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RECRUITMENT DYNAMICS OF SOCIAL INSECT COLONIES*
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Abstract. Recruitment plays a vital role in the ecological and evolutionary successes of social
insect colonies. In this paper, we formulate a four-compartment model and its simplified version to
explore how we should model the recruitment dynamics of workers in social insect colonies properly.
Our four-compartment model has the components of the unalarmed patrollers, the alarmed patrollers,
the alarmed recruiters, and the available workers, while its simplified version has three components
where we combine the unalarmed patrollers and the alarmed patrollers into the patrollers. We
perform complete mathematical and bifurcation analyses on both the full system and its simplified
system. We have many interesting findings, including that (i) the simplified three-compartment
system has only simple equilibrium dynamics, i.e., no periodic and chaotic dynamics; (ii) the four-
compartment system has very complex dynamics; for example, it can have up to three subcritical Hopf
bifurcations, two supercritical Hopf bifurcations, two limit point bifurcations, and a fold bifurcation
of the limit cycle. Those important results provide theoretical guidance for modeling and studying
recruitment dynamics of social insect colonies: It is critical to have proper compartments for biological
systems as the number of compartments could lead to totally different dynamics, and hence affect
policy-making.
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1. Introduction. Social insects, such as ants and honeybees, are insects that
live in a colony and manifest three characteristics: reproductive division of labor,
overlapping generations, and group integration [75]. Social insect colonies operate
flexibly like organisms, providing solutions to group-level complex problems through
individual-level behavioral rules. These colonies are comparable to humans in terms
of the complexity of communication, the division of labor, and the intensity of group
integration [74]. Over the past few decades, research on the complex dynamics of
social insect colonies has aroused great interest from scientists [11, 27, 28, 32, 39].
The underlying principles have been effectively used in many fields such as computer
science [38, 48], economics [5], swarm intelligence [12, 31], and gene expression [45,
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37]. In this paper, we will focus on recruitment dynamics, which is one of the most
important topics in the complex dynamics of social insect colonies.

Recruitment describes the dynamic process of individuals mobilizing other nest-
mates. Efficient recruitment ensures that workers with different characteristics can
be integrated as a whole and perform tasks that individuals cannot complete alone
[32, 55, 72]. As an important communication behavior, recruitment widely exists in
the collective task (e.g., foraging [9, 44, 64], colony migration [59], and resistance to
invasion [58]) of social insect colonies [71, 49]. For instance, foragers share informa-
tion on food and other resources with nestmates through recruitment strategies (e.g.,
dancing [8, 60, 68] and chemical pheromones and antenna signals [14]). When the
colony is invaded, a larger number of workers will be recruited by patrols in a short
time to defend against the invaders. In the literature, some work has been developed
for exploring the recruitment dynamics of social insect colonies [3, 34, 36, 47, 63].

Mathematical modeling provides a powerful tool in helping us understand the in-
herent laws of biological systems. The last few decades have seen growing interest in
developing mathematical models to explore the recruitment dynamics of social insect
colonies, e.g., through agent-based models (ABMs) [19, 53, 56|, ordinary differen-
tial equations (ODEs) [54, 61, 66], and partial differential equations (PDEs) [69, 73].
Amorim [2] constructed a theoretical framework based on the PDE mathematical
model to study the recruitment dynamics of foraging ants. Sumpter and Pratt [65]
established a general ODE model to study the recruitment dynamics of social insect
colonies during foraging, where the entire colony is divided into five states: Waiting,
Searching, Exploiting, Recruiting, and Following. They pointed out that their pro-
posed model should be adjusted according to the behavioral mechanisms of specific
insects. Models on recruiting through chemical pheromones have been mainstream
to study the recruitment dynamics of social insect colonies (see also [13, 17, 21, 67]).
Indeed, chemical pheromones can be helpful for transmitting information between
workers, and therefore play an essential role in promoting the recruitment of social
insect colonies [4, 26, 30]. For many social insect colonies, interaction-based recruit-
ment strategies for obtaining short-term food sources are more flexible than chemical
pheromone-based recruitment strategies [22, 24]. Current mathematical modeling re-
search on the recruitment dynamics of social insect colonies based on physical contact
is still in its infancy [24, 50, 51, 52].

The patrolling behavior of Azteca ants provides an excellent biological example
for studying physical contact—based recruitment dynamics. Azteca ants usually live
in the internodes of the cecropia tree [42]. The cecropia tree provides refuge and
nutrients for Azteca ants. In return, Azteca ants patrol the stems and leaves of
the cecropia tree and remain vigilant at all times [20]. When an invader is found,
the patrolling workers (alarmed patrollers) will immediately notify other nestmates
who are patrolling around (unalarmed patrollers) [20]. Some of the alarmed workers
(alarmed recruiters) will quickly return to the nest to recruit the workers who are
on standby in the internodes (available workers) [43, 57]. After a short recruitment
process, a large number of Azteca ants will be recruited to the scene to defend against
invaders. Studies have shown that the number of Azteca ants on damaged leaves
can increase fivefold, and rapid induction of ant recruitment may play a key role in
responding to invaders [1].

Motivated by the recruitment behavior of Azteca ants in colony defense, we for-
mulate a mathematical framework of recruitment dynamics with four compartments:
the unalarmed patroller, the alarmed patroller, the available workers, and the alarmed
recruiters. In general, it is not only difficult to distinguish between the unalarmed pa-
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troller and the alarmed patroller biologically, but also it is time- and energy-consuming
to collect the data. Since both the unalarmed patrollers and alarmed patrollers could
be considered as the rank of patrollers, we are interested in whether/when they can
be merged into the same group. Thus, the original four-compartment model becomes
a three-compartment model with components of the patrollers, the available workers,
and the alarmed recruiters. In general, from a mathematical point of view, we should
expect that the four-compartment model, which more closely resembles the biologi-
cal reality, has richer dynamics than the three compartmental one. We will perform
mathematical analyses and simulations of both the original four-compartment model
and the simplified three-compartment model to explore (1) under what conditions
can we could study solely the 3-component model as its dynamics is similar to the
4-component model; and (2) when we must spend time and energy to study the 4-
component model and the related data collection as its dynamics is totally different
from the 3-component model.

