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Abstract. The paper studies the pattern formation dynamics of a discrete in
time and space model with nonlocal resource competition and dispersal. Our
model is generalized from the metapopulation model proposed by Doebeli and
Killingback [2003. Theor. Popul. Biol. 64, 397-416] in which competition for
resources occurs only between neighboring populations. Our study uses sym-
metric discrete probability kernels to model nonlocal interaction and dispersal.
A linear stability analysis of the model shows that solutions to this equation
exhibits pattern formation when the dispersal rate is su�ciently small and
the discrete interaction kernel satisfies certain conditions. Moreover, a weakly
nonlinear analysis is used to approximate stationary patterns arising from the
model. Numerical solutions to the model and the approximations obtained
through the weakly nonlinear analysis are compared.

1. Introduction. The role of spatial structure on ecological processes has been
the central theme of many studies (see, e.g. [8, 12, 19, 20, 21, 26, 33, 35]). Popu-
lation fluctuations and geographical patterns of population abundances are among
the most important topics in ecological theory [11, 23, 27]. A stable spatially ho-
mogenous equilibrium state of an ecosystem can be destabilized via the Turing
mechanism [41] when there are multiple species interacting (see e.g. [33]). These
di↵usion-driven instabilities have been observed in many systems including models
which are continuous in both time and space [16, 17, 28, 33], discrete in space and
continuous in time [9], continuous in space and discrete in time [34], or discrete in
time and space [36]. In addition to di↵usion, other nonlocal ecological interactions
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(e.g., competition for resources) are considered to be another important mechanism
for generating spatial patterns [2, 4, 5, 7, 11, 18].

Doebeli and Killingback in [11] considered the coupling between the nearest
neighboring habitat patches with wrap around boundary conditions to study the
e↵ects of quasi-local ecological interactions and simple dispersal. They assumed
that the growth of each local population is governed by a di↵erence equation and
that the coupling occurs mainly through quasi-local interactions. In their model,
the reproductive dynamics of a local population in a given patch depends not only
on the population density in that patch but also on the population abundances in
the nearest neighboring patches.

Motivated by the work of Doebeli and Killingback [11], we consider a general-
ized discrete-time metapopulation model in both one- and two-dimensional spatial
habitats. Throughout the paper, we assume that both dispersal and nonlocal inter-
actions are modeled by discrete probability kernels describing the range and strength
of the ecological forces. These kernels are useful in modeling the competition for
common resources such as food, energy, or water that are basic requirements for
the growth of any population. Examples of such competitions between populations
living in neighboring spatial locations include foraging in ant colonies [6] or dun-
nocks [10]. Another ecologically meaningful example of such competition is the
consumption of di↵usible resources like water needed by plants [22, 25, 32].

In this paper, our aim is threefold. Firstly, we take nonlocal rather than quasi-
local interactions into account, and we model these interactions using discrete prob-
ability distributions as done in [4]. Our assumption is more relaxed than the quasi-
local interactions assumptions in [11]. This relaxation reflects that the strength
of the ecological interactions (including dispersal) impinging on a population in a
patch is a function of the neighboring population densities as well as of their spatial
distance, with more distant patches having a smaller impact.

Secondly, we perform a linear stability analysis of the model taking nonlocal
interactions into account. Due to the assumption of quasi-local interactions in
[11], the linearization of the metapopulation model leads to a Toeplitz matrix.
Hence, Doebelli and Killinback numerically computed the eigenvalues of the system.
Instead, we employ discrete Fourier series (DFS) [38] to perform a linear analysis
of the metapopulation model coupled through nonlocal interactions. This analysis
allows us to relate the conditions obtained in [11] and other authors (see, e.g., [7, 18])
to observe pattern formation.

Lastly, we employ the classical Stuart-Landau (S-L) theory [39] to study the ef-
fect of nonlocal interactions near the stability boundary. Weakly nonlinear analysis
of patterns arising from partial di↵erential equations and other continuum mod-
els have been widely studied in the literature (see, e.g., [2, 13, 16, 33, 40]). The
method was employed to analyze patterns arising from integro-di↵erence equations
and continuous-time metapopulations only recently [4, 5]. To our knowledge, this
theory has never been employed to study discrete-in-time metapopulations con-
sisting several local habitat patches. By using these results, we obtain first-order
approximations to stable patterns in 1- and 2-dimensional habitats following [17].

The paper is organized as follows: In Section 2, we introduce the notations of the
paper and generalize the metapopulation model proposed in [11] by incorporating
nonlocal dispersal and competition. In Section 3, we perform a linear stability
analysis of the model near its spatially homogenous solution and find conditions to
observe pattern formation. In Section 4, four specific examples are presented. We
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obtain cubic S-L equations for our metapopulation model in Section 5. In addition,
we perform numerical simulations of stationary patterns arising from the examples
and their first-order approximations. In Section 6, we conclude the paper.

2. The model. In this section, we introduce the metapopulation dynamics pro-
posed in [11]. Then we define the convolution operator on 1- and 2-dimensional
lattices and use it to reformulate this model. Such a reformulation will be useful in
generalizing and subsequently analyzing the model.

