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Abstract
The problem of quantizing a particle on a two-sphere has been treated by numer-
ous approaches, including Isham’s global method based on unitary representa-
tions of a symplectic symmetry group that acts transitively on the phase space.
Here we reconsider this simple model using Isham’s scheme, enriched by a
magnetic !ux through the sphere via a modi"cation of the symplectic form. To
maintain complete generality we construct the Hilbert space directly from the
symmetry algebra, which is manifestly gauge-invariant, using ladder operators.
In this way, we recover algebraically the complete classi"cation of quantiza-
tions, and the corresponding energy spectra for the particle. The famous Dirac
quantization condition for the monopole charge follows from the requirement
that the classical and quantum Casimir invariants match. In an appendix we
explain the relation between this approach and the more common one that
assumes from the outset a Hilbert space of wave functions that are sections of a
nontrivial line bundle over the sphere, and show how the Casimir invariants of
the algebra determine the bundle topology.

Keywords: canonical quantization, magnetic monopole, group theoretic quanti-
zation, particle on sphere, topologically nontrivial phase space

1. Introduction

Canonical quantization is a magic wand, discovered by Dirac, that transmogri"es a classi-
cal dynamical theory into a corresponding quantum theory, often in perfect agreement with
observations. However, for most classical theories Dirac’s procedure depends on the choice
of phase space coordinates over which to wave the wand, so the resulting quantum theory is
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ambiguous. Moreover, a generic phase space has nontrivial topology, and does not even admit
a global coordinate chart. In complete generality, the only recourse is to accept the ambiguity,
and to explore all quantizations. But some classical dynamical systems possess symmetries
that can be used to identify a restricted class of quantizations which preserve these symmetries
in the quantum theory. Such quantizations would obviously yield the best guess, if indeed the
original classical theory is the classical limit of some quantum theory.

Isham provided a generalization of Dirac’s canonical quantization that is designed to pre-
serve a chosen transitive group of phase space symmetries, and can be applied to topologically
nontrivial phase spaces [1, 2]. Our primary interest in this, as was Isham’s, is ultimately to
restrict the possibilities for nonperturbative quantization of general relativity. But to develop
understanding of how the scheme works, the ambiguities that remain, and the relation to other
quantization schemes, it is useful to consider simpler systems. A particle on a two-sphere is
one of the simplest such systems, and has already been treated by many different approaches,
including Isham’s [1–20]. Here we consider this simple model, enriched by the inclusion of a
magnetic !ux through the sphere, with the aim of implementing Isham’s quantization scheme
without making any choices other than that of the group of canonical symmetries.1 In order
to maintain complete generality for the unitary representations of the quantized algebra, we
construct the Hilbert space directly from the algebra, rather than adopting the framework of
wave functions. In this way, we recover algebraically the complete classi"cation of quanti-
zations, as well as the famous Dirac quantization condition for the monopole charge and the
corresponding energy spectra. We also explain the relation between this approach and the more
common one that assumes from the outset a Hilbert space of generalized wave functions that
are sections of a nontrivial line bundle over the sphere.

Isham applied his quantization scheme to the phase space P = T∗S2, the cotangent bundle
of the two-sphere, with the canonical symplectic formω = dpi ∧ dqi. He found that the Hilbert
space must carry some unitary irreducible (projective) representation of the three-dimensional
Euclidean group, E3 = R3 ! SO(3). From Mackey’s theory of induced representations, one
obtains that each irreducible unitary representation U (n) of U(1), labeled by an integer n, yields
a Hilbert space represented by sections of a certain bundle, U (n)-associated to the Hopf bun-
dle SU(2) → SU(2)/U(1) ∼ S2. (See appendix C for details). These sections can be seen as
‘twisted’ wavefunctions over the sphere, with the ‘twisting’ described by the "rst Chern num-
ber of the bundle (which is n for the U (n)-associated bundle). The choice of this integer n is
equivalent to the assignment of an intrinsic spin to the particle, and its value is "xed to be zero
if one imposes, as a correspondence principle, that classical Casimir invariants of the Poisson
algebra are preserved upon quantization. When the particle is electrically charged, and a mag-
netic monopole "eld is included, we "nd again the same classi"cation of Hilbert spaces, but
the correspondence principle for Casimir invariants determines n in terms of the product of
the monopole charge with the electric charge. The inclusion of the magnetic monopole "eld is
thus equivalent to the assignment of an intrinsic spin to the particle.

The usual prescription to include coupling to a magnetic "eld is to make the replacement
p→ p− eA in the Hamiltonian, where p is the momentum, e is the electric charge of the particle
and A is the magnetic potential one-form in some local gauge. If A is de"ned globally on the
sphere then the magnetic "eld B = dA is an exact two-form, so the net magnetic !ux through
the sphere must vanish. In the presence of a nonzero net magnetic !ux, therefore, A cannot be
de"ned globally on the sphere, and hence the Hamiltonian is not globally de"ned. This can

1 A similar approach appears to have been considered in [11], however we could not obtain access to the relevant part
of the document. Related work is also mentioned in [21] by the same author, but it refers to a preprint that we could
not "nd.
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be accommodated by de"ning the Hamiltonian in local gauge patches, and accompanying a
gauge transformation A → A + dλwith a corresponding symplectic (canonical) transformation
p→ p + edλ. In this way, however, the canonical momentum ceases to be an observable, and
a global description is lacking.

Instead, we shall maintain manifest gauge invariance and a globally de"ned Hamiltonian
by incorporating the magnetic "eld into the symplectic structure [22, 23]. That is, we replace
p by p + eA in the symplectic form dpi ∧ dqi. This results in d(pi + eAi) ∧ dqi = d(pidqi) +
ed(Aidqi), which can be written covariantly as

ω = dθ + eπ∗B. (1.1)

Here θ is the canonical symplectic potential, de"ned by θ(X) = p(π∗X), where X is a tangent
vector on the cotangent bundle T ∗S2, and π : T ∗S2 → S2 is the bundle projection map (with π∗

and π∗ the pull-back and push-forward of π), and B is the magnetic two-form on the sphere
(whose integral over any region gives the magnetic !ux through it). Our problem is thus to
quantize a phase space with topology T ∗S2 and symplectic form given by (1.1).

This paper is organized as follows. In section 2, we begin with a brief review of Isham’s
quantization scheme. In section 3, we study the phase space T ∗S2 with the charged symplec-
tic form (1.1), identifying the appropriate quantizing group. In section 4.1, we proceed to the
quantization, establishing the correspondence between classical observables and quantum self-
adjoint operators. In section 4.2, we show that the Casimir invariants of the algebra play an
important role in linking the classical and quantum worlds. In particular, this is how the mag-
netic monopole makes its way into the quantum theory. Next, in section 4.3, we study the
representations of the group by constructing ladder operators for J2, the angular momentum
squared. From the assumption that the theory is free of negative-norm states, in section 4.4 we
recover Dirac’s charge quantization condition. Finally, in section 4.5, we compute the energy
spectrum for a (non-relativistic) particle on a geometric sphere. In appendix A we establish
the absence of nontrivial central extensions of the Euclidean algebra E3, and in appendix B
we give some details omitted in the derivation of section 4.3. In appendix C we show how the
representation in terms of ‘twisted’ wavefunctions can be recovered and, in particular, how the
magnetic monopole is related to their twisting, and in appendix D we consider non-uniform
magnetic "elds.

2. Isham’s quantization scheme

In the founding days of quantum mechanics, Dirac remarked that ‘the correspondence between
the quantum and classical theories lies not so much the limiting agreement when "→ 0 as in
the fact that the mathematical operations on the two theories obey in many cases the same laws’
[24]. This observation led him to postulate the general canonical quantization scheme which
replaces Poisson brackets of classical functions on phase space by quantum commutators of
quantum operators, i.e., [ f̂ , ĝ] = i"{̂ f , g}. More precisely, one seeks a linear homomorphism
from the algebra of real functions on the phase space, with product de"ned by the Poisson
bracket { f, g}, to an algebra of self-adjoint operators on some Hilbert space, with product
de"ned by the commutator 1

i! [ f̂ , ĝ], satisfying certain conditions, such as mapping the constant
function f = 1 to the identity 1̂ and, for all functions φ, mapping φ( f) to φ( f̂ ).
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It turns out that no such map exists in general, as a consequence of Groenewold–Van Hove
obstructions.2 Hence one must be careful to select a relatively small set of observables that
can be consistently quantized, but which is still large enough to allow for the construction of
quantized versions of all other classical observables. The trivial example is that of P = R2n,
where one can canonically quantize the global coordinates qi and pi, and then carry along all
other observables f (q, p) → f (q̂, p̂) to the quantum theory (modulo operator-ordering issues).
Isham’s proposal is to generalize this by identifying a transitive group of symplectic symme-
tries of the phase space and using it to generate both a special set of classical observables and
their associated quantum self-adjoint operators. We call this group the quantizing group. (It is
sometimes referred to as the ‘canonical group’). In the trivial case just mentioned, for example,
it could be the group of coordinate translations, (q, p) → (q + a, p + b), where q and p are any
global canonical coordinates. Typically, the dynamical system possesses other structures that
would select a preferred canonical group, such as a metric on the con"guration space that
appears in the Hamiltonian. We shall brie!y review Isham’s scheme in this section. For more
details, see [1, 2].

Consider a phase space P with symplectic two-form ω. Assume that the phase space is
a homogeneous space for some Lie group G of symplectic symmetries. That is, there is a
transitive left action δg : P → P of G on P such that δ∗gω = ω for all g ∈ G. Each element
ξ in the Lie algebra g ∼ T1G of G induces a vector "eld Xξ on P de"ned by Xξ|p = φp∗(ξ),
where φp : G → P is de"ned by φp(g) = δg(p). This map is an antihomomorphism from g
into the algebra of vector "elds on P , i.e., [Xξ , Xη] = X[η,ξ]. Because δg preserves ω, Xξ is a
(locally) Hamiltonian "eld, i.e., £Xξ ω = 0. We therefore have d(ıXξω) = £Xξω − ıXξdω = 0,
where ı denotes the interior product. That is, ıXξω is closed and thus locally exact, so that
dQξ = −ıXξω admits local solutions Qξ , de"ned up to addition of a constant function on P .
Since we want these charges3 Qξ to play the role of the canonical observables, we require that
G generates only globally Hamiltonian "elds on P , meaning that the associated charges are all
de"ned globally on P .