As a brief note, the motivations for studying both the three-component model
and the four-component model are threefold: (1) Biologists who are studying the
Azteca—cecropia symbiosis system and collecting data for such a biological system
suggest that the behavior of the four groups mentioned above may not always be
distinctive; i.e., it is possible that some groups could be combined as one group. (2)
The data collection for social insect colonies is both time- and energy-consuming. If
certain variables can be combined without affecting the study of important issues,
then time and energy can be saved by studying the system with fewer components.
(3) Mathematically, it would be more efficient to study the system with fewer groups.

The remainder of this article is organized as follows. In section 2, we introduce
the derivation of the full model and its simplified version in detail. In section 3, we
first study the recruitment dynamics when the alarmed patroller and unalarmed pa-
troller are not distinguished, and then explore the recruitment dynamics when the
alarmed patroller and unalarmed patroller are distinguished. Our work has rigor-
ous mathematical proofs and carefully performed bifurcation analysis. In section 4,
we provide a discussion to highlight the mathematical and biological contributions
of our work. The technical proofs are provided in the supplementary material file
Recruitment-R2Supp.pdf [local/web 1.50MB].

2. Model derivation. Based on the biological background of Azteca ants during
collective defense, we establish a theoretical framework for studying the recruitment
dynamics of social insect colonies with four components. Let P be the density of the
unalarmed patrollers at time t, let A be the density of the alarmed patrollers at time
t, let R be the density of the alarmed recruiters at time t, and let W be the density
of the awailable workers who could be potentially recruited into R and A class. Basic
assumptions are listed as follows (see also the flow diagram in Figure 1):

(1) The time scale is from seconds to minutes, such that there is no death and
birth during the processes. Thus, we assume that the total density is constant,
ie.,

P+A+R+W=N.

(2) Unalarmed patrollers P. The number of unalarmed patrollers P depends on
the rate at which available workers W join unalarmed patrollers P, «,,W; the
rate at which alarmed recruiters R join unalarmed patrollers P, «,-R; the rate
at which unalarmed patrollers P go back to the colony to become available
workers W, ay, P; and the rate at which unalarmed patrollers P are recruited
into alarmed patrollers A through their interactions, a,PA (it is standard
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Fi1G. 1. Flow diagram of state variables for the full model (2.1).

to use linear interaction terms in compartmental modeling). Based on these
assumptions, the dynamics of unalarmed patrollers P could be described by

P' = a,W+ a,R— a,PA— a,P.

Alarmed patrollers A. The number of alarmed patrollers A is determined by
the rate at which available workers W join alarmed patrollers A through their
interactions, ¢, RW; the rate at which unalarmed patrollers P are recruited
into alarmed patrollers A through their interactions, a, PA; the rate at which
alarmed patrollers A are recruited into alarmed recruiters R through the
interactions between A and R, 3, AR; and the rate at which alarmed patrollers
A go back to the colony to become available workers W, 8, A. Therefore, the
dynamics of alarmed patrollers A could be described by

A" = 0uPA + ¢oRW — BuA — BrAR.

Alarmed recruiters R. The number of alarmed recruiters R is determined
by the rate at which available workers W join alarmed recruiters R through
their interactions, ¢,. RW; the rate at which alarmed patrollers A are recruited
into alarmed recruiters R through the interactions between A and R, §,.AR;
the rate at which armed recruiters R become unalarmed patrollers P, «, R;
and the rate at which alarmed recruiters R go back to the colony to become
available workers W, 7,, R. Therefore, the dynamics of the alarmed recruiters
R could be described by

R = ¢.RW + B, AR — R — o, R.

Awailable workers W. The number of available workers W inside the colony is
determined by the rate at which unalarmed patrollers P go back to the colony
to become available workers W, ay, P; the rate at which alarmed patrollers
A go back to the colony to become available workers W, 3, A; the rate at
which alarmed recruiters R go back to the colony to become available workers
W v, R; the rate at which available workers W join unalarmed patrollers P,
W the rate at which available workers W become alarmed patrollers A
through the interactions between R and W, ¢,RW; and the rate at which
available workers W become alarmed recruiters R through their interactions,
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¢ RW . Therefore, the dynamics of the available workers inside the colony
W could be described by

W’ = a,P + BuA + vl — ¢, RW — ¢ RW — a,,W.

Based on the assumptions and discussions above, we have the following differential
equations to describe the recruitment dynamics:

P'=a,W+a,R—a,PA— ,P,

A = a,PA+ ¢ RW — B,A — 8. AR,

R = ¢.RW + 3, AR — v, R — o, R,

W' =a,P + BuwA+vyR — ¢ RW — ¢ RW — v, W.

(2.1)

The simplified model with three compartments. In experiments with social
insect colonies, the data collection is both time- and energy-consuming. If certain
variables can be combined without affecting the study of important issues, then time
and energy can be saved by studying the system with fewer components. In the
recruitment dynamics of Azteca ant colonies, since both unalarmed patrollers and
alarmed patrollers are patrolling workers, we are interested in whether they can be
merged into the same group. In the case that we do not differentiate the unalarmed
patrollers P and the alarmed patrollers A, we combine P and A into one component
as simply patrollers P. Then we could have the following simplified 3-D model:

P' = a,W +a,R+ ¢,RW — 3,PR — ,, P,
(2.2) R' = ¢,RW + B,PR — v»,R — o, R,
W' =a,P +yyR— ¢,RW — ¢, RW — a,, W.
The biological meaning of the parameters and functions are listed in Table 1.

TABLE 1
The biological meanings of parameters in the simplified system (2.2).

