) explv (1)) explu ()}

w = —‘/OM e(t)exp{v(t)}dt

. [ explu(D)}f (1)
0 B expEO] + a0 + 60 ephO) + @) eph (O] epl®] on

From (20) and (21), we have

s

du
dt

dt</1f a(t)dt+/lf (b(t) explu(t)}

. explv(D}e(V ]
a>(0) exp{u(D)} + ar (1) + & () explv (D} + a4() expu (D)} exp(v (1))

< 24w, jo’ v dt</1f d(t)dt — /0‘ e(Hexp{v(t)}dt

1 fw exp {u()}f ()
0 ay(t) exp{u(t)} + a1 (t) + as(t) exp{v(6)} + as(t) exp{u(t)} eXP{v(t)}
< 2dw. (22)
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As (u(t), v(t)) € X, there exists u;, v; € [0, w], (i =1,2) such that

u(v) = maxu(t), u(u,)= minu(t), v(»)= maxv(t), v(u,) = minv(). (23)
te[0,w] tel0,w] te[0,w] te[0,w]

It follows from (21) and (23) that
jo"” b(t) exp {u(u)}dt = bow exp {u(u,)} < do,

which gives u(u;) < ln(%) and hence we obtain

a

u() <u(u) + ‘/Om ‘ % dt < ln(g) + 24w = 0. 24)

Moreover, from the first equation of (21) and (23), one can obtain that

dw < ‘/;w (b(t) exp{u(v)} + M)dt = (i)w + bw exp{u(vy)}.

asz () a

Thus, we find u(v;) > ln(d - (i)) /b. Therefore, we have

a3

du

u(®) 2 ue) - [

[¢5]

dr > ln{d - (i)}/é — 24w = O,. (25)

Thus, (25) together with (24) implies that maxejoq,)lu(t)l < max{l®,l, 0,1} = D;.
Moreover, from the second Equation of (21) and (23), we get

j f(t) exp{©:} ®
“=Jo a+ a epion Sy e®explvGu)yar,
exp{v (1)} < f exp{®1} — d(ay, + a5, exp(@1}).

é(ay, + a,, exp{O.})

Hence,

v(t)gv(uz)+j;”‘% dt

. . (26)
<In / eXp{f)l} — d(ay, + ay exp{©:}) + 2w = 0,
é(ay, + ay exp{®4})
Again, from the second Equation of (21) and (23), we find
do> [* J(t) expiBy} — [ e explo )},
0 ay, + ay, exp{@y} + au, exp{O,} exp{v (1)} 0
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and it leads to
éay,, exp O,(exp{v(u,)})? + [é (ay,, + az, exp{O,}) + 3a4M exp{@)z}] exp{v(v,)}
+ &(alM + a,, exp{0,}) —f exp{@,} > 0.

Here, we assume that A = éay, exp{©,}, B = é(ay,, + a, exp{O,}) + cja4M exp{®,},
C= ﬁ(alM + a,, exp{0,}) —f exp{®,}. As (18) implies that C < 0, hence, we have

B + +JB?* — 4AC
2A 2

exp{v(v2)} 2

which in turn implies that

W = @4. (27)

v 20 - f° |

2— ~
zln{BJ”/];A 4AC]_2d

Therefore, the Equations (26) and (27) together give that max,cpqv(f) <

max{l@s, ©41} := D,. Obviously, D; and D, are independent of A. Define D = D; +

D, + Ds, where D5 > 0 is taken sufficiently large so that D; > |L| + [L,| + L1 + [Ly1.
For u € [0, 1] and (u, v) € R?, consider the following algebraic equations

bepla a1 [ explle () i
wY0 a(t)+ az(t) exp{v} + ay(t) exp{u} + a4(t) exp{u} exp{v}
=0,
oexpl—d + 1 fw exp{ulf (t) dt
wY0 a(t)+ az(t) exp{v} + ay(t) exp{u} + a4 (¢t) exp{v} exp{u}
=0.
(28)
One can easily show that any solution (uy, v;) of the above equations satisfies
ll <uy <L Ll’ l2 <y <L Lz. (29)

Define Q = {(u,v)T € X: D > lI(u,v)ll}. Then one can easily conclude that for each
(u,v) € 8Q N DomL, A € (0, 1), each solution x of Equation Lx = ANx is such that x ¢ 0Q,
that is, Q satisfies the condition (i) of the Lemma A4. Furthermore, (u, v) € R?> with norm
l(u, VI = Ivl + lul = D. Now, from definition of D and Equation (29) we have
PNw = PN (u, v)T # 0, for if PNw = PN (u, v)T = 0, then (u, v)T is a constant solution of
(28) with ¢ = 1. Hence, we havell(u, v)Il £ D; + D,, which is contradictory toll (u, v)TIl = D.
Thus we have

PNw = PN[
4 — b exp{u}

< &

B lfw c(t) exp{v} 0
= w0 a(t)+ ay(t) exp{u} + az(t) exp{v} + a4(t) exp{u} exp{v} # [0]
1 fw J (t) exp{u}

4 oo GO+ R0 el + &) expl) + as(0) expln} expl) |
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Thus the requirement of the condition (ii) of the Lemma A4 is accomplished.
Now we need to compute the Brouwer degree of the map PN. For this we define a
homotopy and use its invariance property. Consider the homotopy

How = B[] =won[§]+ a - wal}],
where u € [0, 1] and
a-— Bexp{u}

I FRES F O eplul
w0 a(t) + ay(t) expiu} + a3(t) exp{v} + a4(t) expiu} eXp{v}

(30)

From (29), we know that H,w = H,(u,v) # (0, 0)" on dQ n KerL. Note that J =1 as
ImP = KerL. Hence due to invariance property of homotopy of topological degree (refer
the Definition AS8), we get

deg (PN, Q n Ker L, (0, 0)7) = deg (JPN (u, v)T, Q n Ker L, (0, 0)T)
= deg(G, Q n Ker L, (0,0)7).

Clearly, we have G((u, v)T) = 0, that is,

—bexp{u}+d4=0, d- 1 _/‘a’ exp{u}f (1)
w0 ay(f) + a3 (1) exp{v} + az (1) exp{u} + a4(t) exp{u} exp{v}

has unique solution w = (ii, V)T € Q N KerL. detM stands for determinant of a matrix M
while Jr(w) is Jacobian matrix of the function f at w. Then one can obtain that

deg (JPN (u, v)T, Q n Ker L, (0, 0)T) = sig (det J;(W)) # 0.

Thus we have verified all the requirements of Lemma A4 and hence the equation
Lx = Nx, that is, Equation (19) has at least one w-periodic solution in DomL N Q, say,
(i (), v1(0)). As x (1) = exp{un (D)}, 1 (£) = exp{v1 (1)}, hence (% (1), y, (1)) is w-periodic
solution of model system (1). O

Remark 10. One can observe that Theorem 9 is weaker than Theorem 8 under certain
parametric condition. Theorems 9 and 8 ensure for a periodic solution, while conditions (4)
and (18) are different. Clearly if dy; > 1 and we replace m; by m; then from (4) one can

obtain that (f, — dMazM)((aL - 2—M)/bM - e) > dyay,,. Moreover, when (f;, — dyas,)
((aL - ;ﬂ)/bM) > dMaL > (fL - dMazm)((aL - :fM)/bM - G) then (4) 1mphes (18) Thus

ifdy>1¢€ ((1 — exp{—2de}) LM w) and the condition (5) hold then (18)

byay, ’  bya
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holds. This ensures the betterment of Theorem 9 over Theorem 8. In case of
Beddington-DeAngelis type predator-prey model system, the condition dy; > 1 is relaxed
as parameter a4, the mutual interference in presence of high prey density, is not present.

3.1 | Dynamics of a boundary w-periodic solution

If the conditions (17) l}lold, the solution X;(t) with X%(0) = (exp{ j(;wa(s)ds} - 1)
( /(;wb(s) exp{ j(;sa(f)dr}ds) is given by

X(t) = (‘/:Hwb(s) eXp{—‘/S’ta(f)df}ds)_1<exp{‘/()wa(s)ds} - 1). (31)

One can easily check that under the conditions (17), % (t) = % (t + w), that is % (¢) is a unique
w-periodic solution. Hence under the conditions (17), the existence of boundary periodic
solutions is also guaranteed.