We first consider an environment S having Q1 ⇥ Q2 patches with wrap around
boundary conditions where Q1 and Q2 are integers. In particular, a metapopula-
tion consisting of several distinct populations is shown in Figure 1. In the figure,
each square cell represents a patch in which a group of spatially separated popu-
lations of the same species lives. It is assumed that there exists a spatially homo-
geneous sub-population in each patch and these sub-populations interact at some
level.

(a) von Neumann neighborhood (b) Moore neighborhood

Figure 1. The patchy environment S and neighborhoods of a
patch q = (q1, q2). In Panels (a) and (b), von Neumann and Moore
neighborhoods of patch (q1, q2) (colored in red) are determined by
patches colored in gray, respectively.

A map is used to describe the population dynamics at a patch q = (q1, q2) 2
S = {1, 2, · · · , Q1} ⇥ {1, 2, · · · , Q2} in [11]. To write the di↵erence equation in a
compact form, we need to specify how these sub-populations interact. Recall two
major neighborhoods used to study the e↵ects of nearest neighbor competition and
dispersal in metapopulation models. The von Neumann neighborhood of radius r

of site q is given as follows:

N
q
N (r) = {(p1, p2) : 0 <

⌦
|p1 � q1|

↵
Q1

+
⌦
|p2 � q2|

↵
Q2

 p}

where < q >Q= q Modulo Q. Another commonly used neighborhood is the Moore
neighborhood of radius r defined as follows:

N
q
M (r) = {(p1, p2) : 0 <

⌦
|p1 � q1|

↵
Q1

 r, 0 <
⌦
|p2 � q2|

↵
Q2

 r}.
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In Figures 1 (a) and (b), von Neuman and Moore neighborhoods of patch q = (q1, q2)
of radius 1 (i.e., Nq

N (1) and N
q
M (1)) are illustrated, respectively.

By taking Q2 = 1, both of the above given neighborhoods reduce to the following
neighborhood in a 1 dimensional habitat:

N
q
1
(r) = {p : 0 <

⌦
|p� q|

↵
Q1

 r}.

Remark that all of the above-given neighborhoods exclude self-interaction. In
[11], it was assumed that the per capita reproductive output is of Beverton–Holt
type:

x
0
q(t) =

�xq(t)

1 + ã

"
xq + ↵

X

p2Nq
n(1)

xp(t)

# (1)

where xq(t) is the local population size in patch q at the start of year t and x
0
q(t)

is the local population size in patch q after reproduction. Here the summation in
the denominator models the relative competitive impact of individuals from the
neighboring patches on reproduction in patch q for any neighborhood N

q
n(1), n =

1, N,M. The parameter � in (1) describes the maximal per capita reproductive
output attained. In the absence of competition, the parameter ã is a measure of
the impact of the population size on the reproduction in patch q.

To complete the metapopulation dynamics, it was assumed in [11] that the re-
production is followed by a passive dispersal of a constant fraction of the local
populations, which is distributed evenly between the neighboring patches. The
dispersal operator is given by

xq(t+ 1) = (1� �)x0
q(t) +

�

sn

X

p2Nq
n(1)

x
0
p(t) (2)

where � is the fraction of dispersers, x0
q(t) is the size of the population in year t

after reproduction but before dispersal, and sn is the cardinality of the neighborhood
|Nq

n(1)|.
We would like to note that many discrete-time spatial population models have

two phases: The first phase describes the growth of the population as in (1). The
second phase describes the dispersal of the individuals from site q to its neighboring
sites in N

q(1) as in (2).
The above-given model taking quasi-local (or nearest neighbor) interactions into

account has been analyzed in [11]. Computational results regarding the magnitudes
of the eigenvalues of the linearized system corresponding to (1) and (2) were ob-
tained when the interactions and dispersal are limited only to nearest neighbors,
i.e., r = 1.

We define the convolution of matrices in the following lines to reformulate the
growth-dispersal model (1-2). Discrete convolution operator of two matrices x and
y on a two-dimensional lattice is given as follows:

(x ⇤ y)k =
Q1X

m=1

Q2X

n=1

xm,ny<m�k1>Q1 ,<n�k2>Q2
. (3)

Note that x⇤y is a matrix of size Q1⇥Q2. In addition, when Q2 = 1, this operator
reduces to convolution operator in 1-dimensional habitat.

Now we can reformulate the model (1-2) so that it takes the more general in-
teraction and dispersal ranges and weights into account. Consider two symmetric
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discrete probability kernels d and c used to model nonlocal dispersal and interac-
tions. By considering such kernels, we relax the assumption that each site in the
habitat interacts only with its nearest neighbors. For these two kernels d and c, we
only assume that they are symmetric. Using the interaction kernel c, the growth
equation taking nonlocal interactions into account can be written as follows:

x
0
q(t) =

�xq(t)

1 + a(c ⇤ x)q
. (4)

Besides, one can also write the dispersal equation as the convolution of the dispersal
kernel and the nonlinear growth function as

xq(t+ 1) = �(d ⇤ x0)q + (1� �)x0
q(t). (5)

The quasi-local interaction kernel numerically studied in [11] can be taken as a
specific example for the interaction kernel. This kernel is given as follows:

cn
q =

8
><

>:

(1 + sn↵)�1
, for q = 0

↵(1 + sn↵)�1
, for q 2 N

0
n(1)

0, elsewhere.

