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LINEARIZATIONS FOR INTERPOLATORY BASES — A COMPARISON:
NEW FAMILIES OF LINEARIZATIONS*

A. ASHKART, M.I. BUENO?f, R. KASSEM$, D. MILEEVAY, AND J. PEREZ/

Abstract. One strategy to solve a nonlinear eigenvalue problem T'(A)x = 0 is to solve a polynomial eigenvalue problem
(PEP) P(M\)z = 0 that approximates the original problem through interpolation. Then, this PEP is usually solved by lineari-
zation. Because of the polynomial approximation techniques, in this context, P(\) is expressed in a non-monomial basis. The
bases used with most frequency are the Chebyshev basis, the Newton basis and the Lagrange basis. Although, there exist
already a number of linearizations available in the literature for matrix polynomials expressed in these bases, new families of
linearizations are introduced because they present the following advantages: 1) they are easy to construct from the matrix
coefficients of P(A) when this polynomial is expressed in any of those three bases; 2) their block-structure is given explicitly;
3) it is possible to provide equivalent formulations for all three bases which allows a natural framework for comparison. Also,
recovery formulas of eigenvectors (when P()) is regular) and recovery formulas of minimal bases and minimal indices (when
P(]) is singular) are provided. The ultimate goal is to use these families to compare the numerical behavior of the linearizations
associated to the same basis (to select the best one) and with the linearizations associated to the other two bases, to provide
recommendations on what basis to use in each context. This comparison will appear in a subsequent paper.

Key words. Nonlinear eigenvalue problem, Polynomial eigenvalue problem, Linearization, eigenvalue, Eigenvector, Mini-
mal basis, Minimal indices, Chebyshev basis, Newton basis, Lagrange basis, Interpolation.
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1. Introduction. Nonlinear eigenvalue problems of the form
(1.1) TNz =0 and y'T(\) =0,

where T : Q C C — C™ ™ is a regular complex-valued matrix function holomorphic in a complex region §2,
often arise in applications [13]. The scalar A € § is called an eigenvalue of T'(\), and x and y are associated
right and left eigenvectors.

A possible approach for solving the nonlinear eigenvalue problem (1.1) is to replace T'(A) with a matrix
polynomial approximation P(\) [12, 27, 28]. Such polynomial approximant can be found via interpolation,
i.e., for a given set of points {x1,za,..., 241} C 2, whose elements we call the nodes, one replaces T by the
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unique matrix polynomial P of degree at most k satisfying
(1.2) T(x;)=P(x;) (=1,....,k+1).
This process replaces the nonlinear eigenvalue problem (1.1) by a polynomial eigenvalue problem (PEP)

(1.3) PA\)z=0 and y'P()\)=0.

If the interpolation error maxyeq ||[P(A) — T(A)]|2 is small, one expects the eigenvalues of P(\) in 2 and
their corresponding eigenvectors to be reliable approximations to the eigenvalues and eigenvectors of T(\)
in a backward error sense [13].

One of the most popular techniques for solving polynomial eigenvalue problems is linearization [19]. A
linearization of a matrix polynomial P()) replaces (1.3) with a (larger) generalized eigenvalue problem

(1.4) ABv=Av and Mw'B=w"A

with the same eigenvalues (and multiplicities) as the original PEP. The linearized eigenvalue problem (1.4)
can be solved by using the QZ algorithm (for small/medium sizes) or a Krylov method (for larger sizes) [29].

It is well-known that the linearization transformation is not unique [1, 5, 23]. Common choices are the

Frobenius companion linearizations [5], which are based on an expansion of P(A) in the monomial basis

k
(1.5) PA\) =Y _PX, PRy,...,PeC""
=0

Since polynomial interpolation in the monomial basis can be potentially unstable —due to the ill conditioning
of Vandermonde matrices— we will consider instead matrix polynomials of the form

k
(1.6) P(A) =) _Pini(\), PR,...,P€C™",
1=0

where {n;(\)}¥_, denotes either the Newton, Lagrange or Chebyshev polynomial bases, since these bases
are the most common choices for dealing with polynomial interpolants in numerical practice [3, 11, 16].