Theorem 10. The model system (1) has a w-periodic solution (% (t), 0). In addition, if

INICRIGIN

d
O~ 200~ @b

0, (32)

then lim;_, , | (x(t), y(t)) — (X.(t), 0)| = 0, that is, all the solutions with x (t,) > 0,y(ty) > 0
are attracted by (% (t), 0).

Proof. It can be shown that (% (¢t), 0) is a periodic solution of model system (1) with
period w. The global attractivity can be discussed with a suitable Lyapunov functional. []

Theorem 11. If the following condition holds

j'“’(M - d(t))dt <o, (33)
0 \ay(t) + a2 ()M,

then the solution (% (t), 0) is globally asymptotically stable for model system (1).
Remark 11. Theorem 11 gives the following implications:
1. If all the parameters are constants (positive), then the boundary solution (periodic)

(*%1(t), 0) degenerate the axial equilibrium (%, 0) of associated autonomous model

system. Theorem 11 shows that (%, 0) is globally asymptotically stable for corre-
™

a+aM’

sponding autonomous model system if d >

2. Similar to condition (11), condition (33) has more reasonable biological interpretation
than condition those expressed by infimum and supremum of parameter functions or
by considering positive constants.
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3. The condition (33) implies that the model system (1) is nonpermanent. But its cor-
responding autonomous model system with parameters being replaced by their
averages in the periodic interval [0, w]. The corresponding autonomous model system
may be permanent (refer to Example 7).

In the following table, we present some of the comparative results obtained by using
continuation theorem (in coincidence degree theory) and Brouwer fixed point theorem.

4 | ALMOST-PERIODIC CASE

The idea of almost periodic functions was presented by Bohr in his wonderful paper pub-
lished in Acta Mathematica (Bohr, 1947; Chen & Cao, 2008). Upon considering long-term
dynamical behaviors, the periodic parameters often turn out to experience certain inter-
ruptions that may cause small perturbations, that is, parameters become periodic up to a
small error. Thus, almost periodic oscillatory behavior is considered to be more accordant
with reality. The predator-prey interactions in the real world are affected by many factors
and undergo all kinds of perturbation, among which some are almost periodic for seasonal
reasons. The model system with almost periodic coefficients is considered when the nu-
merous components of environment are periodic but not necessarily with commensurate
periods (e.g., mating habits, seasonal effects of weather, food supplies, and harvesting) Lin
and Chen (2009), that is, when the periods of the components of environment are rationally
independent. Thus, the assumption of almost periodicity makes the model system more
realistic. For detailed study of almost periodic functions, its properties and certain appli-
cations, interested readers may refer to Huang et al. (2019), Qian and Yuhui (2020),
Yoshizawa (2012), Zhang et al. (2020).

Here, we prove the existence of almost periodic solution of system (1), which generalizes the
concept of periodicity. Here, we assume that c(¢t), d(t), a(t), b(t), f (t), e(t), a1 (¢t), ax(t), as(t),
and a3 (t) are almost periodic in ¢. Let

y(©) =exp((©), x(t) = exp(x(0)).

The system (1) becomes:

dx;l_?) = —b(t) exp(R (D) + a(t)
B exp(y(t))c(t)
@ (1) exp(E(0)) + @y (1) + a3 (1) exp(F (1)) + a4 (1) exp(% (1) exp( (1))’
dyzd_it) = —e(exp((D)) — d(6)

f (@) exp(x (1))

. 34
¥ a (£) exp(X (1)) + ar (1) + a3(1) exp(F (1)) + a4 (1) exp(x (1)) exp(¥ (1)) 39

From Theorem 1, one can easily prove.
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Theorem 12. If

inf | —d () + Lﬁ)] >0,

teR | al(t) + az(t)Ml

inf —% + a(t)] >0, (35)
teR | O (t) + a3(t)M2

inf | —d(t) + _ () — ] > 0,

teR | az(t)ml + al(t) + a3([)M2 + a4(t)m1M2

then the following set:
KX = {(x,y) € R?| ln(mf) <y< ln(Mze), ln(nﬁf) <x< ln(Mle)}

is positively invariant for system (34), where 1y, iy, My, M, are given in Section 2.
Now, consider the following ordinary differential equation
x'=f(@,x), f(x)eCRxD,R"). (36)
Here f (¢, x) is almost periodic in ¢, uniformly with respect to x € D and D is an open set in R".

To prove the existence of an almost-periodic solution for system (36), the following product
system for (36) is considered:

y =fty), x'=f(x). (37)

Lemma 3 (Theorem 19.1 in Yoshizawa, 2012). Consider a Lyapunov function V (t,x,y)
defined on [0, +o0) X D X D such that:

1. B(llx —yl) > V(t,x,y) > a(llx — yll), where B(y) and a(y) are increasing, continuous
and positive definite.

2. K(lbg — %l + 1y, —»,1) 2 1V (t,x,y,) — V(t, %, y,)|, where K is a positive constant.

3. —uV(Ix —yl) > V'(t,x,y), where u is also a positive constant.

Furthermore, let S C D be a compact set and let the system (36) has a solution that remains

in S for all £ > ty > 0. Then there exists a uniformly asymptotically stable unique almost-
periodic solution in S for the system (36).

Theorem 13. The model system (1) has a unique almost periodic solution provided
conditions of Theorem 7 hold.

Proof. Refer to appendix. |

5 | NUMERICAL SIMULATIONS

To demonstrate analytical findings graphically, we numerically simulate solutions of system (1).
Numerical simulations also show that the periodic system may suppress the permanence of its
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corresponding autonomous system with parameters being the averages of the corresponding
periodic parameters. For this, we consider the following examples:

Example 1 (Theorems 2 and 3). Consider b(t) = 2 + cost, a(t) = 3.2,c(t) = 1.5,d(¢t)
= % + 3—1()Cost,e(t) = 3,f(l') = ]_,(11([) = % + %Sin[, az(t) =3+ %Sin[’ a3(t) =24

cost,a,(t) = % + %sint, then the system (1) becomes:

dxd_if) =x(t)[—(2 + cos)x(t) + 3.2
1.5p(t)
(3+ tsint)x() + L+ Lsint + 2+ cosy(0) + (% + % sint)x(Oy(@) |

dy(t) 1
o y(t) (— + 5cost) - 3y(t)
. x(0)
(3 + ésin t)x(t) + % + %sint + (2 4+ cost)y(t) + (% + %Sin t)x(t)y(t)

(3%)

We compute lower and upper bounds of all the time dependent parameters. We have a; =
1

1
ay = 32 bL— 1 bM = 3 CL=Cy = 15 dL 6O’dM: E,eL:eM = 3’fL:fM = l,alL: 0’
3 14 16 1
ay,, = 0’ a = < as, = 5> as = az, = 3, Ay, = 0’ Ay, = E’Ml =32, m = 0.94, M2 =
0.1122, m, = 0.059. Furthermore, we have
M,
d; = 0.016 < 0.34 = _ JuM
alL + az,‘Ml
e M
a=32>282= M2
ay, + a3LM2

Jfim

dy =0.083 < 0.26 = .
ay,, + az, nmy + a3MM2 + Agq,, mle

The parametric values considered in Example 1 satisfy condition (5). We also have
M, = 3.2, M, = 0.106, ri; = 0.96, i, = 0.064, and conditions (8) satisfied as follows:

inf|  JOM d(t)] = 023> 0,
ek [ a1 (t) + a; ()M,
inf cOM a(t)] = 2.60 > 0,

er | @ (1) + as()M

inf | —d (1) + _fOm - — ] =0.19 > 0.
tER | o (t) + ez ()M, + a (B + as ()M,
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(a) (b)
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FIGURE 1 Phase diagram of the model system (38). Trajectories start with initial points (1.1, 0.08)
and (2.8, 0.06). (a) The orbit of predator-prey-time. (b) The orbit of predator—prey

Moreover, the permanence of model system (38) is ensured by Theorems 2 and 3. Figures 1

and 2 also support the permanence of system (38). The integral curves are shown in Figure 2
and phase diagram has been shown in Figure 1.