(6)

for n = 1, N,M. Here the interaction term in (1) can be written as the convolution
of two matrices x and cn = (cn

q )q2S . For a = ã(1 + sn↵), the right hand sides of
growth terms (1) and (4) are equal. When d is taken as the uniform distribution on
N

q
n(1), the right hand sides of dispersal equations (2) and (5) are also equal. Hence

the model (1-2) can be written by using convolutions as in (4-5).
Here (4) and (5) together describe the dynamics of several sub-populations dis-

persing to neighborhood patches and competing for the common resources with the
residents of other patches. Here the foraging and dispersal ranges are determined
by the supports of the discrete probability distributions c and d, respectively. The
dispersal rate or probability �, on the other hand, describes the average proportion
of individuals that are expected to disperse to other sites.

Lastly, note that the Coupled Map Lattice (CML) described by (4) and (5) has
a spatially homogeneous state e = (��1

a )q2S where ��1

a is the stable equilibrium of
the classical Beverton-Holt equation for � > 1 and a > 0.

3. Linear analysis using discrete Fourier series. In this section, we aim to
find an explicit expression for the eigenvalues of linearized problem described by
(4-5). Such an expression will be useful to study how nonlocal interaction kernel c
and system parameters, including the dispersal rate �, a↵ect the stability of space-
homogeneous solution e.

It is known that the nearest neighbor (or quasi-local) competition destabilizes the
space-homogeneous solution to (1-2) [11]. They obtained this result by analyzing
the |S| dimensional system of di↵erence equations (1-2) when the nearest neighbor
(or quasi-local) interactions take place. One needs the following properties of the
discrete Fourier series (DFS) to find an analytical expression of the eigenvalues for
the linearization of the model (4-5), taking nonlocal interactions into account.

Discrete Fourier series (DFS) of a matrix x = (xm,n)(m,n)2S is denoted by Fx
and k

th entry of which is given by

(Fx)k =
X

(m,n)2S

xm,ne
�2j⇡k1m/Q1e

�2j⇡k2n/Q2 (7)
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for any k = (k1, k2) 2 S [31, 38]. Here we would like to remark that the discrete
convolution theorem also holds in 2-D lattices and is given by the following equality:

(Fx ⇤ y)k = (Fx)k · (Fy)k (8)

where · represents the component-wise multiplication or Hadamard product of two
matrices [31, 38]. Note also that the above given properties of the matrices are also
valid in a 1-D habitat. For a review of these results in a 1-D patchy environment,
one can consult [4, Section 2.1].

We linearize the CML by using the first order expansion x(t) = e+ "x̌⇢t, where
x̌ is a time-independent matrix denoting a spatial perturbation term. Substituting
this ansatz to equation (4), we obtain G[x̌, c ⇤ x̌] = x̌+ 1��

� c ⇤ x̌ at the level O(").
Hence (5) takes the following form:

⇢x̌ = �d ⇤G[x̌, c ⇤ x̌] + (1� �)G[x̌, c ⇤ x̌].

Taking the DFS of both sides in the above equation and using the convolution
theorem (8) lead us to the following eigenvalues:

⇢k(�) = �
�1
�
�(Dk � 1) + 1

�
(�+ Ck � �Ck) (9)

where C = (Ck)k2S and D = (Dk)k2S are the DFS of the competition and dispersal
kernels c and d, respectively. In particular, we have Ck = (Fc)k and Dk = (Fd)k.
Since both of these kernels are assumed to be symmetric discrete probability distri-
butions, the DFS of them take real values between �1 and 1. If there is no spatial
e↵ect, we have the eigenvalue ⇢ = 1/� that is less than 1 if � > 1. Hence, e is the
stable equilibrium of the CML for any � > 1.

First, we consider the eigenvalues (9) in the absence of spatial dispersal, i.e.,
� = 0. Such a simplification allows us to identify the properties of the interaction
kernel c for which e looses its stability. When � = 0, the eigenvalues are given as
follows:

⇢k(0) = �
�1(�+ Ck � �Ck).

Note that ⇢k(0) is always non-negative for any k 2 S and � > 1. Then, e is unstable
if the magnitude of an eigenvalue ⇢k(0) is larger than 1. One can easily conclude
that ⇢k(0) > 1 for any � > 1 if and only if Ck is negative for some k 2 S.

This result can be considered as a more general version of the stability result
obtained in [11]. In particular, they considered interaction kernel c1 given by (6)
in a 1-dimensional habitat. When there is no dispersal and the number of the
patches in the habitat is even, they showed that e loses its stability if ↵ >

1

2
.

Here we can get the same result by taking c = c1
. Note that the DFS of com-

petition kernel c1 is given by C1

k = (1+ 2↵)�1
�
1+ 2↵ cos(2⇡k/N)

�
. Note also that

the smallest entry in C1 is C1

N/2 = (1 + 2↵)�1
�
1 � 2↵

�
. Hence, C1

k is negative for

at least one k 2 S if and only if ↵ >
1

2
. In [11], a similar analysis was performed

for cN given by (6) in a 2-dimensional habitat and it was shown that e loses its
stability if ↵ >

1

4
. It is easy to show that this condition is also equivalent to the

condition that CN
k is negative for some k 2 S.

