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ABSTRACT. The paper studies the pattern formation dynamics of a discrete in
time and space model with nonlocal resource competition and dispersal. Our
model is generalized from the metapopulation model proposed by Doebeli and
Killingback [2003. Theor. Popul. Biol. 64, 397-416] in which competition for
resources occurs only between neighboring populations. Our study uses sym-
metric discrete probability kernels to model nonlocal interaction and dispersal.
A linear stability analysis of the model shows that solutions to this equation
exhibits pattern formation when the dispersal rate is sufficiently small and
the discrete interaction kernel satisfies certain conditions. Moreover, a weakly
nonlinear analysis is used to approximate stationary patterns arising from the
model. Numerical solutions to the model and the approximations obtained
through the weakly nonlinear analysis are compared.

1. Introduction. The role of spatial structure on ecological processes has been
the central theme of many studies (see, e.g. [8, 12, 19, 20, 21, 26, 33, 35]). Popu-
lation fluctuations and geographical patterns of population abundances are among
the most important topics in ecological theory [11, 23, 27]. A stable spatially ho-
mogenous equilibrium state of an ecosystem can be destabilized via the Turing
mechanism [41] when there are multiple species interacting (see e.g. [33]). These
diffusion-driven instabilities have been observed in many systems including models
which are continuous in both time and space [16, 17, 28, 33], discrete in space and
continuous in time [9], continuous in space and discrete in time [34], or discrete in
time and space [36]. In addition to diffusion, other nonlocal ecological interactions
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(e.g., competition for resources) are considered to be another important mechanism
for generating spatial patterns [2, 4, 5, 7, 11, 18].

Doebeli and Killingback in [11] considered the coupling between the nearest
neighboring habitat patches with wrap around boundary conditions to study the
effects of quasi-local ecological interactions and simple dispersal. They assumed
that the growth of each local population is governed by a difference equation and
that the coupling occurs mainly through quasi-local interactions. In their model,
the reproductive dynamics of a local population in a given patch depends not only
on the population density in that patch but also on the population abundances in
the nearest neighboring patches.

Motivated by the work of Doebeli and Killingback [11], we consider a general-
ized discrete-time metapopulation model in both one- and two-dimensional spatial
habitats. Throughout the paper, we assume that both dispersal and nonlocal inter-
actions are modeled by discrete probability kernels describing the range and strength
of the ecological forces. These kernels are useful in modeling the competition for
common resources such as food, energy, or water that are basic requirements for
the growth of any population. Examples of such competitions between populations
living in neighboring spatial locations include foraging in ant colonies [6] or dun-
nocks [10]. Another ecologically meaningful example of such competition is the
consumption of diffusible resources like water needed by plants [22, 25, 32].

In this paper, our aim is threefold. Firstly, we take nonlocal rather than quasi-
local interactions into account, and we model these interactions using discrete prob-
ability distributions as done in [4]. Our assumption is more relaxed than the quasi-
local interactions assumptions in [11]. This relaxation reflects that the strength
of the ecological interactions (including dispersal) impinging on a population in a
patch is a function of the neighboring population densities as well as of their spatial
distance, with more distant patches having a smaller impact.

Secondly, we perform a linear stability analysis of the model taking nonlocal
interactions into account. Due to the assumption of quasi-local interactions in
[11], the linearization of the metapopulation model leads to a Toeplitz matrix.
Hence, Doebelli and Killinback numerically computed the eigenvalues of the system.
Instead, we employ discrete Fourier series (DFS) [38] to perform a linear analysis
of the metapopulation model coupled through nonlocal interactions. This analysis
allows us to relate the conditions obtained in [11] and other authors (see, e.g., [7, 18])
to observe pattern formation.

Lastly, we employ the classical Stuart-Landau (S-L) theory [39] to study the ef-
fect of nonlocal interactions near the stability boundary. Weakly nonlinear analysis
of patterns arising from partial differential equations and other continuum mod-
els have been widely studied in the literature (see, e.g., [2, 13, 16, 33, 40]). The
method was employed to analyze patterns arising from integro-difference equations
and continuous-time metapopulations only recently [4, 5]. To our knowledge, this
theory has never been employed to study discrete-in-time metapopulations con-
sisting several local habitat patches. By using these results, we obtain first-order
approximations to stable patterns in 1- and 2-dimensional habitats following [17].

The paper is organized as follows: In Section 2, we introduce the notations of the
paper and generalize the metapopulation model proposed in [11] by incorporating
nonlocal dispersal and competition. In Section 3, we perform a linear stability
analysis of the model near its spatially homogenous solution and find conditions to
observe pattern formation. In Section 4, four specific examples are presented. We
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obtain cubic S-L equations for our metapopulation model in Section 5. In addition,
we perform numerical simulations of stationary patterns arising from the examples
and their first-order approximations. In Section 6, we conclude the paper.