The symplectic form endows the space of functions on the phase space with an alge-
braic structure, AC, where the product is given by the Poisson bracket4. In particular, when
the functions are taken to be the charges, we have {Qξ , Qη} = −ω(Xξ , Xη), and it happens
that the map ξ '→ Qξ is a homomorphism from g into AC up to central charges, that is,
{Qξ , Qη} = Q[ξ,η] + z(ξ, η), where z(ξ, η) is constant on P . In practice, we can assume that
this is a true homomorphism, i.e., z = 0, since the group can always be extended by a central
element to make that so.5

Next we use G to construct the quantum theory. Let U : G → Aut(H) be an irreducible
unitary representation of G on a Hilbert space H. Each element of the algebra ξ ∈ g can be

2 Strictly speaking, the Van Hove no-go theorem applies only for trivial phase spaces, P = R2n. The result has been
extended to other cases, and it is expected that this kind of obstruction is generic [25]. However, some examples have
been found where a full, unobstructed quantization is possible [26, 27].
3 We call charge any function generated in this way by the group of symplectic symmetries, regardless if they are (also)
dynamical symmetries in the sense of Noether’s theorem.
4 Because ω is non-degenerate, any function f on P can be associated with a unique vector "eld X f on P via the
relation d f = −ıX f ω. The Poisson bracket between two functions, f and f ′, is de"ned by { f, f ′} := − ω(X f , X f ′ ).
5 If the central charge z(ξ, η) is not trivial (i.e., it cannot be removed by a rede"nition of the charges Qξ → Qξ + f(ξ),
for some f : g → R), one can always extend the group by a central element so that the extended algebra, g⊕S R,
has product law [(ξ, a), (η, b)] = ([ξ, η], z(ξ, η)). The new group has a natural action on P (where the central element
acts trivially), and the new charges are related to the old ones simply by Q(ξ,a) = Qξ + a. Consequently, the map
(ξ, a) '→ Q(ξ,a) is a true homomorphism. Hence, we can always assume that G is already the extension of whatever
group we started with.
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Figure 1. On the classical side, each element ξ of the Lie algebra of the quantizing
group induces a Hamiltonian vector "eld Xξ (on the phase space), which in turn de"nes
a Hamiltonian charge Qξ . On the quantum side, the group element exp ξ is represented
by a unitary transformation (on a Hilbert space), whose self-adjoint generator is Q̂ξ .

exponentiated to a one-parameter subgroup of G, exp(tξ), and the corresponding one-parameter
unitary group is generated by a self-adjoint operator Q̂ξ on H, as U(exp tξ) = etQ̂ξ/i!. From the
de"nition of a representation, the map ξ '→ Q̂ξ is a homomorphism from g into AQ, where AQ

is the algebra of self-adjoint operators on H with product given by 1
i! [·, ·]. It follows that the

quantization map, which associates to each classical charge Qξ the corresponding generator
Q̂ξ of the unitary representation,

Qξ '→ Q̂ξ , (2.1)

is a homomorphism from AC into AQ. The logic of this quantization scheme is summarized in
"gure 1.

Since the space of physical states is actually the ray space, R := H/U(1), corresponding to
the quotient of the Hilbert space H by phases eiθ ∈ U(1), it is natural to consider also projective
representations of the group G. A projective representation is a homomorphism from G into
the group of projective unitary operators on R, PU (H ), consisting of equivalence classes
U ∼ eiθU of unitary operators on H. In essence, including projective irreducible unitary rep-
resentations of G amounts to constructing the quantum theory based on irreducible unitary
representations6 of the algebra of observables Qξ .7

The condition that the group acts transitively on the phase space ensures that any function on
P can (locally) be expressed in terms of the canonical observables Qξ’s. To see this, consider
the momentum map, J, which is a function from P to g∗ (the dual algebra of G) de"ned by
J(p)(ξ) := Qξ(p), where p ∈ P and ξ ∈ g. If this map were an embedding, then all real functions
on P could be written as functions of Qξ’s. More concretely, note that a basis {ξi} of g induces
a coordinate system in g∗ de"ned by coordinate functions wi(σ) :=σ(ξi), where σ ∈ g∗, and
these have the property that Qξi = J∗wi. Since any smooth function f : P → R could, in this
case, be seen as the pull-back under J of some function F : g∗ → R, then f could be written
as function of the Qξi ’s. In general, although J may not be an embedding, transitivity of the
group action guarantees that it is an immersion of P into g∗. Transitivity implies that, at any
p ∈ P , any tangent vector V ∈ TpP is equal to Xη for some η ∈ g. The non-degeneracy of ω
then implies that dQξ(V) = −ω(Xξ , Xη) is nonvanishing for at least one ξ. In other words, there
is no direction V along which all charges are (locally) constant, implying that any function on

6 Here ‘unitary’ means that the observables Qξ are represented by self-adjoint operators Q̂ξ on the Hilbert space.
7 Technically, there would also be projective representations of G associated with non-trivial central extensions (by
two-cocycles) of its algebra, if those exist. However, unless such a central extension appears already in the classical
Poisson algebra, it will not be of interest to us here, because of the Casimir correspondence principle introduced below.
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P can be locally written in terms of the charges8. Therefore, the special set of observables
generated in this way is indeed not too ‘small’.

This completes our review of Isham’s quantization scheme. In pursuit of generality, the
scheme refers only to minimal structure required to de"ne a ‘canonical quantization’, which
associates to a certain chosen classical Poisson algebra of observables a corresponding quan-
tum algebra of observables. But in order to fully de"ne a physical quantum theory, a particular
representation of the algebra must be chosen, and the dynamics must be implemented via a
quantization of the Hamiltonian. This may require additional physical ingredients to be intro-
duced in the quantization. In many cases the choice of a representation is restricted by what we
shall call a Casimir correspondence principle. A classical Casimir invariant is an observable
that Poisson commutes with the entire Poisson algebra. If that observable admits a quanti-
zation (i.e., a choice of operator ordering) that commutes with the entire quantum algebra,
then it is a quantum Casimir invariant. Such a quantum Casimir is a multiple of the identity
in each irreducible representation of the quantum algebra, so it takes the same value in all
states of such a representation. For the classical system to arise from a classical limit of the
quantum system, the eigenvalue of the quantum Casimir observable should match the corre-
sponding classical value. This Casimir correspondence principle plays an important role in
selecting which irreducible representation corresponds to the quantization of a given classical
system, and it sometimes restricts which classical systems can arise from the classical limit
of a quantum system. In the present paper, for instance, the possible values of the magnetic
monopole charge will be restricted by this principle to those allowed by the famous Dirac
condition.

3. The phase space for a particle on the sphere

In this section we address the classical part of Isham’s quantization scheme for the case of
a particle on a two-sphere in the presence of a magnetic monopole. The phase space is P =
T∗S2 but, as explained in the introduction, the symplectic form must be given by (1.1) if the
Hamiltonian is to be a globally well-de"ned function. Our goal is to identify a suitable group of
symplectic symmetries of this phase space and then compute the associated Poisson charges.

3.1. A transitive group of symplectic symmetries

A magnetic "eld two-form B on S2 admits an in"nite dimensional symmetry group that acts
transitively on S2, provided that B is nowhere vanishing. This is the group of ‘area’ preserving
diffeomorphisms, where B de"nes the area element. We are interested in quantizing an SO(3)
subgroup of this group, which not only is the smallest group that can act transitively on S2 but
is also the group of isometries of a round metric. There are in"nitely many such subgroups,
which all lead to equivalent phase space quantizations. We write the magnetic "eld as

B = gε, (3.1)

where the two-form ε is scaled so that
∫

S2ε = 4π, and g is a dimensionful coef"cient. The total
!ux through the sphere is simply 4πg, so g can be interpreted as the magnetic charge of a

8 To say there is no direction V along which all charges are (locally) constant is equivalent to saying that the derivative
J∗ is injective, so that J is an immersion. A further analysis [1] reveals that if the immersion fails to be an embedding,
it is at worst a covering map, i.e., P is a covering space for its image under J. This limits the extent to which functions
on P can fail to be globally expressible in terms of the charges.
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monopole ‘inside’9. The kinetic energy term in the Hamiltonian for a charged particle on S2

involves a particular metric on the S2. In order to naturally quantize this Hamiltonian, we will
ultimately base the quantization on the SO(3) group of isometries of this metric, however that
choice plays no role until we come to quantizing the Hamiltonian.

We denote by lR(x) the action of a rotation R ∈ SO(3) on a point x on the sphere. As with
any action on the con"guration space, there is a natural lifted action to the cotangent bundle,
de"ned by

LR(p) = l−1∗
R p, (3.2)

which maps the "ber over x to that over lR(x), i.e. it satis"es π ◦ LR = lR ◦ π. The canonical
potential one-form θ is invariant under the lift of any point transformation (diffeomorphism of
the con"guration space).10 In particular, we have L∗

Rθ = θ, and therefore L∗
Rdθ = dL∗

Rθ = dθ.
Moreover π∗B is invariant under rotations: L∗

R(π∗B) = (π ◦ LR)∗B = (lR ◦ π)∗B = π∗B. There-
fore the symplectic form (1.1) is invariant,

L∗
Rω = ω. (3.3)

That is, for all R, LR is a symmetry of the symplectic form.
The quantizing group should be larger than just SO(3), since the rotations act only

‘horizontally’ on the phase space. For the quantizing group to act transitively, it should include
elements that move points along the "bers of the cotangent bundle. The simplest ‘vertical’
action is a translation of momentum,

Fα(p) = p− α, (3.4)

where α is a one-form "eld on S2. (For notational simplicity we leave implicit the point π(p)
at which α is evaluated.) This acts on the symplectic form (1.1) as

F∗
αω = d(F∗

αθ) + e(π ◦ Fα)∗B. (3.5)

The term π∗B is invariant since π ◦ Fα = π. The symplectic potential, however, transforms
non-trivially. For any V ∈ TpP , we have

F∗
αθ(V) = θ(Fα∗V) = (Fαp)(π∗Fα∗V)

= (p− α)(π∗V) = (θ − π∗α)(V), (3.6)

so that

F∗
αω = ω − π∗dα. (3.7)

In order for Fα to be a symplectic symmetry, we must require α to be closed. We will restrict
further to exact one-forms, α = d f, with f globally de"ned on S2 to ensure that the associated
charges will be globally de"ned.

9 If the magnetic "eld were not nowhere vanishing, we could still separate it as B = gε + dA, where A is a globally
de"ned potential one-form that could be included in the Hamiltonian, while the gε term could be included in the
symplectic form.
10 Let φ be a diffeomorphism of the con"guration space, and let Φ be its lift to the phase space, i.e., Φ(p) := φ−1∗p. If
V ∈ TpP, then Φ∗θ(V) = θ(Φ∗V) = (Φ(p))(π∗Φ∗V) = (φ−1∗p)(π∗Φ∗V) = p(φ−1

∗ π∗Φ∗V) = p(π∗V) = θ(V). Alter-
natively, using coordinates, p′idx′i = pj

∂x j

∂x′i
∂x′i
∂xk dxk = pkdxk .

7
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The (in"nite-dimensional) space of all exact one-form "elds is unnecessarily large, so we
look for a ‘minimal’ set of momentum translations that act transitively along the "bers and are
consistent with the spherical symmetry, in the sense that they extend the chosen SO(3) into a
larger group. As observed by Isham (in a more general setting), a suitable set can be generated
by realizing the con"guration space S2 as an orbit of a representation of SO(3) in a vector
space, and de"ning the momentum translations as the pullback to the orbit of the ‘constant’
one-forms on that vector space. In particular, we can choose the fundamental representation on
R3, and identify the S2 with the orbit passing through u = (0, 0, 1) in R3, that is, with the set of
unit vectors x ∈ R3 such that x = Ru for some R ∈ SO(3).11 (The notation ‘x’ for these vectors
coincides with that which we used already to label the points in S2). Any dual vector α ∈ R3∗,
can naturally be seen as a one-form "eld on R3. Moreover, this one-form "eld is exact, for it
can be written as d fα, where the function f α : R3 → R is de"ned by

f α(x) :=α(x). (3.8)

These one-form "elds can be pulled-back to S2 to de"ne the corresponding action along the
"bers of P .