It was found in [11] that quasi-local competition destabilizes the spatially uniform
equilibrium in the absence of dispersal provided that the competitive impact of
the neighboring patches on the reproduction in a patch is su�ciently large. This
statement for more general nonlocal interactions takes the following mathematical
form: if the DFS of the interaction kernel Ck is negative for some k 2 S then the
spatially uniform equilibrium is unstable in the absence of dispersal. Note that the
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latter statement is known to hold for many other models taking nonlocal interactions
into account (see, e.g., [2, 3, 4, 5, 18]).

In the remainder of this paper, we assume that Ck is negative for some k 2 S.

This implies that ⇢k(0) > 1 for some k 2 S. Hence ⇢k(�) is larger than 1 for � small
enough by continuity. The critical dispersal rate �0 2 (0, 1) can be calculated by
solving the following root finding problem:

max
k2S

{⇢k(�)� 1} = 0 (10)

The argument of this maximization problem is denoted by k
c and called the most

unstable wavenumber. Since �(Dk � 1) + 1  1 for any � 2 [0, 1], the magnitude
of the eigenvalues ⇢(�) decreases as � increases. This implies that ⇢(�) > 1 for
any � < �0. As a result, we conclude that increasing the dispersal rate flattens the
spatial heterogeneity.

4. Examples. In this section, we provide four numerical examples with di↵erent
kernels in 1-D and 2-D habitats. We compute their critical dispersal rates and the
most critical wavenumbers. For all our examples presented in this section, we fix
the following parameter values: a = 1, � = 2 and Q1 = 20.

Recall that the neighborhoods N
q
n(r) for n = 1, N,M defined in Section 2 do

not contain the point q. Here, we define the extended neighborhoods Nq
n (r) =

N
q
n(r) [ {q} that will be useful in describing competition kernels c in the following

examples.
To illustrate the spatially uniform equilibrium e loses its stability for some dis-

persal rates in a 1-dimensional habitat (i.e., Q2 = 1), we take the following examples
into account:

E1: First, we consider quasi-local (nearest neighbor) interactions and dispersal.
We take the dispersal kernel d as the uniform distribution in N

q
1
(1) and the

competition kernel c as the uniform distribution in Nq
1
(1). With these ker-

nels, we have the critical dispersal rate �0 = 0.071428 along with the most
unstable wavenumber k

c = 10 = (10, 1) (see Figure 2(a)). Patterns arising
from the CML with the above-given kernels and dispersal rate � = 0.0714 are
illustrated in Figure 3(a).

E2: Second, we consider next to nearest neighbor (or nonlocal) interaction and
dispersal in a 1-dimensional habitat. Hence, we take the dispersal kernel d
as the uniform distribution in N

q
1
(2) and the competition kernel c as the uni-

form distribution in Nq
1
(2). In this case, we have �0 = 0.070563 along with

the most unstable wavenumbers k
c
1
= 6 = (6, 1) and k

c
2
= 14 = (14, 1) (see

Figure 2(b)). Patterns arising from the CML with the above-given kernels
and dispersal rate � = 0.0705 are illustrated in Figure 4(a).

In a 2-dimensional habitat with Q2 = 20, we considered instabilities arising from
the CML using both von Neumann and Moore neighborhoods as follows:

E3: Here, we use a von Neumann neighborhood in a 2-dimensional habitat (see,
Figure 1(a)). In particular, we consider competition and dispersal kernels as
uniform distributions on Nq

N (1) and N
q
N (1), respectively. Then, we have the

critical dispersal rate �0 = 0.11538 along with the most unstable wavenumber
k
c = (10, 10) that is marked in Figure 2(c). Patterns arising from the CML

with the above-given kernels and dispersal rate � = 0.115 are illustrated in
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Figure 3(c).

E4: When using a Moore neighborhood (see, Figure 1(b)), we have competition
and dispersal kernels as uniform distributions on the sets Nq

N (1) and N
q
N (1),

respectively. In this case, �0 = 0.095238 along with two the most unstable
wavenumbers kc

1
= (10, 20) and k

c
2
= (20, 10) that are marked in Figure 2(d).

Patterns arising from the CML with the above-given kernels and dispersal
rate � = 0.095 are illustrated in Figure 5(a).

Here, we remark that the critical dispersal rate �0 for each example is found by
numerically solving the root-finding problem (10). The critical wavenumber k

c is
equal to k 2 S satisfying ⇢k(�0) � 1, i.e., it is the argument of the maximization
problem maxk2S{⇢k(�)� 1} near �0. Hence, if there are multiple arguments of this
problem, all of them are taken as the most unstable wavenumbers.

In Figure 2, we plot the dispersion relations for the above-given examples E1-
4. For the examples in 1 dimensional habitat we used bar graphs to show the
eigenvalue(s) having the most unstable wavenumber takes values larger than 1 for
� = 0.06 < �0 (see Figures 2(a) and 2(b)). Figures 2(c) and 2(d) illustrate the dis-
persion relations for examples E3 and E4 at �0 and the most unstable wavenumbers
are marked in these figures.

