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Abstract

The mechanisms through which work is organized are central to understanding how
complex systems function. Previous studies suggest that task organization can emerge
via nonlinear dynamical processes wherein individuals interact and modify their
behavior through simple rules. However, there is very limited theory about how those
processes are shaped by behavioral variation within social groups. In this work, we
propose an adaptive modeling framework on task allocation by incorporating variation
both in task performance and task-related metabolic rates. We study the scaling effects
of colony size on the resting probability as well as task allocation. We also numerically
explore the effects of stochastic noise on task allocation in social insect colonies. Our
theoretical and numerical results show that: (a) changes in colony size can regulate the
probability of colony resting and the allocation of tasks, and the direction of regulation
depends on the nonlinear metabolic scaling effects of tasks; (b) increased response
thresholds may cause colonies to rest in varied patterns such as periodicity. In this
case, we observed an interesting bubble phenomenon in the task allocation of social
insect colonies for the first time; (c) stochastic noise can cause work activities and task
demand to fluctuate within a range, where the amplitude of the fluctuation is positively
correlated with the intensity of noise.
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1 Introduction

Social insect colonies are often considered to be highly efficient complex systems
that dominate most terrestrial ecosystems across the planet (Holldobler and Wilson
2009; Wilson 1971). The success of social insect colonies is often attributed to their
sophisticated and complex mechanisms for organizing work leading to division of labor
and efficient task allocation in dynamic environments, and as the colony grows (Gordon
1996; Robinson et al. 2009). Colony size plays an essential role in the development
of social insect colonies, and profoundly affects many aspects of colony function,
such as foraging (Beckers et al. 1989; Mailleux et al. 2003; Thomas and Framenau
2005); collective decision-making strategies (Franks et al. 2006; Ruel et al. 2012);
workload distributions (Dornhaus et al. 2008) and social organization (Bourke 1999).
Previous studies have shown that colony size plays a vital role in task allocation (ants
(Holbrook et al. 2013, 2011; Tschinkel 1993); bees (Bourke 1999); wasps (Jeanne
2003) and termites (Hou et al. 2010)). There is significant empirical work looking
at the internal relationship between colony size and task organization (Fewell and
Harrison 2016; Gordon 1996; Fjerdingstad and Crozier 2006; Jeanson et al. 2007,
Dornhaus et al. 2012), however, theoretical work remains limited. At the same time,
the mechanisms through which colony size influences task allocation, are not well-
understood. We know that metabolic rates do not scale linearly with body size in most
living organisms (i.e., metabolic rates are proportionately lower in larger organisms
(Kleiber 1932, 1947; Glazier 2010)). The same pattern has been shown to occur
in social insect colonies (often conceived of as ’superorganisms’) where per-capita
metabolic rates decrease with colony size (Fewell and Harrison 2016; Waters 2014;
Shik 2010; Waters et al. 2010). Therefore, it is essential to include metabolic rates of
workers performing varied tasks when studying the organization of work.

Inactivity has long been known to be one of the most common behaviors observed
in social insect colonies (Holldobler and Wilson 1990). Indeed, at any given moment,
there are typically 40-70% of workers in a colony that are inactive (honey bees (Lin-
dauer 1952; Moore et al. 1998; Muscedere et al. 2009); bumblebees (Jandt et al.
2012); wasps (Gadagkar and Joshi 1984); termites (Maistrello and Sbrenna 1999) and
ants (Herbers and Cunningham 1983; Herbers 1983; Cole 1986; Corbara et al. 1989;
Retana and Cerda 1990; Dornhaus 2008; Charbonneau et al. 2015)). Additionally,
some individuals appear to spend a disproportionate amount of time inactive, effec-
tively specializing on inactivity (Herbers and Cunningham 1983; Fresneau 1984; Cole
1986; Retana and Cerda 1990; Retana and Cerda 1991). Inactivity levels in the field
have been shown to be comparable to those observed in lab colonies, suggesting that
these high levels of inactivity are not simply an artifact of simplified conditions in the
lab (Charbonneau et al. 2015).

Although inactivity is widespread in social insect colonies, its role in colony func-
tion is not well understood and rarely taken into account in the study of task allocation,
which may cause potential bias (Charbonneau and Dornhaus 2015b). We do not
currently know what shape of ’inactivity demand’ (i.e., the function describing the
distribution of inactivity in a colony) might resemble in colonies. Individuals likely
have a base requirement for rest which they need to attain to remain functional. There
is evidence of decreased performance in sleep-deprived bees (Klein et al. 2010). Fur-
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thermore, the base amount of inactivity needed is probably a function of other factors,
such as worker age (D. Charbonneau, unpublished results, also see Muscedere et al.
2009 for inactivity due to worker immaturity). However, there is most like an additional
amount of inactivity that results from insufficient work (see Charbonneau and Dorn-
haus 2015a for conceptual framework). Thus, we should expect inactivity demand
to result from both a constant function (base need for rest) as well as an increasing
function (dependent on a combination of available work/colony needs and available
workforce). Our modeling work incorporates both.

Mathematical models have been successfully applied to many aspects of social
insect behavioral dynamics (Chen et al. 2020; Guo et al. 2020; Messan et al. 2018,
2020), such as genetic variability (Kang and Fewell 2015; Myerscough and Oldroyd
2004); foraging activities (Ramsch et al. 2012; Udiani et al. 2015); evolutionary
dynamics (Kang et al. 2015) and task allocation (Bonabeau et al. 1997; Cornejo et al.
2014; Rodriguez et al. 2018; Rodriguez-Rodriguez and Kang 2016). Most of these
models are useful and focusing on simulations to explore the dynamics of social insect
colonies. They intuitively show the physical characteristics of social insect colonies
and provide scientists with an inexhaustible motivation for a deeper understanding
of social insect colonies. Differential equations have proven to be highly effective in
revealing the principles and laws behind different representations. In recent years, dif-
ferential equations have been gradually employed by scholars to study the dynamical
processes of social insect colonies (see some interesting topics that have been explored
in Kang and Theraulaz 2016, Sumpter and Pratt 2003). In this study, we would use
ordinary differential equations (ODEs) and stochastic differential equations (SDEs)
as our modeling tools.

Social insects live in a dynamic environment and are inevitably affected by random
fluctuations (e.g., stochastic noises). Studies have shown that random fluctuations can
potentially positively or negatively affect the dynamical outcomes of social insect
colonies (Cammaerts and Cammaerts 2018; Dussutour et al. 2009; Feinerman and
Korman 2017). Due to the ever-changing environment, there are many types of stochas-
tic noises (e.g., white noise (DeLillo 1999); telegraph noise (Ranjan et al. 2016)).
Currently, various methods have been developed to characterize different types of
environmental noises such as Brownian motion (Saffman and Delbriick 1975) and
also Markov switch (Slatkin 1978). In recent years, stochastic models based on ran-
dom fluctuations have been successfully applied in many scientific fields, such as
epidemic dynamics (Allen and Lahodny 2012; Britton 2010; Cai et al. 2020, 2017;
Gray et al. 2011) and population dynamics (Benaim and Schreiber 2019; Hening
et al. 2018; Ovaskainen and Meerson 2010; Wu and Xu 2009). However, as far as
we know, many current modeling frameworks for social insect colonies are mostly
based on deterministic models (Banks et al. 2017; Kang and Theraulaz 2016; Magal
et al. 2019; Sumpter and Pratt 2003) with few studies that have used stochastic models
(but see Arcuri and Lanchier 2017; Dussutour et al. 2009). Thus, we will start with
ODEs and then add random fluctuations through SDEs to study the impacts of random
fluctuations.

This paper proposes a theoretical framework at the colony level to study task alloca-
tion dynamics of social insect colonies. Internal factors (e.g., the various threshold for
different tasks) and external factors (e.g., task stimuli from the environment) that may

@ Springer



42 Page4of53 T.Fengetal.

affect task allocation are incorporated into the proposed theoretical framework. The
theoretical output is expected to address the following issues: (i) how does metabolic
scaling affect task allocation and resting probability of social insect colonies, as colony
size increases? (ii) how does colony size affect working activity in different scenarios
of working versus resting? (iii) how does random fluctuation affect working activity
and task demand of social insect colonies?

The rest of the paper is organized as follows: Sect. 2 presents the model derivation
of task allocation. Section 3 begins by laying out the mathematical analysis of the
theoretical framework (i.e., the invariant set of positive solution and the existence of
equilibrium), and addresses the scaling effects of colony size on resting probability
and task allocation. Section 4 is concerned with the application of the theoretical
framework: working activities versus resting models in four different scenarios. The
global dynamics of the proposed models are studied theoretically, and the effects of
factors (including colony size and metabolic scaling) on work activities are analyzed
biologically. Section 5 assumes that task demand is subject to random fluctuations, and
studies the effects of random fluctuations on task demand and work activities. Section
6 presents a summary of the results and discusses their related biological significance.

2 Model derivation of task allocation

Let N > 1 be the total population size of the colony; m > 1 be the number of tasks in a

social insect colony; D = [Dg, D1, Da, - - -, Dy,] be the task demand where Dy is the
demand of inactive (i.e., resting) and D;, i = 1, .., m is the demand of the specific task
i; X = [xg, x1, X2, - - - , X ] be the task allocation for m tasks where x;, 1 <i <m is

the ratio of workers performing task i and xg is the portion of workers being inactive
(i.e., resting). Therefore, for each task i, there are Nx; workers performing the task
i. In the case that N = 1 (e.g., when the single queen establishes her own colony),
x; € [0, 1] could be considered as the allocation of energy/time to perform task i when
0 <i < m or the resting time i = 0.

Let 6; be an average response threshold for task i for a colony, and we can define %
as the relative stimulus of task i. Then, the larger demand D; and/or the smaller averagle
response threshold 6; gives the larger relative stimulus for task group i. Therefore, we

D x;
can define f; = mg—’% as the recruitment ability of task 7, and the dynamics of
k=0 ~0;

task i allocation, i.e., %, can be modeled as follows:

m
W >
_ = X
dt o
k=0,k#i
—_————
workers performing other tasks switching to task i

- D fexi

k=0,k#i
—_———
workers performing task i switching to other tasks
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D;
= fill =xi)) —xi(1 = fi) = fi —xi = x [L—l]-

D
k=0 B
The demand of task i of the colony, i.e., D;, is determined by the following two factors:

— The demand input y; N% is an increasing nonlinear function of the colony size N,
where y; represents the increase in demand intensity per unit time for task i and
d8; denotes the nonlinear metabolic scaling of task i from the colony size N. The
formulation of this demand input follows the metabolic scaling effects in ecology
(Chown et al. 2007). Much literature reported that the values of §; for social insect
colonies are less than one (Waters et al. 2010), but for some species they could
also be above one depending on caste and the related tasks (Shik 2010).

— The depletion of demand «; Nx; D; is an increasing function of the demand D; and
the size of task group Nx;, where «; denotes the average performance efficiency of
task group i. This modeling approach is adopted from Kang and Theraulaz 2016
(but also see the work of Theraulaz et al. 1998), which gives the dynamics of the
demand for task i that could be modeled by follows:

/ 5 5 ajx; N' =% 5 X D;
D; =y;N% —a;Nx;D; = ;N |l = ——D; | =y;N" |1 — —|.
Vi i D;
We assume that the relative stimulus of inactivity/resting could be either a constant,
e.g., g—é’ = ®N%_ oran increasing function of working effort 1 — x¢ such as

2 =wN%(1 - x).
The discussion above provides a general dynamical compartmental model of task

allocation on the colony level that can be represented as the following set of nonlinear
compartment model:

S
|
—_
| |
\
o

, ;
X =i [W
k=0 "6,
()

D! = y;iN® [1—%}@31,
1 1

where [9)—(;’ = ®N% or Ig—é’ = wN%(1 — x); and D; = V’;\I.(Z,_l . The proposed gen-
eral Model (1) incorporates both variation in task performalnlce among workers and
individual worker flexibility. The decision of an individual worker performing a task
depends on both the internal factors (e.g., the varied thresholds for different tasks)
and the external factors (e.g., task needs from the environment). Thus, the dynamical
outcomes of Model (1) are expected to predict how colonies allocate workers in rela-
tion to the need for each task and adjust the allocation in response to environmental
changes as well as its colony size N. As a note, we would like to point out that Model

(1) can also model how the solitary foundress queen allocates her energy and time
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for different tasks when N = 1. And if m = 1, Model (1) models how social insect
colonies decide on working x or resting xo depending on the work demand D; and
the environmental changes.