Combining the LR and Fα transformations, we get a transitive group of symplectic symme-
tries of the phase space: the semidirect product G = R3∗ ! SO(3), acting on P as

Λ(α,R)(p) = l−1∗
R p− α, (3.9)

which satis"es the product rule

(α, R)(α′, R′) = (α + l−1∗
R α′, RR′). (3.10)

Since R3∗ ∼ R3 and the co-representation of SO(3) in R3∗ is equivalent to its representation in
R3,12 this group is isomorphic to the Euclidean group, E3 = R3 ! SO(3).

We take this group, G, to be the quantizing group. Note that it is independent of the magnetic
term in the symplectic form. Since its algebra does not admit any non-trivial central extension
by two-cocycles z(ξ, η),13 no (non-trivial) central charge can appear in the associated Poisson
algebra. The quantizing algebra is thus the same as in the uncharged case. However, as we shall
see in section 4.2, the magnetic term makes itself felt through the value of a Casimir invariant
of the corresponding Poisson bracket algebra, which carries over to the quantum theory.

3.2. Classical canonical observables

We next compute the classical charges associated with the quantizing group G, beginning with
the SO(3) generators. Let n be an element of the algebra so(3), and denote its exponential by
Rn = exp(n). (Here exp :g → G is the usual Lie group exponential map). Let Xn be the vector
"eld (on S2) induced by n through the action of SO(3) on S2, and let Xn be the vector "eld (on
P) induced by n through the lifted action of SO(3) on P de"ned in (3.2). Since the group action

11 This identi"cation of the con"guration space with the unit sphere in the abstract R3 should not be confused with
the physical sphere, which may have its own geometry. The orbit is a ‘unit sphere’ with respect to the inner product
〈v, u〉 =

∑3
i=1 viui on the abstract R3.

12 In a matrix realization, R−1∗α = (R−1)Tα = Rα.
13 Since we found no explicit demonstration of this statement in the literature, we include one in appendix A for
completeness. This formal proof is not really necessary for our purposes, however, as in the next section we explicitly
compute the Poisson algebra and show that no central charges arise.
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on P = T∗S2 maps "bers into "bers, we note that Xn is just the projection of Xn to the sphere,
i.e., Xn = π∗Xn. The corresponding charge Pn is de"ned by

dPn = −ıXnω

= −ıXn(dθ + egπ∗ε)

= d[θ(Xn)] − egπ∗ıXn
ε. (3.11)

The "rst term in the last line follows from 0 = £Xnθ = ıXndθ + dıXnθ, and θ is invariant under
any point transformation, as discussed in the paragraph leading to (3.3). Like the "rst term, the
second term is also an exact one-form: it is closed since d(π∗ıXn

ε) = π∗dıXn
ε = π∗LXn

ε = 0,
and since S2 is simply connected it is therefore also exact, i.e., ıXn

ε = dΓn, for some Γn : S2 →
R. The charge Pn is thus given by

Pn = p(Xn) − egΓn ◦ π (3.12)

up to an additive constant. The use of the symbol ‘P’ is motivated by the fact that the charges
associated with spatial transformations are the analogue of momentum coordinates. The term
p(Xn) alone is the usual orbital angular momentum associated with the rotation Killing vector
"eld Xn, while Pn is the canonical angular momentum, i.e., the charge that generates rotations
on the phase space with symplectic form ω (1.1). On a phase space with the ‘usual’ symplectic
form dθ, the canonical angular momentum would have been simply p(Xn).

Next we compute the charges associated with the R3∗ part of the group. Since the group
R3∗ is a vector space, it can be naturally identi"ed with its Lie algebra. Let Yα be the momen-
tum translation vector "eld on P induced by an element α of the Lie algebra of R3∗. The
corresponding charge Qα is de"ned by

dQα = −ıYαω

= −ıYαdθ

= −£Yαθ

= − d
dt

F∗
tαθ

∣∣∣∣
t=0

= π∗α

= π∗d f α

= d( f α ◦ π), (3.13)

where in the second line we used that ıYαε = 0; in the third line that ıYαθ = 0; in the fourth line
that the !ow induced by α is p '→ Ftα(p); in the "fth line we used (3.6); and in the sixth line
we used that d fα = α, as de"ned in (3.8).14 The charge associated with α is therefore

Qα = f α ◦ π (3.14)

14 Alternatively, in local coordinates adapted to the bundle structure of T ∗S2, the !ow generated by α = αidqi is given
by Ftα(qi, pi) = (qi, pi − tαi), so Yα = −αi

∂
∂pi

, and the charge differential is dQα = −iYα (dpi ∧ dqi + eg εi jdqi ∧
dqj) = αidqi = π∗α. In the last step the π∗ appears because, in this equation, qi are coordinates on T ∗S2, while in
the de"nition of α they are coordinates on S2.

9



J. Phys. A: Math. Theor. 54 (2021) 235303 R Andrade e Silva and T Jacobson

up to an additive constant. The use of the symbol ‘Q’ here is motivated by the fact that the
charges associated with momentum translations are the analogue of position coordinates.

To be more concrete, it is convenient to use the realization of S2 as the unit sphere in the
abstract R3, which was introduced in the previous subsection. We identify n ∈ so(3) with
the vector in R3 whose direction is the corresponding axis of rotation and whose magni-
tude |n| gives the angle of rotation of exp(n), according to the right-hand rule. Then, using
adapted spherical coordinates in which n is aligned with θ = 0, we have Xn = |n|∂φ, hence
ıXn

ε = |n| ı∂φ sin θ dθ ∧ dφ = |n| d(cos θ) = d(n · x), so we can choose Γn = n · x. Therefore,
the canonical charges are given, up to an additive constant, by

Pn = p(Xn) − eg n · x (3.15)

Qα = α(x). (3.16)

The notation is somewhat abbreviated here. Strictly speaking, Pn and Qα are functions on the
phase space P , which is speci"ed above by giving their values at a point p ∈ P . The vector
"eld Xn is implicitly evaluated at π(p), and x is the unit vector representative of π(p) in the
embedded realization of S2 ⊂ R3.

We next consider the Poisson bracket algebra of the charges. By construction, this algebra
matches the Lie algebra of the canonical group that de"ned the charges, up to a possible central
extension. If a central extension appears in such an algebra, in general it may or may not be
removable using the freedom to shift the charges by addition of constants. As mentioned above,
the Euclidean algebra in itself (i.e. apart from any canonical realization) does not admit any
non-trivial central extension (by two-cocycles), so that it must be possible to choose the additive
constants such that the Poisson algebra matches the Lie algebra. In fact, the choices we have
made in (3.15) and (3.16) satisfy this criterion, and the Poisson algebra takes the form

{Pn, Pn′} = P[n,n′]

{Qα, Pn} = QLXnα

{Qα, Qα′} = 0, (3.17)

which matches the semi-direct product structure of the algebra g = R3∗⊕S so(3) of G without
central charges. That is, denoting elements of g by (α, n) ∈ R3∗⊕S so(3), the product rule reads

[(0, n), (0, n′)] = (0, [n, n′])

[(α, 0), (0, n)] = (LXnα, 0)

[(α, 0), (α′, 0)] = 0, (3.18)

revealing how the linear association (α, n) '→ Pn + Qα is a (true) homomorphism.
To verify that the choices (3.15) and (3.16) lead to no central charges, and for later pur-

poses, it is convenient to introduce a basis for g. Using the identi"cation so(3) ∼ R3, choose
an orthonormal basis {ei} (i = 1, 2, 3) in R3. (Note that exp(ei) implements a right-handed
rotation by the angle 1 around the i-axis). It is straightforward to check that [ei, e j] = εi jkek,
where εi jk is the Levi-Civita symbol.15 Let {ei} denote the dual basis, satisfying ei(e j) = δi

j.

15 As SO(3) acts on R3 from the left, the algebra element n ∈ R3 induces the vector "eld Xn

∣∣
x = n × x, where x ∈ R3.

The Lie bracket of two such vector "elds is given by [Xn, Xn′ ] = −Xn×n′ . Together with [Xξ , Xη] = X[η,ξ] (see third
paragraph of section 2) this yields [n, n′] = n × n′.

10
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We de"ne

Ji := Pei

Ni := Qei , (3.19)

which satisfy the algebra

{Ji, J j} = εi jkJk

{Ji, Nj} = εi jkNk

{Ni, Nj} = 0. (3.20)

This is the algebra of the Euclidean group, presented in terms of a basis of generators of rotation
and translation.

We can express (3.15) and (3.16) in this basis. If x ∈ S2 ⊂ R3, we can write Xei = ei × x.
Also, if p is a co-vector on S2 at x, we can (abusing the notation) associate it with a vector p
in R3, tangent to S2 at x, such that p · v = p(v), where v is any vector on R3 tangent to S2 at x.
In this way, we have p(Xei ) = p · (ei × x) = ei · (x × p), which is the familiar orbital angular
momentum about the axis ei in R3. Thus, Ji = ei · (x × p− egx). Also, Ni, evaluated at any
point in the "ber over x, can be written as Ni = ei(x) = ei · x. In a three-vector notation,

J = x × p− eg x (3.21)

N = x, (3.22)

so we have Ji = ei · J and Ni = ei · N.
To establish (3.20), i.e., to verify that indeed there are no missing central terms, we may

evaluate the brackets at points in the phase space where both sides of the equation vanish. For
example, recall that {J1, J2} = −ω(Xe1 , Xe2 ). The vector "eld Xe1 vanishes at the points in phase
space with zero momentum and located at the rotation axis e1 on the S2 (i.e., the two points
in the intersection of the zero section with the "bers over x = ±e1). Hence {J1, J2} vanishes
there. On the other hand, according to (3.21), at the same point the function J3 is equal to
−ege3 · e1 = 0. Any constant added to J3 would spoil this agreement. This argument works for
all of the Ji brackets, so we conclude that no central term need be added on the right-hand side
of the "rst bracket in (3.20). The argument just given also implies that {J1, N2} = −ω(Xe1 , Ye2 )
vanishes at the axis point e1, while N3 equals e3(e1) = 0 at that same point. Hence no central
term appears in the second bracket either. As for the last brackets in (3.20), since the right-
hand side vanishes, it is unaffected by addition of a constant to any charge. In conclusion, as
we claimed, the charges de"ned in (3.15) and (3.16) provide a realization of the quantizing
algebra without central charges.

4. The quantum theory

Quantization of the theory amounts to constructing a unitary irreducible (UI) projective repre-
sentation of the canonical group G ∼ E3, in which the value of all classical Casimir invariants
carry over to the quantum theory, modulo possible operator ordering ambiguity that might arise
in quantizing the Casimir invariant. Since the Euclidean algebra does not admit (non-trivial)
central extensions, the UI projective representations of E3 are in correspondence with true UI

11
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representations of its universal cover, Ê3 ∼ R3 ! SU(2), which in turn are in correspondence
with UI representations of the Euclidean algebra g = R3⊕S so(3).16

4.1. Quantum canonical observables

The quantum version of the classical canonical observables Ji and Ni are the self-adjoint gen-
erators of the corresponding unitary transformations in some Hilbert space H. That is, given
some UI representation U of G (or its universal cover), and denoting elements of g by (α, n),
we de"ne the operators Ĵi and N̂i by

U[exp(0,λei)] =: e−iλĴi/!