Note that each of the above-given examples falls into one of the following cat-
egories: (i) a single critical wavenumber as in E1 and E3, (ii) a pair of complex
conjugate wavenumbers as in E2, and (iii) two independent wavenumber as in E4.
For the examples given in this section, di↵erent types of patterns near the stability
boundaries will be illustrated in the following section. In addition, we approximate
these patterns (stationary solutions to CML) near the stability boundaries using
the eigenvalues and eigenvectors corresponding to the most unstable wavenumbers.
In particular, we perform a weakly nonlinear analysis of the CML which heavily de-
pends on these critical wavenumbers. Analyses regarding cases (i), (ii) and (iii) are
given in Sections 5.1.1, 5.1.2 and 5.2, and technical details of the nonlinear analyses
regarding these cases are deferred to Appendices A.1, A.2 and A.3, respectively.

5. Weakly nonlinear analysis. The linear stability analysis is a useful tool to
examine the e↵ects of the parameters and interaction kernels on the stability of
the system, but it is only valid for small-time and infinitesimal perturbations. In
the long run, nonlinear terms a↵ect the growth of unstable modes. Hence, in the
following lines, we consider the CML model (4-5) and obtain the Stuart-Landau (S-
L) equations [39] to approximate the stationary patterns in 1-D and 2-D habitats.

We are interested in the stability of the homogenous solution e near the critical
dispersal rate �0 with periodic boundary conditions. We aim to approximate the
solution to (5) by using the steady-state solutions to the amplitude equations. To
find these equations, consider a perturbation of the bifurcation parameter � as
follows:

� = �0 + "
2
µ (11)

for 0 < " ⌧ 1 and µ = ±1. Here µ determines the direction of the deviation from
the critical nonlocal dispersal rate �0. In Section 3, we showed that e might be
unstable for µ = �1 using the linear stability analysis.
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(a) E1 (b) E2

(c) E3 (d) E4

Figure 2. Dispersion relations for the examples E1-4.

Let �0 be the critical dispersal rate for which we have ⇢kc(�0) = 1 for all kc

satisfying (10). The solution to the linearized CML around e and near critical
dispersal rate �0 is given as follows:

yt /
X

kc

wkc ·
�
⇢kc(�)

�t
(12)

where wkc =
�
wkc [q1, q2]

�
is a matrix of size Q1 ⇥ Q2 with wkc [q1, q2] = e

j2⇡kc
1q1/

Q1e
j2⇡kc

2q2/Q2 . We remark that {wk|k 2 S} is an orthogonal basis of the vector
space RQ1⇥Q2 which follows from the discussion in [38, p. 104].

Expanding the eigenvalue ⇢kc(�) in power series leads to

⇢kc(�) = 1 + ⌫"
2(Dkc � 1)(1� �� 1

�
Ckc) +O("4)
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where we used equality (9) to obtain d⇢/d�. By substituting this expansion to a
summand of solution (12), one obtains

wkc

�
⇢kc(�)

�t
= wkce

t log(1+⌫"2d⇢/d�)

⇡ wkce
t⌫"2d⇢/d�

= A("2t)wkc .

Here amplitude A is a function of the slow time ⌧ := "
2
t. We consider the fast- and

slow-time scales t and ⌧ together in our analysis. Following [24], we incorporate the
slow-time scale ⌧ into the problem by assuming the solution has an expansion of
the form

xt = e+ "x1(t, ⌧) + "
2x2(t, ⌧) + · · · . (13)

Notice that x1(t, ⌧) = yt =
P

i Ai(⌧)wkc
i
. This implies that the complexity of

solutions increases as the multiplicity of the eigenvalue increases. Since the CML
also contains the term xt+1, we expand this term following [24] as follows:

xt+1 = x(t+ 1, ⌧ + "
2
, Q)

= e+ "x1(t+ 1, ⌧) + "
2x2(t+ 1, ⌧) + "

3
@⌧x1(t+ 1, ⌧) +O("4). (14)

x2 in (13) will be determined in the following sections depending on the multi-
plicity of the most unstable eigenvalue.

5.1. Stuart-Landau equations for a single amplitude function. In this sec-
tion, we find Stuart-Landau (S-L) equations for a single-amplitude function A(⌧).
Categories (i) and (ii) (see Section 4) will be examined in this subsection. The
former one is represented by our examples E1 and E3 where we have a single
eigenvalue corresponding to the most unstable wavenumber (see Figures 2(a) and
2(c)). The latter category is represented by E2 for which we have two complex
conjugate the most unstable wavenumbers (see Figure 2(b)). In the following lines
we discuss these two cases in detail.

5.1.1. S-L equations for a single critical wavenumber. In this subsection, we assume
that the largest eigenvalue is simple as in examples E1 and E3. In this case, we
have the first order solution

x1 = A(⌧)wkc ,

where the amplitude function A(⌧) satisfies the following S-L equation:

dA

d⌧
= µ A+ �A

3
. (15)

The details regarding the derivation of (15) and explicit expressions for the param-
eters � and  are given in Appendix A.1. Since coe�cients � and  of S-L equation
(15) are real, the amplitude A can be taken as a real function provided that the
initial amplitude A(0) is real.