2. The model. In this section, we introduce the metapopulation dynamics pro-
posed in [11]. Then we define the convolution operator on 1- and 2-dimensional
lattices and use it to reformulate this model. Such a reformulation will be useful in
generalizing and subsequently analyzing the model.

We first consider an environment S having 1 x Q2 patches with wrap around
boundary conditions where @)1 and )2 are integers. In particular, a metapopula-
tion consisting of several distinct populations is shown in Figure 1. In the figure,
each square cell represents a patch in which a group of spatially separated popu-
lations of the same species lives. It is assumed that there exists a spatially homo-
geneous sub-population in each patch and these sub-populations interact at some
level.

9" %

. g, )
(a) von Neumann neighborhood (b) Moore neighborhood

FIGURE 1. The patchy environment S and neighborhoods of a
patch ¢ = (g1, g2). In Panels (a) and (b), von Neumann and Moore
neighborhoods of patch (g1, ¢2) (colored in red) are determined by
patches colored in gray, respectively.

A map is used to describe the population dynamics at a patch ¢ = (¢1,¢2) €
S={1,2,---,Q1} x{1,2,--- ,Q2} in [11]. To write the difference equation in a
compact form, we need to specify how these sub-populations interact. Recall two
major neighborhoods used to study the effects of nearest neighbor competition and
dispersal in metapopulation models. The von Neumann neighborhood of radius r
of site ¢ is given as follows:

N (r) = {(p1,p2) - 0 < {Ip1 = al) o, + (Ip2 = @2), <P}

where < ¢ >g= ¢ Modulo ). Another commonly used neighborhood is the Moore
neighborhood of radius r defined as follows:

N (r) = {(p1.p2) : 0 <(|p1r — a1l)y, < 7,0 <(|p2 = @2l),, <7}
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In Figures 1 (a) and (b), von Neuman and Moore neighborhoods of patch ¢ = (¢1, ¢2)
of radius 1 (i.e., Ny (1) and Ny, (1)) are illustrated, respectively.

By taking Q2 = 1, both of the above given neighborhoods reduce to the following
neighborhood in a 1 dimensional habitat:

N{(r)={p:0<(Ip—dl),, <7}

Remark that all of the above-given neighborhoods exclude self-interaction. In
[11], it was assumed that the per capita reproductive output is of Beverton—Holt
type:

Az (t)
zy(t) = ! ] (1)

l+a|zg+a Z xp(t)
PENL(1)

where z,(t) is the local population size in patch ¢ at the start of year ¢ and z (t)
is the local population size in patch g after reproduction. Here the summation in
the denominator models the relative competitive impact of individuals from the
neighboring patches on reproduction in patch ¢ for any neighborhood NZ(1), n =
1, N, M. The parameter A in (1) describes the maximal per capita reproductive
output attained. In the absence of competition, the parameter a is a measure of
the impact of the population size on the reproduction in patch gq.

To complete the metapopulation dynamics, it was assumed in [11] that the re-
production is followed by a passive dispersal of a constant fraction of the local
populations, which is distributed evenly between the neighboring patches. The
dispersal operator is given by

To(t+1) = (1= 08)x,(t) + sﬁ Z (1) (2)

" pENL(1)

where § is the fraction of dispersers, z;(t) is the size of the population in year ¢
after reproduction but before dispersal, and s,, is the cardinality of the neighborhood
INS(L)]:

We would like to note that many discrete-time spatial population models have
two phases: The first phase describes the growth of the population as in (1). The
second phase describes the dispersal of the individuals from site ¢ to its neighboring
sites in N7(1) as in (2).

The above-given model taking quasi-local (or nearest neighbor) interactions into
account has been analyzed in [11]. Computational results regarding the magnitudes
of the eigenvalues of the linearized system corresponding to (1) and (2) were ob-
tained when the interactions and dispersal are limited only to nearest neighbors,
e, r=1.

We define the convolution of matrices in the following lines to reformulate the
growth-dispersal model (1-2). Discrete convolution operator of two matrices x and
y on a two-dimensional lattice is given as follows:

Q1 Q2
(x*xy)k = Z Z TmnY<m—ki>q,,<n—ka>q, (3)
m=1n=1
Note that x*xy is a matrix of size ()1 X Q2. In addition, when ()2 = 1, this operator
reduces to convolution operator in 1-dimensional habitat.