Parameters  Biological meaning

ayW Rate of available workers W joining patrollers P

arR Rate of alarmed recruiter R joining patrollers P

apP Rate of patrollers P going back to the colony to become available workers W

BpPR Rate of patrollers P being recruited into alarmed recruiters R

YwR Rate of alarmed recruiters R going back to the colony to become available workers W
¢p RW Rate of available workers W being recruited into patrollers P by alarmed recruiters R
érRW Rate of available workers W being recruited into alarmed recruiters R

Notes. Based on the derivations of model (2.1) and its simplified version (2.2),
we can see that another simplified version of model (2.1) would be combining the
components of A and R into the single component R, which could lead to model (2.3)
below by setting ¢, = 0 in model (2.2):

P'=a,W+a,R— ,PR— a,P,
(2.3) R' = ¢.RW + B,PR — v, R — a, R,
W' = apP + R — ¢ RW — a,,W.
In the next two sections, we will compare the dynamics of model (2.1) and its simplified

version (2.2) to address whether we are able to make simpler models to replace the
more complicated version.
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3. Main results. Since N'=0and P =N — A— R— W, we only consider the
following system of three equations:

W' = Osz + (ﬂw - o‘p)A + (7111 - ap)R - (¢r + ¢a)RW - (ap + O‘w)‘/V,
(3.1) A" = (agN = Bu)A + ¢ RW — g A% — (aq + Br)AR — ag AW,
R = R(¢yW + B, A — (Y + ).

Similarly, for the simplified three-compartment model (2.2), we have its corresponding
2-D model (3.2) by setting P = N — R — W. Hence, system (2.2) is equivalent to the
following 2-D system (3.2):

W' = a,N — (¢ + ¢p) RW — (ap + )W + (Y — ap) R,

(3.2) ;o 5
R = (BpN — v — )R+ (¢ — Bp)WR — B,R”.

First, we have the following theorem.

THEOREM 3.1. System (3.1) and model (3.2) are positive invariant in R3. and
Ri, respectively, and every trajectory of system (3.1) is attracted to the compact
set Cy = {(W,A,R) R} : W+ A+ R < N}, while every trajectory of model (3.2)
attracts to the compact set Co = {(W,R) € R2 : W+ R< N} . In particular, we
have P and W being uniformly persistent for both system (3.1) and model (3.2);
i.e., there exists a positive constant € such that e < liminf;_,., P(t) < N and ¢ <
liminf;_, o W(t) < N.

Notes. Theorem 3.1 indicates that both system (3.1) and model (3.2) are biolog-
ically well-defined. The proofs for both systems are similar, and thus we only provide
the detailed proof for system (3.1) in the supplementary material file Recruitment-
R2Supp.pdf [local/web 1.50MB].

3.1. The dynamics of the simplified model. To study the recruitment dy-
namics of system (3.2), we first define

(wBp + apr)

x N.
(ap + aw)(ar + Yw)

Ro =

Biologically, the numerator of Ry indicates the recruitment rate of the alarmed re-
cruiter group from other groups, and the denominator indicates the outflow rate of the
alarmed recruiter group. Thus, the term R can be used to measure the recruitment
ability of the alarmed recruiters. For ease of notation, we define mg = (o + cvw) (ot +
Yw) = (CwBp+apdr )N, M1 = By +pdr+ 0 (dr+bp) + 70w (Bp + bp) — Bp(dr +¢p) N,
ma = Bp(dr + ¢p), N = m3 — dmoma, Ry = ZmtVA = ZmVA and W =

2’17’7,2 2m2

a‘;ﬁﬁ:f((b:fgil){& ,i=1,2. Let W¥(E71) and W¢(E1) be the stable manifold and center

manifold of the equilibrium E; = (W7, Ry), respectively. Then we have the following
theorem.

THEOREM 3.2 (existence and stability of equilibria). The simplified system (3.2)
always has a nonrecruiting equilibrium Eywg = (051711,0) If Ry > 1, system (3.2)
has a unique interior equilibrium Ey = (W1, Ry); if Ro < 1, it can go through backward
bifurcation and have up to two recruiting equilibria Ey = (W1, Ry) and E; = (Wa, Ra).
The sufficient and necessary conditions for the existence and the local stability of these
equilibria are listed in Table 2.
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TABLE 2
Existence and stability of equilibria of system (3.2).

Equilibria Existence condition Stability condition
Bwo = (;222—,0) Always Sink if Ro < 1; saddle if R > 1
ptaw
Only By = (W1, R1) Ro < 1,m1 < 0,A = 0; Sink if Ro > 1;
or Rop =1,m1; <0;0or Rp >1 dimW'(E1)=1if Rp <1,i=s,c.
E1 = (Wi,R1) and E2 = (W2, R2) Ro<1l,mi <0,A>0 E4 is a sink, and E3 is a saddle.

Notes. From the persistence of P and W based on Theorem 3.1, we know

that the nonrecruiting equilibrium Ey¢ = (ajig ,0) has W = aji];[ ,R =10, and
P = % and the coexistence equilibrium E; = (W3, Ry) has all its components
pTQw

W, R, and P being positive. Theorem 3.2 indicates the following: (i) System (3.2)
always has a nonrecruiting equilibrium Eywo: Ewg is locally stable if Ry < 1, while
it is unstable if Ry > 1. (ii) System (3.2) can have two interior equilibria through
saddle node bifurcation when Rg < 1, which leads to two attractors: Ewo and FEj.
(iii) Parameter ¢, does not affect the stability of system (3.2). The theorem below
provides sufficient and necessary conditions for the global stability of the system.

THEOREM 3.3. If Ry > 1, the unique recruiting equilibrium Ey of system (3.2) is
globally asymptotically stable in IntRf_, while if Ro < 1 and

awﬂp + ap¢r + ar(¢r + qbp) + Y (ﬁp + (bp)
/Bp(d)?" + d)p)

then system (3.2) has bistability with Ewo and E; being two local attractors. Other-

wise, Eywo is globally asymptotically stable in IntRi. In the case that Ry = 1 and

N < awﬂp+ap¢T+a7‘(¢r+¢p)+7w(Bp+¢p
- Bp(ér+¢p)
asymptotically stable in IntR?‘_, and otherwise the unique recruiting equilibrium FE- is

globally asymptotically stable.

N >

and A >0,

), the nonrecruiting equilibrium Ew is globally

Notes. Theorem 3.3 shows that system (3.2) has only equilibrium dynamics.
When the recruitment ability of the alarmed recruiter group is strong enough, i.e.,
Ro > 1, the recruiting equilibrium F; is globally asymptotically stable (see Fig-
ure 2(a), area Az). When R < 1, system (3.2) can have up to two kinds of dynamics:
(i) If the colony density N is small enough, the recruiter free equilibrium Eyy g is glob-
ally asymptotically stable, indicating that the reduction of colony density N is not
conducive to the persistence of alarmed recruiters (Figure 2(a), area A;). (ii) System
(3.2) undergoes backward bifurcation when Ry < 1 where the system can have bista-
bility (Figure 2(a), area Aj), i.e., the 2-D stable manifold W*(E;) separates IntRZ.
into two connected sets V and U (see Figure 2(b)), where VU W?*(E}) is the basin of
attraction of F; and U is the basin of attraction of Eyyg.