U[exp(λei, 0)] =: e−iλN̂i/!, (4.1)

where λ is an arbitrary real parameter. It follows from the group structure that the quantized
algebra satis"es

[Ĵi, Ĵ j] = i" εi jkĴk

[Ĵi, N̂ j] = i" εi jkN̂k

[N̂i, N̂ j] = 0. (4.2)

The quantization map is Ji → Ĵi and Ni → N̂i, and (4.2) is the quantization of the Poisson alge-
bra (3.20). For notational simplicity we shall henceforth omit the ‘hat’ symbol over quantum
operators, since it should be clear from the context whether we are referring to the classical or
the quantum observables.

4.2. Casimir invariants

Casimir operators, by de"nition, commute with all elements of the algebra, and their eigenval-
ues can therefore be used to label its irreducible representations17. There are two independent
Casimir operators associated with the algebra g,

N2 =
∑

i

(Ni)2

N · J =
∑

i

NiJi. (4.3)

Their classical correspondents Poisson-commute with everything in the classical algebra and,
using (3.22) and (3.21), we have

N2 = x2 = 1

N · J = −eg x2 = −eg, (4.4)

revealing that these two quantities are constant classical observables. Since no operator order-
ing ambiguities arise in quantizing N2 and N · J (= J · N), we take as part of the quantization

16 See [28]; or, for an informal discussion, [29].
17 If an operator commutes with all other operators in an irreducible representation, then according to Schur’s lemma
it must be proportional to the identity operator.
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prescription that the quantum theory must carry the representation for which the values of the
two Casimirs (4.3) are given by precisely the corresponding classical values (4.4). Note that
the value of N · J is the only way the presence of the magnetic monopole is felt in the quantum
theory.

4.3. Representations of the algebra

While the representation theory of the Euclidean group is well known from Mackey’s theory
of induced representations carried by a space of wavefunctions [30, 31], we will present it here
using a rather simpler abstract ladder-operator approach.18 The method is reminiscent of the
usual derivation of the UI representations of SU(2). Some of the details are left to appendix B.
In appendix C we discuss an alternative derivation based on Mackey theory, which provides a
construction of the Hilbert space based on wave functions on S2.

Note "rst that the Euclidean algebra (4.2) is invariant under rescaling of N. Thus, without
loss of generality, we can particularize to the representation with N2 = 1. The value of the
other Casimir is left arbitrary,

N · J = s", (4.5)

with s some real parameter.
Let us start with a basis of simultaneous eigenvectors of J2 and J3, denoted as | j, m〉, de"ned

by

J2| j, m〉 = j( j + 1)"2| j, m〉

J3| j, m〉 = m"| j, m〉. (4.6)

At this point it is not clear which values of j are allowed, for a given s, nor if there is more than
one state with a given value of j and m. Note that J± = J1 ± iJ2 act as raising and lowering
operators for m and, from the standard analysis of the angular momentum algebra, we know
that, for a given j, m varies from − j to j in integer steps. Also, j can only be a non-negative
integer or half-integer (i.e., j ∈ 1

2 Z0+), but it may be that only a subset of that is included.
Before systematically deriving the properties of the irreducible representations, it is enlight-

ening to guess, by a simple but non-rigorous reasoning, which values of s and j are included.
Supposing that there is (in a limiting sense) a state localized at the north pole of the sphere, the
operator N · J acts on such a state as J3 (see (4.18) for details). This implies that 2s must be
integer valued in order for the representation to be non-trivial. Since it has the J3 eigenvalue s",
such a state must be constructed from states with j ! s. By virtue of rotational symmetry, the
same can be said about states localized at any other point on the S2, and one would expect an
irreducible representation to be constructed from the span of these states with j ! s. Moreover,
since N is a vector operator (in the way it transforms under commutation with the Ji), its action
can change the value of j by plus or minus unity, which suggests that repeated action of N will
both raise the j values without bound and lower them until they reach a !oor, which presum-
ably lies at j = s, since j ! s is the only apparent constraint. That is, the representation must
include all values j = s + n, for non-negative integers n. Indeed this is the correct spectrum,
as we now show by explicit construction of the representation.19

18 After completing this work we found that a similar realization of the representation appears in [12], although no
explicit derivation is presented there.
19 The earliest mention of this spectrum that we have found appears in [32], although no derivation was given there.
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We now present the rigorous derivation of the irreducible representations, analyzing how
certain operators in the algebra act as ‘ladder operators’ to shift the values j and m. From the
Wigner–Eckart theorem we know that when the vector operator Ni acts on a state, it can only
change the value of j by −1, 0 or 1. And, since acting on a state with N± = N1 ± iN2 changes
the m value by ±1, it follows that N+| j, j〉 ∝ | j + 1, j + 1〉. Thus N+ acts as a raising operator
for edge states | j, j〉, i.e. states with the maximal m = j for a given j. For now, let us assume that
if | j, j〉 is in the Hilbert space then so is N+| j, j〉, i.e., that its norm is positive. This assumption
will be justi"ed later.

Now let | j0, j0〉 be the ground state, in the sense that there are no states with j < j0 in the
representation being constructed. (We know that there must be such a lowest j state, since j is
non-negative). Since we are constructing an irreducible representation, the whole Hilbert space
H must be generated by acting with all elements of the algebra on any given state, in particular
the ground state. Consider then the set of states

| j, m〉 := (J−) j−m(N+) j− j0 | j0, j0〉, (4.7)

where j − j0 ∈ Z0+ and − j " m " j. Since these states have distinct eigenvalues for the self-
adjoint operators J2 and/or J3, they are necessarily orthogonal (although not normalized). We
will show that a representation exists only if s ∈ 1

2 Z, in which case there is a unique irreducible
representation, spanned by the states (4.7) with j0 = |s|. To establish this, we "rst prove that
these states are closed under the action of the entire algebra, and then we show that that they all
have positive norm, provided the s quantization condition holds and j0 has the required value.

It is clear how to de"ne the action of Ji on this basis, using just the angular momentum alge-
bra. That is, Ji| j, m〉 can be written as a linear combination of | j, m − 1〉, | j, m〉 and | j, m + 1〉
with coef"cients determined by the algebra. So let us focus on de"ning the action of the N’s.
It is easy to see that, since the commutator of an N with a J gives an N, the action of Ni on any
state is well-de"ned provided that the N’s have a well-de"ned action on the edge states | j, j〉.
Similarly, if the edge states have positive norm then so do the rest of the states.

By the de"nition of the basis states (4.7) we have

N+| j, j〉 = | j + 1, j + 1〉. (4.8)

Next, using only the algebra and the Casimir invariants, we show in appendix B that

N3| j, j〉 =
s

( j + 1)
| j, j〉 − 1

2( j + 1)
| j + 1, j〉 (4.9)

and, for j > j0,

N−| j, j〉 =
2 j

2 j + 1

(
1 − s2

j2

)
| j − 1, j − 1〉 + s

| j, j − 1〉
j( j + 1)

− | j + 1, j − 1〉
2(2 j + 1)( j + 1)

. (4.10)

(The action of the algebra on the edge state | j, j〉 is depicted on the left in "gure 2). It then
remains to determine N−| j0, j0〉, to establish that the states | j, j〉 with j ! j0 have positive
norm, and to show that the algebra is consistent with the assumption that j cannot be lowered
below j0.

Observe that the form of (4.10) indicates that the operator

L( j) = N− − s
j( j + 1)

J− +
1

2(2 j + 1)( j + 1)
(J−)2N+ (4.11)
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Figure 2. The diagram on the left depicts an arbitrary edge state | j, j〉 and the action of
the operators N+, N3, N− and J− on it—the image of | j, j〉 is in a linear superposition
of states at the endpoints of the corresponding arrows; note that J3 keeps | j, j〉 "xed and
J+ annihilates it. The diagram on the right shows the example of the representation with
s = 3/2, indicating the states that are present in it.

acts as a j-lowering operator for | j, j〉, i.e., L( j)| j, j〉 ∝ | j − 1, j − 1〉, modulo the assumption
that j > j0. In fact, using only the algebra it can be established for any j, including j0, that

[J2, L( j)]| j, j〉 = −2 j"2L( j)| j, j〉, (4.12)

hence J2L( j)| j, j〉 = j( j − 1)"2L( j)| j, j〉.
The squared norms of the raised and lowered edge states can be computed using only the

algebra and Casimir invariants. Doing so, we "nd

‖N+| j, j〉‖2 =
2( j + 1)
2 j + 3

(
1 − s2

( j + 1)2

)
〈 j, j| j, j〉 (4.13)

‖L( j)| j, j〉‖2 =
2 j

2 j + 1

(
1 − s2

j2

)
〈 j, j| j, j〉. (4.14)

(See appendix B for more details). Starting with a state | j, j〉, we can apply a sequence of L( j)

operators to lower j successively. This process stops, preventing j from becoming negative,
only if j0 differs from j by an integer and L( j0)| j0, j0〉 = 0. It thus follows from (4.14), and the
non-degeneracy of the Hilbert space, that j0 = |s|. Moreover, the condition L( j0)| j0, j0〉 = 0,
together with (4.11), de"nes the action of N− on the ground state,

N−| j0, j0〉 = s
| j0, j0 − 1〉
j0( j0 + 1)

− | j0 + 1, j0 − 1〉
2(2 j0 + 1)( j0 + 1)

. (4.15)

This happens to agree with (4.10) particularized to j = j0 = |s| (i.e., although the derivation
of (4.10) applied only for j > j0, the result actually extends to j = j0). Finally, (4.13) shows
that, since j ! |s|, N+ always creates a positive-norm state. This establishes that, if | j0, j0〉 has
positive (squared) norm, then so do all of the other edge states. It follows that all states de"ned
in (4.7) have positive norm and thus must be in H. (This array of states is illustrated on the
right in "gure 2, for the case j0 = 3/2.)

We conclude that the Hilbert space, in the representation with (N2, N · J) = (1, s"), is indeed
spanned by the states de"ned in (4.7), with j0 = |s|. As a consequence, we see that the Hilbert
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space is non-trivial if and only if

s ∈ 1
2

Z, (4.16)

since j can only take values in 1
2 Z0+.

4.4. Dirac’s condition and intrinsic spin

According to the matching condition for the Casimir (4.4), and the de"nition of s (4.5), the
quantum theory is based on the representation with s = −eg/". The requirement for the theory
to be non-trivial, (4.16), thus implies

eg =
n
2
" , n ∈ Z, (4.17)

which is precisely Dirac’s charge quantization condition.
It is interesting to note how the more restrictive Schwinger condition [33–35], eg = n",

would appear in this approach. In the previous section we derived the constraint on s by ana-
lyzing the representations of the algebra generated by J’s and N’s. However, not all of these
can be ‘integrated’ to representations of the group G = R3∗ ! SO(3). As mentioned before,
the representations of the algebra are in correspondence with representations of the universal
cover of the group, G̃ = R3∗ ! SU(2). In order to have a true representation of SO(3), rather
than just a projective representation (i.e. a representation up to a phase), one must impose that
a rotation by 2π corresponds to the identity operator, which implies that only integer spins,
j ∈ Z0+, are allowed. Were one to insist that the quantum theory be based on true representa-
tions of the quantizing group, G, this would thus impose the constraint s ∈ Z, which leads to
Schwinger’s condition. However, there is no fundamental reason within quantum mechanics
to exclude projective representations as realizations of a symmetry.