Now we can reformulate the model (1-2) so that it takes the more general in-

teraction and dispersal ranges and weights into account. Consider two symmetric



PATTERNS IN A TIME-DISCRETE METAPUPULATION MODEL 5

discrete probability kernels d and ¢ used to model nonlocal dispersal and interac-
tions. By considering such kernels, we relax the assumption that each site in the
habitat interacts only with its nearest neighbors. For these two kernels d and c, we
only assume that they are symmetric. Using the interaction kernel ¢, the growth
equation taking nonlocal interactions into account can be written as follows:

Loy Azq(t)
T, (t) = T alcrx)y

(4)

Besides, one can also write the dispersal equation as the convolution of the dispersal
kernel and the nonlinear growth function as

gt +1) = 6(d * x')g + (1 — 8)as, (¢). (5)

The quasi-local interaction kernel numerically studied in [11] can be taken as a
specific example for the interaction kernel. This kernel is given as follows:

(1+ spa)7L, forg=20
cg = a(l+s,a)”t,  forge N2(1) (6)
0, elsewhere.

for n =1, N, M. Here the interaction term in (1) can be written as the convolution
of two matrices x and €" = (¢} )4es. For a = a(1 + s,a), the right hand sides of
growth terms (1) and (4) are equal. When d is taken as the uniform distribution on
N2(1), the right hand sides of dispersal equations (2) and (5) are also equal. Hence
the model (1-2) can be written by using convolutions as in (4-5).

Here (4) and (5) together describe the dynamics of several sub-populations dis-
persing to neighborhood patches and competing for the common resources with the
residents of other patches. Here the foraging and dispersal ranges are determined
by the supports of the discrete probability distributions ¢ and d, respectively. The
dispersal rate or probability d, on the other hand, describes the average proportion
of individuals that are expected to disperse to other sites.

Lastly, note that the Coupled Map Lattice (CML) described by (4) and (5) has
a spatially homogeneous state e = (%)qe s where % is the stable equilibrium of

the classical Beverton-Holt equation for A > 1 and a > 0.

3. Linear analysis using discrete Fourier series. In this section, we aim to
find an explicit expression for the eigenvalues of linearized problem described by
(4-5). Such an expression will be useful to study how nonlocal interaction kernel ¢
and system parameters, including the dispersal rate J, affect the stability of space-
homogeneous solution e.

It is known that the nearest neighbor (or quasi-local) competition destabilizes the
space-homogeneous solution to (1-2) [11]. They obtained this result by analyzing
the | S| dimensional system of difference equations (1-2) when the nearest neighbor
(or quasi-local) interactions take place. One needs the following properties of the
discrete Fourier series (DFS) to find an analytical expression of the eigenvalues for
the linearization of the model (4-5), taking nonlocal interactions into account.

Discrete Fourier series (DFS) of a matrix X = (Zym,n) (m,n)es is denoted by Fx
and k' entry of which is given by

(Fx)i = Z $m7n6*2jﬂk1m/Q1€*2j7fk2n/Q2 (7)
(m,n)€eS
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for any k = (k1,k2) € S [31, 38]. Here we would like to remark that the discrete
convolution theorem also holds in 2-D lattices and is given by the following equality:

(Fx*y)p = (FX)k - (FY) (8)

where - represents the component-wise multiplication or Hadamard product of two
matrices [31, 38]. Note also that the above given properties of the matrices are also
valid in a 1-D habitat. For a review of these results in a 1-D patchy environment,
one can consult [4, Section 2.1].

We linearize the CML by using the first order expansion x(t) = e + exp’, where
X is a time-independent matrix denoting a spatial perturbation term. Substituting
this ansatz to equation (4), we obtain G[X,c* X] = X + %c * X at the level O(e).
Hence (5) takes the following form:

px =dd * G[x,cxX] + (1 — )Gk, ¢ x X].

Taking the DFS of both sides in the above equation and using the convolution
theorem (8) lead us to the following eigenvalues:

pe(6) = A7 (8(Dy, — 1) + 1) (A + Ci, — AC) (9)

where C = (C)res and D = (D) res are the DFS of the competition and dispersal
kernels ¢ and d, respectively. In particular, we have C, = (%c¢); and Dy = (Fd);.
Since both of these kernels are assumed to be symmetric discrete probability distri-
butions, the DFS of them take real values between —1 and 1. If there is no spatial
effect, we have the eigenvalue p = 1/) that is less than 1 if A > 1. Hence, e is the
stable equilibrium of the CML for any A > 1.

First, we consider the eigenvalues (9) in the absence of spatial dispersal, i.e.,
0 = 0. Such a simplification allows us to identify the properties of the interaction
kernel ¢ for which e looses its stability. When § = 0, the eigenvalues are given as
follows:

pr(0) = ATH(A + Cr, — ACy).
Note that pg(0) is always non-negative for any k € S and A > 1. Then, e is unstable
if the magnitude of an eigenvalue pg(0) is larger than 1. One can easily conclude
that pr(0) > 1 for any A > 1 if and only if C} is negative for some k € S.

This result can be considered as a more general version of the stability result
obtained in [11]. In particular, they considered interaction kernel <! given by (6)
in a 1-dimensional habitat. When there is no dispersal and the number of the
patches in the habitat is even, they showed that e loses its stability if o > %

Here we can get the same result by taking ¢ = ¢'. Note that the DFS of com-
petition kernel ¢! is given by €} = (14 2a)~'(1+4 2a cos(2rk/N)). Note also that
the smallest entry in €' is €y, = (1 + 2a)7!(1 — 2a). Hence, €} is negative for
at least one k € S if and only if a > % In [11], a similar analysis was performed
for ¢V given by (6) in a 2-dimensional habitat and it was shown that e loses its
stability if a > i. It is easy to show that this condition is also equivalent to the
condition that €} is negative for some k € S.