From Theorem 3.1, we know that the populations of P and W are uniformly
persistent. Theorem 3.3 provides sufficient conditions for the existence of the global
attractor, which is equivalent to the permanence of system (3.2), i.e., all P,W, and R
are uniformly persistent.

3.2. The dynamics of the four-component model. In the previous section,
we studied the global dynamics of the simplified system (2.2). The result suggests
that system (2.2) has only equilibrium dynamics, i.e., no periodic solution and chaos.
Next, we study the dynamics of the full system (2.1), which is equivalent to system
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Ro R(0)
(a) Backward bifurcation (b) Basins attractions

FiGc. 2. One-parameter bifurcation and basin of attraction for system (3.2) when ap =
0.01,7w = 10.1,¢» = 1,aw = 1.1,8, = 0.001,¢, = 0,a, = 0.8, and N € (0,1500), where the
blue and green lines represent sink and saddle, respectively. In Figure 2(b), the colony density is
given by N =500, and U, V are the attraction basins of Ewo and Ei, respectively. (Color available
online.)

(3.1). Define

fe o) Qg
R P xN and R{{=_—="" _ xN.

(Q + O‘p)('Yw + a;) B 5w(ap + )

In the expression, oy,¢, indicates the recruitment rate of the alarmed recruiters to
the unalarmed patrollers and the available workers, and (o, + ;) (7w + @) indicates
the recruitment rate of the unalarmed patrollers and the available workers to the
alarmed recruiters. Therefore, RI* can be used to measure the recruitment ability of
the alarmed recruiters. Similarly, R4 can be used to measure the recruitment ability
of the alarmed patrollers.

In the absence of the alarmed recruiters, i.e., R = 0, system (3.1) is reduced to
the following system:

W' =a,N + (Bw — ap)A — (ap + )W,

(3.3) , )
A" =(agN — Bu)A — agA® — a, AW.

System (3.3) has two potential equilibria, Eyq = (%,O) and Ey; = (Why, An),
where A;y = QetelN—Bulowtay) 4 gy, = 2eBuN+Buley=Bu) Baged on Theorem 3.1,

o (Qw+PBuw) g (0 +ap)
we know that P is always persistent, and by calculation we have P;; = g—‘ The global
dynamics of system (3.3) can be summarized as follows.

THEOREM 3.4 (global dynamics of subsystem (3.3)). If R{* < 1, subsystem (3.3)
admits a unique alarm patroller free equilibrium Evwq, which is globally asymptotically
stable, while if R{* > 1, Eyy is unstable and subsystem (3.3) has a unique interior
equilibrium Fq1, which is globally asymptotically stable.

Notes. Theorem 3.4 shows that in the absence of the alarmed recruiters, if the
recruitment ability of the alarmed patrollers is small enough, i.e., R‘f‘ < 1, the alarmed
patrollers will be fully recruited to other groups. Otherwise, if the recruitment ability
of the alarmed patrollers is strong enough, i.e., R{* > 1, the system has population
in the patrollers P, the alarmed patrollers A, and the available workers W.
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Theorem 3.4 suggests that the full system (3.1) can have up to two boundary
equilibria: if R{* < 1, it has a unique boundary equilibrium Eyoo = (%,0,0)
(only P and W), which is globally asymptotically stable in the W-A coordinate plane,
while if R{' > 1, system (3.1) has two boundary equilibria: Ey oo being unstable and
Ew a0 = (W11, A11,0) being globally asymptotically stable in the interior of the W-A
coordinate plane of the full system (3.1) or W-A-P coordinate plane of the original full
system (2.1). Now we have the following results regarding the existence and stability
of the equilibria of the full system (3.1).

THEOREM 3.5 (existence and stability of boundary equilibrium). If R < 1, sys-
tem (3.1) has a unique boundary equilibrium Evyw oo, while if R{* > 1, system (3.1) has
two boundary equilibria, Ewoo and Ew ag. The stability of the boundary equilibria are
summarized as follows:

1. Ewoo is locally asymptotically stable if max{R% R} < 1, while it is unstable
if max{R¥ R{} > 1.

9. Deﬁne N* — [3w(O‘wﬂr"!‘ap(ﬂr—aivk)(jwﬁéiﬁg:gj)(aw+ﬁw)((¥r+’7w) as the maturity Of
the colony; then Ew aq is locally asymptotically stable if the colony is im-
mature (i.e., N < N*), and Ew ao is unstable if the colony is mature (i.e.,
N > N*).

Notes. Theorem 3.5 provides the necessary and sufficient conditions for the
local stability of the boundary equilibria Eyw o and Eyw 49 and shows that parameters
¢, and B, do not affect the stability of Ewgo, and ¢, does not affect the stability
of Ew 9. The results of Theorem 3.5 indicate that the colony density N has huge
impacts on dynamics (see the three points below). To illustrate the related dynamics,
we perform the bifurcation study on the stability of the boundary equilibria of system
(3.1) in Figure 3.

30 T 7 2 T T 1 T T
1 1 A1l | I A3 1 A2 | A3

Al | A2 | A3 , A2 L |
=20 | 1 —_ | | —_ 1 1
e | = I I = I I
= % < | x 05 | |
I i I I I
10 I M I I

I I O ,,,,,, I, ,,,,,,,,,,,, O .........(Iggggggg) ,,,,,,,,,,,,

10 20 30 40 10 20 30 40 10 20 30 40

Fi1G. 3. One-parameter bifurcation on the number of boundary equilibria of system (3.1) when
ap = 0.1, = 0.97,¢a = 0.3, = 1.5,aq = 0.1, 00 = 1.96, ¢ = 0.17,5, = 0.8, xuy = 0.1. The
circle and solid points denote Ewoo and Ew ao, respectively. The blue and green indicate the sink
and saddle, respectively. (Color available online.)