Example 2 (Theorem 7). Let b(t) =25+ 0.1cost,a(t) =100,c(t) =0.5,d(t) =1+

0.5sint, f(t) = 12,e(t) = 1, a;(¢t) = 0.14 + 0.05sint, a,(t) = 1, a4(t) = 0.3 + 0.2cost,
az(t) = 0.83 + 0.01sint then the model system (1) becomes:

d);il‘) _ x(t)(_(zs + 0.1cos £)x(t) + 100
) 0.5y(t)
(0.83 + 0.01sin£)y(£) + 0.1 + 0.05sin¢ + x(£) + (0.3 + 0.2cos x ()y (1) )
dy(®) _

== y(t)(—(l + 0.5sint) — y(t)

12x(t)
+ .
(0.83 + 0.01sint)y(t) + 0.1 + 0.05sint + x(t) + (0.3 + 0.2cos t)x(t)y(t))

(39)

By simple numerical computations one can obtain that a; = ay; = 100, by, = 24.90, by, = 25.10,
¢, =cy = 0.5, dL = 0.5, dM =1.50, e, = ey = l’fL :fM =12, ay, = 0.09, ay,, = 0.19, ay = 1=

s, @3, = 0.07, a3, = 0.09, ag, = 0.1, ay, = 0.5, Mf = 4.01, M§ = 11.24, m{ = 3.73, m$= 0.73.
And furthermore

(a)
35

3ra 4

20 40 60 80 100 o 20 40 60
time t

80 100
time t

FIGURE 2 Time series of system (38). (a) The integral curve of prey. (b) The integral curve of predator
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inf | —MSO ] 29058 >0,

teR _al(t) + az(t)Ml

inf|——Mc® 4 0y = 99.449 > 0,

ek | a(t) + az ()M,

inf _mf —_ _d®)|=00736 >0,
ier | ai(t) + a ()i + a3 ()M, + as(t) i,

and

c(t)[a4 (HMs* + az(t)Mf]
inf

€| (@®m + @) + as(Oms + a(Omim3)

=+ b(0)

FO[a® + a©ms]
- 5 ¢ = 16.970 > 0,

(2(00mf + @ (@) + as(Om§ + ay(©mims)

[a® + wOM; |e®
inf

2
| (@@ + a@mi + a@ms + amims)

[as(OmF + as@me2]r
((OMF + a(t) + as(OMS + au(OMEM)

+e(t) + = 0.9909 > 0.

Thus the values of parameters considered in Example 2 satisfy conditions (8) and (15).
Therefore, Theorem 7 ensures the global asymptotic stability (global attractivity) of a bounded
positive solution of system (39). One can also refer Figure 3.

Example 3. Leth(t) =2 + cost,a(t) = 0.5,c(t) = 0.3,d(t) = 0.01 + 0.03cost, e(t) = 2,
a;(t) = 0.1 + 0.01sint, f(t) = 3.5 + 0.1sint, ap(t) = 4 + 0.1sint, ag(t) = 0.1 + 0.2cost,
az(t) = 2 + cost and w =27. The system (1) becomes:

a b
(a),, )
0 R 12
.
8l ! 10
> ! - 8
6 =---ao 1 6
Voommnommoonoe 4 ANV
. v ; m\]\]\]\l
2 ° 100
35 4 45 5 . 4 350102030405060708090

X t

FIGURE 3 Phase portrait of the model system (39). Trajectories starting with the initial conditions
(3.6, 6), (4.6, 5), (4.6, 7), and (4.9, 11.5). Different colored trajectories start from different initial
conditions. (a) The orbit of predator-prey. (b) The orbit of predator-prey-time
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_d);&t) = x(z)(—(z + cost)x(t) + 0.5
_ 0.3y(¢)
0.1 + 0.01sint + (2 + cost)y(t) + (4 + 0.1sin£)x(t) + (0.1 + 0.2cost)x(t)y (1)
d);(tt) _ y(t)(—zy(t) — (0.01 + 0.03cost)

+ (0.1sint + 3.5)x(t)
0.1 4+ 0.01sint + (2 + cost)y(t) + (4 + 0.1sin)x(t) + (0.1 + 0.2cos)x )y (t) )
(40)

One can compute that

And furthermore

4=05> (i) =0.15, exp{—2dw}(f — da,,) [d - (i)]/é = 0.0016 > da;,, = 0.0011.
as a

Hence the parametric values in the Example 3 satisfy condition (18). The model system (40)
has at least one 27-periodic solution (positive). Its phase diagram has been shown in Figure 8.
Finally, we consider the following example:

Example 4. Let b(t) =2 + 0.1cost,a(t) =2,c(t) =1 + 0.1cost,e(t) =3 + 0.1cost,
d(t)=15,f) =03,a.(t) =1 = ay(t), as(t) = 2.1 + 0.2cost, as(t) = 0.1 + 0.1cost,
and w = 27 then the system (1) becomes:

dxd_(tf) - x(t)(—(Z + 0.1cos t)x(t) + 2
) y()( + 0.1cost)
1+ (2.1 4+ 02cost)y(t) + x(t) + (0.1 + 0.1cos)x()y(t) ) (41)
d);_([t) = y(t)(_(3 +0.1cos)y(r) — 1.2

+ 0.3x(t)
1+ (2.1 + 0.2cost)y(t) + x(t) + (0.1 + 0.1cos )x(t)y(t) )

By easy calculations, we have

dy =dp,=15,¢,=099, ¢y =11,f, =03,a;, = a3, = 1, a5 = az, =1,

d(t)—&—ﬁ>dL—C—M—f—M:1.5—1.1—o.3:0.10.

a() o) a, a,



260f49 | @ Natural Resource Modeling TRIPATHI E AL

Thus the condition (32) is well satisfied. Hence lim;_, ,|(x(t), ¥ (t)) — (xq(t), 0)| = 0. Figure 9
ensures the global asymptotic stability of (1.046, 0) of model system (41).
Moreover, for a=32,b=2+cost,c=1.5,d= 21—0 + S—IOCOS[,e =3,f=1,aq = % +

1 . 1 . 1 1 .
g sint, @y =3 + Csint, a3 = 1.4 + cost, as = 55 + ;-sint, one can compute that a7, = ay =

32,b, =1,by =3,c,=cy=15,d, =0.02,dy =008, e, = ey =3,f, =f,; =1,0a;,=0.14
ay, = 0.34,a; = 2.76, a,, = 3.24, a3, = 0.4, a3, = 2.4, a4, = 0.001, a4, = 0.011. Here

aray = 3.2 X 04 = 1.28 < ¢, = 1.5. This confirms that the above values of parameters fail to
satisfy permanence conditions (Theorem 2). However numerical evaluation of the system
(1) for the above set of parametric values, leads to periodic coexistence scenario as pre-
sented in Figure 10. This result establishes the fact that the conditions for permanence of
the system (1) (refer Section 2) are sufficient but not necessary.

Example 5 (Theorems 4 and 6). Let b(t) = 2 + 0.1cost, a(t) = 2,c(t) = 0.2 + 0.1sint,
d(t) =1,e(t) =3 4+ 0.1cost, f(t) =02,a,(t) = 1,a,(t) = 0.2 + 0.1sint, a4(t) = 1,
az(t) = 5 + 0.1sint, then system (1) becomes:

dxd_gt) = x(t)(—(Z + 0.1cost)x(t) + 2
B y(t)(0.2 + 0.1sint) dy(t)
0.2 4+ 0.1sint + x(t) + x(O)y(t) + (5 + 0.1sint)y(t) ) dt

= y(t)(—(3 + 0.1cost)y(t) — 1

0.2x (1) ] 2)

* 0.1sint + 0.2 + x(t) + (5 + 0.1sint)y(t) + x(t)y(t)

By simple numerical computations, one can obtain that af = ay; = 2, by = 1.9, by = 2.1,
cg=01,cy=03,d,=dy=1,¢,=29,epy =31,f, =f, =02,a, =01, 0a;, =0.3,a, =
a, =1,a; =49,as, = 5.1, a4, = a4, = 1. And furthermore

M
—QLLT:0w<1:¢.
ay, + az, Ml

Also j(;+°°(—d(t) + L)Ml)dt = j(;+°°(—1 + ¢)dt = —o0. Hence lim;_ ,,y(t) = 0.

ar(t) + a ()M 1.25+0.1sint

Therefore, Theorems 4 and 6 ensure that predator y of model system (42) will extinct.