Steady state solutions of equation (15) are given by

A0 = 0 and A
±
1 = ±

p
�µ /�. (16)

The linear stability analysis of (15) suggests that the solution 0 is stable whenever
µ < 0. We can observe that  < 0 from equality (21). Thus, we can conclude that
the steady state solution A0 (or e) is unstable for µ = �1 and stable for µ = 1. This
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result is consistent with the results of the linear analysis in Section 3. If � < 0, A±
1

takes real values for µ = �1. Thus we have the following result to approximate the
stationary patterns arising from the CML.

Theorem 5.1. Suppose that µ = �1 and " > 0 is small enough so that the uniform
steady-state e is unstable to modes corresponding only to the eigenvalue kc. If � < 0,
an approximation to the emerging solution to CML is given as follows:

x = e+ "A
±
1wk +O("2),

where A
±
1 are as given in (16).

To verify Theorem 5.1 numerically, we consider examples E1 and E3 having a
single critical eigenvalue. A solution to the CML with parameters given in E1 and
a random initial datum is shown in Panel (a) of Figure 3, while approximation to
this solution is shown in Panel (b) of Figure 3. Here " = 0.0053 and it is verified
that the error in predicting the amplitude is of order "2. In addition, the equilibria
of the S-L equation are given by A

±
1 = ±4.0988. Hence, the maximum norm of the

di↵erence between the stationary solution and its approximation is found as follows:
kx� e� "A

+
1wkck1 = .00019 where k

c = 10.
For the second example E3, we also have only one critical eigenvalue. Similarly,

stationary patterns in 2-D habitat arising from the CML with a random initial
datum and its predicted equilibrium solution to first order are shown in Panels (c)
and (d) of Figure 3, respectively. In this case, " = 0.0196 and it is verified that the
error in predicting the amplitude is of order "2. In addition, the equilibria of the
S-L equation are given by A

±
1 = ±3.5187. The maximum norm of the di↵erence

between the stationary solution and its approximation is given as follows: kx� e�
"A

�
1wkck1 = .039 where k

c = (10, 10). Hence, we can conclude that the predicted
solution shows a good agreement with the numerical solution of the CML.

5.1.2. S-L equations for a pair of complex conjugate critical wavenumbers. As in
example E2, there may be two complex conjugate eigenvalues. In this case we have
the first-order solution

x1 = Ã(⌧)wkc + Ã
c(⌧)w�kc

for some k
c 2 S. Here, the amplitude function Ã(⌧) satisfies the following S-L

equation:

dÃ

d⌧
= µ ̃Ã+ �̃Ã

3
. (17)

The details regarding the derivation of (17) and explicit expressions for the param-
eters �̃ and  ̃ are given in Appendix A.2. Since coe�cients of S-L equation (17) are
real, the amplitude Ã takes real values.

Steady state solutions of the equation (17) are also given by

Ã0 = 0 and Ã
±
1 = ±

q
�µ ̃/�̃. (18)

Similarly, we can conclude that the steady state solution Ã0 (or e) is unstable for
µ = �1 and stable for µ = 1. This result is in consistence with the results of the
linear analysis in Section 3. If �̃ < 0, Ã±

1 takes real values for µ = �1. Thus we
have the following result to approximate the stationary patterns arising from the
CML.
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(a) (b)

(c) (d)

Figure 3. Comparison between numerical solutions to the CML
(on the left) for examples E1 and E3, and the weakly nonlinear
first-order approximations of these solutions (on the right). Panel
(a) illustrates stationary waves in a 1-dimensional habitat for E1.
Similarly, panel (c) shows stationary patterns in a 2-dimensional
habitat for E3. In panels (c) and (d), colors represent the popula-
tion size and approximated population size, respectively.

Theorem 5.2. Suppose that µ = �1 and " > 0 is small enough so that the uniform
steady-state e is unstable to modes corresponding only to the eigenvalues kc and �k

c
.

If �̃ < 0, an approximation to the emerging solution to CML is given as follows:

x = e+ "Ã
±
1
�
wkc +w�kc

�
+O("2)

where Ã
±
1 are as in (18).
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For the parameters and kernels described in example E2, we have two eigenva-
lues that are complex conjugates of each other. A solution to the CML with these
parameters and a random initial datum is given in Panel (a) of Figure 4 and an
approximation to this solution is shown in Panel (b) of Figure 4. Here " = 0.0079
and it is also verified that the error in predicting the amplitude is of order "2. In
addition, the equilibria of the S-L equation are given by A

±
1 = ±6.3505. The maxi-

mum norm of the di↵erence between the stationary solution and its approximation
is given by kx� e� "A

+
1(wkc

1
+wkc

2
)k1 = 0.0102, where k

c
1
= 6 and k

c
2
= 14.

(a) (b)

Figure 4. Comparison between numerical solutions to CML (on
the left) and the weakly nonlinear first order approximation of these
solutions (on the right). Panel (a) illustrates stationary waves in a
1-dimensional habitat for the parameters given in example E2.