(1) If the recruitment ability of the alarmed recruiters and the alarmed patrollers
is small enough, or equivalently, the colony density is small enough, i.e.,

)

max{RR,RA} <1< N < min (aw + ap)(Yw + ) Bulap + ) 7
' 1 ap¢r Qg Oy

the alarmed recruiters and alarmed patrollers will disappear (Figure 3, Al).
(2) If the recruitment ability of the alarmed patrollers is large enough but the
colony is immature, or equivalently, colony density increases to the interval

HECEESR]

Qg Ol
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the alarmed recruiters R will disappear while the alarmed patrollers A will
remain at a certain level (Figure 3, A2).

(3) If the colony density is large enough, the boundary equilibria Ey oo and Eyw a0
are unstable, indicating that the full system has all four components available
with equilibrium dynamics or periodic dynamics.

THEOREM 3.6 (permanent). System (3.1) is permanent if R > 1 and one of the
following conditions holds: (i) R{! < 1, or (i) Ry > 1 and N > N*.

Notes. Due to the fact that permanent implies the existence of interior equi-
librium, Theorem 3.6 provides sufficient conditions for the existence of interior equi-
librium. Note that if R is persistent, then we definitely have A being persistent;
however, the persistence of A can’t guarantee R being persistent. In order to know
the detailed information of the interior equilibria of system (3.1), we define h;(A) =
n3A3 + ny A2 + ny A + ng, where

n3 = afBr(Pr + ¢a)(Br — ¢r),
n2 = Br(¢a + ¢r)[a(dr N — ar — yu) — Budr]
+ aa(pr = Br)[dr(ar + ap) + ¢a(ar + 7w)]
+ [Broa + ¢r(aa + Br)][Br(ap + aw) + ¢r(Buw — ap)l,
n1 = [¢r(ar + ap) + ¢alar +yw)l[aa(ar +w) + ¢rfuw — draaN]
+ [Brda + ¢r(aa + Br)][apdrN — (ap + aw)(yw + ar)]
+ ba(Vw + ar)[pr(ap — Buw) — Br(ap + aw)],
no = ¢a(Yw + ar){(p + w)(Yw + ar) — ap¢rNJ.

We have the following result.

THEOREM 3.7 (existence of interior equilibrium). If 8, < ¢,., system (3.1) has at
most only two interior equilibria, while if B > ¢, system (3.1) can have up to three
interior equilibria (see, e.g., Figure 4). The complete classification of the interior
equilibria of system (3.1) is included with the supplementary materials. In particular,
the following hold:

1. System (3.1) has no interior equilibrium if B,(ap + ) + Buwdr < apd, and
(ap+aw)(7w+ar)7 aa (Ywtar)+érBuw

apor ¢raa

N < min

2. System (3.1) has a unique interior equilibrium if one of the following condi-
tions holds:
(a) Br < ¢, Br(ap+aw)+Buwdr >1 and N > (ap+aw)(’7w+ary-);

apdr appr
(b) B < d) and oa(Ywtar)+¢rBuw >N > (aptow)(ywtar) .,
r< @ $raa apér ’
(aptaw)(ywtar) 2
(€) Br > ¢p, N < 2= and N < s [ag(ér — Br) + (da +

¢r)(arap = arfu) + Yuw(Br(ap + aw) + ¢a(ap — Bu)) — apdr(aw + Bu)l.
3. System (3.1) has two interior equilibria if

() N> —5—sslen(ér — Br) + (da + dr)(arap — arfu) +yuw(Br(op + aw) +

Dl ) S e P ooy
0a (0 +vw) (g +Br+da) +Bw (adrtBr(datdr
()= Bu(sBrt oy (i B ge v+ B (-4 )
w(@wBrtap (Br—¢r)+Buwdr)+aa(dw+Buw)(ar+yw
(c) N < T aa(awB +Pudr)
and one of the following conditions holds:

(a) BT' > (bT N < min { (aptaw)(ywtor) aa(ywtar)+érBuw } .

apér Prog
(b) B < ¢, N > max { (“P”;“:;zwﬂr)’ aa(ww;?;iwrﬁw } .
4. System (3.1) has three interior equilibrium if B, > ¢r, N > W’
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0.45

«” 0.35

0.25
19.7 20.2

N

Fi1G. 4. N wvs. By for the number of interior equilibria of system (3.1) when ap = 0.1, 8y =
4.97, v = 0.1, = 0.17, g = 2.3,y = 0.01, g = 0.1, 0y = 2.96, where the white, blue, red, and
black regions represent none, one, two, and three interior equilibria, respectively. (Color available

online.)

— —/n2— _ 2_
n3 > 3nins, hl(w) > O,hl(w) < 0 and one of the

3n3 3ng
ollowing conditions holds:
g
a(Ywtar)+érBw .
(a) N > Seu it
g (Ywtar)+érBuw aq(ar+vw)(aa+Br+da)+Bw(dadr+Br(Patér))
(b) Froa > N> e (CadbrtBr(batdr) :

Notes. Since the existence of interior equilibria depends on the very complicated
equation hq(A), the conditions we obtained in Theorem 3.7 look very complicated.
However, these incomprehensible results provide us with some important biological
insights. For instance:

(1)

(2)

(5)

Theorem 3.7 indicates that system (3.1) can have up to three interior equilib-
ria if the alarmed patrollers are more likely to be recruited into the alarmed
recruiters than the available workers, i.e., 8, > ¢,. Otherwise, if 8, < ¢,,
system (3.1) can have a maximum of two interior equilibria.

A necessary condition for system (3.1) to have three interior equilibria is that
the alarmed recruiters have a strong recruitment ability, i.e., R > 1.

In the scenario where the alarmed recruiters mainly recruit the available
workers (i.e., B, is very small), (i) if the group density is small enough and
the proportion of the unalarmed patrollers returning to the colony is higher
than that of the alarmed patrollers (see item 1), then there is no interior
equilibrium in the full system, indicating that the colony cannot have all four
roles of workers; (ii) if the colony density is large enough and the proportion
of the unalarmed patrollers returning to the colony is lower than that of the
alarmed patrollers (see item 2(a)), then there is a unique interior equilibrium
in the full system, indicating that the colony has all four components available
with equilibrium dynamics or periodic dynamics.