Example 6 (Theorems 5 and 6). Let b(t) = 0.06, a(t) = 0.02 + sint, c(t) = 1.8 + 0.1
sint, d(t) = 0.001, e(t) = 0.05 + 0.01 cos ¢, f(t) =2.7 + 0.1 sin ¢, a1(¢) = 0.002 + 0.001 sin ¢,
a(t) =1,a3(t) = 2 + sint, a4 (t) = 0.001, then the model system (1) becomes:
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m = x(t)(0.0Z + sint — (0.06)x(t)
_ y()(1.8 + 0.1sint)
0.002 + (2 + sinf)y(¢) + 0.001sin¢ + sint + x(t) + (0.00D)x ()y(t) )
dy (£)

Tl y(t)(—0.00l — (0.05 + 0.01cost)y(t)

x()(2.7 + 0.1sint) )

+
0.002 + 0.001sint + (2 + sint)y(¢t) + sint + x(t) + (0.001)x(¢)y(t)
(43)

By simple numerical computations, we obtain a; = 0.01, ay = 0.03, by = 0.06,
bM = 0.06, c,=17,¢cp = 1.9, dL = dM = 0.001, e = 0.04, ey = 006’fL = 26’fM = 2.8, a;, =
0.001, a;,, = 0.003, a,, = ay, = 1, a3, = 1, a3, = 3, ag, = a4, = 0.001. And furthermore

cLm,

ay = 0.03 < =0.24 .
ay,, + azMMl + as, myp + Ay, m2M1

+oo c(®O)m, _ : —
Also [0 (a(t) - al(t)+az(t)Ml+a3(t)m2+a4(t)M1m2)dt = —oco0. Hence lim,, ox(t) =0. Thus

Theorems 5 and 6 ensure that prey x of model system (43) will extinct.

Example 7 (Theorem 11). Let b(t) =2+ 0.1cost,a(t) =2,c(t) =1+ 0.1cost,
d(t) =03,f(t) =13 + cost,e(t) =3 + 0.1cost,a;(t) = 1,a,(t) = 1.5 + cost, a3(t) =
2.1 + 0.2cost,as(t) =1 + 0.1sint, and w = 27 then system (1) becomes:

dxd_(tf) _ x(t)(2 — (2 + 0.1cost)x(t)
) (1 + 0.1cost)y(t)
1+ (1.5 + cos)x(t) + (2.1 + 0.2cos )y () + (1 + 0.1cos x(D)y(t) )
dy(®) _

- y(t)(—O.S — (3 + 0.1cost)y(t)

+ (1.3 + cost)x(t)
1+ (1.5 + cost)x(t) + (2.1 + 0.2cost)y(t) + (1 + 0.1cost)x()y(t) )
(44)

By numerical calculations, we have a; = ay = 2,by = 0.9, byy = 2.1,¢c; = 0.9, ¢y = 1.1,
dL = dM = 0‘3’fL = 03’fM = 2.3, a, = ay, = 1, ap = 0.5, as, = 2.5, as = 1.9, as, = 2.3,
a4, = 0.9, a4, = 1.1, and

2 2.22(1.
‘/;ﬁ(—o.3+ (1.3 + cost)

dt = -1.50<0,
4.33 + 2.22cost

Therefore Theorem 11 ensures the globally asymptotically stability of boundary periodic
solution (¥, (¢), 0) of model system (44).
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The model system (44) is nonpermanent with periodic coefficients. Hence the corre-
sponding autonomous model system (with its parameter values being the average of the cor-
responding periodic functions in system (44) is permanent. Average of the parameter values of
model system (44) is given as

a(®)=2,b(t) =2,c(t) =1,d(t) = 03,f(t) = 1.3,e(t) = 3,a(t) = 1.5, a1 (t) = 1, a4(t)
= 1,(13(t) =21,

and the corresponding autonomous model system is

dx @) _ x(t)(z —2x(t) — y(® )

dt 1+ 1.5x(t) + x(t)y(t) + 2.1y(t) 45)
dy(t) P 1.3x(t)

a (t)( 03 =W+ T () x(r)y(t))'

It may easily be verified that the conditions in Equation (6)

d=03<0.52= L,
a1+a2M
a=2>006= —L
a1+a3L
d=03<05= IS

a + azK + a3L + a4KL’

are satisfied. Hence model system (45) is permanent.
It is very interesting that Example 7 shows that the nonautonomous model system may
suppress the permanence of its corresponding autonomous model system.

6 | SENSITIVITY ANALYSIS

The outcomes of deterministic model systems are governed by the input parameters of model
systems, which may show some uncertainty in their selection or determination. We employed a
global sensitivity analysis to evaluate the impact of uncertainty and the sensitivity of the outputs
of numerical simulations to variations in each parameter of the system (1) using the method of
partial rank correlation coefficients (PRCC) and Latin hypercube sampling (LHS; Marino
et al., 2008). The parameters with significant impact on the outcome of numerical simulations
are determined by sensitivity analysis. To generate the LHS matrices, we assume that all
the model parameters are uniformly distributed. Then 200 simulations of the model per
LHS run were performed, using the baseline values are: Example 1= Figure 1la,b,
Example 2= Figure 1lc,d, Example 3 = Figure 1llef, Example 4 = Figure 1llgh,
Example 5= Figure 11i,j, Example 6 = Figure 11k, Example 7 = Figure 11m,n and the
ranges as 25% from the baseline values (in either direction). Notice that the PRCC values
remain between —1 and 1. Negative (positive) values represent a negative (positive) correlation
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of the model outcome with its parameter. A negative (positive) correlation indicates that a
negative (positive) change in the parameter will decrease (increase) the model output. Bigger
absolute value of the PRCC represents the larger correlation of the parameter with the outcome.
The PRCC values are represented by bar graphs in Figure 11a,c,e,g,i,k,m and its time evolution
has been illustrated in Figure 11b,d,f,h,j,l,n.

7 | DISCUSSION

Variability in environment plays a critical role in shaping population dynamics. Predator-prey
relationship is one of the basic links among populations which affect population dynamics and
trophic structures. The classical predator-prey model has commonly been studied in an idio-
syncratic fashion, without considering variability in the surrounding environment in which
population grows and survives. In this paper, environmental variability is captured in the model
parameters with time-dependent periodic and almost periodic functions. This approach makes
the model being nonautonomous in nature.

We studied the a nonautonomous prey-predator system with a CMFR and density-
dependent death rate. We provided global dynamics of the model system (1) systematically. The
global qualitative behavior (e.g., permanence and global asymptotic stability) of the general
nonautonomous model system (1) have been discussed. The conditions (15) and (5) provide the
sufficient conditions for global asymptotic stability and permanence of the system (1), respec-
tively (see, Figures 7 and 8). Using continuation theorem and Brouwer fixed-point theorem, we
have also derived the sufficient conditions (5) and (18) for a positive periodic solution. A
comparative study about the application of both the theorems for a positive periodic solution is
presented in Table 1. Different numerical examples with numerical simulations are considered
to agree with the analytical findings. To assess the role of sensitivity and uncertainty of the
outputs of the numerical simulations with respect to variations in each parameter of the model
system (1), we have also employed a global sensitivity analysis using PRCC and LHS. More
precisely, the analysis of the considered system discloses the following conclusions:

(i) We have established practical persistence for the model system (1) (refer Theorem 1 and
Figures 1 and 2) while the definition of permanence provides the theoretical persistence for
the system. The condition (5) ensures that the mutual interference at high-prey density (a4)
leaves negative effect on the permanence of the system (1). When the value of mutual
interference (a,), crosses a specific value, the sufficient condition for permanence (5)
violates. Moreover, we have also obtained more flexible permanence conditions (8) for the
model system (1) rather than conditions obtained in Equation (5).