5.2. Stuart-Landau equations for two amplitude functions. As in the ex-
ample E4, there may be two eigenvalues that are not the complex conjugates of
each other. In this case we have

x1 = A1(⌧)wkc
1
+A2(⌧)wkc

2

for some k
c
1
, k

c
2
2 S. These amplitude functions A1 and A2 satisfy the following

system of S-L equations:

dA1

d⌧
= �1A

3

1
+ ⇠1A1A

2

2
+ µ 1A1 (19)

dA2

d⌧
= �2A

3

2
+ ⇠2A

2

1
A2 + µ 2A2

The details regarding the derivation of the system of S-L equations and explicit
expressions for its parameters are given in Appendix A.3. Here we would like to
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note that nontrivial stationary solutions to (19) are given in [17] as follows:

P
±
1

=
⇣

±
p
�µ 1/�1, 0

⌘
; P

±
2

=
⇣
0,±

p
�µ 2/�2

⌘

P
(±,±)

3
=

 
±

s
µ 1(⇠1 � �2)

�1�2 � ⇠1⇠2
,±

s
µ 2(⇠2 � �1)

�1�2 � ⇠1⇠2

!

To approximate the stationary patterns arising from the CML, we have the fol-
lowing result:

Theorem 5.3. Suppose that µ = �1 and " > 0 is small enough so that the uniform
steady-state e is unstable to modes corresponding only to the eigenvalues kc

1
and k

c
2
.

An approximation to the emerging solution to CML is given as follows:

x = e+ "
�
A11wkc

1
+A21wkc

2

�
+O("2)

where (A11, A21) is a stationary state of the Stuart-Landau equation (19).

For E4, we have two eigenvalues that are not complex conjugates of each other.
Hence, one needs to consider two di↵erent amplitude functions A1 and A2. A solu-
tion to the CML with a random initial datum and its predicted equilibrium solu-
tion to first order are shown in Panels (a) and (b) of Figure 5, respectively. Here
" = 0.0154 and it is also verified that the error in predicting the amplitude is of or-

der "2. Since the S-L equation (19) is symmetric in A1 and A2, we take only P
(±,±)

3

into consideration when calculating the approximation. Then we have P
(±,±)

3
=

(±7.5993,±7.5993). The maximum norm of the di↵erence between the stationary
solution and its approximation is then given by kx�e�"A11wkc

1
�"A21wkc

2
)k1 =

0.0385, where k
c
1
= (10, 20), kc

2
= (20, 10) and A11 = A21 = 7.5993.

(a) (b)

Figure 5. Comparison between numerical solution to CML (on
the left) and the weakly nonlinear first order approximation of this
solutions (on the right). Panel (a) illustrates stationary waves in a
2-dimensional habitat for E4. In panels (a) and (b), colors repre-
sent the population size and approximated population size, respectively.
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6. Conclusion. In this paper, we studied the stationary patterns arising from a
discrete-time metapopulation model with nonlocal competition. Our model is a
generalization of the metapopulation dynamics with quasi-local competition intro-
duced in [11]. We have investigated the pattern formation mechanism induced by
nonlocal competition in 1-D and 2-D spatial domains.

The single-species model studied in this paper belongs to a large family of
spatial models taking nonlocal interactions into account. In the literature, there
are continuous-time and space [2, 7, 14, 15, 18, 37], continuous-time and discrete
space [4, 30] and continuous space and discrete-time [5] intraspecific competition
models studying the e↵ects of nonlocal interactions on the stability of the space-
homogeneous solution. In all of the above-mentioned works, it was shown that
nonlocal interactions destabilize the space-homogenous solution if the Fourier trans-
form of the competition kernel takes negative values for some wavenumbers. We
argued that the CML model studied in this paper is no exception by showing that
e becomes unstable when the Fourier transform of the competition kernel takes
negative values. In addition, as discussed in Section 3, this is a general condition
on the destabilization of the steady-state which agrees with the result obtained in
[11].

We further analyzed the model by obtaining the Stuart-Landau (S-L) equations
providing a mathematical description of the CML close to the onset of instability.
To the best of our knowledge, this is the first study performing a weakly nonlinear
analysis on a CML model in the literature. The S-L equations have been used to
approximate the stationary patterns arising from the model in 1-D and 2-D habitats.
We numerically verified the results of nonlinear analysis. The result of weakly
nonlinear analysis implies that as the dispersal rate � decreases, the amplitude
levels of patterns increase and are of order " =

p
�0 � �. Hence, we conclude that

the smaller dispersal rate favors aggregation. This result is in line with the findings
presented in [2, 3, 7, 18]

Instead of assuming nearest-neighbor interactions, we assumed that the strength
of the ecological interactions (including dispersal) impinging on a population in a
patch is a function of the neighboring population densities as well as of their spatial
distance, with more distant patches having a smaller impact. Assuming nonlocal
rather than quasi-local interactions leads to the emergence of more complex spatial
patterns as shown in Figure 4.

Future analysis might move from stationary patterns to traveling patterning
waves and obtaining S-L equations for traveling wave type patterns. In this case,
the corresponding S-L equations will have complex coe�cients. In addition, weakly
nonlinear analysis for a single species CML model can be extended to analyze disper-
sal driven instabilities in two or more species discrete-in-time and -space equations
(see, e.g., [36]).

Appendix A. Weakly nonlinear analysis.