Social insect colonies live in the ever-changing environment that is subject to ran-
dom fluctuations (e.g., see Cammaerts and Cammaerts 2018; Dussutour et al. 2009;
Feinerman and Korman 2017), especially the demand of each task D;. By using
standard techniques (Evans et al. 2013; Hening et al. 2018), for any initial demand
D;(0) = D(i) and time step 0 < At < 1, the task demand D;(¢) can be described by
a Markov process with conditional mean

i 8 Xi Di
E[D;(t + A1) — Di(@®)|Di(t) = Dyl = i N% |1 — —— | At
0; D;
and conditional covariance

Cov[D;(t + At) — D;(t)|Di(t) = D}l ~ 0;; D; D; At

for some covariance matrix X' = (o;;). More formally, it is natural to include random
fluctuations into the demand dynamics through the following SDEs:

D;

b .

dx; = x; |:—’D— 1:|dt,l >0,
2 k=0 it

(2)

Py X; Dj .
dD; = yiN° |1 — —— |dt +0; D;(t)dB;(t),i > 1,

i Dj
where B;(t) is a standard one-dimensional independent Brownian motion defined
on the complete probability space (§2, .7, P), and aiz is the intensity of B;(¢). The
dynamics x; is the ratio thus it is confined in [0,1), and the sum of all x; should be
1. It is not reasonable to include environmental stochasticity by using the approach
of modeling environmental stochasticity in D;. The dynamics of x; is affected by D;
whose dynamics include environmental stochasticity, thus x; in fact has demographic
stochasticity from its demand dynamics D;. We assume that the parameters 6;, y;, d;
are constant but it would be realistic to include stochasticity in those parameter values.

In the next section, we will provide theoretical results of our ODE Model (1)
predictions and the related biological implications. And the SDE Model (2) will be
explored in Sect. 5.

3 Mathematical analysis

Notice that )} x;, = 0 in Model (1), therefore, § = {3/ jx; = 1:0 < x; < 1}
is the invariant set. The state space of Model (1) could be defined as 2 = S x R’f_.
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Let D; = be the efficient demand for task i, and define D= Yoy Dy as the
total eﬁictent demand for all tasks in the colony.

Theorem 1 (Dynamical Properties) Assume that all parameters are strictly positive
and ZT:O xi (0) = 1withx; (0) > Oforalli =0, .., m. Then the model (1) is positively
invariant and bounded in 2 with

yiN%i—1

liminf D;(t) > =6;D; foranyi=1,...m
11— 00

i
Let [0)—(;’ = O N, then we have
1. If®dN% < D, Model (1) has a unique equilibrium (X*, D*) with

A

* * D; * A .
x5y =0, x; =3andDi = D6;, forall1 <i <m.

2. If ®N% > D, Model (1) has a unique interior equilibrium ()A(*, ﬁ*) with

A A

D D;
=1 — = and D} = ®6; N,
0 DN T PN

Let Ig—é’ = wN% (1 — xp), then we have

1. IfwN% < D, Model (1) has a unique equilibrium (X*, D*) with

D; ~
x5 =0, x = T’andD;‘ = D6;.
D

L

2. IfwN% > D, Model (1) has a unique interior equilibrium ()A(*, ﬁ*) with

A A

~ D R D; <
Xp=1- — 5 X' = ———=and D* =0;vV DwN?%,
wN* vV DwN%
Moreover, if there exists an i such that wN% < ﬁi for 2—00 = wN% (1 — xg) or
Dy _ N < ﬁi holds, we have

%

lim xo(t) = 0.
—00

Biological implications Theorem 1 suggests that our model (1) is well defined biolog-
ically. Numerical simulations suggest that for all initial conditions in the interior of S,
ie., {Z;"ZO x;(0) =1:0 < x;(0) < 1}, the unique equilibrium (X*, D*) is always
globally stable when the total efficient demand for all tasks is large (e.g., PN% < Dor
wN% < D). Otherwise, the unique interior equilibrium (X*, D¥) is always globally
stable. More specifically, our results have the following implications:
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1. If there is a task whose efficient demand (i.e., 5,-, 1 < i < m) is larger than the
physiological resting demand ®N% (or wN®), the colony has no allocation to
resting due to the demand requirement.

2. If there is no allocation to resting due to high task demand, the specific allocation

for task i is determined by the ratio of the efficient demand for task i to the total

D;

3 .

3. If the physiological resting demand ® N°% (or w N%) is larger than the total efficient
demand for all tasks, the allocation for task i is determined by the ratio of the

eﬁ‘icient demand for task i to the physiological resting demand in the colony, i.e.,

i = ¢N50 (for the case of @ N%) or xr m (for the case of wN%).

efficient demand for all tasks in the colony, i.e., x/" =

3.1 Scaling effects of the colony size N on the resting probability

Define G(N) = NL; Y lykNﬁk " then

3)

dG(N) i V(S — 8o — 1)N*—%0=2
P ok Ok

According to Theorem 1, we know that the value of @ (or w) and G(N) determines
whether the colony will rest, i.e.,

D
90 —ONY <D & & < G(N)and wN® < D & w < G(N).
0

Note that §; represents the nonlinear metabolic scaling of task i from the colony size
N, the Eq. (3) implies follows:

1. If the nonlinear metabolic scaling of all tasks is larger than the sum of the nonlinear
metabolic scaling of resting and 1, i.e., §y > 8o + 1 for all | < k < m, we have
% > 0, which implies that increasing the colony size N can increase the value
of G(N), thus the inequality @ < G(N) or w < G(N) is more likely to hold.
Therefore, increasing the colony size N can decrease the probability of the colony
resting.

2. Ifthe nonlinear metabolic scaling of all tasks is smaller than the sum of the nonlinear
metabolic scaling of resting and 1, i.e., §y < §o + 1 for all | < k < m, we have
% < 0, which implies that increasing the colony size N can decrease the value
of G(N), thus the inequality @ < G(N) or w < G(N) is not likely to hold.
Therefore, increasing the colony size N can increase the probability of the colony
resting.

If there are some tasks whose nonlinear metabolic scaling is larger than 8o + 1 while
some others is smaller than §p + 1, the situation becomes complicated. To further
investigate the effects of the colony size, we focus on the two task cases m = 2, e.g.,
the inside colony task (i = 1) versus the outside colony task (i = 2). For simplicity,
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we assume that §; < g + 1 < §>. Then we have

dG(N) _ 7161 =80 = DN ™02 328 = — DNP7072
dN o a191 06292
_ y1o 41— 8N 902 [_1 + Y2101 (82 — 8o — 1)N‘32—81}
Y1a2602(80 + 1 — 81) ’

o16;

“

which implies that

1
So+1—81)\ 551
dG(N) S 0IfN = ()/106292( 0+ 1)) 251
dN 20101 (82 — 8o — 1)
and
1
dG(N 60> (8 1-6 538
( )<OifN<<yla22(0+ 1))2 i
y2a1601(82 — 89 — 1)

I
Take N, = (%) 2% a5 the population threshold of a colony that deter-

mines whether a colony is mature or not. Based on the discussions above, we can
conclude that if the colony size is less than the threshold, i.e., N < N, (e.g., imma-
ture colony), increasing the colony size N can increase the probability of the colony
resting, while if N > N, increasing the colony size N can decrease the probability
of the colony resting.

Biological Scenarios 3.11 Because of the physiological need for rest, or behavioral
sleep in insects (Klein et al. 2003, 2010), all workers should need to spend a certain
amount of time inactive. Thus, all workers should be expected to have more or less
similar needs, and consequently have comparable levels of inactivity. We also know
that workers can vary in activity levels over the course of the day (circadian rhythms
Charbonneau and Dornhaus 2015b; Klein and Seeley 2011) and between seasons
(Fellers 1989), as well as specific tasks that they perform, complex activity patterns
can arise when these interact (Pol and de Casenave 2004). Our theoretical results
support that when the nonlinear metabolic scaling for active tasks is large enough
(i.e., larger than 1 + the nonlinear metabolic scaling of resting; or the energetic input
of tasks increases with colony size), that larger colonies will have proportionally
less inactive workers. This could be explained, for example, by increased difficultly
in moving around in and accessing different tasks in larger colonies (Naug 2009),
decreased efficiency in communicating task demand/stimulus (Beckers et al. 1989),
the need to exploit exponentially larger foraging areas to meet the needs of larger
colonies (Tschinkel et al. 1995), all of which would result in overall decreased per
capita efficiency (i.e., greater overhead costs) in larger groups. Empirical data shows
that larger colonies typically have less per capita inactive workers (Schmid-Hempel
1990), suggesting that large nonlinear metabolic scaling effects may be common in
social insect colonies.
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Alternatively, our theoretical results also suggest that when the nonlinear metabolic
scaling of all tasks is smaller than the sum of the nonlinear metabolic scaling of resting
and 1 (i.e., tasks become less energetically costly as colonies increase in size/more
efficient), larger colonies may have proportionally more inactive ants. One potential
explanation is that ants in larger colonies may have decreased locomotor activity
(Waters et al. 2010), which would result in lower metabolic costs (though, potentially,
decreased locomotor activity may result in less efficient communication and task
performance, which would have the inverse effect). Meanwhile, because the metabolic
rate of inactive ants can be significantly lower than active ants (Lighton et al. 1987),
increases in the proportion of inactive ants in larger colonies will result in lower
mass-specific metabolic rate. Another potential explanation is that larger colonies can
sometimes have on average heavier workers (Tschinkel 1993; Blanchard et al. 2000;
Robinson et al. 2009), though it is unclear that whether and how body size correlates
to colony size in social insects (Dornhaus et al. 2012).

3.2 Scaling effects of the colony size N on the task allocation

We now focus on the effects of colony size on task allocation in situations where there
are two task groups (i.e., m = 2, an inside nest task group and outside nest task group).

3.2.1 Resting demand is constant and smaller than task demand

According to Theorem 1, we know that if the relative stimulus of resting g_(? = dNYis

smaller than the relative stimulus of working D, i.e., g 0 = PN% < D (orwN% < D

when the relative stimulus of resting is denoted by 00 = wN% (1 — xq)), the colony
works all the time with the following task allocation:

A yiNo1-!
*_Dl_ 10 _ 1 nd x* =1 — x*
=== 31 -1 — 5,5, andxy = -
D 7N N 1+ o161 N
o161 ar6h yia262
Therefore, we have
dx} Y1y2ai0016 N2 0171 dxj  dxj

= 81— 3§ d—2 = .
2(1 2)311 dN dN

Q)
aN (v1a26 + y2016; N%2~1)

The Eq. (5) indicates follows:

1. If the nonlinear metabolic scaling of the inside colony task §; is the same as the
outside colony task d;, i.e., 62 = 81, the Eq. (5) implies that the colony size N has
no effects on the task allocation.