Let us now make a comment about intrinsic spin. In addition to the interpretation given
in section 4.2 for the Casimir N · J, as −eg, there is another interpretation, as a measure of
the intrinsic spin of the particle. To see this, consider a basis of simultaneous eigenvectors
of N = (N1, N2, N3), denoted by |n1, n2, n3〉. In the representation with N2 = 1 we must have
n2

1 + n2
2 + n2

3 = 1. This can be interpreted as a (non-normalizable) state localized at the point
n = (n1, n2, n3) on the sphere. Without loss of generality, consider such a state localized at the
north pole |u〉 = |0, 0, 1〉. We have

J3|u〉 = J · N|u〉 = s"|u〉, (4.18)

so that |u〉 is an eigenstate of J3 with eigenvalue s ∈ 1
2Z. But |u〉 is localized at the north pole, so

this angular momentum must be an intrinsic spin of the particle. Hence, there is an equivalence
between a spinless particle with electric charge e in the presence of a magnetic monopole of
charge g inside the sphere, and a particle with spin s" = −eg, with no magnetic monopole
[36, 37]. Interestingly, the same equivalence occurs in classical physics: a free particle with
spin would process on a circle smaller than the great circle, conserving angular momentum,
exactly as if there were a magnetic "eld curving the orbit of a spinless charged particle. In
fact, if it is not possible to turn off the magnetic monopole (or modify its charge), and the
particle is truly living on a sphere (without access to higher dimensions), then there is no way
to distinguish a magnetic monopole from an intrinsic spin.
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4.5. Energy spectrum

In this section we compute the energy spectrum for a non-relativistic particle of mass m living
on a round sphere of radius r, in the presence of a magnetic "eld given by (3.1). We assume
here that the magnetic "eld is uniform with respect to the metric on the sphere. The classical
time-evolution Hamiltonian is

H =
1

2m
hab pa pb, (4.19)

where pa is the canonical momentum—a cotangent vector on the sphere—and hab is the metric
on the sphere (using abstract tensor index notation). Note that the magnetic "eld does not
appear in the Hamiltonian for, in our approach, it is fully encoded in the symplectic form. From
Hamilton’s equations, we see that the kinematical velocity is simply related to the momentum
by

ẋα = {xα, H} =
1
m

hαβ pβ , (4.20)

where xα = (x1, x2) are any coordinates for the sphere. Thus, on a solution, the value of the
Hamiltonian is the kinetic energy, 1

2 mhαβ ẋα ẋβ .
Up to this point only the topology of the sphere, and the choice of an SO(3) subgroup of the

diffeomorphisms preserving B, has played a role in identifying and quantizing the canonical
group. Now we identify this subgroup with the symmetry group of the metric hab, and use that
identi"cation to express the Hamiltonian in terms of the canonical observables J and N. To
this end, we "rst express the inverse metric of the sphere in terms of the rotation Killing vector
"elds Xi := Xn=ei (cf footnote 17) and the geometrical radius r,

hab =
1
r2 Xa

i Xb
i , (4.21)

with implicit summation over the repeated index i.20 Inserting (4.21) for hab in the Hamiltonian
(4.19) yields

H =
1

2mr2 (Xa
i pa)(Xb

i pb)

=
1

2mr2 (Ji + egNi)(Ji + egNi)

=
1

2mr2 [J2 − (eg)2], (4.22)

where we used (3.15), (3.16), and (3.19) in the second line, and (4.4) in the third line. To
quantize, we just replace the function J by the quantum operator J. The Hamiltonian is clearly
diagonal in the basis | j, m〉, and the energy eigenvalues are de"ned by

H| j, m〉 =
"2

2mr2

[
j( j + 1) − j20

]
| j, m〉, (4.23)

20 To verify that this sum yields the inverse metric, note "rst that it is invariant under rotations. The normalization
constant can be determined by looking at a speci"c point, namely (θ,φ) = (π/2, 0). There we have X1 = 0, X2 = ∂θ
and X3 = ∂φ, and the inverse metric thus reads r−2(∂2

θ + ∂2
φ), as desired.
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where j0 = |s| = |eg|/", and j − j0 ∈ Z0+. Equivalently, in terms of the non-negative integer
k = j − j0, the energies can be enumerated as

Ekm =
"2

2mr2

[
k(k + 1) + |s| (2k + 1)

]
. (4.24)

The degeneracy of these ‘Landau levels’ arises only from m, so there are 2 j + 1 = 2(k + |s|)
+ 1 states at level j. In particular, the ground state has degeneracy 2|s| + 1, corresponding to
one additional state for each magnetic !ux quantum. This agrees with other derivations of the
energy spectrum [18, 32, 38, 39].

The case where the magnetic "eld is not uniform with respect to the metric is slightly more
subtle. In principle, we could include it in the symplectic form and proceed as before. However,
unless B is uniform, no SO(3) subgroup of the B-preserving diffeomorphisms of the sphere
would be an isometry of the metric. Consequently, there would be no preferred form for the
Hamiltonian when written in terms of the canonical observables, leading to operator-ordering
ambiguities in the quantization. Instead we can split the magnetic "eld into its monopole and
higher multipole parts, continuing to include the monopole part in the symplectic structure, but
incorporating the higher multipole part into the Hamiltonian via the usual minimal coupling.
By doing so, we obtain a globally de"ned Hamiltonian, which admits a standard application
of canonical quantization. We discuss this case in appendix D, where we also address the issue
of gauge invariance in Isham’s group theoretic quantization scheme.

5. Discussion

In this paper we have studied the problem of quantizing a particle on a two-sphere in the pres-
ence of a magnetic monopole using Isham’s group-theoretic scheme. Based on the principles of
canonical quantization, the quantum theory is constructed from UI (projective) representations
of a transitive group of symplectic symmetries of the phase space. Our goal was to analyze the
problem in a rigorous manner, emphasising the role of Casimir invariants in connecting the
classical and the quantum worlds. To ensure robustness and generality of the quantization, we
referred only to intrinsic properties of the system, adopted a gauge-invariant approach, and did
not make any a priori assumptions about the Hilbert space.

In order to formulate the problem in a gauge-invariant language, with globally de"ned
objects, we described the magnetic monopole as a ‘!ux term’ in the symplectic form on the
phase space. A natural transitive group of symmetries of the phase space is the Euclidean
group, E3 = R3∗ ! SO(3), where SO(3) implements spatial rotations of the sphere and R3∗

corresponds to momentum translations (i.e., boosts). The canonical observables consist of
three angular momentum ‘coordinates’, J, generating the spatial rotations, and three position
‘coordinates’, N, generating the momentum translations. Although the group structure is inde-
pendent of the magnetic monopole, the presence of the latter affects the expressions of the
canonical observables, J and N, as functions on the phase space, and it also affects the value
of the classical Casimir J · N = −eg. To construct the Hilbert space, we employed an alge-
braic method involving ladder operators that raise and lower the eigenvalue of the J2 operator.
This method for deriving the UI representations of the Euclidean group resembles the usual
approach for SU(2). By imposing that the theory is free of negative-norm states, one gets a
constraint on the possible values of the Casimir invariants N2 and J · N. If we set N2 = 1
(which can always be done without loss of generality), then J · N must be an integer multiple
of "/2. Insisting that the values of these quantum invariants must be the same as their classical
counterparts, we obtain Dirac’s charge quantization condition, eg = n"/2.
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Although Isham’s scheme provides a well-founded algorithm for quantization, it still suf-
fers from ambiguities. One ambiguity appears in the choice of the particular SO(3) subgroup of
the (in"nite-dimensional) group of volume-preserving diffeomorphisms of the sphere, whose
lift to the phase space was used to construct the quantizing group. Although we argued that
this choice does not affect the Hilbert space, it is relevant for the dynamics of the quantum
theory. Indeed, the form of the Hamiltonian as a function of the canonical observables depends
on which SO(3) subgroup is chosen. For a generic metric, no such a choice is preferred and
thus the Hamiltonian would have no preferred form, leading to operator-ordering ambiguities.
We contrast this with the case of the round sphere, where the group of isometries of the metric
provides a preferred SO(3) subgroup of symmetries, and leads to a simple (free) Hamiltonian
that can be quantized unambiguously. Save for a few other highly symmetric cases (like the
ellipsoid), some additional principle would be needed to resolve the ambiguities associated
with a generic geometry. Another, more fundamental, ambiguity that is potentially resolved by
the metric is the choice of the quantizing group itself. In fact, there are many "nite-dimensional
groups that act transitively on the sphere (e.g., the Lorentz group), so it may be that the underly-
ing justi"cation for the choice of SO(3) comes down to the symmetries of the metric. However
the example of a particle on S3 reveals that the metric may not be suf"cient to cure this ambi-
guity, as in this case both SU(2) and SO(4) act transitively and isometrically on a round sphere.
For the case of a particle on S3, see for example [40–43].

It is important to stress that this procedure is predicated on the assumption that the classical
theory, and in particular all of the observables, are de"ned globally on phase space, since the
quantum description is inherently global. To illustrate this point, suppose that, instead of incor-
porating the magnetic monopole "eld in the symplectic form, we took the more common route
of using the canonical symplectic form and including the vector potential A in the Hamiltonian,
H = 1

2m (p− eA)2. It would still be natural to choose the Euclidean group for the quantizing
group. If we did so, the Casimir J · N would vanish classically and, if the Casimir matching
principle were to apply, this would mean that J · N would also vanish quantum mechanically.
But the quantum theory should not depend on the particular way one decides to describe the
classical system, and we have already established that in the quantum theory J · N should be
equal to −eg. This failure of the Casimir matching principle can be attributed to the failure of
the classical phase space description to be global. Since no globally de"ned vector potential
A can describe the monopole, one must cover the sphere in at least two overlapping gauge
patches. Classically, one can focus on phase space trajectories that are temporarily con"ned to
one or the other patch, switching descriptions in the overlap region, but that precludes a global
map between the classical and quantum observables. This is not to say that one cannot describe
the quantum theory using the vector potential for the monopole, but only that it cannot be done
according to the standard framework of global canonical quantization. Instead, one can ensure
that the quantum description itself is globally well de"ned. As explained in appendix C, in
such a global description the wave functions are sections of a complex line bundle over the
sphere carrying a representation of the Euclidean group. In such a representation, p− eA can
be realized as a covariant derivative provided that the product of the charges satis"es the Dirac
quantization condition eg = n/2 for some integer n, and that the Chern number of the bundle
is n. In this formulation, the quantum Casimir J · N takes the correct value, −eg.

As the previous paragraph makes clear, when quantizing a classical system the determina-
tion of the correct Hilbert space can depend not only on the intrinsic structure of the phase
space, but on the dynamics as well. For the particle on the sphere in a monopole "eld, the
impact of the dynamics on the Hilbert space is felt either from the Casimir matching principle
(when the dynamical effects of the magnetic monopole are encoded in the symplectic form),
or from the Chern class selection (when the monopole is encoded in the Hamiltonian via the
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gauge potential). This role of the dynamics is absent in quantum mechanics on Rn since (by the
Stone–von Neumann theorem) the canonical algebra of position and momentum coordinates
has a unique representation, so the Hamiltonian plays no role in selecting the Hilbert space.
On the other hand, it is ubiquitous in quantum "eld theory, where the in"nite dimensionality
of the algebra allows for many representations of the canonical algebra, and the selection of a
representation depends on other physical observables, such as the Hamiltonian. For example,
as shown by Haag’s theorem [44, 45], the representations containing a translation invariant
vacuum state in in"nite volume differ even for a free scalar "eld with different masses [46].
The problem of a particle on a sphere provides a simple example where the non-uniqueness of
the representation, resolved only by the dynamics, comes from the non-trivial topology of the
phase space, rather than from the in"nite dimensionality of the algebra.