It was found in [11] that quasi-local competition destabilizes the spatially uniform
equilibrium in the absence of dispersal provided that the competitive impact of
the neighboring patches on the reproduction in a patch is sufficiently large. This
statement for more general nonlocal interactions takes the following mathematical
form: if the DFS of the interaction kernel C} is negative for some k € S then the
spatially uniform equilibrium is unstable in the absence of dispersal. Note that the
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latter statement is known to hold for many other models taking nonlocal interactions
into account (see, e.g., [2, 3, 4, 5, 18]).

In the remainder of this paper, we assume that C} is negative for some k € S.
This implies that pi(0) > 1 for some k € S. Hence p(0) is larger than 1 for ¢ small
enough by continuity. The critical dispersal rate dg € (0,1) can be calculated by
solving the following root finding problem:

max{py(3) —1} =0 (10)

The argument of this maximization problem is denoted by k¢ and called the most
unstable wavenumber. Since 6(Dy — 1) + 1 < 1 for any § € [0, 1], the magnitude
of the eigenvalues p(d) decreases as § increases. This implies that p(d) > 1 for
any 0 < dg. As a result, we conclude that increasing the dispersal rate flattens the
spatial heterogeneity.

4. Examples. In this section, we provide four numerical examples with different
kernels in 1-D and 2-D habitats. We compute their critical dispersal rates and the
most critical wavenumbers. For all our examples presented in this section, we fix
the following parameter values: a = 1, A = 2 and @ = 20.

Recall that the neighborhoods NZ(r) for n = 1, N, M defined in Section 2 do
not contain the point g. Here, we define the extended neighborhoods 4(r) =
Ni(r)U{q} that will be useful in describing competition kernels ¢ in the following
examples.

To illustrate the spatially uniform equilibrium e loses its stability for some dis-
persal rates in a 1-dimensional habitat (i.e., Q2 = 1), we take the following examples
into account:

El: First, we consider quasi-local (nearest neighbor) interactions and dispersal.
We take the dispersal kernel d as the uniform distribution in Ny (1) and the
competition kernel ¢ as the uniform distribution in ;’(1). With these ker-
nels, we have the critical dispersal rate §o = 0.071428 along with the most
unstable wavenumber k¢ = 10 = (10,1) (see Figure 2(a)). Patterns arising
from the CML with the above-given kernels and dispersal rate § = 0.0714 are
illustrated in Figure 3(a).

E2: Second, we consider next to nearest neighbor (or nonlocal) interaction and
dispersal in a 1-dimensional habitat. Hence, we take the dispersal kernel d
as the uniform distribution in N{(2) and the competition kernel ¢ as the uni-
form distribution in ;/(2). In this case, we have §y = 0.070563 along with
the most unstable wavenumbers kf = 6 = (6,1) and k§ = 14 = (14,1) (see
Figure 2(b)). Patterns arising from the CML with the above-given kernels
and dispersal rate 6 = 0.0705 are illustrated in Figure 4(a).

In a 2-dimensional habitat with Q2 = 20, we considered instabilities arising from
the CML using both von Neumann and Moore neighborhoods as follows:

E3: Here, we use a von Neumann neighborhood in a 2-dimensional habitat (see,
Figure 1(a)). In particular, we consider competition and dispersal kernels as
uniform distributions on 7% (1) and N7 (1), respectively. Then, we have the
critical dispersal rate §o = 0.11538 along with the most unstable wavenumber
k¢ = (10,10) that is marked in Figure 2(c). Patterns arising from the CML
with the above-given kernels and dispersal rate 6 = 0.115 are illustrated in
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Figure 3(c).

E4: When using a Moore neighborhood (see, Figure 1(b)), we have competition
and dispersal kernels as uniform distributions on the sets ¥ (1) and N7 (1),
respectively. In this case, Jg = 0.095238 along with two the most unstable
wavenumbers kf = (10,20) and k§ = (20, 10) that are marked in Figure 2(d).
Patterns arising from the CML with the above-given kernels and dispersal
rate 0 = 0.095 are illustrated in Figure 5(a).

Here, we remark that the critical dispersal rate §y for each example is found by
numerically solving the root-finding problem (10). The critical wavenumber k¢ is
equal to k € S satisfying px(do) > 1, i.e., it is the argument of the maximization
problem maxycs{pr(d) — 1} near &y. Hence, if there are multiple arguments of this
problem, all of them are taken as the most unstable wavenumbers.

In Figure 2, we plot the dispersion relations for the above-given examples E1-
4. For the examples in 1 dimensional habitat we used bar graphs to show the
eigenvalue(s) having the most unstable wavenumber takes values larger than 1 for
d =0.06 < Jp (see Figures 2(a) and 2(b)). Figures 2(c) and 2(d) illustrate the dis-
persion relations for examples E3 and E4 at §; and the most unstable wavenumbers
are marked in these figures.