2. If the nonlinear metabolic scaling of the inside colony task 81 is smaller than the
outside colony task §,, i.e., 62 > 81, the Eq. (5) implies that the colony size N
has negative effects on the allocatlon of the inside colony task and posmve effects

d *
on the allocation of the outside colony task since 1\} < O and 13 > 0. In this
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situation, increasing the colony size, we can expect that the colony increases the
allocation to the outside colony task group and decreases the allocation to the inside
colony task group.

3. If the nonlinear metabolic scaling of the inside colony task §; is larger than the
outside colony task d,, i.e., 62 < &1, the Eq. (5) implies that the colony size N
has positive effects on the allocation of the inside colony task and negatlve effects

on the allocation of the outside colony task since 15 > 0 and 7 13 < 0. In this
situation, increasing the colony size, we can expect that the colony decreases the
allocation to the outside colony task group and increases the allocation to the inside
colony task group.

Biological Scenarios 3.21 In the case where work stimulus is greater than the stimulus
for rest, the amount of work allocated to inside or outside tasks will vary according
to their nonlinear metabolic scaling. That is, the task group with the lowest metabolic
scaling will have fewer workers/less work time allocated to them in larger colonies.
This scenario assumes that the demand for rest is constant for a given colony size, and
lower than the cost of performing tasks. Thus, the remaining amount of work that can
be done is split among tasks according to the energetic costs of each task. Effectively,
larger colonies will have proportionally more workers allocated to more energetically
demanding tasks. Like Biological Scenario 3.11, these effects could represent cases
where some tasks have more overhead (or alternatively, are more efficient) than others
as colony size scales, and colonies compensating for differences in overhead/efficiency.

3.2.2 Resting demand is constant and greater than task demand

If the relative stimulus of resting Lo?_(? = ®N% is larger than that of working D,
by Theorem lA the colony rests with the probability 1 — % and works with the
probability ﬁ which has the following task allocation:
A y Nt 80—
o = Dl _ ao16] — le81 80—1
P7 oNbo — oN @16 P
and
s nN2! $—80—1
ot = D2 _ a26> _ VZN 2790
27 QN T pNb 020, ®

Therefore, we have

dxf _ 7161 =80 = DN"'"072 dxj  ya8p — 8o — DN
dN a101P " dN 020,

and

dej _ _dx{ _dxi (148 = SONTTTE  ya(1 48 — SN2
dN dN dN Ol191€1j a292<1>
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The calculations above indicate the following three scenarios:

1. If the nonlinear metabolic scaling of each task is larger than the sum of the nonlinear

. . . . dx;f
metabolic scaling of resting and 1, i.e., §y > &9 + 1, we have % >0,k=1,2,
dx} T . . . [ .
and d—ig < 0, which indicates that increasing colony size N will increase allocation

to all tasks and decrease allocation to resting.
2. If the nonlinear metabolic scaling of each task is smaller than the sum of the

. . . . . dx;
nonlinear metabolic scaling of resting and 1, i.e., §y < 8o + 1, we have ﬁ < 0,

k=1,2,and % > 0, which implies that increasing colony size N will decrease

allocation to all tasks and increase allocation to resting.
dxf dx}
3. Assume that §; < 89 + 1 < &, then we have ﬁ <0, d—);\z, > 0, and

dxj  dG(N) 1 y1(So+1—8)N°1 %2
dN ~  dN & 101D

[1 20101 (8 — 8o — )N 701 }
yi102602(80 + 1 — 61) )

According to the Eq. (4), we can conclude that the colony size N has negative
effects on the allocation of the inside colony task (k = 1) and positive effects on
. . . dxt dx
the allocation of the outside colony task (k = 2) since i}\} < 0 and % > 0.
In this situation, as colony size increases, we can expect that the colony increases
allocation to the outside task group and decreases allocation to the inside task
group. However, the allocation to resting depending on the maturity of the colony.
Vet (So+1-81)
y20101(82—80—1)
colony size N can decrease the resting allocation, while if a colony is mature, i.e.,

N > N, increasing the colony size N can increase the resting allocation.

1
P . §H—48 . .
If a colony is immature, i.e., N < N, = ( ) o increasing the

Biological Scenarios 3.22 If the metabolic scaling for each task is either more or less
than resting demand, allocation to rest will either be more or less, as colony size
increases. Similarly to Biological Scenario 3.11, this could be explained by the reduc-
tion in per capital efficiency due to the reduced communication efficiency (or increased
difficulty in accessing tasks) as the colony size increases. However, if the metabolic
scaling for one task, e.g., the inside task, is less than that of resting, and the other
task, e.g., the outside task, is greater, allocation to the inside task should increase and
allocation to the outside task decreases as colony size increases. Allocation to rest-
ing, however, will depend on colony maturity, where mature colonies will have more
allocation to resting than immature colonies.

3.2.3 Resting demand scales with work effort

Assume that the relative stimulus of resting is an increasing function of the working

effort (1 — xp), i.e., 2—(? = wN‘SO(l — xg). If the relative stimulus of resting wN%

is larger than the relative stimulus of working ﬁ, ie., wN% > ﬁ, the colony rests
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with the probability 1 — /=L and works with the probability \/ -2 which has the
following task allocation:

§1—1
~ le 1
.X* _ Dl _ o10]
| ~
8o 511 Sy—1
VwN% D \/wN50 <y1N9 +yzN9 )
a1t Q202
and
$r—1
A~ VZN 2
)C* _ D2 _ a26h
2 — \/ ~ .
wN%D so (NNt N2t
wN o161 + a26h

Therefore, we have

85—
L i@ 0; (So+8;+1-28;)N°J "
ViN(S’ 2(81'—8()—1— y;ai0; (8o+3;+ i) >

dx} viej0;
dN - N
:0; Noo+si—1 VjubiN T VjeuOiN T
2\/wylot101N ’ (1 + via;0; I+ viaj0;
i, j=1,2,i#j (6)
dx} 8 . ..
and 20 — _1 /N dGWN) Acqume that 8> > 61, then the calculations above indicate
dN 2V b dt

that

1. If the inequality §; > % holds, we have

< 0.

dxy dx; dxg
> 0, > 0 and
dN dN dN

Therefore, increasing the colony size, the colony increases the allocation to all the
tasks and decreases the allocation to the resting.
2. If the inequality 6, < W holds, we have

* * *
dxl <0, de < Oand dxo

> 0.
dN dN dN

Therefore, increasing the colony size, the colony decreases the allocation to all the
tasks and increases the allocation to the resting.

3. 1If the inequality 8 + 1 < §; < 2+l dx;

< &> holds, we have N > 0
1

; 1 _ vi26 (81 —8o—1) 5=481 . 1
and there exists N,| = (},20“91 (82+50+1—281)> ,such thatif N < N_,, we have

*
dx

’W>O

dxy
dN

> 0.
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In this case, increasing the colony size, the colony increases the allocation to all

the tasks and decreases the allocation to the resting. However, if N > N 31’ we
dxt dx dx S .

have ﬁ < 0, % > 0 and % > 0, which implies that when the colony size

increases, the allocation to the inside colony task x; and the resting decreases, but

the allocation to the outside colony task x, increases.
4. If the inequality §; < g + 1 < 8> holds, we have

dxy dx3
< Oand
dN dN

> 0,

which implies that when the colony size increases, the allocation to the inside

colony task x; decreases, but the allocation to the outside colony task x» increases.

Moreover, the allocation to resting depends on the maturity of the colony. By Eq.
1

4),if N < N, = (%) 27" (e.g., immature colony), increasing the

colony size N can increase the allocation of resting, while if N > N, increasing

the colony size N can decrease the allocation of resting.

81+80+1 dx{ dxg
2

5. If the inequality §; < < 82 < 8o + 1 holds, we have - < 0, 7 > 0

1
; 1 _ (11226228 —381—8p—1) | 5291 : 1
and there exists N, = ( V2101 (5o F1=52) ,such thatif N > N_,, we have

dx3
dN

< 0.

In this case, increasing the colony size, the colony decreases the allocation to all
the tasks and increases the allocation to the resting. However, if N < Nc}z, we
dx dx} dxt L .
have ﬁ < 0, % > 0 and ﬁ > 0, which implies that when the colony size
increases, the allocation to the inside colony task x; decreases, but the allocation

to the outside colony task x» and the resting increases.

Biological Scenarios 3.23 In addition to physical needs, inactivity can also result from
not having enough work to do (a review for why that might be (Charbonneau and
Dornhaus 2015a)). Therefore, the demand/stimulus for inactive may be an increasing
function related to the available workforce or available work/colony needs. In this
scenario, our theoretical result shows that there are multiple ways in which colony size
can affect the allocation of tasks, depending on the level of the nonlinear metabolic
scaling and the maturity of the colony (see the results above).

Summary We have been addressing how nonlinear metabolic scaling affects the task
allocation and resting probability with respect to changes of the colony size. Our study
shows complicated dynamic relationship between the nonlinear metabolic scaling,
the colony size, the task allocation, and the resting probability. Our findings have
many profound biological significances such as: (1) In the scenario where the resting
demand is large enough, if the nonlinear metabolic scaling of the active tasks is large
enough, i.e., § > 8o + 1, larger colonies are expected to have a smaller proportion
of resting workers. Otherwise, if the nonlinear metabolic scaling of the active tasks
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is small enough, i.e., § < &p + 1, larger colonies are expected to have a larger
percentage of resting workers (see Biological Scenarios 3.11). (2) In the scenario
where the resting demand is constant and lower than the cost of performing tasks,
larger colonies are expected to allocate more workers proportionally to perform more
demanding tasks (see Biological Scenarios 3.21). (3) In the scenario where the resting
demand is constant and higher than the cost of performing tasks, if the nonlinear
metabolic scaling of outside tasks (e.g., foraging) and inside tasks (e.g., breeding) are
large and small enough respectively, as the colony size increases, the allocation of
outside tasks and inside tasks is expected respectively to increase and decrease (see
Biological Scenarios 3.22). (4) In the scenario where the resting demand is increasing
with the working effort, if the nonlinear metabolic scaling of inside and outside tasks
is large enough, i.e., 65 > 61 > w, larger colonies are expected to have a greater
proportion of workers performing tasks and a smaller proportion of workers resting
(see Biological Scenarios 3.23).

4 Dynamics of work activities versus resting

In this section, we apply the modeling framework of System (1) to the case when the
number of task groups being 1, i.e., m = 1. This is the case corresponding to studying
the task allocation of the working effort x versus resting 1 — x where x € [0, 1] be
the working effort, and (1 — x) € [0, 1] be the resting. We denote by D the demand
of work (or work stimulus), and 6 be the response threshold of work. Then we have
the following four models:

1. Model I is the case when the resting demand Dy is a constant function depending
on the colony size, i.e., g—é) = @ N%, We assume that the larger the colony size is,
the more the work is needed, thus the resting demand is higher as well.

D
x' =x 5 0 -1,
Dy pNoo(1 — x)
@)

D' =yN® —aNxD.
2. Model II is the case when we assume that the resting demand is an increasing

function of the working effort x, i.e., g—é’ = wx N%, which reflects that more work
requires more resting to recover.

|: D

x'=x o —1:|
Dx $§ ’
= 4+ wNoox (1l —x)

’ ®)

D' =yN® —aNxD.

@ Springer



42 Page 16 of 53 T.Fengetal.

3. Model 111 is the case when we assume that the more work a worker does, the more
efficient she becomes, and thus her threshold 6 for the work decreased to H% We
call this model as The enhanced response threshold model.

D
0
I __ 1+bx _
X = Dx S, ’
—— + PN —x)
T+bx 9

D' =yN® —aNxD.