In the literature, linearizations of a matrix polynomial expressed in either of these bases can be found in
[1, 12, 20, 22, 25, 27]. Among these linearizations, those used most often in applications can be considered
“equivalent” to the Frobenius linearizations in the monomial case. They are called colleague linearizations.
Our ultimate goal in a forthcoming paper is to compare the numerical performance (in terms of conditioning
and backward errors [17, 18, 26]) of the linearizations of a matrix polynomial expressed in the three bases:
Chebyshev, Newton, and Lagrange in the following sense. First, we would like to determine if the colleague
linearizations used in practice are the “best” linearizations for a given basis. In order to do this analysis, we
need a whole family of linearizations to choose from and compare with. Secondly, once we have chosen the
best linearization for each basis, we want to compare the performance of these linearizations for the three
given bases in terms of the selection of nodes for interpolation. The relative position of the eigenvalues with
respect to the interpolation nodes has an important effect on the numerical behavior of these linearizations.

In order to achieve the ultimate goal mentioned above, in this paper, we present three families of
strong linearizations for matrix polynomials expressed in the Chebyshev, Newton, and Lagrange bases,
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respectively. The main reason to construct these families, despite the fact that some families of linearizations
already exist for some bases, such as Chebyshev and Newton, is because these available constructions in the
literature are implicit (see, for example [22, 24], or [21] for the Bernstein basis) and, thus, not easy to use
for the numerical analysis that we intend to do. Moreover, we have used a block minimal basis approach
([8]) for the construction of the linearizations (thus, providing their explicit block-structure) which allows
equivalent formulations for the three bases. This makes the numerical analysis and comparison much more
straightforward. For completion, we give linearizations for both polynomials that are regular and singular,
and also provide recovery formulas for eigenvectors, minimal bases, and minimal indices. The numerical
analysis and comparison is postponed to a subsequent paper to limit the length of the paper.

As for the structure of the paper, after some preliminaries (Sections 2.1-2.6), where we introduce the
notation used throughout the paper and background knowledge, we present in Section 2.7 the so-called block
minimal basis linearizations. This family of linearizations was introduced recently in [8], and will allow us
to construct in Sections 3, 4 and 5 linearizations for matrix polynomials expressed in the Newton, Lagrange
and Chebyshev bases, respectively. For each of the considered polynomial bases, we introduce an infinite
family of linearizations, and for each of these families, we obtain eigenvector formulas, and show how to
recover the eigenvectors, minimal indices and minimal bases of the original matrix polynomial from those of
any of its linearizations. Our results put into a unified framework some results scattered in the linearization
literature [1, 20, 25], and fill some important gaps in the literature regarding eigenvector formulas, recovery
procedures for eigenvectors and minimal bases and minimal indices, and explicit constructions.

2. Background and notation. Although most of the definitions and results in this paper hold over
a generic field, we focus on the complex numbers.

2.1. Block vectors and the block transpose. A block vector is a matrix of the form

Vi
Vs

v= V% o Va] or w=| |,
Va
where the entries V; are (possibly) matrices of compatible size. We sometimes use v(i) to denote the ith

block entry of a block vector v. The block transpose operation, denoted by B, is the blockwise transposition,
ie.,

Vi vi1”
V; %

Vi Va vt= | ad || = oW - W
Vo Vo

Note that, in the first case, we are assuming that all the blocks entries have the same number of columns
and, in the second case, we are assuming that all the block entries have the same number of rows.

2.2. Matrix polynomials. Let us consider an m X n matrix polynomial with complex matrix coeffi-
cients of the form
k
(2.7) PA) =) _ PN, PRy...,PeC™"
i=0
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If Py is nonzero, we say that P()) has degree k; otherwise, we say that P(A) has grade k. We denote the
degree of a matrix polynomial P(A) by deg P(A). When dealing with interpolation polynomials, the notion
of grade is more natural than the notion of degree, since one cannot guarantee a priori a nonzero leading
term.

A matrix polynomial of size n x 1 is called a (column) vector polynomial.