Note that each of the above-given examples falls into one of the following cat-
egories: (i) a single critical wavenumber as in E1 and E3, (ii) a pair of complex
conjugate wavenumbers as in E2, and (iii) two independent wavenumber as in E4.
For the examples given in this section, different types of patterns near the stability
boundaries will be illustrated in the following section. In addition, we approximate
these patterns (stationary solutions to CML) near the stability boundaries using
the eigenvalues and eigenvectors corresponding to the most unstable wavenumbers.
In particular, we perform a weakly nonlinear analysis of the CML which heavily de-
pends on these critical wavenumbers. Analyses regarding cases (i), (i) and (iii) are
given in Sections 5.1.1, 5.1.2 and 5.2, and technical details of the nonlinear analyses
regarding these cases are deferred to Appendices A.1, A.2 and A.3, respectively.

5. Weakly nonlinear analysis. The linear stability analysis is a useful tool to
examine the effects of the parameters and interaction kernels on the stability of
the system, but it is only valid for small-time and infinitesimal perturbations. In
the long run, nonlinear terms affect the growth of unstable modes. Hence, in the
following lines, we consider the CML model (4-5) and obtain the Stuart-Landau (S-
L) equations [39] to approximate the stationary patterns in 1-D and 2-D habitats.

We are interested in the stability of the homogenous solution e near the critical
dispersal rate dg with periodic boundary conditions. We aim to approximate the
solution to (5) by using the steady-state solutions to the amplitude equations. To
find these equations, consider a perturbation of the bifurcation parameter § as
follows:

§ =00 +e%p (11)

for 0 < ¢ « 1 and p = £1. Here p determines the direction of the deviation from
the critical nonlocal dispersal rate dg. In Section 3, we showed that e might be
unstable for p = —1 using the linear stability analysis.



PATTERNS IN A TIME-DISCRETE METAPUPULATION MODEL

1.4 1.1
{r=====mmmm- Arb-----oo----o 1F===-1 N D | S,
I =0.06
0.9 [C18=4, 0.9
208 Z 08
£ X
Q Q
07 07
0.6 H H 0.6
05 H H 05 H
| [ I
5 10 15 20 5 10 15 20
k k
(a) E1 (b) E2

0.9 0.9
- 0.8 > 0.8
o o
s S
0.7 0.7
0.6 0.6
0 0.5 o 0.5
0 0
k2 k1 kZ k1
(c) E3 (d) E4

FIGURE 2. Dispersion relations for the examples E1-4.

Let dp be the critical dispersal rate for which we have pgc(d9) = 1 for all k¢
satisfying (10). The solution to the linearized CML around e and near critical
dispersal rate dy is given as follows:

¢
Ve o< Y Wie - (ke (9)) (12)
k.c
where Wie = (wielqu, g2]) is a matrix of size Q1 x Q2 with wye[qy, go] = eI27ki01/

Q1e727k292/Q2  We remark that {wy|k € S} is an orthogonal basis of the vector
space RP1*@2 which follows from the discussion in [38, p. 104].

Expanding the eigenvalue py.(d) in power series leads to

A—1
pre(8) = 14+ ve?(Dye — 1)(1 — TCkc) +0(eh)
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where we used equality (9) to obtain dp/dd. By substituting this expansion to a
summand of solution (12), one obtains

Whe (ka (6))t _ chet log(14+ve?dp/ds)

2
~ chetua dp/dé

A(*t)Whe.

Here amplitude A is a function of the slow time 7 := £2t. We consider the fast- and
slow-time scales t and 7 together in our analysis. Following [24], we incorporate the
slow-time scale 7 into the problem by assuming the solution has an expansion of
the form

X; = e +exy(t,7) + e*xo(t, 7) + - - - . (13)

Notice that xi(t,7) = y+ = >_; Ai(T)wre. This implies that the complexity of
solutions increases as the multiplicity of the eigenvalue increases. Since the CML
also contains the term x;11, we expand this term following [24] as follows:

X1 = x(t+1,7+%Q)
= e+exi(t+1,7) +e¥x(t +1,7) + 20, x1(t + 1,7) + O(*). (14)

Xz in (13) will be determined in the following sections depending on the multi-
plicity of the most unstable eigenvalue.

5.1. Stuart-Landau equations for a single amplitude function. In this sec-
tion, we find Stuart-Landau (S-L) equations for a single-amplitude function A(7).
Categories (i) and (ii) (see Section 4) will be examined in this subsection. The
former one is represented by our examples E1 and E3 where we have a single
eigenvalue corresponding to the most unstable wavenumber (see Figures 2(a) and
2(c)). The latter category is represented by E2 for which we have two complex
conjugate the most unstable wavenumbers (see Figure 2(b)). In the following lines
we discuss these two cases in detail.