4. Model 1V is the case that we assume that the working demand has a carrying
capacity K N°.

D
X=x|5 o -1,
D 4 o Noo(1 — x)
(10)

D' =yN?® <1 — L) —aNxD
N? '

The dynamics of Models I-IV can be summarized by the following theorem:

Theorem 2 (Summary of dynamics) The dynamics of Models I-1V is summarized in
Table 1. Moreover, for Model I1I-The enhanced response threshold model, its interior
equilibrium E* = (8%, D%) is locally asymptotically stable if N > g, while if N < g
we have the following results:

1. Let @ be the bifurcation parameter: E*is locally asymptotically stable if @ < @,

while it is unstable if @ > @*, and a Hopf bifurcation occurs at ® = ®*, where

PF — yb(14+b)N3—%0—1
- af(b—aN)

2. Let b be the bifurcation parameter: (1) when A = (yN‘S_‘SO_1 — @a@)z -
4ya’®ON’ % < 0, E* is locally asymptotically stable; (2) when A > 0, E*
is locally asymptotically stable if b < b{ or b > b}, while it is unstable if
by < b < b3, and two Hopf bifurcations occur at by and b3, respectively, where

b — Paf= yNO—bo—1_ /K and b5 = Paf—y NS —do- 14 /A
1 ZVNS 3p—1 ZVNS—(S()—I .

3. Let N be the bifurcation parameter: (1) when § > &y + 1, E* is unstable if
N < N* whileitis locally asymptotically stable if N > N*, and a Hopf bifurcation
occurs at N = N*, where N* is the unique positive root of function f(N) =
b(1 4+ b)yNo=0~1 L 02PON — ab®0=0; (2) when § < 8o + 1, we have:

2P0 3302 Daf
(@) N = g Zoparoy < No = 5545750 orNy > No, f(ND) =0,

E* is locally asymptotically stable;
(b) if Ny > No and f(N1) < 0: E* is locally asymptotically stable if N < N
or N > N3, while it is unstable if N € (N}, N}), and two Hopf bifurcations
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occur at N = N{ and N = N3, respectively, where N{, N5 are the positive
roots of function f(N) = 0.

Notes The proof of Theorem 2 is given in Sect. 7. Theorem 2 shows us the global
dynamics of Models I-IV. It shows that Models I, II, and IV have only equilibrium
dynamics, while Model III-The enhanced response threshold model has both equilib-
rium dynamics and periodic dynamics. In addition, we provide the following findings:

1. The dynamics of Model I can be determined by the value of resting demand. If @ <
y NB 5()

, Model I has a unique equilibrium E* which is globally asymptotically

§—8p—1
stable. Otherwise, if @ > VNWO

equilibrium E* which is globally asymptotically stable. This result suggests that:

§—8p—1
if the resting demand is small enough, i.e., ® < yNago , the colony works all the

time, i.e., x = 1 (see area Al of Fig. 1a). Otherwise, if the resting demand is large

, E* is unstable, and Model I has an interior

enough, i.e., ® > VN - , the colony rests at a certain level (see area A2 of Fig.
la). By Theorem 2, the working level Xt = N; ;9_' is decreasing with respect

to the resting demand, is decreasing with respect to the colony size if § < o + 1,
and is increasing with respect to the colony size if § > §p + 1. This result indicates
that: (i) the larger the resting demand, the workers work less (see area A2 of Fig.
la); (ii) if the metabolic scaling of work is large enough, i.e., § > §p + 1, the
larger colony size N, the workers work more (see Fig. 1b, this result is consistent
with the results of Schmid-Hempel 1990), while if the metabolic scaling is small
enough, i.e., § < 8o + 1, the larger colony size N, the workers work less (Fig. Ic,
which echoes the results of Houston et al. 1988 and Franks and Partridge 1993).

2. The global dynamics of Model II are very similar to that of Model I, so we will
not go into details here. The readers can see the full dynamics of Model II through
Fig. 2. The only difference between Model I and Model II is that when the resting
demand is large enough, the resting ratio of Model I (1 — x*) is lower than the
resting ratio of Model II (1 — Jx).

3. Model IV always has a working-free equilibrium E and a resting-free equilibrium

E}, and can have an interior equilibrium E* under certain conditions. The global

dynamics of Model 1V is determined by the value of resting demand @: if @ <

%(HO T K N, Ej being unstable and E7 being globally asymptotically stable;

ifo > K N , E§ being globally asymptotlcally stable and E7 being unstable.

f %ﬁomﬁ <@ < KN , E} and E7 are unstable and Model

IV has an interior equilibrium E* Wthh is globally asymptotically stable. This

analytical result suggests that: if the resting demand is small enough, i.e., @ <
KN(S_';O y
0 y+aKN?

s KN%=90 y . .
3a); if T yTakN < P < , the colony rests at a certain level, i.e.,

0 < xo < 1 (see area A2 of Fig. 3a). Otherwise, if the resting demand is large

. 85— . .
enough, i.e., @ > %O, the colony rests all the time, i.e., xo = 1 (see area

Otherwise, i

the colony works all the time, i.e., x = 1 (see area Al of Fig.
KN5—50

A3 of Fig. 3a). By Theorem 2, when E* exists, the workers working at the level

A 8=80 N . .
x* = W, indicating that: (i) the larger the resting demand, the colony
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works less; (ii) if the metabolic scaling is large enough, i.e., § > §p + 1, the larger

colony size N, the workers work more (see area A2 of Fig. 3b); (iii) if the metabolic

scaling is small enough, i.e., § < §p + 1, the relationship between colony size and

the working activity depends on the value of colony size: when the colony size
1

is small enough, i.e., N < %W, the larger colony size N, the workers

work more (see area A2 of Fig. 3c); when the colony size is large enough, i.e.,

N > % 3-%  the larger colony size N, the workers work less (see area A4
of Fig. 3c). Note that Model IV can be derived from Model II by adding a carrying
capacity for the working demand. When the carrying capacity § is large enough,

. K N9 y NSS!
we can approximate y +a K N toa K N, and therefore == vy ¢ AT

In this situation, Model II and Model IV have similar dynamics. However, when
the carrying capacity is not large enough, Model II and Model IV have different
dynamics: if the resting demand is large enough, the colony of Model II would do
resting at a certain ratio (see area A2 of Fig. 2a), while the colony of Model IV
rests all the time (see area A3 of Fig. 3a).

4. Model IIl - The enhanced response threshold model has rich dynamics. If the

§—8p—1
resting demand is small enough, i.e., @ < W, the colony works all the

time, i.e., x = 1 (see area A1l of Fig. 4a, b). If the resting demand is large enough

§—8p—1
but the colony size is not very large, i.e., ® > W and N < g, the
colony rests in varied patterns (see areas A2 and A3 of Fig. 4a, c, d). Otherwise, if

§—8p—1
the resting demand and colony size are large enough, i.e., ® > W and

N > g, the colony rests in equilibrium patterns (see area A2 of Fig. 4b).
N1
increasing with respect to the colony size if § > 8o + | and is decreasing with
respect to the colony size if § < g+ 1. This result suggests that: (i) if the metabolic
scaling is large enough, i.e., § > o + 1, the larger colony size N, the workers
work more, and the colony works in varied patterns (Fig. 5a); (ii) if the metabolic
scaling is small enough, i.e., § < §p + 1, the larger colony size N, the workers
work less, and the intermediate values of N destabilize the system (Fig. 5b). In
addition, Theorem 2 shows that the threshold regulator b has a significant effect on
the dynamics of Model III: (i) the working level x*is increasing with respect to the
threshold regulator b, indicating that the larger threshold regulator b, the workers
work more; (ii) under the conditions of Theorem 2 2(2), the interior equilibrium E*
is locally stable if b < b} or b > b} and is unstable if b} < b < b3, indicating that
the intermediate values of b destabilize the system (Fig. 6). The dynamic process
looks like a bubble, so it is called bubble phenomenon by Liu et al. 2015. This is
the first time we observed bubbles in the dynamics of social insect colonies; and
(iii) when the threshold regulator of Model III becomes zero, i.e., b = 0, Model 111
becomes the same as Model I. Note that Model I has only equilibrium dynamics and
Model III has rich dynamics, which means that the enhanced response threshold

b can destabilize the equilibrium and lead to periodic dynamics.

By Theorem 2 and the simulations, the working level x* = is
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(¢) xvs Nwithd < §+1
Fig. 1 Bifurcation diagram of Model I, where the blue and green lines denote the sink and saddle points,
respectively. In Fig. 1a, the parameters are givenby 0 = 0.1,890 = 0.3,y = 1, = 0.2, N = 5000, § = 0.7.
In area A1, Model I has a unique equilibrium E* which is globally asymptotically stable. In area A2, E*
is unstable, and Model I has an interior equilibrium E* which is globally asymptotically stable. In Fig.
1b, the parameters are given by 6 = 0.8,69 = 0.01,y = 0.3, = 0.35,® = 1.5,6 = 1.07. In area Al,
Model I has two equilibria: E* being unstable and E* being globally asymptotically stable. In area A2,
Model I has a unique equilibrium E* which is globally asymptotically stable. In Fig. Ic, the parameters
are given by 0 = 0.2,89 =03,y = 0.5, = 0.15,® = 0.5, = 0.7. In area A1, Model I has a unique
equilibrium E* which is globally asymptotically stable. In area A2, E* is unstable, and Model I has an
interior equilibrium E* which is globally asymptotically stable

Summary: The theoretical and bifurcation analyses conducted in this section address
the first two questions that we proposed in the introduction part: (i) how does the
metabolic scaling affect the task allocation and resting probability of social insect
colonies, as colony size increases? (ii) how does the colony size affect the working
activity in different scenarios of working versus resting?

Based on our study, the colony size, metabolic rates and the demand for resting
are working in synergistic and nonlinear ways to generate interesting task allocation
dynamics. Some of the biological insights that we could illustrate here are: (1) More
demand for the work, then workers of the colony work more. In the case that the
colony size is small, then large demand may destabilize the system (see The enhanced
response threshold model). (2) If the metabolic scaling of work is large enough, i.e.,
8 > 8o + 1, the larger colony size N, the workers work more; while if the metabolic
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Fig.2 Bifurcation diagram of Model II, where the blue and green lines denote the sink and saddle points,
respectively. In Fig. 2a, the parameters are givenby 0 = 0.1,890 = 0.3,y = 1, = 0.2, N = 5000, § = 0.7.
In area A1, Model II has a unique equilibrium E* which is globally asymptotically stable. In area A2, E*
is unstable, and Model II has an interior equilibrium E* which is globally asymptotically stable. In Fig.
2b, the parameters are given by 6 = 0.8,5p = 0.01,y =03, = 0.35,w = 1.5,8 = 1.07. In area Al,
Model II has two equilibria: E* being unstable and E* being globally asymptotically stable. In area A2,
Model II has a unique equilibrium E* which is globally asymptotically stable. In Fig. 2¢, the parameters
are given by 6 = 0.2,89 = 0.3,y = 0.5, = 0.15, 0 = 0.5, § = 0.7. In area A1, Model II has a unique
equilibrium E* which is globally asymptotically stable. In area A2, E* is unstable, and Model II has an
interior equilibrium E* which is globally asymptotically stable

scaling is small enough, i.e., § < &p + 1, the larger colony size N, the workers work
less or work more at the beginning but less when the colony size is really large. And
(3) the small size colony is prone to have fluctuating dynamics when the metabolic
scaling of work is large enough, i.e., § > 8o + 1; while the intermediate size colony
seems to have fluctuating dynamics when § < §p + 1 (please see the dynamics of
Model IIT as an example).