TABLE 1 Comparative results obtained by using continuation and Brouwer fixed point theorem

Brouwer fixed point theorem Continuation theorem

Uses the supremum and infimum of the Uses average values of the related parameters (refer
parameters (refer the proof of the Theorem 8) the proof of the Theorem 9)

The condition (5) is same as permanence condition The condition (18) is different from permanence
(5) Guarantees for a positive periodic solution condition (5) Ensures for a positive periodic
under the condition (5) solution under the condition (18)

Theorem 8 is stronger (i.e., provides better result) Theorem 9 is weaker
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FIGURE 4 Solution curves for the prey in the model system (39). Trajectories starting through
different initial conditions ([3.97, 2.5], [3.99, 4], and [4.009, 7]) and each of these ultimately are attracted

by a single trajectory

12
10K Maximum Value of y(t) = M, := (f,, ~d, a, )/(a, € )+ ¢ = 11.50
< 8r
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FIGURE 5 Solution curves for the predator in the model system (39) initiating from different initial
conditions ([3.97, 2.5], [3.99, 4], and [4.009, 7]). All these curves approach to the same curve
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FIGURE 6 Solution curves for the prey in the model system (39). Trajectories initiating from the
initial conditions ([3.97, 2.5], [3.99, 4], and [4.009, 7]) attracted by one a particular trajectory
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4.5

Prey(x)

Time ()

FIGURE 7 Solution curves for the prey in the model system (39) initiating from different initial
conditions ([3.97, 2.5], [3.99, 4], and [4.009, 7]). All these curves approach to the same curve)

(ii) The conditions (11) and (12) of extinction of both prey and predator and global stability of
boundary periodic solutions (refer Equation 33) have been obtained in both parametric and
integral forms (refer the Theorems 6 and 11). The conditions involving integrals reflect the
effects of the long-term predation behaviors on the number of species and provides reasonable
biological interpretation rather than those for the corresponding autonomous system.

0.25
0.2
> 0.15

0.1

FIGURE 8 Positive periodic solution for the model system (40) starting with the initial conditions
(0.15, 0.19), (0.15, 0.22), (1.19, 0.19), and (1.19, 0.22)

(a) (b)

e ————

time t time t

FIGURE 9 Time series of system (41). The extinction of predator-y. Solution curves starting with the

initial conditions (0.2, 0.2), (0.8, 0.8), (1.5, 0.5), and (2.5, 2.5). (a) The integral curves of prey. (b) The
integral curves of predator
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(iii)

(iv)

W)

(vi)

These conditions also improves the usual conditions obtained using bounds of parameters
(Fan & Kuang, 2004; Li & Takeuchi, 2015). Moreover the last condition in (5) (i.e.,

m; oy .
dy < fum reduces to the permanence condition for the Beddington-
Qyyy + o My + A3y Mo + agy i My

DeAngelis type prey-predator model system with a, = 0. Thus the condition (5) is more
general than the condition obtained in Li and Takeuchi (2015). We have also shown that the
existence of a positively invariant set is sufficient for the permanence of the system.

We discuss the relations between results (permanence and global attractivity) for auton-
omous and nonautonomous systems to get insights on the effects of time dependent
parameters. The boundary periodic solution (% (¢), 0) of nonautonomous model system (1)

degenerate the boundary equilibrium (%,O) of the corresponding autonomous model

system. For global stability of positive periodic solution of nonautonomous model system
(1), the condition (33) (refer the Theorem 11) ensure the globally asymptotically stability of
™

a
’ a+aM’

boundary equilibrium (b 0) for corresponding autonomous model system if d <

One of the interesting findings is that the nonautonomous model system may suppress the
permanence of its corresponding autonomous model system.

It is pretty clear that in both Figures 6 and 7, there is one trajectory that attracts other
trajectories (prey and predator population initiating from different initial values) toward
itself. This ensures the global stability of both the populations (prey and predator).
Moreover, the conditions of both the Theorems 7 and 1 are well satisfied by the numerical
Example 2, ensuring the existence of a global stable solution. The global attractivity con-
dition (15) from the Theorem 7 ensures that the global attractivity of positive solution
depends on both the density dependent death rate of predators and Crowley-Martin
coefficient a4. The density dependent death rate e(t) leaves positive effect on the global
attractivity of the positive solution, that is the predator density dependence death rate e(t)
shows stabilizing effect on the system. Theorem 9

is weaker than Theorem 8. If € € ((1 - exp{—zda)})aLZ“—_cM, w), dy > 1 and (5)

M Az, byas,

hold then (18) holds. This provides the existence range of periodic solution. Global stability
of solution (boundary) and the predator species extinction and is discussed in the
Theorem 10 (refer Figure 9).

We have also discussed more general case than the existence of periodic solution that is, we
established the existence of a positive almost periodic solution (refer the Theorem 13). It is
important to mention that this particular proof of existence of unique almost periodic
solution do not make use of Arzela—Ascoli's Lemma (Rudin, 2008; Zhou & Shao, 2017).

Predator (Y)

0 20 40 60 80 100 ] 20 40 60 80 100
time t time t

FIGURE 10 Permanence of the model system (1). Solution curves start with the initial condition (1, 0.06)
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FIGURE 11 Bar graphs of PRCC of the parameters of the model system (1) and time course plots of the PRCCs of
the parameters of the model system (1) at 10 different time points (days 20, 40, 60, 80, 100, 120, 140, 160, 180, and 200).
Model parameters were sampled 1000 times. Baseline parameters are in the text. PRCC, partial rank correlation

coefficient
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FIGURE 11 (Continued)
7.1 | Ecological implications and future scopes

Conditions of Theorem 2 are well satisfied for € = 0 in Theorem 1. Thus the positive invariance
of K. ensures the permanence of the model system (1) (for a geometrical illustration, see
Figures 4 and 5). Therefore, whenever, the population of prey lies within the particular range

[mf, Mf] (see Theorems 1 and 2) and remain in the same range (as t - o), then the prey

population will remain in a region having positive distance from boundary and would always
persist. The same explanation holds for predator population. The existence of a nonconstant
globally attractive solution (refer the Theorem 7) describes the inevitability of prey and predator
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population regardless of their initial conditions (Figures 6 and 7). This particular result holds
for the model system (1), however, in real scenario, for various kind of necessities (like, food
resources, financial income, water, air and several other resources of modern time), our lives
are dependent upon natural resources. As the human needs crosses a threshold level, then we
require to observe the sustainability of resources of the associated exploited system (Arrow
et al., 1995; Holling, 1973; Ludwig et al., 1997). Therefore, the concept of stability and per-
manence become our main concern in an exploited model system (system with harvesting).

In harvested system, permanence becomes an important issue because if we harvest too many
individual then species may be driven to extinction. Interestingly, in many biological/agricultural
systems, harvesting (due to fishing in marine system, hunting or disease) of a particular species/
crop can only be more beneficial at certain times (for example, the time and stage of harvest of a
particular crop play greater role in its production and hence the particular crop is many times
harvested at its physiological maturity or at harvest maturity). The good examples of the periodic
harvesting (seasonal harvesting) are fishing seasons, crop spraying for parasites or seasonal open
hunting (Brauer & Sanchez, 2003). Moreover, if in a model system, the exploitation of a particular
species crosses a threshold level, then the stability and resilience of the system may get disturbed.
For such nonautonomous model systems with age selective harvesting (or, time-dependent har-
vesting, like periodic harvesting), establishing a globally attractive solution and analyzing the effect
of harvesting (and the role of time variant parameters) on permanence and globally stability would
be an interesting problem.
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APPENDIX A
Proof of Lemma 1

Proof. From the prey equation of the model system (1) it follows that x = 0 is invariant.
This implies that x(t) > 0 for all ¢t if x(0) > 0. A similar argument using predator
equation of the model system (1), shows that y = 0 is also an invariant set, so, y(t) > 0
for all ¢ if y(0) > 0. Thus any trajectory starting in R2 can not cross the co-ordinate axes.
Hence the result follows. O

Proof of Theorem 1

Proof. Using the bounds of the coefficients, from the first equation of the model system
(1), we obtain

dxd—gt) < x(0)(ay — byx(0)).
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Using Lemma Al, we have lim sup,_,  x(t) < ‘Z—AZ = M.