In the scenario where the alarmed patrollers are more likely to be recruited
into the alarmed recruiters than the available workers (8, > ¢,), the full
system admits a unique interior equilibrium if the colony density is small
enough (see item 2(c)), which means that the colony has all four components
available with equilibrium dynamics or periodic dynamics.

Theorem 3.7 provides guidance for the numerical simulation: if we want to
present the case of three interior equilibria, we must choose the parameters
that satisfy the conditions 3, > ¢, and R > 1.

To study the stability of interior equilibria of system (3.1), let E* = (W*, A*, R*)
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denote any interior equilibrium of system (3.1). The characteristic equation of system
(3.1) evaluated at E* is given by

(3.4) N+ Mo (E*)A? 4+ My (E*)\ + My(E*) =0,

where Ma(E*) = ap+aw+A*aa+ R (pat+¢r)+ 2N % M (EY) = (A" aq+ EW %) (), +
@+ R (G0 + 60) = (@ — Bu)(A”w — R*90) = R, (W 6o — A*(a + B1)) + R 6 (e —
Yo + W*(¢a + ¢)), and Mo(E*) = 1A We have the following results concerning

the stability of interior equilibria of system (3.1).

THEOREM 3.8 (stability of interior equilibrium). Let FE; = (W;, A;,R;), i =
1,2,3, be the potential interior equilibria of system (3.1) with Ay < As < As.

1. In the case that system (3.1) has a unique interior equilibrium Ey, Ei is
locally asymptotically stable if My (E1)Ma(Eq) > Mo(En), while it is unstable
if My(E1)M2(Eq) < Mo(En).

2. In the case that system (3.1) has two interior equilibria Ey and Es,

(a) if B > &, then Ey is unstable, and the stability of Es depends on the
sign of M1(E9)Ms(FEs) — Mo(Es): FEs is locally asymptotically stable
Zf Ml(EQ)MQ(EQ) > Mo(E2), while it is unstable Zf Ml(E2)M2(E2) <
Mo(E2);

(b) if Br < ¢r, then Ey is unstable, and the stability of E1 depends on the
sign of My1(E1)My(E1) — Mo(Ey): Ey is locally asymptotically stable
Zf Ml(El)Mg(El) > MO(E1)7 while it is unstable Zf Ml(El)Mg(El) <
My (FEy).

3. In the case that system (3.1) has three interior equilibria F1, E2, and E3, then
E5 is always unstable. Moreover, for i =1 or 3, E; is locally asymptotically
stable if M1 (E;)M2(E;) > My(E;), while it is unstable if Mq(E;)Ma(E;) <
My(E;).

Notes. Theorem 3.8 gives a theoretical insight into the stability of the interior
equilibria of system (3.1). For example, when two interior equilibria exist, at most only
one of them is stable. When three interior equilibria exist, the middle equilibria F; is
unstable, indicating that the system may have bistable (between the other two equi-
libria) or stable limit cycles. Although these abstract theoretical results are difficult
to understand directly, we may still benefit from them in observing new phenomena
in numerical simulations. Besides, Theorem 3.8 may benefit experts interested in the
theoretical mechanisms behind these interesting bifurcation dynamics. More insights
into the dynamical outcomes have been provided in the following section through
bifurcation analysis and simulations.

3.3. Comparisons: Four or three components? Our theoretical results
show that the simplified three-compartment system (2.2) only has equilibrium dy-
namics (see Theorem 3.3), while the full four-compartment system (2.1) may produce
complex dynamics (Theorem 3.8), including fold bifurcations of the limit cycle, su-
percritical and subcritical Hopf bifurcations, and multiple attractors. This suggests
that when the full four-compartment system (2.1) has simple equilibrium dynamics,
we could use the simplified three-compartment model. In this subsection, we fur-
ther explore how the simplified versus original models behave differently in dynamics
through bifurcation analysis and simulations, to address when we could use the simpli-
fied model and when we could not. More specifically, we perform bifurcation analysis
by varying all parameters of systems (2.1) and (2.2) numerically. Our goals of this
subsection are (i) to explore how different parameters affect the dynamics of systems
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F1c. 5. One-parameter bifurcation diagram showing the stability of interior equilibria of system
(2.1) when ap = 0.1, By = 4.97,vw = 0.1, ¢ = 0.17,¢q = 2.3,y = 0.01,aq = 0.1, r = 2.96, N =
20, and Br € (0,10), where the blue and green lines represent the sink and saddle, respectively.
There are two limit point bifurcations (LP) at ,BTLP’l =0.304 and 5TLP’2 = 0.31, and two subcritical
Hopf bifurcations (H) at BHEL = 0.486 and B2 = 8.854. The first Lyapunov coefficients at Bt
and B,{{‘2 are given by 3.520045e~3 and 7.587255¢ ™3, respectively. (Color available online.)

(2.1) and (2.2), and (ii) to compare the dynamics of systems (2.1) and (2.2) so that
we are able to address our questions regarding when the simple model (2.2) cannot
be replaced by the four-compartment model (2.1) due to different dynamics.

The parameter (3., the recruitment rate of the alarmed recruiters group to the
alarmed patrollers group, only exists for the full complex model (2.1). Our analysis
shows that 8, could affect system (2.1) dramatically: Figure 4 shows that by varying
the value of f,., system (2.1) can have up to 1, 2, or 3 interior equilibria under
different parameter environments. Figure 5 shows that as (3, increases, system (2.1)
undergoes two limit point bifurcations at 3, = %1 and B, = BEP? successively. As
B, continues to increase, two Hopf bifurcations occur at 8, = B! and g, = g2,
respectively. By Kuznetsov [40], the first Lyapunov coefficients of system (2.1) at
B = BEL and B, = BH:2 are given by 3.520045¢ 2 and 7.587255¢ 2, respectively. It
follows that 37! and 852 are subcritical Hopf bifurcations. Thus the stable limit
cycle is not generated by the Hopf bifurcations. To explore how this stable limit cycle
arises, we carried out simulations carefully. Our simulations show that this stable limit
cycle is generated by the fold bifurcation of the limit cycle (see the dynamic process
shown in the schematic diagram in Figure 6): (1) The system always has a stable
limit cycle, and (2) when 3, passes through the Hopf bifurcation point 87! from
the right (resp., passes through 82 from the left), an unstable limit cycle appears.
The amplitude of the unstable limit cycle (red dotted line) increases with a decrease
(resp., increase) of §,, and overlaps the stable limit cycle (solid black line) at point A
(resp., B).