5 Effects of random noise on task allocation and demand

In this section, we explore how random noise affects the dynamics of task alloca-
tion and demand by taking Model III and IV as examples. We investigate three
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Fig. 3 Bifurcation diagram of Model IV, where the blue and green lines represent the sink and saddle
points, respectively. In Fig. 3a, the parameters are given by 6 = 3.6,5p = 0.4,y = 1, = 0.05, K =
1I,N = 200,6 = 0.7. In area Al, E]" is globally asymptotically stable and EE)k is unstable. In area A2,
E(’)‘ and E i‘ are unstable and Model IV has an interior equilibrium E* which is globally asymptotically
stable. In area A3, E(’)‘ is globally asymptotically stable and Ei‘ is unstable. In Fig. 3b, the parameters are
givenby 0 = 3.6,890 = 0.05,y = 1, = 0.05,® = 5.5, K = 1,5 = 1.07. In area Al, Ea‘ is globally
asymptotically stable and E T is unstable. In area A2, Ea‘ and E i" are unstable and Model IV has an interior
equilibrium E* which is globally asymptotically stable. In area A3, E T is globally asymptotically stable
and E{)“ is unstable. In Fig. 3c, the parameters are given by 8 = 04,59 = 0.6,y = 85,0 = 0.2, P =
32,K =1,6 =0.8. Inarea Al, Ea‘ is globally asymptotically stable and E i‘ is unstable. In areas A2 and
A4, Ej and E} are unstable and Model IV has an interior equilibrium E* which is globally asymptotically
stable. In area A3, E T is globally asymptotically stable and EE)k is unstable

cases based on the dynamics of Models III and IV respectively (see Theorem

2). Specifically, for Model III: (i) Model III has a unique resting-free equilibrium
§—1

E*(1, ”A:x ) which is global asymptotically stable; (ii) Model III has two equilibria:

VNB—I

the resting-free equilibrium E*(1,

o
E *(%, PONY — by}zi) being locally asymptotically stable; and (iii)

Model IIT has a periodic solution.
Similarly, for Model IV: (i) Model IV has two equilibria: the working free equi-

librium E§(0, KN %) being unstable and the resting free equilibrium E 1, %)

) being unstable and the interior equilibrium
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Fig. 4 Bifurcation diagrams and phase portraits of Model III- The enhanced response threshold model
with parameters 6 = 5,8p = 0.5,y = 0.05,« = 0.005,8 = 0.7,b = 1.1, where H denotes the Hopf
bifurcation point. In Fig. 4a and b, the blue, red and green lines denote the sink, source and saddle points,
respectively. In Fig. 4a, we choose N = 200. Area Al indicates that Model III has a unique equilibrium
E* which is globally asymptotically stable. Area A2 indicates that £ * is unstable and Model IIT has an
interior equilibrium E* which is globally asymptotically stable. In area A3, E* and E* are unstable and
Model III has a periodic solution. In Fig. 4b, we choose N = 230. Area Al indicates that Model III has a
unique equilibrium E* which is globally asymptotically stable. Area A2 indicates that £ * is unstable and
Model III has an interior equilibrium E* which is globally asymptotically stable. In Fig. 4c, we choose
N = 200 and @ = 0.2, it shows that the unique interior equilibrium E* is locally asymptotically stable.
In Fig. 4d, we choose N = 200 and @ = 0.8, it shows that the unique interior equilibrium E* is unstable
and a periodic orbit occurs

being globally asymptotically stable; (ii) Model IV has three equilibria: Ej, ET

being unstable and the interior equilibrium E *(%, @0 N%) being globally
asymptotically stable; and (iii) Model IV has two equilibria: E} being unstable and
Ej being globally asymptotically stable.

Our numerical results are obtained using the Euler-Maruyama method (Higham
2001) and Matlab 2019b with the step size given by Ar = 1073, The parameters for

the following simulations are shown in Table 2
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Fig. 5 Bifurcation diagram of Model III-The enhanced response threshold model, where H denotes the
Hopf bifurcation point, the blue, red and green lines denote the sink, source and saddle points, respectively.
In Fig. 5a, we choose 6 = 0.113,® = 0.5,y = 0.00011,5 = 1.1, = 0.0046, 59 = 0.046,5 = 1.07.
Area Al indicates that the equilibria E* and E* are unstable and Model IIT has a periodic solution. Area A2
indicates that E* is unstable and Model III has an interior equilibrium E* which is globally asymptotically
stable. In area A3, Model III has a unique equilibrium E* which is globally asymptotically stable. In Fig.
5b, we choose 8 =2.6,® =1,y =0.1,b = 1.1, = 0.05,89 = 0.6,8 = 0.7. Area Al indicates that
Model III has a unique equilibrium E* which is globally asymptotically stable. Areas A2 and A4 indicate
that E* is unstable and Model III has an interior equilibrium E* which is globally asymptotically stable.
Area A3 indicates that the equilibria E* and E* are unstable and Model 1T has a periodic solution

0.8 At A2 A3 A4

0.6 |

0.4}

0.2 -

Fig. 6 Bifurcation diagram of Model III- The enhanced response threshold model with @ = 5,0 =
5,N =200,80 =0.7,y =1.1,5 = 0.9, « = 0.0035, where H represents the Hopf bifurcation point, the
blue, red and green lines denote the sink, source and saddle points, respectively. In areas Al and A3, E*
is unstable and the unique equilibrium E*is locally asymptotically stable. In area A2, E* (green line) and
E* (red line) are unstable and Model IIT has a periodic solution (the black curves denote the maximum and
minimum values of the periodic solution, respectively). In area A4, the unique equilibrium E* is globally
asymptotically stable. The dynamic process looks like a bubble, so it was named as bubble phenomenon
by Liu et al. 2015

5.1 Case study: the enhanced response threshold Model
Assume that the random noise affects task demand of social insect colonies, and thus

affects the whole colony dynamics. From the full system (2), we obtain the stochastic
version of Model III as follows:
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Table 2 Parameters for the simulations of case studies 5.1 and 5.2

Parameter Model IIT Model IV
[% Response threshold of working 5 3.6
8o Nonlinear metabolic scaling of resting 0.5 04

Nonlinear metabolic scaling of working 0.7 0.7
y The increase in demand intensity per unit 0.05 1

time for working
o Performance efficiency of working 0.005 0.05
N Colony size 200 200
b Strength of enhancement 1.1 Null
K Carrying capacity of working demand Null 1
g Resting demand Variable Variable
o Intensity of noise Variable Variable
D
= rir —1|dt
dx(t) =x DX L N (I —x) ,
T (11)

dD(t) = (yN® — aNxD)dt + o D(1)d B(1),

where o2 is the intensity of random noise, B(#) is a standard one-dimensional inde-
pendent Brownian motion defined on the complete probability space (§2, .%, P). We
performed numerical simulations for cases § — o — 1 > 0 (not shown here) and
6 — 8o — 1 < 0, respectively. The results show that the size of § — §o — 1 does not
affect the way the noise affects the work activity and the task command, so we only
show the numerical results of case § — g — 1 < 0 here. By Theorem 2, the dynamics
of Model III can be summarized into the following three scenarios:

(a) If @ < 0.06, Model III has a unique resting-free equilibrium E* = (x*, D*) =
(1, 2.04) which is globally asymptotically stable.
(b) If0.06 < @ < 0.67, Model III has two equilibria: E* being unstable and

0.72

being locally asymptotically stable.
(c) If @ > 0.67, the equilibria E* and E* are unstable and there is a periodic solution.

Next, we study the effects of random fluctuations on task allocation and demand in
scenarios (a), (b) and (c), respectively.

We first consider the scenario (a). By choosing @ = 0.055, we obtain results in
Fig. 7 showing that: (i) the resting-free equilibrium E*(x*, D*) = (1,2.04) of the
deterministic form of Model III is globally asymptotically stable (red lines), this is in
line with the theoretical results of Theorem 2; (ii) the empirical mean x(¢) (over 500
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Fig.7 Empirical mean and frequency of Model (11) and Model III with @ = 0.055 over 500 replicates. The
other parameters are given by 6§ = 5,b = 1.1,5p = 0.5,y = 0.05,6 = 0.7, « = 0.005, N = 200, x(0) =
0.99, D(0) = 2. Red line indicates the solution of Model 111, blue, black and green lines denote the empirical
mean of the stochastic solution with & = 0.5, 0.6 and 0.7, respectively. Figure 7b, d are the frequency of
Model (11) at time t = 200

replicates) of Model (11) fluctuates below x* (Fig. 7a), while the empirical mean D(t)
of Model (11) fluctuates above D* (Fig. 7¢); (iii) the amplitude of the fluctuation is
positively correlated with the intensity of stochastic noise ¢; and (iv) when the time
is large enough, the variance of the frequency of the stochastic solution (over 500
replicates) is positively correlated with the intensity of the noise (see Fig. 7b, d). The
simulation result suggests that: although random fluctuation leads to an increase in
average for task demand D, the working activity x of the colony decreases in average
over 500 replicates.

Next, we study the scenario (b) by choosing @ = 0.07. It follows from Theorem 2
that the unique interior equilibrium E*(%*, D*) = (0.72, 2.71) of Model I1I is global
asymptotically stable (see red lines in Fig. 8). Figure 8 indicates that the effects of
random fluctuations on the task allocation and demand in scenario (b) are similar to
that in scenario (a). Particularly, Figures 7b, d and 8b, d imply that there appears to
be a stationary distribution of the stochastic system (see, for example Cai et al. 2015;
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Fig.8 Empirical mean and frequency of Model (11) and Model III with @ = 0.07 over 500 replicates. The
other parameters are given by 6§ = 5,b = 1.1,5p = 0.5, y = 0.05,6 = 0.7, « = 0.005, N = 200, x(0) =
0.75, D(0) = 2.7. Red line indicates the solution of Model III, blue, black and green lines indicate the
empirical mean of the stochastic solution (x(¢), D(t)) with o = 0.2,0.3 and 0.4. Figures 8b, d are the
frequency of Model (11) at time r = 200

Feng et al. 2019). It would be a future work to prove the existence of this stationary
distribution theoretically.

Finally, we study the corresponding stochastic scenario where the deterministic
Model IIT admits a periodic solution. By choosing @ = 0.8 we obtain Figs. 9 and
10 where Fig. 9a shows that in the absence of random fluctuations, the task demand
and work activity change periodically with the peaks/valleys of each cycle being
equal. When random noise is introduced (Fig. 9b), the peaks/valleys of each cycle are
different. This dynamics reflects the real data shown in Fig. 11 (working activity of a
colony with 97 ants over 5 mins). Figure 10 also suggests that as the intensity of noise
increases, the shape of the periodic solution becomes more and more disordered.
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Fig. 9 Time series of Model (11) and Model III with @ = 0.8. The other parameters are given by 6 =
5,b=1.1,80 = 0.5,y =0.05,8 = 0.7, « = 0.005, N = 200, x(0) = 0.0473, D(0) = 61.63

5.2 Case study: the working demand has a carrying capacity

The stochastic version of Model IV is given by:

D
dx(t) = x o —1]dt,
[%erwﬁo(l—x) }

12)

dD(t) = [yN‘S (1 - %N

) - aNxD] dt +oD(t)dB(1).

The previous subsection has shown that the size of § — §g — 1 does not affect the way
the noise affects the work activity and the task command. In the remaining, we only
show the numerical results of case 6 — 8o — 1 < 0. By Theorem 2, the dynamics of
Model IV can be summarized as:

(a) If @ < 0.1238, Model IV has two equilibria: the working-free equilibrium E =
(x5, D) = (0,40.8057) being unstable and the resting-free equilibrium E} =
(x7, DY) = (1, 3.7096) being globally asymptotically stable.

(b) If 0.1238 < @ < 1.3615, Model IV has three equilibria: the working-free equi-
librium Ejj and the resting-free equilibrium E7 being unstable and

B 5. B (4.9013 —3.60

,29.9719¢
369

being globally asymptotically stable.
(c) If @ > 1.3615, Model IV has two equilibria: Ej being globally asymptotically
stable and E| being unstable.