Thus for sufficiently small € > 0, there exist a positive real number T; such that
x(t) <M +¢,Vt>T.

Further from second equation of the system (1), we find

dy@®)

" 0{@—m@+—ﬂ%—}

ay, + as, M1

which implies that lim sup, , . y(¢) < ei[—dL + ﬂ] := M,, provided d;, < M
L

ay, + ay My ay +ay M’
Hence for sufficiently small € > 0,3 a positive real number T3> T, > 0 such
that y(t) <M, + e, Vt > T.
Again from the first Equation of (1), one can find that

dx (t ey M-
SO 5 )| ay = byx(e) - — M|
dt ay, + a3 M,
My o : e My
which implies that lim inf;_, , , x(¢) > —[aL — m] := my, provided a; > oyt

So, again for arbitrary sufficiently small € > 0, there exists a positive real number
T, > T, such that x(t) > m; — ¢,V t > T.

Moreover, using the lower and upper bounds of x(¢) and y(¢), from the second
equation of (1), we obtain

dy(t) fim
L > y0)|—dv — ewy(®) + L ,
dt ay,, + az,m; + a3MM2 + 4y, mM,
which implies that lim inf,_ ,y(t) > i[_dM + P +f§;n41Mz+a4Mm1M2] = m,, pro-

fim

Ay + az

Hence again fore > 03 T; > Ts such that y(t) > m, — €,V ¢t > T;. Thus, any positive
solution (x(t),y(t)) of system (1) satisfies my < liminf,_,x(f) < limsup,_  x(t) <
fuM

vided that dy; <

M, my < liminfi_, y(t) < limsup,_, , y(t) < M,, whenever (i) d; < o+ ay M (i) ar, >
e M fim

— ™ ({ii) dy < .

ay, +ay My’ (iii) dyr Ay + Aoy My + A3y Mo + Qg i My O

Proof of Theorem 3

Proof. First we prove that the set K is positively invariant for model system (1). Let
((a (1), y, (1)) be any solution of model system (1), with (x (to), ¥, (f0)) € K. From the first
equation of model system (1) and positivity of solutions of model system (1), we have

dx ()

5 S0e®) -bMx®), 21, (AD)
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from Lemma 2 and 0 < x;(ty) < M, implies that x;(t) < M,, for all ¢ > t,. From second
equation of model system (1), we have

dy, (t)
dt

M,
< yl(t)(—d(t) —e(Oy (1) + m), t > to, (A2)

thus by Lemma 2 and 0 < y, (t,) < M,, implies that y, (t) < M, for all ¢ > . It follows that

dx (t) (M,
i > xl(t)(a(t) = b(®)x(t) — m), t > to, (A3)

therefore from Lemma 2 and x(ty) > iy > 0, implies that x(t) > my, for all ¢ > t,.
Furthermore

dy, () O
# > yl(t)(—d(t) — ey @) + m)’ t 2 to, (A4)

hence from Lemma 2 and y,(t) > i, > 0, implies that y,(t) > i, for all ¢ > t.
Therefore, K is positively invariant with respect to model system (1).

Assume that conditions (8) holds. We prove that model system (1) is permanent under
the conditions (8). Precisely, we want to show that for any solution ((x (¢), y; (t)) of model
system (1) with x (to) > 0,¥,(to) > 0,

(i) limsup,_ o, % (t) < M, )
(i) lim sup, y,(t) < M, if infep| —d () + —LOM% |5 o,
t—+00 /1 — =

ar(t) + a ()M
PPN oo FO¥ - __ em
(iii) liminf,_ ;o X () > iy lflnfteRI:—d )+ m] > 0 and mftelR[a(t) al(t)+a3(t)]\712:| >0,

(iv) liminf,, oy, (t) > 71, if (8) holds.

From conditions (8), we can choose a sufficiently small ¢ > 0 such that7; — € > 0 and

inf [a(t) _ WL+ ] >0,
te

ai(t) + (O, + €)

inf [—d(r) + . FO0m = ©) . . ] >0
teR a(t) + a () —€) + ez ()M, + €) + a, (1) — e)(M, + €)

From Lemma 2 and inequality (A1) implies that lim sup,_ ,  x (t) < M. It follows
that there exists Ty > t, such that for t > Ty, x;(t) < M, + ¢, for sufficiently small €. From
second equation of model system (1), implies that

d)ﬁ (1)
dt

Syla>(—d(r>—e<r)y1<r>+ SOW + ) ) (>t

a (1) + a (M + €)

. . _ FOM, .
Since 1nfteR[ dt) + PYOEPNOTT (t)Ml:I > 0, from Lemma 2 we obtain
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lim supy, (t) < sup L[—d(t) +
t—+00 rer €(t)

FOM + €) ]
a(t) + a (M +€) [

<sup L[—d(t) s SO ] + sup — [—f(t)Ml ]e,

er e(t) a () + ()M, er e()]| ai(t) + ax ()M
Thus by boundedness of & and arbitrariness of €, we obtain
a () + a(HM,

lim sup,_, , o »(t) < M.
It follows that there exists T; > ¢, such that for t > T, y,(t) < M, + ¢, for sufficiently
small €. And

890> 50(a(0) - b0 0) -

c()(M, + €) ]
() + ()M, +¢) )

Since inftE]R[a ) — %] > 0, again from Lemma 2, we obtain
lim inf x,(6) > inf ——| a(f) - —— DM+ &)
t—+co teR b(t) al(t) + a3(t)(M2 + €)

Zinfi[a()—%]—m ! [ c®) = ]e.
tek b(t) a;(t) + a3 ()M, ek b(t) [ ar(t) + az ()M,

By arbitrariness of €, we obtain lim inf,_, , ., x;(t) > ;. It follows that there exists T, > t,
such that for t > B, x(t) > vy — ¢, for sufficiently small €. Again

dy, (1)
dt

> yl(t)(—d(t) —e(O)y (1)

N OGED )
a(t) + () — €) + e (DM + €) + ag (D) — (M + €) )

. . 1 f©)m i
Since mfteR%[—d(t) + T a0 Ot (t)rthz] > 0, and from Lemma 2 we obtain
lim infy, () > inf —— | —d(¢) + _ AOIGl)) _ _
>+00 teRr e(t) a(t) + o)y —€) + as()(M, + €) + ag(t)(y, — e)(M; + €)
> inf ——| —d() + _ SO _
rer e(t) a(t) + ()i + az (DM, + aa ()M,

f(0) ]E.

_tlgﬂg %[al(t) + az(t)ml + ag(t)Mz + a4(t)rh1M2

By arbitrariness of €, we obtain lim inf,_, ., y,(t) > .
Hence we can conclude that K. is an ultimate bounded region of model system (1).
Here ¢ is sufficiently small such that m; — ¢ > 0 and m, — € > 0. O
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Proof of Theorem 4

Proof. Let ((x;(t), y,(t)) be any solution of model system (1), with x; (t,) > 0, y; (to) > 0.
From the second equation of model system (1), we obtain

dy, (1)
dt

< yl(t)(—d(t) —e()y (1) + S (@®)x () )’

a (t) + ax(H)x (£)
< yl(t)(—dL + ﬂ)

ay, + as, M1

_ T
it follows that, y,(¢) < yl(O)e( dL+a1L+"2LM1). By our assumption (9), we have
lim;_ 4y () = 0. O

Proof of Theorem 5

Proof. Let ((x (1), y,(t)) be any solution of model system (1), with x (to) > 0, y,(to) > 0.
From Theorem 1, we know that lim sup,_, , . % (t) £ M; and lim inf;_, , ¥, () > m, and
there exists a T such that x (t) < M; + € and y,(t) > m, — ¢, for sufficiently smalle > 0
and for all t > T;. From the first equation of model system (1), we obtain

dx, c(t)(my —¢€)
EFSMO%MO_meOy_%U%*%@MO%F%@@Q—@+a40MQ—@M@)
< () ay — cr(my — ¢€)