5.1.1. S-L equations for a single critical wavenumber. In this subsection, we assume
that the largest eigenvalue is simple as in examples E1 and E3. In this case, we
have the first order solution

T = A(T)ch’
where the amplitude function A(7) satisfies the following S-L equation:

% = A+ pA3. (15)
The details regarding the derivation of (15) and explicit expressions for the param-
eters ¢ and 1 are given in Appendix A.1. Since coefficients ¢ and 1 of S-L equation
(15) are real, the amplitude A can be taken as a real function provided that the
initial amplitude A(0) is real.
Steady state solutions of equation (15) are given by

Ag=0and AL = +£\/—p/o. (16)

The linear stability analysis of (15) suggests that the solution 0 is stable whenever
uw < 0. We can observe that 1 < 0 from equality (21). Thus, we can conclude that
the steady state solution Ay (or e) is unstable for 4 = —1 and stable for g = 1. This
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result is consistent with the results of the linear analysis in Section 3. If ¢ < 0, AL
takes real values for 4 = —1. Thus we have the following result to approximate the
stationary patterns arising from the CML.

Theorem 5.1. Suppose that u = —1 and € > 0 is small enough so that the uniform
steady-state e is unstable to modes corresponding only to the eigenvalue k°. If ¢ < 0,
an approzrimation to the emerging solution to CML is given as follows:

x =e+cALw, + 0(e?),
where AL are as given in (16).

To verify Theorem 5.1 numerically, we consider examples E1 and E3 having a
single critical eigenvalue. A solution to the CML with parameters given in E1 and
a random initial datum is shown in Panel (a) of Figure 3, while approximation to
this solution is shown in Panel (b) of Figure 3. Here ¢ = 0.0053 and it is verified
that the error in predicting the amplitude is of order £2. In addition, the equilibria
of the S-L equation are given by AL = 44.0988. Hence, the maximum norm of the
difference between the stationary solution and its approximation is found as follows:
|x — e — eAL wie|loo = .00019 where k¢ = 10.

For the second example E3, we also have only one critical eigenvalue. Similarly,
stationary patterns in 2-D habitat arising from the CML with a random initial
datum and its predicted equilibrium solution to first order are shown in Panels (c)
and (d) of Figure 3, respectively. In this case, ¢ = 0.0196 and it is verified that the
error in predicting the amplitude is of order 2. In addition, the equilibria of the
S-L equation are given by Agco = £3.5187. The maximum norm of the difference
between the stationary solution and its approximation is given as follows: ||x —e —
A Wiel|loo = .039 where k¢ = (10, 10). Hence, we can conclude that the predicted
solution shows a good agreement with the numerical solution of the CML.

5.1.2. S-L equations for a pair of compler conjugate critical wavenumbers. As in
example E2, there may be two complex conjugate eigenvalues. In this case we have
the first-order solution

X = A(T)ch + flc(T)w_kc

for some k¢ € S. Here, the amplitude function A(7) satisfies the following S-L
equation:
% = whA + pA3. (17)
The details regarding the derivation of (17) and explicit expressions for the param-
eters ¢~) and 1[) are given in Appendix A.2. Since coefficients of S-L equation (17) are
real, the amplitude A takes real values.
Steady state solutions of the equation (17) are also given by

Apg=0and AL = +\/—u)/o. (18)

Similarly, we can conclude that the steady state solution Ay (or e) is unstable for
p = —1 and stable for g = 1. This result is in consistence with the results of the
linear analysis in Section 3. If g{) < 0, floio takes real values for 4 = —1. Thus we
have the following result to approximate the stationary patterns arising from the
CML.
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FiGUurE 3. Comparison between numerical solutions to the CML
(on the left) for examples E1 and E3, and the weakly nonlinear
first-order approximations of these solutions (on the right). Panel
(a) illustrates stationary waves in a 1-dimensional habitat for E1.
Similarly, panel (c¢) shows stationary patterns in a 2-dimensional
habitat for E3. In panels (¢) and (d), colors represent the popula-
tion size and approximated population size, respectively.
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Theorem 5.2. Suppose that p = —1 and € > 0 is small enough so that the uniform
steady-state e is unstable to modes corresponding only to the eigenvalues k* and —k*.
If ¢ <0, an approximation to the emerging solution to CML is given as follows:

x =e+eAL (Wie + w_ge) + O(e?)

where AL are as in (18).
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For the parameters and kernels described in example E2, we have two eigenva-
lues that are complex conjugates of each other. A solution to the CML with these
parameters and a random initial datum is given in Panel (a) of Figure 4 and an
approximation to this solution is shown in Panel (b) of Figure 4. Here £ = 0.0079
and it is also verified that the error in predicting the amplitude is of order £2. In
addition, the equilibria of the S-L. equation are given by Aoio = 46.3505. The maxi-
mum norm of the difference between the stationary solution and its approximation
is given by ||x — e — €A% (Wre + Wis)[loo = 0.0102, where kf = 6 and k5 = 14.