We say that a matrix polynomial P()) is reqular if m = n and det(P (X)) is not identically zero. In other
words, a regular matrix polynomial P()) is an invertible matrix over the field C()) of rational functions
with complex coefficients. We say that P(\) is singular if either m # n or det(P(\)) = 0.

We say that the matrix polynomial given in (2.7) is expressed in the monomial basis, since {1, ), ..., Ak}
is a basis of the set of polynomials Cy[\] of degree at most k (that is, of grade k). As explained in the
introduction, in interpolation problems, it is more convenient to express a matrix polynomial in other
polynomial bases. In the paper, we focus on matrix polynomials expressed either in the Newton, Lagrange
or Chebyshev bases. We recall these bases next.

2.3. Polynomial interpolation bases.

2.3.1. Newton interpolation basis. For a given set of nodes {z1,...,zr+1} C C, the Newton poly-
nomial n;(A) is defined as

i

(2.8) ni(A) =[[A-z) G=1,... k),

j=1
and ng(A\) = 1. We notice that the Newton polynomials satisfy the following recurrence relation

(2.9) Tll()\) = ()\ — xl)m_l()\) (Z = 1, ceey k‘)

The interpolation matrix polynomial, i.e., the unique grade-k matrix polynomial P()\) satisfying (1.2),
can be written as

k
(2.10) P(\) =Y Pini(\)

where the matrix coefficients P; € C"*™ can be found, for example, by using the method of divided differ-
ences. Setting y; := T'(x;) (i =1,...,k+ 1), the divided differences are defined as

Yit1s-- - Yit+jg] = (Y Yit1s - -5 Yitj—1
[yi} = Yi, [yiayi+1a---7yi+j] = [ a ﬂ] [ a * ]
Titj — T4
Then, P; = [y1,...,yi+1] for i =0,1,... k.
2.3.2. Lagrange interpolation basis. For a given set of nodes {z1,x2,...,2x+1} C C, the Lagrange

polynomial £;(\) is defined as

k+1

A_}_[ (A —zj)

(2.11) GO = (=1, k1),

[I (zi—x)



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 36, pp. 799-833, December 2020.

803 Linearizations for Interpolatory Bases — a Comparison: New Families of Linearizations

The Lagrange polynomial ¢;(A) has the property

1 if j =1, and .
li(zj) = ! J=1,...,k+1).
() { 0  otherwise (@] +1)

Hence, the unique matrix polynomial P(\) satisfying (1.2) can be written in terms of Lagrange polynomials
as

k+1

(2.12) P(N) =Y Piti(N),
i=1

where P, =T(x;) (i=1,...,k+1).

For our purposes, it will be more convenient to express the Lagrange polynomials in the equivalent
modified way

(2.13) 4 :z(/\)Afix (i=1,....k+1),

where
k+1 1

(2.14) L) = | (A —a) and wi=—=———— (@({=1,...,k+1).
E [ (zi — ;)

J#i

The quantities w; are known as the barycentric weights. Using (2.13), the matrix polynomial P()) in (2.12)
takes the form

k+1 ]
(2.15) PO =) Y Pyt
i=1 ¢

which is known as the first barycentric form of (2.12).

2.4. The Chebyshev bases of the first and second kind. The Chebyshev polynomials of the first
kind {T,(z) : n € 0UN} are obtained from the recurrence relation

(2.16) To(x) =22Ty_1(x) — Th_o(x),

where Ty(z) = 1 and Ti(z) = z. The Chebyshev polynomials of the second kind {Uy,(z) : n € 0 UN} are
obtained from the same recurrence relation (2.16) with initial conditions Uyp(z) = 1 and Uy (z) = 2.