- ay,, + azM(Ml + €) + a3M(m2 - E) + a4M(m2 - G)(Ml + €) ’

_ L (my—¢)
it follows that, x;(t) < xl(O)e(aM ﬂ1M+azM<M1+6>+asM(mz—e)+a4M<mz-f><M1+6>). Letting € - 0 and by

assumption (10), we have lim,_, o x (t) = 0. O

Proof of Theorem 6
Proof. Let ((x;(t), y,(t)) be any solution of model system (1), with x; (¢5) > 0, y; (o) > 0.
1. Since we have lim sup,_,  x(¢) < M,. For sufficiently small ¢ > 0, there exists a positive

real number T; such that x(t) < M + ¢,V t > T,. From the second equation of model
system (1), we obtain

nwshmﬂdm+ F O + o) ),tZR

ai(t) + ()M + €)

__ FOWh +¢) .
Let q(t)=—-d(t)+ O+ s OGS’ By our assumption, we know that

j;oo q(t)dt = —co. Thus from the above inequality, we obtain y,(t) < yl(’Ii)e‘/;l q(s)ds
and lim;, o, y,(t) = 0.
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2. From Theorem 3, we know that lim sup,_,,  x(f) < M; and liminf,_ o y(¢) > . It

follows that there exists a T > T; such that fort > T, x(t) < My + ¢, y(t) > 1, — ¢, for
sufficiently small € > 0. From the first equation of model system (1), we obtain

x'1(t) £x (t)(a(t) — c()(my — €) ) g
o @ (D) + RO +€) + a (D07 — ) + aOWh + ) - )~

— c() @iy —€) .
Letr(t) = T RO T TR0t TR O TS By our assumption we know that

./;w r(t)dt = —oo. Thus from the above inequality, we obtain x(t) < x (T)elr 7©d

and lim,_, ;. % (t) = 0. The proof is complete. []

Proof of Theorem 11

Proof. Let (x(¢),y,(t)) be any solution of model system (1) with x (to) > 0, y,(to) > 0.
From the first equation of model system (1) and Lemma 2, we have lim sup,_, . x (f) < M,.
Obviously (33) implies that (11) holds. Since by Theorem 6, we know that lim;_, o, ¥, (t) = 0.
Therefore we need to prove that lim,_, . lx(t) — % (¢)| = 0. By (33), there exists € > 0
such that

@ f ()M _
‘/0' (—d(t) + —al(t) T LM + (p; + py)e|dt = 0. (A5)

— 1 @ fOM
Actually € = 3 +p2)wj; (=d(@) + 4a1(t)+a2(t)1\711)dt’ where

f@®
p; = suple(t) —e(®)l, p, =sup——————.
' err 2 erra () + ; (DM,

Define a function
V(t)=1In( () - InGE@)! + IIn@,@)I, t>0.

Since lim sup,_, , , x(¢) < M, and lim,_, ., ¥, (t) = 0, there exists a T > t, such that for all
t> T, 0 <x(t) <M + eand y () < e Therefore calculating the right derivative of V (¢)
along the solution of model system (1), we obtain

i c(O)y, (1)
+ —-b 1 — X1
DV < =bOn(n) = RO+ o 0w + 6 (O, () + @ Ox O ©)
f®Ox(0)
—d —
(®) —eOn® + a1 () + a2 (Ox (@) + a3 (O (1) + aa(O)x (), (1)

FOOML + €)
ai(t) + ()M + €)

<=bilx(t) — 2O + le() — el y () —d(©) +

fM

S—bilu(®) RO —dO) + = e

+ (0, + 0y, t> T
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integrating both sides from Ty to ¢, we obtain by (A5)

. i ¢ fOM
vm+mﬂjmw—mm¢%V“U+£(”®+36756ﬁ_

+ (o, + pz)e)ds <400, t>T

Which implies that |x () — % ()| € LM ([ Ty, +00)).

The boundedness of % (t) and x;(¢t) imply that both % (¢) and x(t) have bounded
derivatives for t > Tp. Then |x (¢) — % (¢)! is uniformly continuous on [Tj, +o0). Hence by
Lemma A2, we have |x (t) — % ()| = 0. Which completes the proof. O

Proof of Theorem 13

Proof. For (x,y) € R2, we define II(x, y)ll = x + y. To prove that the model system (1)
has a unique positive almost-periodic solution, which is uniformly asymptotically stable
in K, it is equivalent to show that model system (34) has a unique almost-periodic
solution to be uniformly asymptotically stable in K.

Consider the product system of (34)

% = a(t) — b(t) exp(a (1))
) c(t) exp(, ()
a1 () + a2(1) exp(E (D) + a3(0) exp(, (1)) + s () exp(a (1)) exp (7, (1))
dy_(f) =—d (1) — e(t) exp(H (1))
. £ () exp(x (1))
ar (1) + ay (1) exp(X(£)) + as3(t) exp(7, (1)) + as (1) exp(Fi (1)) exp(, (1))’
% = a(t) — b(®) exp(% (1))
) c(t) exp(3, (1))
a1(t) + ax(1) exp(a(1) + a3(£) exp(y(1)) + aa (1) exp( (1)) exp(, (1))’
dy;t(” = —d() — e(t) exp(3, (1))
. f®) exp®(1)) )
o (t) + ax(t) exp(B (1)) + as(t) exp(h, (1)) + as(t) exp(F%(t)) exp(F, (1))

(A6)
Now we define a Lyapunov function on [0, +o0) X K x K as follows-

V(t, %, 91, %, 7,) = %) — %@ + 15,) — p,O1.

Then condition 1 of Lemma 3 is satisfied for a(y) = 8(y) = y for y > 0. Additionally
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WV (t, X1, 91, %, §,) — V(& %, 1, %, P)| = (15(6) — RO + 17(6) — 5,(01)
— (1% — x4 (O] + 1p3(6) — %O
<m0 — %@ + 170 — 30 + %)
— X4 (O] + 15,(6) — 30|
<N, 7,(0) — K30, y3 ()]
+ 1), 5, () — (X4 (6), B, (A7)

which shows that condition 2 of Lemma 3 is also satisfied.
Let (%; (), 5.(t))T, i = 1, 2, be any two solutions of (34) defined on [0, +c0) X K x K.
Calculating the upper right derivative of V (¢) along the solutions of (34), we obtain

DV (1) = A x sgn(® (1) — %(1)) + B X sgn(y; (1) — y,(1)) (A8)

where

A= —b()(exp(i (1) — exp(%(1)))
_ ( c(t) exp(7, (1))
a1 () + ax (1) exp( (1)) + a3 () exp(, (1)) + as(t) exp( (1)) exp( (£))
_ c(t) exp(, (1)) )
a () + ax (1) exp(o () + a3 (1) exp(, (1)) + aa(t) exp(% (1)) exp (G, (1)) |
B = —e(t)(exp(; (1) — exp(7, (1))
( f @) exp@ (D)

a®+wo exp(i (1)) + az (1) exp(7 (1)) + a4 (1) exp(X (1)) exp(7 (1))

_ f (1) exp(%(t)) )
a1 (1) + ax (1) exp(% (1)) + as(t) exp(, (1)) + as(t) exp(e () exp(, (1)) )

After some algebraic calculation, we obtain

e @ (M5 + a ()M
)2

A X sgn(a () - (0) < | -b(©) +
(a® + &;Om; + as(Om; + a,Omim;

| exp(x1(1)) — exp(% (1))

c®[a®) + oM ]
+ 5 | exp(@ (1))
(@(® + aOmi + aOms + ay(ymim;

— exp(, ()]
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and

FO[aOmi + aOms?]
(@(® + & OM; + aOM + a,(OMMs)’

| exp(,(£)) — exp(, (1))

fO[a® + asms ]
+ 5 | exp(xi (1)
(@ (®) + wOm + as(Om5 + as(Omim3)

B x Sgn(y1(t) - sz(t)) < —e(t) -

— exp(%(1))]

Note that

exp (X (1)) — exp(% (1)) = exp(p, (1)) (% (1) — %(1)),

_ _ i i (A9)
exp(, (1)) — exp(7, (1)) = exp(p, (1)) 3 (£) — 3, (1)),

where p, (¢) lies between % () and % (¢) and p, (t) lies between ¥, (t) and y,(t). Hence, we
obtain

e @(OM5 + as(1)M5?]