In the following, we study how random fluctuations affect task demand and work
activity in scenarios (a), (b), and (c), respectively. By choosing ® = 0.1 and @ = 1.3,
we explore the effects of random fluctuations on task demand and work activity in
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Fig. 10 Phase diagrams of solutions of Model (11) and Model III under 500 replicates in one cycle. The
parameters are given by @ = 0.8,0 = 5,b = 1.1,6p = 05,y = 0.05,§ = 0.7, = 0.005, N =
200, x(0) = 0.0449, D(0) = 74.281. The red lines and gray dots denote the solutions of the Model III and
the stochastic Model (11), respectively
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Fig. 11 Time series diagram (in seconds) of working activity of a colony with 97 ants. The colony was
collected from the field in June 2014 and house in an artificial observation nest in the lab. The data was
collected from a 5 min video recorded between noon and 5pm on June 28, 2014
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Fig. 12 Empirical mean and frequency of Model (12) and Model IV with @ = 0.1 over 500 trajectories.
The other parameters are givenby 0 = 3.6, K = 1,590 =0.4,y = 1,6 =0.7,« = 0.05, N = 200, x(0) =
0.99, D(0) = 4. Red lines indicate the solution of Model IV, blue and black lines indicate the empirical
mean of the stochastic solution with & = 2.5 and 3. Figure 12b, d are frequency of the stochastic model at
time r = 200

scenarios (a) and (b), respectively (see Figs. 12 and 13). We find that the effects of
random fluctuations in these two scenarios are consistent with the effects of random
fluctuations in scenarios (a) and (b) of Model III (see Sect. 5.1): although random
fluctuation generates an increase in average for task demand D, the working activity
x of the colony decreases in average over 500 replicates.

Now, we study the scenario (c) by choosing @ = 3. The simulations are shown in
Fig. 14. Figure 14a indicates that the work activity x(¢) in Model (12) and Model IV
tends to zero, and the higher the intensity of noise, the later the solution tends to 0.
This result suggests that although random fluctuations cannot prevent the tendency to
rest at all times but have delay effects. Figure 14b shows that the stochastic solution
D(t) fluctuates around the solution of Model IV, and the amplitude of fluctuation is
positively related to the intensity of noise.

Our study of stochastic versions of Model III and IV provides us the following
insights:
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Fig. 13 Empirical mean and frequency of Model (12) and Model IV with @ = 1.3 over 500 trajectories.
The other parameters are givenby 0 =3.6, K = 1,590 = 0.4,y = 1,6 =0.7,« = 0.05, N = 200, x(0) =
0.2, D(0) = 12. Red lines indicate the solution of Model IV, blue and black lines indicate the empirical
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Fig. 14 Empirical mean of Model (12) and Model IV with @ = 3 over 500 trajectories. The other parameters
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1. Noise can increase task demand and decrease the levels of working activity in aver-
age (1) By comparing to the dynamics of the the deterministic Model III or Model
IV in three scenarios, the empirical mean of working activity x in the stochastic
system (11) is almost certainly lower than its ODE model (see Figs. 7a, 8a, 12a and
13a), while the empirical mean of task demand D in the stochastic system (11) is
almost certainly higher (see Figs. 7c, 8c, 12c, 13c). (ii) When the colony in Model
IV spends all the time on resting, random fluctuations cannot change the colony
being rest all the time but have delay effects (see Fig. 14a).

2. Effects of noise with different intensities The amplitude of the fluctuating solution
for stochastic models is positively correlated with the intensity of the noise (see
Figs. 7, 8, 9, 10, 11, 12, 13, 14). In addition, as the intensity of noise increases,
the variance of the frequency (over 500 replicates) of stochastic solutions becomes
larger. This suggests that large noise may lead to richer dynamics of the colony.

3. The existence of stationary distribution According to previous research experience
(Caietal. 2015; Feng et al. 2019), Figs. 7, 8, 12 and 13 suggest that there appears to
be a stationary distribution of the stochastic system. This could be our future work
to prove the existence of this stationary distribution even though it is challenging.

4. Random fluctuations can explain almost-cyclic dynamics observed in experiments
Please see the experimental data in Fig. 11 and the simulation of Fig. 9b as an
example for comparison.

6 Conclusion

In this paper, we have formulated a general dynamical compartmental model to explore
the underlying mechanisms of task allocation in social insect colonies at the colony
level. Our proposed deterministic model incorporates both internal factors (e.g., the
varied thresholds for different tasks) and external factors (e.g., task demands/stimulus
from the environment). The proposed model is also suitable for measuring the effects
of nonlinear metabolic scaling on task allocation and rest probability, which in turn
plays a role in improving our understanding of the dynamics of complex biological
systems. This work is a nice extension of a mathematical framework introduced by
Kang and Theraulaz 2016 that study how colony size and social communication affect
the task allocation and division of labor.

Our theoretical results and the related biological implications provide us some
answers to the three questions proposed in the Introduction: (i) how the metabolic
scaling affects the task allocation and resting probability of social insect colonies, as
colony size increases? (ii) how colony size affects the working activity in different sce-
narios of working versus resting? (iii) how the random fluctuation affects the working
activity and task demand of social insect colonies?

We first explored the scaling effects of colony size on the resting probability. The
theoretical result (Sect. 3.1) suggests that the colony size can affect the likelihood of
resting in several ways: (a) when the nonlinear metabolic scaling of all tasks is large
enough (i.e., larger than the nonlinear metabolic scaling of resting + 1), increasing the
colony size can decrease the probability of resting; (b) when the nonlinear metabolic
scaling of all tasks is small enough (i.e., smaller than the nonlinear metabolic scaling
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of resting + 1), increasing the colony size can increase the probability of resting; (c)
when there are two tasks (namely the inside colony task and the outside colony task),
if the nonlinear metabolic scaling of the inside colony task and the outside colony
task is small and large enough, respectively (i.e., smaller and larger than the nonlinear
metabolic scaling of resting + 1, respectively), the relationship between the colony
size and the resting probability depending on whether the colony is mature or not:
if the colony is immature, increasing the colony size can increase the probability of
resting. Otherwise, increasing the colony size can decrease the probability of resting.

These theoretical outputs are supported by experimental evidence. Indeed, empirical
studies show that increasing group size can either increase or decrease the proportion
of inactive workers in the group. For example, in the ant Aphaenogaster senilis, the
amount of work performed by workers is highly correlated with the number of workers:
the proportion of inactive individuals increases from 33% to 55% when the number of
workers increases from 50 to 200 (Ruel et al. 2012), while in the social spider Mallos
gregalis, larger colonies usually have a lower proportion of inactive workers (Tietjen
1986). Broadly, these different relationships between group size and inactivity can be
explained by context-specific differences in how group size affects overall efficiency.
As discussed in Sect. 3.11, larger groups may be more efficient which should lead to a
higher proportion of inactive workers as they have more opportunities to rest (Jeanson
et al. 2007), or large groups may have more overhead costs and thus the colony must
work more to meet its needs resulting in fewer inactive workers.

Highly inactive workers are found among all taxa of social insects, typically making
up more than 50% of the colonies (Charbonneau et al. 2017a). Inactivity has been
shown to decrease with worker age in two distantly related species of ants with different
life histories, suggesting that the broad pattern of worker inactivity among social insect
taxa may result from age-related constraints (e.g., inexperience or still developping
neurophysiologies)(D. Charbonneau, unpublished results). However, in addition to
age-related constraints, inactive workers have been shown to play additional roles
and sometimes provide benefits to the colony. Perhaps one of the most commonly
suggested functions of inactive workers is acting as a pool of reserve labor that allows
colonies to buffer against short term changes in demand or available workforce. This
function has been both rejected in some species/contexts

(Fewell and Winston 1992; Jandt et al. 2012; O’Donnell 1998; Gardner et al. 2007,
Johnson 2002)(reviewed in Charbonneau and Dornhaus 2015a, Charbonneau et al.
2017a), and supported in others (Charbonneau et al. 2017b; Hasegawa et al. 2016),
suggesting that inactive workers may only act as ‘reserves’ in specific contexts. Our
theoretical results suggest that perhaps inactives may only act as ‘reserves’ in species
that can afford to have them (i.e., colonies of sufficient size, whose efficiency increases
with colony size), while colonies whose overhead increases with colony size may not
be able to utilize the already present (due to their young age) inactive workers.

When multiple tasks appear in the colony, the situation can become very compli-
cated. For the sake of simplicity, we focused on the scenario with two task groups
(i.e., the inside colony task and the outside colony task) to illustrate how the nonlin-
ear metabolic scaling affects the task allocation, as colony increases. The theoretical
results (Sect. 3.2) support that: when the relative stimulus of resting is constant and
lower than the relative stimulus of working, increasing the colony size can increase
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the allocation of the task group with larger nonlinear metabolic scaling and decrease
the allocation of the task group with smaller nonlinear metabolic scaling; when the
relative stimulus of resting is constant and higher than the relative stimulus of work-
ing: (i) if the nonlinear metabolic scaling of both task groups is large (resp. small)
enough, increasing the colony size can increase (resp. decrease) the allocation of all
task groups and decrease (resp. increase) the allocation of resting; (ii) if the nonlinear
metabolic scaling of the inside and out task groups is large enough and small enough
respectively, the increase of colony size can increase (resp. decrease) the allocation
of the task group with larger (resp. smaller) nonlinear metabolic scaling, and the allo-
cation of resting depends on the maturity of the colony; when the relative stimulus
of resting is an increasing function of the working effort, there are several ways in
which the nonlinear metabolic scaling can affect the allocation of tasks and resting,
depending on the maturity and colony size.

Generally, larger decentralized groups are expected to have more specialized indi-
viduals and increasingly sophisticated mechanisms for allocating tasks (e.g., cellular
differentiation in multicellular organisms). As such social insects have long been
theorized to follow similar trends of larger colonies to have more complex division
of labor (Oster and Wilson 1978), however, empirical data has yet to satisfactorily
show this (Dornhaus et al. 2012). Furthermore, we often assume that greater spe-
cialization leads to increased efficiency, but that is not necessarily the case. Indeed,
increased specialization, such as via morphologically specialized workers, often leads
to decreased flexibility (Charbonneau and Dornhaus 2015a). For example, colonies of
Pogonomyrmex badius ants were unable to compensate for the loss of half of their for-
agers from experimental removal and consequently lost half of their brood as a result
(Kwapich and Tschinkel 2013). Thus, the effects of group size on collective behaviors
are again entirely context specific. Our theoretical outputs follow a similar trend where
the effects of group size on task allocation, and on the proportion of inactive workers
is dependent on the relative increase in efficiency as colony size increases.

We applied our general model to study the dynamics of the working effort versus
resting at four different scenarios, namely: (i) The resting demand is a constant function
depending on the colony size. (ii) The resting demand is an increasing function of the
working effort. (iii) The working demand has an enhanced response threshold. (iv) The
working demand has a carrying capacity. Our theoretical result (Theorem 2) shows
that:

1. Cases (i) and (ii) have similar dynamics (Figs. 1, 2): if the resting demand is small
enough, the colony works all the time, while if the resting demand is large enough,
the colony rests in equilibrium patterns (i.e., the ratio of resting workers remains
at a certain level). One difference between cases (i) and (ii) is that when the resting
command is large enough, case (i) has a lower probability of resting than case (ii)
under the same conditions (i.e., all parameters are the same).