A.1. When there is a simple eigenvalue. In this case, we have x1 = A(⌧)wkc

for some k
c 2 S. Note that for both examples the critical eigenvalue wkc couples

only with the eigenvalue w0 = 1. Thus the second order solution is of the form
x2 = B(⌧)w0.

Substituting (13) into the full system (5) and using (14), the following sequence
of equations can be obtained.
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At O(1),we have e = e. At the level O("), one gets the linear relationship (9) as
follows:

1 = (�0(Dkc � 1) + 1)(Ckc + �� Ckc�)/�.

At O("2), we obtain:

�B � �
2
B � aA

2
Ckc(Ckc + �� Ckc�) = 0.

From the last equality we obtain:

B = aA
2
Ckc

Ckc + �� Ckc�

�(1� �)

At level O("3), we obtain the S-L equation (15) with parameters

� = a
2
Ckc

(�0D̂kc � �0 + 1)
�
(1� �)C2

kc � Ckc�
2 + 2Ĉkc�+ �

2
�

�3(�� 1)
(20)

and

 = �
�1(Dkc � 1)(Ckc + �� Ckc�). (21)

A.2. When there are a pair of complex conjugate eigenvalues. Note that
the eigenvector wkc (where kc = 6) and its complex conjugate couple only with the
eigenvalues w0,w2kc . and w�2kc .Thus the second-order solution is of the form x2 =
B0(⌧)w0 +B1(⌧)w2kc +B

c
1
(⌧)w�2kc . At level O(") one gets the linear relationship

for each eigenvector.
Similarly one obtains the following equalities at level O("2) :

B0 = �0Ã
2

B1 = �1Ã
2
,

where

�0 = 2a
Ckc + �� �Ckc

�� �2
,

�1 = aCkc
(Ckc + �� �Ckc)(D2kc�0 � �0 + 1)

�(C2kc + �� �C2kc)(�0 + ��D2kc�0 � 1)� �2
,

At level O("3), we obtain the S-L equation (17) with parameters

�̃ = �a��3(Dkc�0 � �0 + 1)
�
(2Ckc � Ckc�+ �)��0 + (22)

+(Ckc�+ C2kc�+ 2CkcC2kc � 2CkcC2kc�)��1 + 3C2
kca(Ckc�� �� Ckc)

�
,

 ̃ = ��1(Dkc � 1)(Ckc + �� �Ckc),

A.3. When there are two amplitude functions. Note that the eigenvalue wkc
i

(where k
c
1
= (0, 10) and k

c
2
= (10, 0)) couple only with the eigenvalues w0,0 and

w10,10. Thus the second order solution is of the form x2 = B0(⌧)w0,0+B1(⌧)w10,10.

At level O(")one gets the linear relationship for each eigenvector. Similarly one
obtains the following equalities at level O("2) :

B0 = �1A
2

1
+ �2A

2

2

B1 = �3A1A2
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where

�1 = a
Ckc

1
(Ckc

1
+ �� Ckc

1
�)

�(1� �)
,

�2 = a
Ckc

2
(Ckc

2
+ �� Ckc

2
�)

�(1� �)
,

�3 = a
(�0Dkc

1+kc
2
� �0 + 1)

�
�(Ckc

1
+ Ckc

2
) + 2Ckc

1
Ckc

2
(1� �)

�

�(Ckc
1+kc

2
+ �� �Ckc

1+kc
2
)(Dkc

1+kc
2
�0 � �0 + 1)� �2

.

Eventually we obtain system of di↵erential equations (19) at level O("3) with the
following parameters:

�1 = ��3a(D1�0 � �0 + 1)
⇣
aC2

kc
1
(Ckc

1
+ �� Ckc

1
�) + �1�(Ckc

1
�� 2Ckc

1
� �)

⌘

⇠1 = ���3a(Dkc
1
�0 � �0 + 1)

⇣�
�2(1� Ckc

1
) + �3(Ckc

2
+ Ckc

1+kc
2
� 2Ckc

2
Ckc

1+kc
2
)
�
�2 +

+
�
2�2Ckc

1
+ 2�3Ckc

2
Ckc

1+kc
2
+ aCkc

2
(3Ckc

1
Ckc

2
� Ckc

2
� 2Ckc

1
)
�
�� 3aCkc

1
C2

kc
2

⌘

 1 = ��1(Dkc
1
� 1)(Ckc

1
+ �� Ckc

1
�)

�2 = ��3a(Dkc
2
�0 � �0 + 1)

⇣
aC2

kc
2
(Ckc

2
+ �� Ckc

2
�) + �2�(Ckc

2
�� 2Ckc

2
� �))

⇠2 = ���3a ⇤ (Dkc
2
�0 � �0 + 1)

⇣�
�1(1� Ckc

2
) + �3(Ckc

1
+ Ckc

1+kc
2
� 2Ckc

1
Ckc

1+kc
2

�
�2 +

+
�
2�1Ckc

2
+ 2�3Ckc

1
Ck1c+kc

2
+ aCkc

1
(3Ckc

1
Ckc

2
� Ckc

1
� 2Ckc

2
)
�
�� 3aC2

kc
1
Ckc

2

⌘

 2 = ��1(Dkc
2
� 1)(Ckc

2
+ �� Ckc

2
�)
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