Figure 7 has the colony density as N = 19 and keeps other parameters unchanged
(compare to Figure 5). The result suggests that system (2.1) has a unique limit point
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Fic. 6. Schematic diagram of the global bifurcation of system (2.1) under the parameter en-
vironment of Figure 5, where H denotes the Hopf bifurcation point, and the blue and green lines
represent the sink and saddle, respectively. The red dotted line indicates the amplitude of the unsta-
ble limit cycle generated when the solution passes through the Hopf bifurcation point, and the solid
black line indicates the amplitude of the stable limit cycle. (Color available online.)
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FiG. 7. One parameter bifurcation diagram showing the stability of interior equilibria of system
(2.1) when ap = 0.1, By = 4.97, 7w = 0.1, ¢ = 0.17, ¢4 = 2.3,y = 0.01, ¢ = 0.1, = 2.96, N =
19, and B € (0,11), where the blue and green lines represent the sink and saddle, respectively. There
is a unique limit point bifurcations (LP) at BLT = 0.3965, and three subcritical Hopf bifurcations (H)
at ﬁfl’l = 0.3976, 67{{’2 = 0.4113, and ,6’,1«[1‘3 = 10.3673, respectively. The first Lyapunov coefficients
at ﬁq{{’l,ﬁfl’Q, and 65’3 are given by 5.705820e~3, 3.018966e~3, and 1.743768e~2, respectively.
(Color available online.)

bifurcation at BLF = 0.3965 and three Hopf bifurcations at 82+ i = 1,2,3. Since
the first Lyapunov coefficients of system (2.1) at g1, 352 and BH3 are given,
respectively, by 5.705820e 3, 3.018966e 2, and 1.743768¢~2, it follows that 35t i =
1,2,3, are subcritical Hopf bifurcations. In this scenario, system (2.1) can have up to
two attractors depending on the value of 3,: When 3, € (81, 8H:2) or 5, > BH3
system (2.1) has bistability between Eyp and E; (Figures SM2(a) and 7). Otherwise,
the system has a unique stable attractor Ewoo (Figures SM2(b) and 7).
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Fic. 8. One-parameter bifurcation diagram showing the stability of interior equilibria of system
(2.1) when ap = 0.1, By = 4.97,vw = 0.1, ¢ = 0.17,¢q = 2.3,y = 0.01,aq = 0.1, r = 2.96, N =
28, and Br € (0,3), where the blue and green lines represent the sink and saddle, respectively. There
are two supercritical Hopf bifurcations (H) at ,Bfl’l = 1.265 and ,35’3 = 1.882, respectively. The first
Lyapunov coefficients at 55’1 and BfI’Q are given, respectively, by —1.946243e~3 and —7.221602e~2.
The black lines between ﬂfl’l and 65’2 denote the amplitude of the periodic solution. (Color available
online.)

Figure 8 shows that system (2.1) can undergo two Hopf bifurcations at 8! and
BH:2. Since the first Lyapunov coefficients of system (2.1) at 371 and 52 are given,
respectively, by —1.946243¢=3 and —7.221602¢~2, 21 and BH-2 are supercritical
Hopf bifurcations, i.e., when 3, passes through 521 from the left (or passes through
B2 from the right), a stable periodic orbit appears. Since the amplitude of the
periodic solution looks like a bubble when the system passes from 8! to 852 this
dynamic process is called the bubble phenomenon [41].

We also simulated the effects of other parameters (i.e., o, Buws Yws @rs Pas Qs
Qg, o, ¢p, Bp, and N) on the dynamics of both system (2.1) and system (2.2) (not
shown here), and the results are summarized in Tables SM2 and SM3. We also briefly
provide a summary here:

(1) Simple versus complicated dynamics. The simplified system (2.2) has only
equilibrium dynamics, while the full system (2.1) has much more complicated dynam-
ics which may have up to three subcritical Hopf bifurcations, two supercritical Hopf
bifurcations, fold bifurcation of the limit cycle, and three types of bistability.

(2) Bistable dynamics. The simplified system (2.2) has bistability between the
recruiter free equilibrium (P, W, R) = (%, a:i](\x[w ,0) and the interior equilibrium
E1(P1, W1, Ry). The full system (2.1) has three types of bistability:

e When system (2.1) has two interior equilibria (see Figures SM2(a) and 7),
it has bistability between the alarm worker free equilibrium Fyg9 and the
interior equilibrium FEj.

e When system (2.1) has three interior equilibria (see Figures SM1(a) and 5),
it has bistability between two interior attractors where each interior attractor
could either be locally stable or go through Hopf bifurcation.
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When system (2.1) has a unique interior equilibrium (see Figures SM1(c)
and 5), it has two interior attractors between the interior equilibrium E; and
a stable cycle.

(3) Effects of the colony density N .

Similarities: Small colony density IV can stabilize the alarm work free equilib-
rium; intermediate value of N may lead to the bistable dynamics; sufficiently
large colony density N can stabilize the unique interior equilibrium. As N
increases, the patrollers P and the alarmed recruiters R increase, while the
available workers W decreases in both systems (2.1) and (2.2).

Differences: In system (2.1), the change of N can lead to the emergence of
Hopf bifurcation, while this scenario does not appear in system (2.2).

(4) The parameters oy, Qu, Qr, @, Y may have different effects on systems
(2.1) and (2.2), while other parameters (e.g., N, ¢4(¢p)) may have similar effects on
systems (2.1) and (2.2):

Effects of o, the rate that the patrollers P would become the available workers
W: As a, increases, we expect that (i) in system (2.1), the available workers
W decrease and the alarmed recruiters R increases while system (2.2) has the
opposite result; (ii) when «, is large enough, the patrollers in both systems
(2.1) and (2.2) decrease.

Effects of a,, the rate that the available workers W would join the patrollers
P: As oy, increases, we expect that in system (2.1), the alarmed recruiters
R and the patrollers P + A decrease, and the available workers W increase,
while system (2.2) has the opposite result.