2. When the working demand has a carrying capacity (i.e., case (iv), see Fig. 3): if
the resting demand is small enough, the colony works all the time; if the resting
demand is moderate, the colony rests in equilibrium patterns; if the resting demand
is large enough, the colony rests all the time. Case (iv) differs from cases (i)-(ii)
in that if the resting command is large enough, the colony may rest all the time,

@ Springer



Dynamics of task allocation in social insect colonies... Page350f53 42

indicating that the colony may rest all the time if the working demand has a limited
carrying capacity.

3. The dynamics of the case (iii) is more complicated than the other three cases (Fig.
4). When the resting demand is small enough, the colony works all the time. When
the resting demand is large enough, the colony may rest in varied patterns, i.e., the
ratio of resting workers either remains at a certain level or changes at a fixed cycle.
When the enhanced response threshold constant is 0, case (iii) is exactly the same
as the case (i), indicating that an enhanced response threshold can lead to the cycle
dynamics. Specifically, the solution of the case (iii) can go through two supercritical
Hopf bifurcations successively with varying the level of the enhanced response
threshold (Fig. 6): when the solution crosses through the first Hopf bifurcation
from the left, a stable periodic solution appears, and the amplitude of the periodic
solution increases first and then decreases with the enhanced response threshold
increases; when the solution crosses through the second Hopf bifurcation from
the left, the periodic solution disappears. Since the change of the amplitude of the
periodic solution looks like a bubble, it is called the bubble phenomenon, which was
once found in the SIS disease models with time delay and media/awareness effects
(Liu et al. 2015), but this is the first time we found bubble phenomenon in task
allocation of social insect colonies. It reveals the dynamic process of the generation
and disappearance of periodic orbits in social insect colonies with varying the level
of enhanced response threshold. Similarly, the results show that the colony size can
also cause bubble phenomenon (Fig. 6).

Like other biological systems, interactions between social insect colonies and the
environment are noisy (Costello and Symes 2014; Barton et al. 2018; Lee et al. 2012).
In social insect colonies, the task allocation of workers comes from responses to
task stimuli/needs, and the process of workers receiving stimuli may be affected by
environmental noise (i.e., Couzin and Franks 2003). This can be explained by, for
example, random fluctuations affecting the accuracy of information exchange among
workers (by affecting the pheromones or the antennae sounds), thereby affecting the
task stimulus/task demands. To peek into the effects of random fluctuations on the
dynamics of task allocation, we assumed that the intensity of environmental noise
is proportional to the size of the task demand, and derived two white noise-driven
stochastic models based on cases (iii) and (iv). For each case, we focused on the effects
of random fluctuations on task allocation under three different dynamic situations
(Sects. 5.1 and 5.2). Numerical simulation results of the stochastic models indicate
that: (1) Noise can regulate task demand and work activity in the following ways:
when the colony rests at a certain level, the intervention of random fluctuations makes
the average of the task demand (over 500 replicates) higher, and the average of the
resting level becomes lower; when the colony spends all the time on resting, random
fluctuations can not change the colony being rest all the time but have delay effects;
when the task demand and the resting level change periodically, the intervention of
random fluctuations can make the periodicity irregular. (2) Increased noise intensity
may lead to more possibilities for the system. (3) Noise may explain the volatility of
experimental data (see Fig. 11).
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Our paper provides a new modeling and theoretical framework for studying task
allocation of social insect colonies. Our theoretical results provide important biolog-
ical insights into how the scaling effects of colony size affects task allocation and
resting probability. Besides, four application scenarios based on the actual situation
are presented on the level of working activity and resting. The effects of random fluc-
tuations on task stimuli are also included in the study of task allocation of social insect
colonies. Despite these promising results above, some important factors are needed to
address further. For example, (1) our framework only considers the dynamics of the
colony without space. However, the task groups and demands are unevenly distributed
in space. It would be interesting to take into account the effects of spatial scale on the
task allocation of social insect colonies; and (2) To fully understand the task allocation
of social insect colonies, experimental data should be introduced and combined with
theoretical results to obtain a better understanding of the task allocation of social insect
colonies. Those two points are our ongoing work.

7 Proofs
7.1 Proof of Theorem 1

Proof Since )/ x;(0) = 1 and )/, x/ = 0, we can conclude that

m
> xi(t) =1and 0 < x;(t) < 1 forallt > 0.
i=0

For any initial condition taken in £2, we have follows:

dx,-
dt

- dD;

=0, — :yiN8i>0,l.:1,...,m,
xi=0 dt

D;=0

which implies that the Model (1) is positively invariant in §2 according to Theorem
A.4 (p.423) in Thieme (2003).
Notice that N is strictly positive, and
— 8 _ XiDj N _ Di
D =y [1 =3 ] = v [1- 5],
we have
R ,NS,'fl
liminf D; (1) > 6;D; = 21—
—00 o

Assume that X* = [xg, x{, ..., x;;] and D* = [D7}, D3, ..., D;;] is an equilibrium
of Model (1). If g—(? = ®N%_ we have the following equations hold for i > 1:

1 X?D?—O:x?D?—D
oD; 6 7
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g_;k * m
i _ It _ A
Z Dka—l—():} : —ZDk
k=0 k=1
—HDN’SOXS =D+ dﬁN‘SoxS,
and for i = 0, we have
Do
% =1= &N = D+ dNx;
Z Dkxk DoxO 0
k=1 Bo
=xj=1———if oN* > D
0
and
x5 = 0if ®N% < D.
Therefore, if ® N% > 13 we have
* b * A 80 .. % 8o
x5 =1- a5 D=6 (D+oNYx5) =00N
and
D;6; Di
X = _— ' forall 1 <i <m.
Df  ®N%
If ®N% < ﬁ, we have
x5 =0, Df =6 (D+®N™x5) =6, D and
bo b
xf=—2=—"foralll <i <m.
D; D
If Dé) = wN%(1 — x¢), we have the following equations hold fori > 1
x*Df x*Df N
l-——=0=> ——-=D;,
0; D; 0;
D? m X m
0; 1 — i X A 80, %1 ok
—Z’" T 0=> Z Di + wN®x3(1 — x)
k=0 ~6g =0 k=1
=D+ wN‘SO(l — x3)Xg,
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and for i = 0, we have

20

P _ 80(1 — %) — D 80 (1 — +*)y*
—Zm DZXZ+D0~¥6‘ 1 = wN(1 —xp5) = D+ wN(1 — x)xg
k=1 "6 %

=x5=1- w1[v)50 if wN% > D

and
xg =0if wN% < D.

Therefore, if wN% > 15 we have

D . -
xp =1 =, D =4, (D+wN (1 = x5)x5) = 6, DN

and

D;6; D;
o T ! foralll <i < m.

t Df vV DwN%

If wN% < ﬁ, we have

X

x5 =0, Df =6; (ﬁ +wN%(1 —xﬁj)xé‘) =6,D
and

Dit; _ D
X = =—foralll <i <m.
F D
1

Let vg; = 32 and vjp = )f—("), then we have
1

/ / Dy _ Di
v/_@_xoxi_v_ 6o 6i
0i — X xz = Voi m  Dpxg
! i k=0 T
/ / D; Do
o = X XiXy Vi 6o
0— 2 i0 m  Dpxg
X0 Xy k=0 =,

Since lim inf;_, oo D;(t) > 6; bi, we have follows:
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1. If g—é’ = PN < D, the following inequalities hold
Do _D; 5
ro_ o B % _@oNo_D;
Yoi = Zk =0 Dkxk = v Y, D”k <0
D _Dg 5
, 5 % _ —oN%
bio = Zkl 0 D“k = Zk =0 DW‘ -0
which imply that
. : xo() xi (1)
lim sup vp; (#) = lim sup = 0 and lim sup v;o(¢) = lim sup =00
t—>00 t—oo Xj t—00 t—o0 Xo(t)

2. If 19)_(;) = wN%(1 — x0) and wN® < D;, the following inequalities hold

- wN% (1—x)—D N%—D
— o . —x0)=D; wNO—D;
Vo = V0i =, D = V0i Dog = Voi 5y < 0,
2 k=0 g, Xi=o o k=0 ~6;
D _ Dy s
r_ 50 _ Di—wN%(1—xp)
Vig = Vio =, D = Vi0 s Dkxk 0,
k=0 6 k=0
which imply that
. , x0(7) xi(t)
lim sup vg; (#) = lim sup = 0 and lim sup v;o(¢) = lim sup i
t—00 t—oo X t—00 t—00 xO(t)

Therefore, if there exists an i such that wN% < ﬁi for 19)_(? = wN%(1 — xq) or
?—S) = @NY < ﬁi holds, we have

lim xo(t) = 0.
11— 00

7.2 Proof of Theorem 2

Proof The proof of the existence of equilibria is straightforward, so it is omitted here.
To prove the stability of equilibria, let E* be the corresponding equilibrium of the
above four systems, J| g+ the corresponding Jacobian matrix evaluated at E* and
A (E*)(i = 1, 2) the eigenvalues of J|(g+).

Model I The system (7) always has an equilibrium E*. The Jacobian matrix of
System (7) evaluated at E* is

¢90[N80+178 _1 O
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Direct computation yields
gNBo+1-8 NS—d0—1
M(E*) = —aN < 0and 1 (E*) = o (q) _ 7’_9) .
o

It follows that E* is locally asymptotically stable if @ < VN:;OA , and it is unstable

§—80—1
. yN 0
if® > ——-

Case (1) @ < yN:;Oil . In this case, E* is the unique equilibrium of System (7).

The Pioncare-Bendixson theorem (Hale 1980) implies that all solutions of System (7)
converge to the equilibrium E*, i.e., E* is globally asymptotically stable.

§—80—1
Case 2) @ > YN (wo . In this case, E* is unstable and System (7) has a unique

interior equilibrium E *(x*, f)*). The Jacobian matrix of System (7) evaluated at E*
is

0 DONOOT*(1—5%)
T| o = [13*)2*+d>9N50(1—)?*)]2
(B = . A
—aND* —aNx*

Then we have
M (E®) 4+ 2M(E*) = —aNZ* <0
and

A aD*ON*H! 2+
M(ED)A(ET) =

- 51— ) >0,
[D*}E* + ®ONS(] — ;2*)]

which indicates that )»1(12"*) < 0, )»2(12"*) < 0. Thus the equilibrium E* is locally
asymptotically stable. To show the global stability of E*, we only need to rule out the
existence of periodic orbit for the System (7). Suppose that I'(¢) = (x(¢), D(¢)) is
an arbitrary nontrivial periodic orbit of the System (7) with the least period T > 0,
and J(x(t), D(t)) is the Jacobian matrix of System (7) around the periodic solution
(x(t), D(1)). Let

T
AT (1)) ::/ Trac(J (x(¢), D(t)))dt
0

T M@N‘SO
=/ 7 s —1—aNx() | dr.
0 [D(tgx(t) + @No(1 — x(l‘))]
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Since
D
x'=x 0 -1,
[% + @N%(1 — x)
we have
DN
[2 4 o Nd(1 —x)]
x' 2N x! x'? x'
=|—+1 =—+4+1- — .
X X x(1—x) 1—x

It follows that

A(F(t))Z/T X/(t)_ c0 - x¢) —aNx(t) ) dt
o \x() x(O)A—-x@) 1-x@®

T / /
:/ (x n X )dt
0 x(1) 1—x(1)

T x/(t)2
“, <_x(t)(1 —0) “Nx(t)> .

< 0.

By the divergency criterion (Hale 1980), all the periodic solutions should be orbitally
stable. This contradicts the local stability of the equilibrium E* ie., E* is globally
asymptotically stable.