The difference between the quantizations on a plane and on a sphere can be understood
from a group-theoretic perspective, in terms of the ‘planar limit’ of the sphere, as follows. We
expect that a particle that remains near the north pole of the sphere at all times should not be
able to ‘feel’ the global structure of the sphere. Thus, in some limit, the quantum mechanics
on a sphere must reduce to the usual one on a plane. To see how this works, consider a ‘sector’
of the Hilbert space in which X1 := N1 ∼ θ, X2 := N2 ∼ θ and N3 ≈ 1, where θ 2 1 is the
angle around the north pole where the particle is localized. Note that the ‘vertical momentum’
P3 ∼ θ|P| is small in this sector, so we can approximate J1 ≈ −P2 − egX1, J2 ≈ P1 − egX2
and J3 ≈ X1P2 − X2P1 − eg, where terms of order θ2 were neglected. In this sector, the alge-
bra reduces to [Xi, Pj] = i"δi jN3, J3 behaves as the generator of rotations for Xi and Pi, and N3

becomes a central element (taking the value 1 in the relevant representation). This deformation
of the algebra is known as the Inönü–Wigner contraction. At the group level, this corresponds to
a deformation of the Euclidean group E3 = R3 ! SO(3) into (R2 × R) ! (R2 ! SO(2)), where
the "rst factor is generated by (X1, X2; N3) and the second by (P1, P2; J3). This contracted
group can be reexpressed as H(2) ! SO(2), where H(2) is the Heisenberg group in two spa-
tial dimensions, generated by (X1, P1, X2, P2; N3), and SO(2) is the rotation group around the
origin, generated by J3. Note that S := J3 − (X1P2 − X2P1) = −eg is a Casimir operator, inter-
preted as the intrinsic spin of the particle. Since J3 differs from X1P2 − X2P1 only by a Casimir
operator, it follows that the irreducible representations of H(2) ! SO(2) are also irreducible
when restricted to H(2). As H(2) has a unique irreducible unitary representation, this con"rms
that we do in fact recover the quantum mechanics on a plane (for any value of the intrinsic spin
Casimir S). It is interesting to note an important difference between the plane and the sphere:
the subgroup SO(2) of E3 was ‘pulled out’ of SO(3) during the deformation, so it appears as a
factor in H(2) ! SO(2) rather than as a subgroup of SO(3). The spin is therefore not quantized
on a plane, because the SO(2) gets ‘unwrapped’ to R when considering projective representa-
tions (that is, when considering the universal cover of the group). Thus the quantization of the
spin on a sphere is a truly topological effect.

In conclusion, we have seen that the problem of quantizing a particle on a sphere is quite
effective in revealing some of the subtleties associated with a non-trivial phase space topology.
It also serves to illustrate how Isham’s scheme, which provides a general class of quantum the-
ories compatible with the classical kinematics, must be paired with additional principles (e.g.,
Casimir matching) and considerations about dynamics in order to single out a preferred quan-
tum theory. The fact that non-trivial phase space topology affects global aspects of quantization
applies as well to quantum "eld theories, for which the implications are not yet fully known.
In particular, the longstanding problem of quantizing general relativity, as a candidate theory
of quantum gravity, is a prime example: even before imposing the Hamiltonian constraints, if
the con"guration space is given by metrics (or co-frame "elds) on a spatial slice, the condition
that these are non-degenerate (and of positive signature) leads to a phase space with non-trivial
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topology. This suggests that standard canonical commutation relations are not appropriate,
and that instead the quantization should be based on an af"ne algebra [47–51], a conclusion
that is also reached by the application of Isham’s global, group theoretic quantization scheme
[52, 53].
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Appendix A. No central extensions for the E3 algebra

In this section we offer a simple derivation of the fact that the algebra E3 (3.20) of the Euclidean
group E3 does not admit non-trivial central extensions by two-cocycles. Although this result
is presumably well-known, we have not found a reference proving it explicitly.21

Let g be a Lie algebra and let g̃ = g⊕S R be a central extension. If ξ ∈ g and r ∈ R, we
generically de"ne the product on g̃ as

[
(ξ, r), (ξ′, r′)

]
=

(
[ξ, ξ′], θ(ξ, ξ′)

)
, (A.1)

for some function θ : g2 → R. If this is to form a Lie algebra, θ must be linear, antisymmetric
and, due to Jacobi identity, satisfy

θ(ξ, [ξ′, ξ′′]) + θ(ξ′, [ξ′′, ξ]) + θ(ξ′′, [ξ, ξ′]) = 0, (A.2)

which is called the two-cocycle condition. The extension is said to be trivial if θ(ξ, ξ′) =
f([ξ, ξ′]) for some linear f : g → R. (In this case, note that ξ '→ (ξ, f(ξ)) is a homomorphism
from g to g̃).

Consider now the E3 algebra. De"ne

θi j = θ(Ji, J j)

θαβ = θ(Nα, Nβ)

θαi = θ(Nα, Ji), (A.3)

where Latin and Greek indices are used to distinguish these components (i.e., θi j represents a
different set of numbers than θαβ). These components can be rewritten as

θi j = εi jkwk

θαβ = εαβγhγ

θαi = εαiβwβ , (A.4)

21 There are some general theorems that can be applied to the Euclidean algebra, such as proposition 1 of [54] or
proposition 14.1 of [55]. These theorems imply that En does not admit non-trivial central extensions except for n = 2.
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for the nine numbers wi, hα and wα.
For a trivial extension, we must have

θi j = θ(Ji, J j) = f ([Ji, J j]) = f (εi jkJk) = εi jk f k

θαβ = θ(Nα, Nβ) = f ([Nα, Nβ]) = 0

θαi = θ(Nα, Ji) = f ([Nα, Ji]) = f (εαiβNβ) = εαiβ f β , (A.5)

where f i = f(Ji) and fα = f(Nα). We conclude that the extension is trivial if and only if
hα = 0, for in this case we can always de"ne f i = wi and fα = wα.

Consider the cocycle condition for two N’s and one J,

θ(Nα, [Nβ , Ji]) + θ(Nβ , [Ji, Nα]) + θ(Ji, [Nα, Nβ]) = 0, (A.6)

which gives εβiγθαγ + εiαγθβγ = 0. Or, in terms of hα, δiαhβ − δiβhα = 0. Contracting i and α,
we get hβ = 0, proving that the E3 algebra admits only trivial central extensions.

Appendix B. Details on the construction of the Hilbert space

In this appendix we explain some of the details involved in the construction of the Hilbert space
of the theory, presented in section 4.3. In particular, we want to derive equations (4.9)–(4.15).
For simplicity, we use " = 1 in this section.

Note "rst that the angular momentum algebra,

[J3, J±] = ±J± , [J+, J−] = 2J3, (B.1)

alone yields the action of Ji on the basis states (4.7):

J3| j, m〉 = m| j, m〉, (B.2)

J−| j, m〉 = | j, m − 1〉, (B.3)

J+| j, m〉 = [ j( j + 1) − m(m + 1)] | j, m + 1〉. (B.4)

Moreover, the norms of all the states | j, m〉 are related to the norm of | j, j〉 recursively, via

〈 j, m − 1| j, m − 1〉 = 2m〈 j, m| j, m〉

+ [ j( j + 1) − m(m + 1)]2〈 j, m + 1| j, m + 1〉, (B.5)

hence they all have positive norm provided the edge states | j, j〉 do. Thus we need only consider
the action on and norms of the edge states.

For the rest, we use the algebra relations

[J3, N±] = ±N3 , [J±, N3] = ∓N± , [J±, N∓] = ±2N3, (B.6)

(and [J±, N±] = 0). Using the last of these, the Casimir N · J = s can be written as

N · J = N3(J3 + 1) +
J−N+ + N−J+

2
, (B.7)

and applying this on | j, j〉 yields

N3| j, j〉 =
s

j + 1
| j, j〉 − 1

2( j + 1)
| j + 1, j〉. (B.8)
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To "nd N−| j, j〉 for j > j0, we can write

N−| j, j〉 = N−N+| j − 1, j− 1〉

=
(
1 − N2

3

)
| j − 1, j − 1〉, (B.9)

in which we set N2 = 1. Using formula (B.8) we have

N2
3 | j − 1, j − 1〉 = N3

(
s
j
| j − 1, j − 1〉 − 1

2 j
J−| j, j〉

)

=
s
j
N3| j − 1, j − 1〉 − 1

2 j
(J−N3 − N−)| j, j〉, (B.10)

which together with (B.8) and (B.9) yields

N−| j, j〉 =
2 j

2 j + 1

(
1 − s2

j2

)
| j − 1, j − 1〉

+
s

j( j + 1)
| j, j − 1〉 − | j + 1, j − 1〉

2(2 j + 1)( j + 1)
, (B.11)

provided that j > j0.
Next we compute the norms ‖N+| j, j〉‖2 and ‖L( j)| j, j〉‖2, where L( j) is the j-lowering

operator de"ned in (4.11),

L( j) = N− − s
j( j + 1)

J− +
1

2(2 j + 1)( j + 1)
(J−)2N+. (B.12)

In what follows, we use ≈ to denote operator identities that are valid only within 〈 j, j| . . . | j, j〉.
For the raised state we compute

N−N+ = 1 − N2
3 ≈ 1 −

(
s

j + 1
− 1

2( j + 1)
N−J+

)(
s

j + 1
− 1

2( j + 1)
J−N+

)

≈ 1 − s2

( j + 1)2 − 1
2( j + 1)

N−N+, (B.13)

and, solving for N−N+,

N−N+ ≈ 2( j + 1)
2 j + 3

(
1 − s2

( j + 1)2

)
, (B.14)

which yields (4.13) for the squared norm. For the lowered state we have

L( j)†L( j) ≈ j(2 j + 3)
( j + 1)(2 j + 1)

N−N+ − 2s2

j( j + 1)2 , (B.15)

and using the result for N−N+ we get

L( j)†L( j) ≈ 2 j
2 j + 1

(
1 − s2

j2

)
, (B.16)

which yields (4.14) for the squared norm.
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Appendix C. Wavefunctions and Chern numbers

In this appendix we review Mackey’s approach, and apply it to the construction of the irre-
ducible unitary representations of the Euclidean group E3 (and of its universal cover), which
recovers the usual concept of wavefunctions as sections of complex vector bundles. We show
in particular that the value of the Casimir N · J, which is related to the magnetic charge, deter-
mines the "rst Chern number of the bundle via the Casimir matching requirement. Interestingly,
in geometric quantization [9, 18], where quantum states are also given by sections of a line
bundle, the same relation between the magnetic charge and the bundle topology arises, albeit
in a different manner: by construction, the line bundle carries a connection whose curvature
is required to coincide with the symplectic form (1.1). Here we follow closely Isham’s pre-
sentation [1] of Mackey’s theory, using the language of "ber bundles. For a more technically
complete presentation, framed in the language of measure theory, see for example [56] or [31].