(@® + &Omf + a@ms + aOmims)

DtV (t) < — [b ) -

FO[a® + a0Mg] o
_ 7 mi | % (1) — B(0)|

(@@ + &Om; + as(Om5 + ayOmim;

cOa® + a @M ]
(@(® + &(Omf + aOms + a,Omims)

FO]a®m; + ay@Om?]
(@(®) + a(OMF + a:(OM5 + ay(OMFM;

<—u(xm@) = %O + (70 = 5»OD
=—u |G (0, 7,(0) — (), y, (),

+e(t) +

)2}"’12€ BAOENAG]

where

O @OM; + ai ()M
(= mins inf< | b(t) — 5
1< (0@ + a(Omf + as©Om; + ay(Omims)

i FOa® + aons] )Zlmf}

(1) + mf + as(O)ms + ay(Ymm;
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and

cO[a®) + aOM]
inf <[ —

2
A (@0 + aOms + a(Om; + asOmms)

FO[a®m + ayOm??]
+e(t) + s |mz¢ ¢ > 0.
(a1(0) + (OM + as(OMS + au(OM;MS)

Hence condition 3 of Lemma 3 is also satisfied. Therefore, by Theorem 12 and Lemma 3,
it can be concluded that the model system (34) has a unique almost-periodic solution
(@*(t), y*(t)) (say) in K, which is uniformly asymptotically stable in K. Hence the
model system (1) has a unique positive almost-periodic solution (x*(¢), y*(t)) in KJ,
which is uniformly asymptotically stable in K. From Theorem 7, we have that
(x*(t), y*(t)) is globally asymptotically stable, which completes the proof. O

Definitions and preliminaries
Here, to present sufficient conditions for the existence of a positive periodic and almost periodic
solutions for the model system (1), some notations, definitions and lemmas have been introduced.

Lemma Al (Comparison Lemma, Abbas et al, 2012). If p>0, g >0 and ‘;—l: <
(>)u(t)(q — pu(t)), u(0) > 0, then we have lim sup,_, , ., u(t) < %(lim inf,_ oo u(t) > %),

Definition Al (Permanence and nonpermanence, Li & Takeuchi, 2015). The system (1) is
said to be permanent if there exist positive real constants m and M with 0 < m < M such that
min{lim inf,_, , x(¢), lim inf,, ., y (£)} > m, max{lim sup,_,  x(¢), lim sup,_,  y(£)} < M,
for all the solutions (x(t), y(¢)) of model system (1) with positive initial values. Model system
(1) is said to be nonpermanent if there is a positive solution (x(t),y(t)) of (1) such
that min {lim sup,_, _ x(¢), lim sup,_,  y(t)} = 0.

Definition A2 (Fan & Kuang, 2004). The solution set of the model system (1) is
ultimately bounded if there exists a real constant S > 0 such that for every solution
(x(®),y()) of (1), there exists a real constant T > 0 such that [I(x(t),y())l
< S,Vt>ty+ T, where S is independent of particular solution while T may depend
on the solution. Here ||.|| is the standard euclidian norm.

Definition A3 (Globally attractive solution, Fink & Dold, 1974). A bounded positive
solution X(¢t) = (x(t), y(t)) of the model system (1) with X(0) > 0 is said to be globally
attractive (globally asymptotically stable), if any other solution Y (t) = (x(¢), y(t)) of the
system (1) with Y(0) > 0, satisfies lim,_, ;,lIX(¢) — Y (t)Il = 0.

Lemma A2 (Barbalat, 1959; Kannan & Krueger, 2012). Let ¢ be a real number and h be a
non-negative function defined on [{, +0) such that h is integrable on [{, +o0) and is
uniformly continuous on [{, +0), then lim,_, ;, h(t) = 0.
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Lemma A3 (Brouwer fixed-point theorem Agarwal et al., 2001). Let Y be a closed bounded
convex subset of R". Let p be a continuous operator that maps Y into itself. Then the operator p
has at least one fixed point in Y that is there exists a point X € Y such that p(%) = X.

Definition A4 (Almost periodic solution, Fink & Dold, 1974). A vectorial function
f: R - R7Mf (¢, x), where f is an m-vector, ¢ is a real scalar and x is an n-vector, is said
to be almost periodic in ¢t uniformly with respect to x € X C R, if f (¢, x) is continuous in
t € Rand x € X, and if for any € > 0, it is possible to find a constant () > 0 such that in
any interval of length I(€) there exists a 7 such that the inequality

If (¢t + 7,%) = (&) = DIt +7.%) = fi (6, x)] <e

i=1

is satisfied for all t € R, x € X. The number 7 is called an e-translation number of f (¢, x).

Definition A5 (Du & Lv, 2013). A real function f: R — R is said to be asymptotically
almost periodic function if there exists an almost-periodic function q(¢) and a continuous
real function r(¢t) such that f(t) = q(¢t) + r(t), r(t) > 0 ast — oo.

Definition A6 (Gaines & Mawhin, 1977; Guo et al., 1995). Let Y and Z be two Banach
spaces. Let L: Dom(L) C Y — Z is a linear map, and N : Y — Z be a continuous map.
The operator L is called Fredholm operator of index 0 if dim (Ker L)= codim (Im L)
< +oo0 and Im L is closed in Z. If L is a Fredholm operator of index zero and there exist
continuous projections P: Y —» Y and Q: Z — Z such that Im (P) = Ker (L), Ker (Q) =
Im (L) =Im(I — Q), it follows that L | Dom (L U KerP): (I — P)X — Im (L) is invertible.
We denote the inverse of the map by Kp. If Y is an open bounded subset, the mapping L is
called L- compact on Y if QN (Y) is bounded and K,(I — Q)N: Y — Y is compact. Since
Im Q is isomorphic to Ker L, then there exists an isomorphism J : Im Q — Ker L. Here
dim stands for dimension, codim for codimension and Dom is used for Domain.

Definition A7 (Deimling, 1989; Gaines & Mawhin, 1977). Let Y C R" be an open and
bounded set, fe C'(Y,R") n C(Y,R") and y € R"/f(8Y U Ny), that is, y is a regular
value of f. Here, N; = {x € Y: J;(x) = 0}, the critical set of f and J; is the Jacobian of f at
x. Then the degree of f is denoted by deg {f, Y, y}, is defined by

degf{f,Y,y} = Z sgn Jr(x). (A10)

xefly
For more details about Degree Theory, the interested readers may refer Deimling (1989).

Definition A8 (Homotopy invariance, Flanders, 1963). Let Q C R" be an open and bounded
setand V(Q) = {f € C(Q, R"): 0 € £(8Q)}. Then the mapping deg (.,Q): V (Q) — Z is well
defined. Moreover If h: [0, 1] x Q — R" is continuous and such that 0 ¢ h(t, Q) for all
t € [0, 1] then deg (h (¢, .), Q) does not depend on t. If we “deform with continuity” a function
f€ V(Q) into another function g € Q then deg(f, Q) = deg(g, Q), with the essential
assumption that no zeros appear in dQ throughout the homotopy.
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Lemma A4 (Continuation theorem, Gaines & Mawhin, 1977). Let L be a Fredholm
mapping of index zero and N be a L-compact space on Y. Furthermore assume

(i) for each A € (0,1), x € Y U DomL, Lx # ANx;
(it) for each x € dY U KerL, QNx # 0 and deg{JQN, Y U KerL, 0} # 0.

Then the operator equation Lx = Nx has at least one solution in Y U DomL.
Now we introduce the following function space with its norm:
X=wk®)=wv)Te CR,R)Iw(+ w) =w(t)l
with norm

lwll = max [lw ()l = max llu(t)ll + max llv(t)ll,
te[0,w] te[0,w] te[0,w]

for (u, v) € X. Obviously, X is the Banach spaces when it endowed with the above norm ||.||.