Model Il The System (8) always has an equilibrium E*. The Jacobian matrix of
the System (8) evaluated at E* is

guwaN%+1-5 10
s = Z)/N‘S —aN |’

By calculating the eigenvalues, we have

9N80+1—3 NS—S()—]
M(E®) = —aN <0, Mm(E®) = e <w — V—) .
of
§—8p—1
It follows that E* is locally asymptotically stable if w < YN a00 , while it is unstable
. 5—50—1
ifw> N2

af
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Case (1) w < VNi;Oil . In this case, E* is the unique equilibrium of System (8). It

then follows from the Pioncare-Bendixson theorem (Hale 1980) that all solutions of
System (8) converge to the equilibrium E*, i.e., E* is globally asymptotically stable.

§—80—1
Case ) w > ”Nago . In this case, E* is unstable and System (8) has a unique

interior equilibrium E*(£*, D¥). The Jacobian matrix of System (8) evaluated at E*
is

BN 2 1 N0 ¥2(1—3*)
Jl s = D D*2 .
|(E*) —aND* —aNx*

Since

BN 5*2 y No=do—1
- = =x" <1,
D* afw

we obtain that the eigenvalues A1 (12" ), AZ(E *) satisfy

A Ay N 5*2 o
2B 4+ a(E%) = — (1= 2222 4 aN#*) <0
X

and

>0,

R R 0 NBQE'*Z ] N1+80 a2 1 — &%
3 (EMa(E*) = aN&* (1 _ T >+ R e
D* D*

which indicates that 11 (E*) < 0, A2(E*) < 0. Thus the equilibrium E* is locally
asymptotically stable. To further verify the global asymptotically stable of the equi-
librium E*, we only need to rule out the existence of periodic orbit for the System
(8). We assume that I"(t) = (x(¢), D(t)) is an arbitrary nontrivial periodic orbit of
the System (8) with the least period 7 > 0, and J (x(¢), D(t)) is the Jacobian matrix
of System (8) around the periodic solution (x(¢), D(t)). Let

T
A (1)) ::/ Trac(J (x(t), D(t)))dt
0

T DUy Noox2 (1)
—/ 5 = 1 —aNx() | dt.
"\l

DOXW 4y Ndox()(1 — x(f))]

Since

D
x ' =x 0 -1,
|:% + wN%x(1 —x)
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we have

%wN‘SOx2 (x’ n 1)2 dwN%x?
[% + wN%x(1 — x)]2

1 x?
=[(2- ! — )
< l—x)x+x I —x

It follows that

AL (1) = ' 2 ! ' 108 1 —aN d
( (t))_/0 ( —1_x(t))x(t)+x(t)—l_x(t)— —aNx(t) |dt
T 1 ,
:/0 (2_1—x(t)>x(t)dt

T x/(t)z
+/0 (—(1 —x(1)) — —x0) —aNx(t)) dt

< 0.

By the divergency criterion (Hale 1980), all the periodic solutions must be orbitally
stable. This contradicts the local stability of the equilibrium E*, ie., the equilibrium
E*is globally asymptotically stable.

Model Il The System (9) always has an equilibrium E*. The Jacobian matrix of
System (9) evaluated at E* is

a9¢N50+|—5 . 1 O
Jl(E*) = y(1+b) .
—yN? —aN

By calculating the eigenvalues, we have

9N3()+1—8 1 b NS—S()—I
M(E®) = —aN <0, A(E*) =2 (cb _yd+h )

y(1+b) ab

§—8p—1
Then E* is locally asymptotically stable if @ < W, and E* is unstable if
y(]+b)N578071
@ > T.

§—8p—1
Case (1) @ < W. In this case, E* is the unique equilibrium of System

(9). It then follows from the Pioncare-Bendixson theorem (Hale 1980) that all solutions
of System (9) converge to the equilibrium E*,i.e., E* is globally asymptotically stable.

Case 2) @ > %1\9’6_50_1. In this case, E* is unstable and System (9) has an
equilibrium E* (x*, 13*). The Jacobian matrix of System (9) evaluated at E* is

bx*(1=x*) x*(1—x%)
A 1+b5* A
N = —aND* —aDN)?* .
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By computing the eigenvalues, we obtain that

. N R . bx*

and

. . b(1 + b)y Né—%0—1
A (E®) 4 A (B*) = —3* (aN—b+ (d+Dy )

Dalb

Therefore, we can conclude that:

— Whenb —aN <0Qand & > %%,5_50_1’ we have kl(lg"*) + Az(E*) <0, 1i.e.,

E*is locally asymptotically stable.

y (14b)N3—%~! yb(14+b)N*—%0~1
—Whenb_aN > OandT < @ < W

AM(E®) 4+ 2 (E*) <0, ie., E*is locally asymptotically stable. .
— When b —aN > 0and @ > @* we have A (E*) + A (E*) > 0, ie., E* is
unstable.

= @* we have

Notice that when b > «oN, the stability of E* is closely related to the parame-
ter values. In the following, we apply local bifurcation theory to study the complex
dynamics of E* when b > aN.

We first choose @ to be the bifurcation parameter. Let

f(®) = (@N — b)®ab + b(1 + byy NS ~%~1, (13)

Since f(®*) = 0and f'(@*) < 0, the equilibrium E*is locally asymptotically stable
if @) < @ < @*, while it is unstable if @ > @*. Then, by a similar argument (Qiu
and Zhu 2016), we obtain that the system undergoes a Hopf bifurcation at @ = @*.
y(+b) N>~ DN+
e & b o< O‘T
equilibrium E* if b < bg. Next, we choose b to be the bifurcation parameter. By (13)
we have

Since @ > — 1 := bg, the system has an

F(b) = yNO=00=1p2 4 (yN"*‘SO*l — Cba@) b+ a’N®6.
Let
2
A= (yN5—30—1 - @ae) — 4y’ PN, (14)

It follows that the number of roots of function f(b) = 0 is completely determined by
the discriminant A (see Fig. 15):

— If A < 0, the function f(b) = 0 has no root.
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Fig. 15 A schematic diagram of
the number of roots of function
f(b) as A changes

— If A > 0, the function f(b) = 0 has two positive roots

_ ®af —yN Tl /R

. @Paf —yN Ol 4 /R
zyNé—zSo—l -

s b2 2yN5_50_1 < b07 (15)

by

. 2 N78g+2-8 80+1-8

since b¥b* = ENO""P0 o ()and b* + bF = LLINOT 7 _ 1 - (.
172 y 1 2 y

Therefore, we can conclude that:

— Assume that A < 0, then we have Al(E*) + AZ(E*) < 0,ie., E*is locally
asymptotically stable. . .
— Assume that A > 0.If b < b} or by > b > b3, we have A1 (E*) + A2(E*) < 0,

ie., E*is locally asymptotically stable, while if b7 < b < b3, we have A; (E*) +
Az(l:? ) >0, ie., E* is unstable. It follows that two Hopf bifurcations occur at
b = b} and b = b}, respectively.

8§—80—1 A
Since @ > VUH’% & Noot+I=8 o y‘g‘f’h) , the system has an equilibrium E*
if No+1=0 o _®ab_ 1 the following, we choose N to be the bifurcation parameter.

y (1+b)
By (13) we have

F(N) =b(1 +b)y N1 L 400N — ab®b
and
F/(N) = (8 =80 — D)b(1 +b)y N =072 4 o290,

It follows that

— When § > §p + 1, the system has an equilibrium E* if

dab %

< = Nop.
y(1+b)

In this case, we have f(0) < 0, f(Ng) > 0and f'(N) > 0, whichAindicates that
f(N) = 0 has a unique positive root N* € (0, Np). Therefore, E* is unstable
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it N € (0, N*); while it is locally asymptotically stable if N € (N*, No). By a
standard argument (Qiu and Zhu 2016), a Hopf bifurcation occurs at N = N *,
— When § < 8§y + 1, E* exists if N > Ny. In this case, if

o’ Ph =
N < :
(14380 —8)b(1+b)y

we have f/(N) < 0, while if N > N; we have f'(N) > 0. Since f(0) >
0 and f(Ng) > 0, we have the following results: (a) if N9 > Nj, we have
f(N) > Oforany N € (Np, co), which indicates that E*is locally asymptotically
stable; (b) if No < Ny and f(Ny) > 0, we have f(N) > f(N1) > 0 for any
N € (No, 00), which indicates that £* is locally asymptotically stable; (c) if
No < Njand f(N;) < 0, we know that f(N) = 0 has two roots N, N}, where
No < N{ < N; < Nj. It follows that f(N) > 0if N € (No, N{) | J(N5, 00),
and f(N) < 0if N € (N}, N3), which indicates that E* is locally asymptotically
stable if N € (No, N{) (N5, 00), while it is unstable if N € (N, N5). By a
standard argument (Qiu and Zhu 2016), two Hopf bifurcations occur at N = N}
and N = N, respectively.

Model IV The System (10) always has two equilibria Ejj, ET. The Jacobian matrix
of the System (10) evaluated at Ejj is

KN -1 0
Jl(E*) = D0 S41 v .
0 —aKN - K

Direct computation yields

KN°~%
@0

M (EE) = —% <0, and Ay (EY) = ~1,

which indicates that the equilibrium Ej is locally asymptotically stable if 1, (Ej) <

§—6 .. . §—6
0& & > KN9 0, and it is unstable if @ < KNG 0

. Similarly, we can obtain

that E7 is locally asymptotically stable if & < %ﬁ_%wﬁ,

KN5—50 y
P> g S TakN

Case (1) @ > %HO. In this case, the System (10) has no interior equilibrium
with two equilibria on the boundary £2: Ej being locally asymptotically stable and E}
being unstable. It follows from the Pioncare-Bendixson theorem (Hale 1980) that all
solutions of System (10) expect E} converge to the equilibrium E, which indicates
that Ej is globally asymptotically stable.

Case Q)@ < K N;SO Wﬁ In this case, the System (10) has no interior equilib-

rium with two equilibria on the boundary £2: Ejj being unstable and E} being locally
asymptotically stable. It follows from the Pioncare-Bendixson theorem (Hale 1980)

and it is unstable if
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that all solutions of System (10) expect Ej converge to the equilibrium E}, which
indicates that E7 is globally asymptotically stable.

Case (3) %H’WLKN <@ < KNg_SO. In this case, the System (10) admits a

unique interior equilibrium E*. The Jacobian matrix of the System (10) evaluated at
E*is

0 (15
J|(é*) = ~ D n .
—aND* —% —aNi*
Direct computation yields
M(E™) + A (E*) = — (% + aN)?*) <0
and

M(EDM(E*) = aNZ*(1 — £%) > 0.

It follows that A;(E*) < 0, A2(E*) < 0, i.e., E* is locally asymptotically stable.
To show the globally asymptotically stable of E*, we only need to rule out the exis-
tence of periodic orbit for the System (10). Assume that I"(#) = (x(¢), D(¢)) is an
arbitrary nontrivial periodic orbit of the System (10) with the least period 7 > 0,
and J(x(¢), D(t)) is the Jacobian matrix of System (10) around the periodic solution
(x(t), D(t)). Let

T
A (1)) ::/ Trac(J (x(t), D(t)))dt
0

T )
:/ Do N —1—-Y _ounxw))ar.
0 [ K

D()x(1) + PONS (1 — x(1)]

Since
, D
X' =x —11,
Dx + ®ON% (1 — x)
we have
DON 3 (x’ 1>2 0P N
[Dx + @ON%(1 — )7 \* D
X x/2 x'
Ty T xd—-xn 1-x
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It follows that

A(F(t))—fT x0 0k A — Y _aNx(r) ) ar
b \x( x®A—-x@) 1-x@t) K

:fT <x/(t) IR0 )dt
0 x(1) 1 —x()

r X0’ y
I (st o)

< 0.

By the divergency criterion (Hale 1980), all the periodic solutions must be orbitally
stable. This contradicts the local stability of the equilibrium E*. Therefore, the equi-
librium E* is globally asymptotically stable.
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