Chebyshev polynomials can be used to interpolate nonlinear matrix-valued functions 7" : [—1,1] — C™*™.
Two types of nodes are usually considered: (1) Chebyshev nodes of the first kind

2 —1m

i = 7. 1 9 | ' 17 P 1 )
T cos(k+12> ie{1,2 k+1}
and (2) Chebyshev nodes of the second kind

L — 1
Z; = COS <Zk7r>, ie{1,2,...k+1}.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 36, pp. 799-833, December 2020.
A. Ashkar, M.I. Bueno, R. Kassem, D. Mileeva, and J. Pérez 804

In both cases, the unique grade-k matrix polynomial P(A) satisfying (1.2) can be written in the form

k
(2.17) P(\) =Y P Ti(N),
i=0
where the matrix coefficients P; (i = 0,..., k) can be efficiently computed by a sequence of inverse discrete

cosine transforms of type III or type I, respectively. Details can be found in [2].

REMARK 2.1. Although the Chebyshev polynomials are usually considered to be defined on the real
interval [—1,1], there is a generalization of these polynomials in the complex plane: Given a compact set
K C C, the nth Chebyshev polynomial associated with K is defined to be the (unique) monic polynomial
which minimizes the supremum norm on K among all monic polynomials of the same degree. However, as far
as we know, there is not a formula to compute these polynomials in an arbitrary set K, which is a drawback
compared to Newton and Lagrange. Thus, in Section 5, we assume the ordinary Chebyshev polynomials
defined on the interval [—1,1].

The following lemma will be used in future sections.

LEMMA 2.2. [20] The Chebyshev polynomials satisfy the following identities:

Tt e(N) = Ur(NTe(A) = Urma(NT—1(A) - (€ #£0),

Trves1(A) = 20U (N)Te(A) = Ur(N)To-1(A) = U1 (N)Te(A) (£ #0),
Urse(A) = Ur(NUe(A) = Ur—1(A)Ue-1(N),

Upspor(x) = 220, (N Ue(N) = Un(NTs1(A) = U1 (NUe(N).

2.5. Eigenvalues and eigenvectors of regular matrix polynomials. Let P(\) be a regular matrix
polynomial of grade k as in (2.7). We say that Ao € C is a finite eigenvalue of P(X) if P(X\g)z = 0 for some
nonzero vector x. The vector x is called a right eigenvector of P(\) associated with A\g. A vector y is said
to be a left eigenvector of P(\) associated with Ao if y7 P()\g) = 0, where y” denotes the transpose of . We
say that P(X) has an eigenvalue at infinity if zero is an eigenvalue of the k-reversal revy, P(X\) of P(\), where

(2.18) revy P(\) = A*P (1/)).

In this case, a right (resp., left) eigenvector of P(\) associated with an infinite eigenvalue is a right (resp.,
left) eigenvector of revy P(\) associated with 0.

Two matrix polynomials P(\) and Q()\) of the same size are said to be strictly equivalent if there are
invertible matrices U and V such that Q(\) = UP(A)V. We recall that two strictly equivalent matrix
polynomials have the same finite and infinite eigenvalues with the same algebraic, partial and geometric
multiplicities.

In future sections, we will consider eigenvalues at infinity of matrix polynomials expressed in polynomial
bases other than the monomial. The following lemma provides the reversal of such a polynomial. We omit
the proof since it follows immediately from the definition of reversal.

LEMMA 2.3. Let P(\) = Z?:o P; ¢;(N\) be a matriz polynomial of grade k expressed in the polynomial
basis {po, P1,...,dr}. Then,

k
revy P(A\) = Z P;revy, ¢i(A).
=0
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In particular, if ¢;(X) = [[7_y(A — a;), where s <k, then

S

revi i(A) = A7 TT(1 = a\).

Jj=0

2.6. Singular matrix polynomials and dual minimal bases. If an m X n matrix polynomial P())
is singular, then it has non-trivial left and/or right rational null spaces:

Ne(P) = {y(A) € C(N)™* - y(\)TP(A) =0}, and
No(P) := {z(\) € C(\)"™* : P(\)z()\) = 0}.

Each of these vector spaces contains a basis consisting of vector polynomials [14]. We call a basis consisting
of vector polynomials a polynomial basis. The order of a polynomial basis is the sum of the degrees of its
vectors. Among all the polynomial bases we consider those with least order.

DEFINITION 2.4. (Minimal basis) Let V be a rational subspace of C(A\)"*!. A minimal basis of V is any
polynomial basis of V with least order among all polynomial bases.