As motivation, let us "rst consider only the SO(3) part of the group. Given its natural action
on S2, lR(x) =: Rx, we can construct a representation with wavefunctions ψ : S2 → Cd de"ned
by

(U(R)ψ) (x) = ψ(R−1x), (C.1)

where R ∈ SO(3) and x ∈ S2. This representation is unitary with respect to the inner product
〈ψ,φ〉 =

∫
dµ ψ∗φ, where dµ is the Euclidean measure on the sphere, but it is not irreducible.22

Also, it is not exhaustive (i.e., not all unitary representations have this form).
To generalize this, consider a Hermitian vector bundle over the sphere, Cd → B → S2.23 We

want to take sections of this bundle, Ψ : S2 → B, as the vectors of the representation. Since the
analogue of (C.1) would involve a mapping between distinct "bers, we must require that the
bundle admits a lift of the group action, LR : B → B, satisfying τ ◦ LR = lR ◦ τ (compatibility
with "ber structure) and LR ◦ LR′ = LRR′ (compatibility with group structure). In that case, we
de"ne

(U(R)Ψ) (x) = LR(Ψ(R−1x)). (C.2)

Note that this makes sense because LR maps the point Ψ(R−1x), on the "ber over R−1x, to a
point on the "ber over x. The Hermitian structure of B, with inner product on each "ber denoted
by (, ), gives rise to an inner product on the space of sections de"ned by

〈Ψ,Φ〉 =

∫

S2
dµ(x) (Ψ(x),Φ(x)) . (C.3)

In order for the representation to be unitary with respect to this inner product, we must require
that the group lift is compatible with the Hermitian structure of the bundle, i.e.,

(
LRz, LRz′

)
=

(z, z′), where z and z′ are points on the same "ber of B. Note that (C.1) is the special case where
both the bundle and the group lift are trivial.

To "nd the most general wavefunction representation of SO(3) on S2, we must classify all
the bundles Cd → B → S2 that admit such a lift of SO(3). It is possible to show [2] that any such
a bundle must be associated to the ‘master bundle’ SO(2) → SO(3) → SO(3)/SO(2) ∼ S2, with

22 For example, in the case d = 1, the space of complex functions on the sphere can be expanded in spherical
harmonics, but since each l-subspace is invariant the representation is not irreducible.
23 In the notation F("ber) → E(total space) → M(base space), the second arrow represents the bundle projection map
from the total space to the base space, while the "rst arrow merely indicates that each "ber of the bundle is an embedded
copy of F.
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projection map equal to the quotient q : SO(3) → SO(3)/SO(2), via some homomorphism U :
SO(2) → U(d). More precisely, B is necessarily isomorphic to SO(3)×U Cd, the bundle de"ned
by the equivalence classes [R, z] = [Rh, U(h−1)z], for R ∈ SO(3), z ∈ Cd and h ∈ SO(2) ⊂
SO(3), with projection map qU ([R, z]) = q(R). The group action on this bundle is given by
LR[R′, z] := [RR′, z]. Note that U is a unitary representation of SO(2), and we will later be
interested in the irreducible ones. Since SO(2) is abelian, its irreducible representations are
one-dimensional, so only the case d = 1 is relevant. These representations are given by

U (n)(θ) = e−inθ, (C.4)

where n ∈ Z. The choice of this representation is the only discrete choice that enters the con-
struction of the general representation of E3 using Mackey theory, hence one can anticipate
that n must be related to the magnetic monopole index in (4.17).

We are now ready to consider the full group, R3∗ ! SO(3). For more transparency, let us
consider "rst a generic group of the form V ! K, where V is a vector space and K is a Lie
group.24 The product rule is given by

(v, k)(v′, k′) = (v + ρkv
′, kk′), (C.5)

where v ∈ V , k ∈ K and ρ : K → Aut(V) is a left K-action on V . Later we shall particularize to
K = SO(3) and V = R3∗, in the dual representation ρR = l∗R−1 (see (3.10)). Since a generic ele-
ment (v, k) can be decomposed as (v, e)(0, k), where e is the identity element of K, the operators
representing V ! K on a Hilbert space H will factorize accordingly, U(v, k) = U(v, e)U(0, k).
We can de"ne A(v) := U(v, e) and D(k) := U(0, k), so that

U(v, k) = A(v)D(k). (C.6)

Thus, in classifying the representations of V ! K, we can study the representations of V and
K separately, in the following manner.

Starting with V , de"ne the self-adjoint generators N(v) by

A(λv) = e−iλN(v), (C.7)

whereλ ∈ R. Since V is abelian, we have [N(v), N(v′)] = 0, and N(v + λv′) = N(v) + λN(v′),
meaning that N is a linear map from V into a set of commuting, self-adjoint operators on H.
Accordingly, a simultaneous eigenvector |χ〉 of N(v), for all v, determines an element w ∈ V∗,
such that

N(v)|χ〉 = w(v)|χ〉. (C.8)

Nothing requires the eigenvalues of N(v) to be non-degenerate, so each w may label a Hilbert
(sub)space Sw ⊂ H. It follows from the group structure that the operator D(k) maps Sw uni-
tarily onto Sρ̃kw, where ρ̃k is the dual action of K on V∗, de"ned as ρ̃kw(v) = w(ρk−1v) for all
v ∈ V . The Hilbert space H will be given by a ‘direct sum’ (or rather, ‘direct integral’) of Sw

over w’s in some region of V∗. If D(k) is to act in a closed fashion, such a region must consist
of one or more orbits of K. To ensure irreducibility of the V ! K representation, we must take
this region to be a single K-orbit O (or its closure) in V∗. Roughly speaking,

H ∼ “⊕w∈OSw”. (C.9)

24 Mackey’s theory also applies, with a minor modi"cation, if V is abelian and K is a separable, locally compact group.
When V is not a vector space, we just need to replace below the dual space V∗ by the space of unitary characters
Char(V).
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More precisely, H will be the space of sections of a vector bundle over O, with "bers Sw ∼ Cd

(for some dimension d). To classify these representations we must therefore classify the
corresponding vector bundles.

As explained before for the case K = SO(3), in order for a vector bundle Cd → B → O over
O ∼ K/H (where H is the little group corresponding to the orbit O) to carry a representation
of K, it must admit a lift of the K-action, and thus must be associated to the master bundle
H → K → K/H via a UI representation U : H → U(d) of H. Cross sections of this bundle,Ψ :
O → B = K×U Cd, form a linear space which carries a representation of V ! K. The element
(v, k) is represented by

(U(v, k)Ψ)(w) = e−iw(v)

√
dµk

dµ
(w) Lk

(
Ψ(ρ̃k−1w)

)
, (C.10)

where w ∈ O and Lk is the lift of K to K×U Cd de"ned by Lk[k′, z] = [kk′, z]. The phase factor
on the right-hand side is A(v), and the rest is the factor D(k), as in (C.6). Note that D(k) is
analogous to (C.2), except for the Jacobian-like factor dµk/dµ, which deserves a few words.
In the case of SO(3), it is possible to de"ne the inner product (C.3) using the Euclidean mea-
sure on the spherical orbit, and the invariance of this measure under SO(3) implies that U(R) in
(C.2) is unitary, so this Jacobian-like factor is not needed. In general, however, the orbit O may
not admit an invariant measure,25 but fortunately it always admits a measure µ that is quasi-
invariant under K. That is, µ and its push-forward µk := ρ̃k∗µ through ρ̃k have the same sets of
measure zero.26 In order to make U(v, k) unitary under such a measure, we must introduce the
Jacobian-like factor dµk/dµ, called the Radon–Nikodym derivative of µk with respect to µ,
which is a positive (µ-almost-everywhere) continuous function on O satisfying µk[B] =∫

B
dµk
dµ dµ for all Borel sets B ⊂ O. Representations de"ned for equivalent measures (i.e., having

the same sets of measure zero) are unitarily equivalent, and since there is only one quasi-
invariant measure on K/H (up to equivalence), the measure in (C.10) is determined by O (up
to equivalence).

Note that these representations are labeled by the choice of the orbit O and the little group
representation U . These representations are irreducible as long as U is irreducible. If V∗

decomposes into regular K-orbits, meaning that there exists a Borel map ζ : V∗/K → V∗ that
associates a dual vector to each orbit, then all UI representations are generated in this way. This
is Mackey’s main result.

In the case of interest, R3∗ ! SO(3), the space where the orbits live is (R3∗)∗, which can
be naturally identi"ed with R3. Thus ρ̃R, which acts on w ∈ R3∗∗ as w '→ ρ∗R−1w = l∗∗R w, acts
on x ∈ R3 as x '→ lRx = Rx. That is, SO(3) acts on (R3∗)∗ ∼ R3 in just the standard way. The
orbits O decompose into two classes: spheres (with any radius) and a point (at the origin). The
little group for the "rst kind is SO(2), while for the second it is SO(3). Since the orbits are
regular, the irreducible unitary representations are labeled by the radius a ∈ R+ ∪ {0} of the
orbit and, for a > 0 (which is the case of interest), the integer n ∈ Z specifying the irreducible
unitary representation U (n)(θ) = e−inθ of the little group SO(2). For a given value of n, the
Hilbert space consists of sections of the line bundle SO(3)×U (n)C.

How are the basic operators, N and J, realized on this Hilbert space? Since the Euclidean
measure on S2 is invariant under SO(3), we do not have the Jacobian factor in (C.10), which

25 In many cases, such as when K is locally compact and H is compact, the Haar measure on K can be pushed down
to K/H, de"ning an invariant measure on O.
26 Given a measurable map f : X → Y and a measure µ on X, its push-forward to Y is de"ned as f∗µ[B] = µ[ f−1(B)],
where B is any Borel subset of Y and f−1 denotes the pre-image under f.
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simpli"es to

(U(α, R)Ψ)(x) = e−iα(x)/!LRΨ(R−1x). (C.11)

Note that we have introduced an " in the phase factor, for notational convenience. In analogy
with (4.1), we de"ne more generally the generating operators Jη and Jα via

U(exp(0,λη)) =: e−iλJη/!

U(exp(λα, 0)) =: e−iλNα/!, (C.12)

where η ∈ so(3) ∼ R3 and α ∈ R3∗. It follows that

Jη = i" d
dλ

U(exp(0,λη))
∣∣∣∣
λ=0

Nα = i" d
dλ

U(exp(λα, 0))
∣∣∣∣
λ=0

. (C.13)

Hence,

(JηΨ)(x) = −i"DηΨ(x)

(NαΨ)(x) = α(x)Ψ(x), (C.14)

where D is a derivative operator de"ned by

DηΨ(x) = − d
dλ

LRληΨ (R,λη,−1, x)
∣∣∣∣
λ=0

. (C.15)

It satis"es Dη( f Ψ) = f DηΨ + Xη( f )Ψ, where f : O → C and Xη is the vector "eld (tangent
to O ∼ S2) generated by η.

We now wish to relate the Casimirs N2 and N · J with the labels a and n of the wavefunction
representations. In an orthonormal basis ei for R3, and dual basis ei for R3∗, we have N2 =∑3

i=1(Nei )2, and NeiΨ(x) = ei(x)Ψ(x) = xiΨ(x), so

N2Ψ(x) = x2Ψ(x) = a2Ψ(x). (C.16)

Thus, not surprisingly, N2 corresponds to the radius squared, a2, of the sphere. The represen-
tation scales trivially with N2, and the choice we made previously was N2 = 1, so we here
consider also the case a = 1.