12¢ : - - - 127
1 1
0.8 «°08
H
X 0.6 P
W
0.4 5 oo04
0.2 0.2
0 0
0 5 10 15 20 0 5 10 15 20
Q

FIGURE 4. Comparison between numerical solutions to CML (on
the left) and the weakly nonlinear first order approximation of these
solutions (on the right). Panel (a) illustrates stationary waves in a
1-dimensional habitat for the parameters given in example E2.

5.2. Stuart-Landau equations for two amplitude functions. As in the ex-
ample E4, there may be two eigenvalues that are not the complex conjugates of
each other. In this case we have

x1 = A1(T)Wre + Ao (T)Wig

for some kf,kS € S. These amplitude functions A; and A, satisfy the following
system of S-L equations:

dA

d_Tl = ¢ AY + & AL AL + i Ay (19)
dA

d_72 = ¢ A3 + EATAs + pibr As

The details regarding the derivation of the system of S-L equations and explicit
expressions for its parameters are given in Appendix A.3. Here we would like to
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note that nontrivial stationary solutions to (19) are given in [17] as follows:

pt_ ( 1 —m/)1/¢1’0)? P2i = (O,i —M¢2/¢2)

pEH = " b1 (€1 — ¢2),j: pb2(€2 — ¢1)
P192 — €12 P192 — &1&2
To approximate the stationary patterns arising from the CML, we have the fol-
lowing result:

Theorem 5.3. Suppose that p = —1 and € > 0 is small enough so that the uniform
steady-state e is unstable to modes corresponding only to the eigenvalues kS and kS.
An approximation to the emerging solution to CML is given as follows:

X=e+ E(Aloowkf + Agoowkg) + 0(52)
where (A100, A20o) 18 a stationary state of the Stuart-Landau equation (19).

For E4, we have two eigenvalues that are not complex conjugates of each other.
Hence, one needs to consider two different amplitude functions A; and As. A solu-
tion to the CML with a random initial datum and its predicted equilibrium solu-
tion to first order are shown in Panels (a) and (b) of Figure 5, respectively. Here
€ = 0.0154 and it is also verified that the error in predicting the amplitude is of or-
der 2. Since the S-L equation (19) is symmetric in A; and As, we take only P?fii)
into consideration when calculating the approximation. Then we have Péi’i) =
(£7.5993, £7.5993). The maximum norm of the difference between the stationary
solution and its approximation is then given by |[x —e—¢eA;0oWie —cA20c Wi ) [loo =
0.0385, where k§ = (10,20), k§ = (20,10) and A1 = Azoe = 7.5993.

2 m m 2 m 12 @
] N | |12 ] @
15 | | || 9 15 | | 11 -%
| | 114 | 3
5 g

o ] ] § o ]
a = g e
e w n maf P 10 g 3
n m § m g
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! =}
] ] n g
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n n n

5 0 15 20 5 0 15 20
Q Q

FIGURE 5. Comparison between numerical solution to CML (on
the left) and the weakly nonlinear first order approximation of this
solutions (on the right). Panel (a) illustrates stationary waves in a
2-dimensional habitat for E4. In panels (a) and (b), colors repre-
sent the population size and approximated population size, respectively.
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6. Conclusion. In this paper, we studied the stationary patterns arising from a
discrete-time metapopulation model with nonlocal competition. Our model is a
generalization of the metapopulation dynamics with quasi-local competition intro-
duced in [11]. We have investigated the pattern formation mechanism induced by
nonlocal competition in 1-D and 2-D spatial domains.

The single-species model studied in this paper belongs to a large family of
spatial models taking nonlocal interactions into account. In the literature, there
are continuous-time and space [2, 7, 14, 15, 18, 37], continuous-time and discrete
space [4, 30] and continuous space and discrete-time [5] intraspecific competition
models studying the effects of nonlocal interactions on the stability of the space-
homogeneous solution. In all of the above-mentioned works, it was shown that
nonlocal interactions destabilize the space-homogenous solution if the Fourier trans-
form of the competition kernel takes negative values for some wavenumbers. We
argued that the CML model studied in this paper is no exception by showing that
e becomes unstable when the Fourier transform of the competition kernel takes
negative values. In addition, as discussed in Section 3, this is a general condition
on the destabilization of the steady-state which agrees with the result obtained in
[11].

We further analyzed the model by obtaining the Stuart-Landau (S-L) equations
providing a mathematical description of the CML close to the onset of instability.
To the best of our knowledge, this is the first study performing a weakly nonlinear
analysis on a CML model in the literature. The S-L equations have been used to
approximate the stationary patterns arising from the model in 1-D and 2-D habitats.
We numerically verified the results of nonlinear analysis. The result of weakly
nonlinear analysis implies that as the dispersal rate § decreases, the amplitude
levels of patterns increase and are of order ¢ = /g — d. Hence, we conclude that
the smaller dispersal rate favors aggregation. This result is in line with the findings
presented in [2, 3, 7, 18]

Instead of assuming nearest-neighbor interactions, we assumed that the strength
of the ecological interactions (including dispersal) impinging on a population in a
patch is a function of the neighboring population densities as well as of their spatial
distance, with more distant patches having a smaller impact. Assuming nonlocal
rather than quasi-local interactions leads to the emergence of more complex spatial
patterns as shown in Figure 4.