Minimal bases for a rational subspace V are not unique, but the ordered list of the degrees of the vector
polynomials in each of them is the same. These degrees are called the minimal indices of V [14].

DEFINITION 2.5. (Minimal indices of singular matrix polynomials) Let P(A) be an m X n singular
matrix polynomial and let {y1(M\)7,...,y,(\)T} and {x1()\),...,2,(A)} be minimal bases of Ny(P) and
N..(P), respectively, ordered so that deg(yi()\)) < --- < deg(y,(\)) and deg(xz1(N)) < -+ < deg(xp(N)).

Let p; = deg(y,;(N)) for j =1,2,...,¢q, and ¢; = deg(x;(A)) for j = 1,2,...,p. Then, 3 < --- < pg and
€1 < --- < g, are, respectively, the left and right minimal indices of P()\).

Theorem 2.7 provides a useful characterization of minimal bases. To state this result, we need the
following definition from [7].

DEFINITION 2.6. Let P(\) € C[\]™ " be a matrix polynomial with row degrees dy,ds,...,d,,. The
highest row degree coefficient matrix of P(\), denoted by Py, is the m x n constant matrix whose jth row
is the coefficient of A% in the jth row of P()) for j = 1,2,...,m. The matrix polynomial P()) is called row
reduced if Py, has full row rank.

THEOREM 2.7. [7, Theorem 2.14] The rows of a matriz polynomial P(X\) are a minimal basis of the
rational subspace they span if and only if P(Ag) has full row rank for all A\g € C and P()\g) is row reduced.
A matrix polynomial is called minimal basis if its rows form a minimal basis of the rational subspace they
span.

The linearizations for matrix polynomials that we introduce in the following section use the notion of
dual minimal bases [14].

DEFINITION 2.8. (Dual minimal bases) Two matrix polynomials K () € F[A]"**™ and D(X) € F[A]"™2*"
are said to be dual minimal bases if K (\) and D(\) are both minimal bases, m; +my = n, and K(\)D(\)T =
0.

2.7. Strong linearizations of matrix polynomials, and block minimal basis pencils. A matrix
pencil L(\) is said to be a linearization of a matrix polynomial P(\) as in (1.2) if there exist a positive
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integer s and two unimodular matrices (i.e., matrix polynomials whose determinant is a nonzero constant)

U(M) and V(A) such that
ULV () = [IO P?A)] .

A linearization L(\) of a grade-k matrix polynomial P()) is strong if revy L()) is a linearization of revy P())
[19].

REMARK 2.9. A strong linearization of a matrix polynomial P()\) preserves the finite and infinite eigen-
values of P(X) and their multiplicities, and the dimension of the right and left nullspaces.

REMARK 2.10. Any matrix pencil strictly equivalent to a strong linearization of a matrix polynomial
P() is also a strong linearization of P(\).

One of our main objective in this paper is to find strong linearizations for matrix polynomials of the
form

k
(2.19) PN =Y Pi¢i(\), PR,...,P,eC™ ",
=0

where {¢;} denotes either the Newton, Lagrange or Chebyshev bases, that can be easily constructed from
the coefficients P; and the nodes. We will find such linearizations in the family of so-called block minimal
basis pencils [8].

DEFINITION 2.11. (Block minimal basis pencils) A matrix pencil

T
(2.20) L(\) = [ [—7‘(41((/;)) KQE)A) ]

is called a block minimal basis pencil if K1(\) and K2(\) are both minimal bases. If, in addition, the row
degrees of K1 (A) are all equal to 1, the row degrees of K2()) are all equal to 1, the row degrees of a minimal
basis dual to K; () are all equal and the row degrees of a minimal basis dual to K5(\) are equal, then L(\)
is a strong block minimal basis pencil. The submatrix M (\) is called the body of L(X).

Theorems 2.12 and 2.13 are two key results on strong block minimal basis pencils. Theorem 2.12 says
that every strong block minimal basis pencil is always a strong linearization of a certain matrix polynomial.