Next we consider N · J, which as we now show is related with the index n of the bundle
SO(3)×U (n)C. We establish this in two independent ways. In the "rst way, we show how N · J
is related to the little group representation (C.4), which is labeled by n. In the second way,
we show how N · J can be directly related to the integrated curvature of a suitably constructed
connection, which directly yields the Chern number of the bundle, and thus the index n. In this
second way, we will not need to invoke Schur’s lemma, but rather it will be a consequence of
the construction that N · J is proportional to the identity, similarly to what happened with N2

above.
In the "rst way, we note that since N · J is a Casimir in the algebra, it must according to

Schur’s lemma be proportional to the identity, so it suf"ces to evaluate its action on a single
state Ψ(x) at any given point x. Let us take x to be the north pole u = (0, 0, 1), and construct
the bundle SO(3)×U (n)C using the SO(2) little group of u. Then we have N · JΨ(u) = J3Ψ(u)
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and, since u is a "xed point of Rλe3 , the value of J3Ψ(u) depends only on the value of Ψ at u
(as opposed to in a neighborhood of u). DenotingΨ(u) = [1, z] ∈ SO(3)×U (n)C, where 1 is the
identity element of SO(3) and z ∈ C, we have

J3Ψ(u) = −i"De3Ψ(u)

= i" d
dλ

LRλe3
Ψ(u)

= i" d
dλ

[Rλe3 , z]

= i" d
dλ

[1, U(Rλe3 )z]

= i" d
dλ

e−inλ[1, z]

= "nΨ(u), (C.17)

where d/dλ is evaluated at λ = 0 at every step. In the second line we used that R−1
λe3

u = u; in the
third line we used the de"nition of the group lift to the associated bundle, LR[R′, z] = [RR′, z];
in the fourth line we used the de"ning property of the associated bundle SO(3)×U (n)C, [R, z] =
[Rh, U(h−1)z], with h = R−1

λe3
; and in the "fth line we used (C.4). Therefore J · NΨ(x) =

"nΨ(x), so we conclude that the value of the Casimir invariant J · N is determined by the lit-
tle group representation U (n). Given the identi"cation J · N = −eg, we obtain the Schwinger
condition eg = −n", which is more restrictive than Dirac’s condition (4.17).

In order to include also projective representations of the quantizing group, we must
extend SO(3) to SU(2) and repeat the same analysis. The relevant master principal bun-
dle is then the Hopf bundle U(1) → SU(2) → SU(2)/U(1) ∼ S2. Because the little group
is U(1), the associated bundles are again constructed with the representations U (n), so the
quantum states are represented by sections of SU(2)×U (n)C. The group SU(2) acts on the
sphere as

eiv·σ(x · σ)e−iv·σ = (R2vx) · σ, (C.18)

where v ∈ R3, x ∈ S2 ⊂ R3 and σ = (σ1, σ2, σ3) are the Pauli matrices. To obtain the
usual normalization for the su(2) algebra (i.e., with structure constants f i jk = εi jk) we must
take the basis {σ1/2, σ2/2, σ3/2}, so that e3 = σ3/2, and thus J3 = Jη=σ3/2. Repeating the
steps of the previous derivation, the only difference is that the little group phase factor is
U (ei(σ3/2)λ) = e−inλ/2, which leads to J3Ψ(x) = "n/2. That is, s = n/2, matching Dirac’s
condition.

In the second way of evaluating N · J, we note that the Chern number is a topological
property of the bundle, as it does not depend on the connection used to evaluate it, so we shall
just use the structures available to construct some arbitrary connection. The natural ingredient
to use is the derivative operator D, which is de"ned in (C.15) in terms of the group lift LR. A
possible de"nition for a covariant derivative is

∇VΨ(x) = Dx×VΨ(x), (C.19)
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where V ∈ TxS2 ⊂ TxR3. One can check that this ∇ satis"es all properties of a covariant
derivative, so it de"nes a connection on the bundle. Using (C.14) we can write it as27

∇VΨ = − i
" V · (N × J)Ψ. (C.20)

The curvature F of this connection is de"ned by

(∇X∇Y −∇Y∇X −∇[X,Y])Ψ = F(X, Y)Ψ, (C.21)

for vector "elds X and Y on S2. Treating X and Y as vectors on R3, tangent to the sphere, and
using (C.20), we obtain

F(X, Y) = − 1
"2 XiY j[(N × J)i, (N × J) j]. (C.22)

Using the algebra (4.2) of N and J we get

F(X, Y) =
1
i"N2(X × Y) · J. (C.23)

Since X × Y is normal to the sphere, it acts on wavefunctions (in the representation with N2 =
1) as ε(X, Y)N, where ε = sin θdθ ∧ dφ is the area form on the unit sphere. Thus the curvature
two-form can be expressed as

F =
1
i" εN · J. (C.24)

We see that N · J must act on sections as a function, i.e., N · JΨ(x) = "s(x)Ψ(x), for some
s : S2 → R. Because the connection was constructed in a rotation invariant way, the curvature
must also be rotation invariant. This implies that s is actually a constant, which is consistent
with the fact that N · J is a Casimir operator in an irreducible representation. The corresponding
"rst Chern number is then

C1 =

∫

S2

i
2π

F =
s

2π

∫

S2
ε = 2s, (C.25)

which shows that the Casimir N · J is directly related to this topological number, as anticipated.
The possible values of s are quantized, since the bundle SO(3)×U (n)C has "rst Chern number
2n, while the extended bundle SU(2)×U (n)C has "rst Chern number n. Note that this is consis-
tent with our previous result, where s = N · J/" was shown to be related to the bundle index
n.

Appendix D. Non-uniform magnetic fields

In this appendix we discuss the case where the magnetic "eld is not uniform with respect to the
metric on the sphere. In principle, we could proceed as before, including the magnetic "eld in
the symplectic form, so maintaining gauge invariance explicitly. However, unless B is uniform,
no SO(3) subgroup of the B-preserving diffeomorphisms of the sphere would be an isometry of

27 From (3.21) we see that −i"∇V is nothing more than the ‘natural’ quantization of the classical linear momentum
along V , since V · p = −V · (N × J), recovering the picture that p acts as a derivative on wave functions.
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the (round) metric. Consequently, there would be no preferred form for the Hamiltonian, lead-
ing to operator-ordering ambiguities in the quantization. Thus, it is convenient to split B into
its monopole and higher-pole parts, B = gε + dA, where ε is the normalized volume form (i.e.,
whose integral is 4π) invariant under the isometries of the metric and A is a globally-de"ned
potential one-form, and then include only the monopole term, gε, in the symplectic form, as
in (1.1), while including the higher-pole part, dA, in the Hamiltonian via the usual minimal
coupling. In this way, the quantizing group and the associated canonical observables, J and N,
depend only on the monopole term, while the higher-pole term affects only the Hamiltonian.

In a given global gauge the Hamiltonian reads

H =
1

2m
(p− eA)2, (D.1)

in which (p− eA)2 = hab(p− eA)a(p− eA)b, where h is the metric on the sphere. Assuming
a round metric, and using expression (4.21) in terms of the Killing vector "elds Xi (generated
by Ji), the Hamiltonian becomes

H =
1

2mr2 [Ji − egNi − eA(Xi)]2, (D.2)

where a summation over i ∈ {1, 2, 3} is implicit. Since A(Xi) is a function of the position only,
it can be written in terms of N unambiguously. In the wavefunction realization of appendix C,
it acts simply by multiplication.

Now we must worry about gauge-invariance. In particular, we must ensure that the same
theory is obtained if one uses another choice of (global) gauge A′. Since the sphere is simply
connected, we have

A′ = A + dσ, (D.3)

for some function σ : S2 → R. Note that

H′ =
1

2mr2 (p− eA′)2 =
1

2mr2 (p− edσ − eA)2, (D.4)

which has the same form as the original Hamiltonian if we de"ne a new momentum variable
p′ = p− d(eσ). This corresponds to a momentum translation, de"ned as

Kσ(p) = p− d(eσ), (D.5)

which is a symplectomorphism of the phase space satisfying H′ = K∗
σH. Note that it maps

the symplectic !ow of H′ into that of H and, being vertical on the phase space, it leaves
unchanged the projection of the dynamical trajectories to the con"guration space. Therefore
the two gauge-related Hamiltonians produce equivalent classical dynamics. As to the quanti-
zation, note "rst that H′ = K∗

σH implies that H′ has the same functional form when written
in terms of transformed charges Q′ = K∗

σQ as H written in terms of Q. That is, if H = f(Q)
then H′ = f(Q′). Since the Poisson brackets is de"ned from the symplectic structure, which
is invariant under Kσ , we have that the algebra of charges is preserved under such a trans-
formation, i.e., {K∗

σQi, K∗
σQ j} = K∗

σ{Qi, Q j}. Thus the charges Q′ satisfy the same algebra as
Q. Moreover the Casimirs are functionals of the charges, with form depending only on the
algebra, so it should be that C′ = K∗C. But since C is constant on the phase space, we have
C′ = C. Consequently, as the charges satisfy the same algebra, with the same Casimir val-
ues, the quantizations are equivalent (provided the same ordering prescription is applied to the
Hamiltonian).
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At the group level, the charges Q and Q′ generate the same group G, but realized differently
on the phase space. Namely, if the charges Q generate a realization Λ : G → Diff(P) of G as
symplectomorphisms of P , then it can be shown that Q′ generate the transformed realization,
Λ′, de"ned by

Λ′
g = K−1

σ ◦ Λg ◦ Kσ. (D.6)

Therefore, we see that a change of gauge in the Hamiltonian can be ‘reversed’ by simply
changing the way that the quantizing group acts on the phase space. Since it is the same
group (with the same Casimir values) which is undergoing quantization, the same quantum
theory is obtained. At the quantum level, this change of realization corresponds to a unitary
transformation on the Hilbert space. Mirroring (D.6), the K-transformation is implemented as

U(Λ′
g) = T(Kσ)†U(Λg)T(Kσ), (D.7)

where T(Kσ) is a unitary transformation, ensuring that the representation U(Λ′
g) is equivalent

to U(Λg). Since Kσ is simply a generalized type of momentum translation, the action of T is
de"ned, on the wave functions of appendix C, analogously to N in (C.14), as

T(Kσ)Ψ(x) = e−ieσ(x)/!Ψ(x). (D.8)

To verify that this is the desired transformation, de"ne the ‘momentum operator’ by

p(V) = V · (−N × J) = −i"∇V , (D.9)

where V is a vector "eld on the sphere and ∇ is the covariant derivative de"ned in (C.19).
Conjugating by T(K) we get

T(Kσ)†p(V)T(Kσ)Ψ(x) = (p− edσ)(V)Ψ(x) = p′(V)Ψ(x), (D.10)

where p′ is precisely the momentum operator de"ned from the modi"ed charges, i.e., p′(V) =
V · (−N′ × J′). Therefore, since this implies that H′ = T(Kσ)†HT(Kσ), the standard picture
where a change of gauge corresponds to a phase transformation on wave functions is recovered.
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