Effects of ., the rate that the alarmed recruiters R would join the patrollers
P: As «, increases, we expect that (i) in system (2.1), the patrollers P +
A increase first and then decrease, while in system (2.2) the patrollers P
increase; (ii) the available workers W increase and the alarmed recruiters R
decrease in both systems (2.1) and (2.2).

Effects of ¢, the rate that the available workers W would join the alarmed
recruiters R: As ¢, increases, we expect that (i) in system (2.1), the patrollers
P + A increase, while system (2.2) has the opposite result; (ii) in system
(2.1), the alarmed recruiters R increase first and then decrease, while in
system (2.2), the alarmed recruiters R increase; (iii) the available workers W
decrease in both systems (2.1) and (2.2).

Effects of v, the rate that the alarmed recruiters R would join the available
workers W: As ~,, increases, we expect that (i) in system (2.1), the patrollers
P + A decrease, while system (2.2) has the opposite result; (ii) the available
workers W increase and the alarmed recruiters R decrease in both systems
(2.1) and (2.2).

Effects of ¢q(¢p), the rate that the available workers W being recruited into
the patrollers P by the alarmed recruiters R: As ¢q(¢p) increases, we expect
that the patrollers P and the alarmed recruiters R increase, and the available
workers W decrease in both systems (2.1) and (2.2).

4. Conclusion. Efficient recruiting for varied tasks contributes to the ecological
and evolutionary success of social insect colonies. In this paper, we provide a theo-
retical framework for studying the recruitment dynamics of social insect colonies that
is motivated by the patrolling behavior of Azteca ants [20, 43, 57]. The observation
of the colony behavior suggests that it may have four task groups: the unalarmed
patrollers, the alarmed patrollers, the alarmed recruiters, and the available workers.
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In social insect colonies, the data collections of all four task groups are both time- and
energy-consuming. Can we have a smaller number of task groups while still capturing
the essential dynamics of recruitment? For example, can we combine the task groups
of the unalarmed patrollers and the alarmed patrollers as one task group, or of the
alarmed patrollers and the alarmed recruiters as one task group, to save time and
energy while still addressing essential research questions of recruitment? To address
this question, we study and compare the dynamics of the four-component model and
its simplified 3-D model by grouping the unalarmed patrollers and the alarmed pa-
trollers as the one group (i.e., comprising only the patroller, alarmed recruiter, and
available worker groups).

Our theoretical analysis (see Theorem 3.3) and bifurcation analysis (see Figure 2)
indicate that when the alarmed patroller and the unalarmed patroller are indistin-
guishable (corresponding to the simplified model), the recruitment behavior is rela-
tively simple as it has only equilibrium dynamics (with a unique stable equilibrium)
and bistability: The colony admits a unique interior equilibrium which is globally
asymptotically stable if the recruitment ability of the alarmed recruiters is strong
enough (i.e., Ry > 1); otherwise the colony is bistable between the boundary equi-
librium (with alarmed recruiters tending to disappear) and the interior equilibrium.
The equilibrium dynamics indicates that the density of all components in the colony
eventually tends to a certain stable level, while bistability means that the colony may
reside in one of two stable states, i.e., the density of all components in the colony may
tend to two different levels, depending on the initial level of the colony. These inter-
esting dynamics have been confirmed by experiments. For example, empirical studies
have shown that bistability often occurs in the recruitment behavior of social insect
colonies [6, 18, 17]. Bistability is considered to play an important role in the spatial
organization of social insect colonies and may affect many aspects of the colony such
as foraging ability and the evolution of group recruitment [6, 10, 18, 25].

Compared with the simplified system, the dynamics of the full system is very rich
(Figures SM1, SM2, and 5 to 8). It not only has equilibrium dynamics and bistability
as its simplified model has, but also can process up to three Hopf bifurcations and
a fold bifurcation of the limit cycle (producing periodic solutions and bubble phe-
nomena [41]). The periodic oscillations indicate that the density/size of the alarmed
patrollers, the unalarmed patrollers, the alarmed recruiters, and the available workers
will fluctuate regularly over time. In nature, the collective oscillation of social insect
colonies has been observed in some experiments [15, 29]. Some researchers believed
that those collective oscillations are the outcome of the process of short-distance inter-
actions among individuals [46], while others argued that the oscillation of colonies is
probably an epiphenomenon rather than an adaptation [16]. At present, many mod-
els have been proposed to explore the periodic oscillations in social insect colonies
[33, 35, 62, 70].

Based on the above discussion, our work suggests that when studying the recruit-
ment dynamics of social insect colonies, under certain conditions, it is necessary to
distinguish the alarmed patroller and unalarmed patroller. Otherwise, we cannot fully
grasp the mechanisms and recruitment dynamics of social insect colonies. Under such
situations, there is a need to collect and record experimental data of the unalarmed
patroller and the alarmed patroller populations separately.

This paper provides a mathematical framework for the study of recruitment dy-
namics in social insect colonies by using the four- and three-compartment ODE mod-
els. This is only our first attempt, and there are many more reasonable and practical
ways to extend this work. For instance: (i) Our model is built on the time scale
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of seconds to minutes. Thus, we assume that there is no birth and death, and the
population of the entire colony is constant. It would be interesting to study further
the recruitment dynamics on a larger time scale to include both birth and death
terms. (ii) Recruitment activities during foraging or defense of social insect colonies
are inevitably affected by environmental noise and demographic noise. Studies have
shown that noise plays a significant role in the dynamics of social insects (see, e.g.,
Dussutour et al. [23] and Biancalani, Dyson, and McKane [7]). Therefore, it would be
an interesting subject to incorporate different types of noise in our model. (iii) Many
studies have shown the effects of chemical pheromones and physical interactions on
the recruitment dynamics of social insect colonies during foraging (see, e.g., Ayasse
and Jarau [4] and Nicolis, Theraulaz, and Deneubourg [50]). There is some literature
that has studied the effects of chemical pheromones or physical interactions on re-
cruitment behavior during foraging separately (see, e.g., Dussutour and Nicolis [24],
Pacala, Gordon, and Godfray [51], Sumpter and Beekman [66] and Shaffer, Sasaki,
and Pratt [61]), and there is a need to use mathematical modeling methods to con-
sider the synergistic effects of chemical pheromones and physical interactions on the
recruitment dynamics of social insect colonies.
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