Future analysis might move from stationary patterns to traveling patterning
waves and obtaining S-L equations for traveling wave type patterns. In this case,
the corresponding S-L equations will have complex coefficients. In addition, weakly
nonlinear analysis for a single species CML model can be extended to analyze disper-
sal driven instabilities in two or more species discrete-in-time and -space equations
(see, e.g., [36]).

Appendix A. Weakly nonlinear analysis.

A.1. When there is a simple eigenvalue. In this case, we have x; = A(7)Wpe
for some k¢ € S. Note that for both examples the critical eigenvalue wg. couples
only with the eigenvalue wy = 1. Thus the second order solution is of the form
X9 = B(T)Wo.

Substituting (13) into the full system (5) and using (14), the following sequence
of equations can be obtained.
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At O(1),we have e = e. At the level O(g), one gets the linear relationship (9) as
follows:
1= (0o(Dge — 1) + 1)(Cre + A — CieN) /.
At O(g?), we obtain:
AB — X?B — aA?Cle(Cre + A — Cie X)) = 0.
From the last equality we obtain:

SYCEEDY)

At level O(g?), we obtain the S-L equation (15) with parameters

(§0ch - 50 —+ 1)((1 — )\)Clzc - Okc)\Q —+ QchA —+ )\2)
M —1)

B = aA2Ckc

gb = G2Ckc

(20)

and
Y = A" (Dge — 1)(Cre + X — CreN). (21)

A.2. When there are a pair of complex conjugate eigenvalues. Note that
the eigenvector wie (where k¢ = 6) and its complex conjugate couple only with the
eigenvalues wq, Wogc. and w_opc. Thus the second-order solution is of the form x; =
Bo(T)wo + B1(1)Wage + BS(T)W_gke. At level O(e) one gets the linear relationship
for each eigenvector.

Similarly one obtains the following equalities at level O(g?) :

By = pBoA?
Bl = ﬁllezv
where
. Ckc —|— A - ACkC
ﬁo = 2a N — )\2 i
(Cre + A — ACe)(Dagedo — 0o + 1)
/61 = ackc 27
)\(Cgkc —+ A — )\CQkC)((SO + A— D2k060 - 1) - A

At level O(e?), we obtain the S-L equation (17) with parameters

()Z; = —0)\73(ch50 — 00 + 1)((20kc — Cre X+ )\)Aﬁo + (22)
-‘r(CkC)\ + Cope A + 2CkcCope — QCkCCQkC)\))\ﬁl =+ SC'ica(C’kc)\ — A= CkC)),
¥ = A '(Dpe —1)(Cre + A — ACxe),

A.3. When there are two amplitude functions. Note that the eigenvalue wy.
(where k§ = (0,10) and k§ = (10,0)) couple only with the eigenvalues wy o and
wi,10- Thus the second order solution is of the form xo = By (7)wo,0+ B1(7)W10,10-
At level O(g)one gets the linear relationship for each eigenvector. Similarly one
obtains the following equalities at level O(g?) :

By = B1AT+ BA3
B, = B3A414;
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where

Ckf (Ck;f + A= Ck§>\)

61 = a )
A1 =)

Ckg (Ckg + A= C’kgx\)

62 = a )
A1 =)

(80 Drs4kg — 00 + 1) (AM(Cre + Cig) 4 2Cke Crg (1 — X))

P = AMCrs kg + A = ACke yk5) (Dig k560 — G0 + 1) — A2

Eventually we obtain system of differential equations (19) at level O(g3) with the

following parameters:

1 = )\—3a(D1§0 —do+1) (aC,’f; (Ckf + A — Ckf A) + ,31)\(0ka - 2Ck§ - /\))

& = —A"%a(Dysdo — o + 1) ((52(1 — Cre) + B3(Crg + Cre kg — 2Ckg Cre 1)) N> +
+(2/820k§ —+ 2630k50k§+k5 + ackg (3Ckfck§ — Ckg — 20]93:)))‘ — 3&0]9%0}%5)

Y1 = A '(Dre —1)(Cre + A — Cie N)

2 = A %a(Dygdo — do + 1)(aCl (Chg + A — CrgA) + B2A(Chgh — 2Cxs — X))

&H = —)\—3(1*(Dk§50—50+1)((,81(1—Ckg)—l-ﬁg(ckf +Ckf+k5 _QCkakf-&-kg))\Q-{-
+(2/31Ck5 + 2ﬁ30k§0k10+k§ + aC’kf (30)6;0)@5 — Ckf — 2Ck§)))\ — 3(1013%0]@)

P2 = A '(Drg —1)(Crg + A — Cig))
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