THEOREM 2.12. [8] Let K1(\) and D1(\), and K3(\) and Da(X) be two pairs of dual minimal bases, let
L(\) be a strong block minimal basis pencil as in (2.20), and let

(2.21) Q) == Da()M (N DI (V).
Then:

(a) L(X) is a linearization of Q(N).
(b) If L()) is a strong block minimal basis pencil, then L(\) is a strong linearization of Q(X), considered
as a polynomial with grade 1 + deg(D1(\)) + deg(D2(X)).

Theorem 2.13 says essentially two things: 1) given a matrix polynomial P()), it says that we can always
find a pencil M () such that the strong block minimal basis pencil (2.20) is a strong linearization of P(\);
2) it provides a characterization of all the pencils M (X) that make the block minimal basis pencil (2.20) a
strong linearization of the given polynomial P()).
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THEOREM 2.13. [9] Let P(\) be an m x n matriz polynomial, let K1(\) and D1()\), and Ko()\) and
D4y (\) be two pairs of dual minimal bases such that D1(X\) has n rows, Da(X\) has m rows, and deg(P(\)) <
1+ deg(D1(N)) + deg(D2(N)), and let L(\) be a strong block minimal basis pencil as in (2.20). Then:

(a) The linear equation
(2.22) P(X) = Da(MM(AN)D1(N)T

is solvable for the matriz pencil M (\).
(b) If Mo(X) is a solution of (2.22), then any other solution is of the form

M(\) = My(\) + AK;(\) + Kx(\)TB
for some constant matrices A and B.

REMARK 2.14. For the linearizations introduced in Sections 3, 4 and 5, we will be able to construct a
matrix pencil M () satisfying (2.22) directly from the matrix coefficients of the matrix polynomial P()\).

Theorem 2.15 will allow us to prove that the linearizations we introduce in this work are more than
strong linearizations, since we will be able to recover minimal indices, minimal bases and left and right
eigenvectors of the original matrix polynomial P()) from those of its linearizations. Due to its technicality,
we postpone the proof of Theorem 2.15 to the Appendix.

THEOREM 2.15. Let P(X\) be an m x n matriz polynomial as in (2.7), let K1(\) and D1(N\), and Ka(\)
and Do(X) be two pairs of dual minimal bases, and let L(A\) be a strong block minimal basis pencil as in
(2.20) such that

P(X) = Do(A)M(A\)D1(N)".

Suppose right- and left-sided factorizations of the form

T
L(\) [D)lf((i)) ] —v@P(\) and [Dy(N) Y(N)T] = wT @ P(\)

hold for some matriz polynomials X (\) and Y (\), and for some nonzero vectors v, w € CF.

Assume m = n and P(X\) is regular. If Ao is a finite eigenvalue of P(X) with geometric multiplicity g,
then

(@) {z1,...,24} is a basis for N.(P(Xo)) if and only if {v1,...,v4} is a basis for N;.(L(X\o)), where

v = [D;((()/‘\‘;))T} x; fori=1,...,9.

(b) {y1,...,yg} is a basis for Ny(P(X\o)) if and only if {w1,...,wy} is a basis for N.(L(\o)), where

Dz (o)™

wi = | Y00 }yiforizl,...,g.

Assume P(N) is singular. If dim N,.(P()\)) = p and dim Ny(P(X\)) = g, then

(€) {z1(\),...,2p(N)} is a minimal basis for N.(P(X\)) if and only if {vi(N),...,v,(N)} is a minimal
basis for Ni.(L(X)), where v; = {D)l((a);} x;(A) fori=1,...,p.
(d) {y1(N), ..., yq(N)} is a basis for Ny(P(X)) if and only if {w1(N),...,we(N)} is a basis for Ny(L(N)),

where w;(\) = [D;((f\))T} yi(A\) fori=1,...,q.

Moreover, if 0 < €1 < e < --- <€, are the right minimal indices of P(A\), and 0 < pg < pg < -+ < g are
the left minimal indices of P(\), then
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(e) €1 +deg(D1(N) < ea +deg(D1(N)) < -+ < eq+deg(Di(N)) are the right minimal indices of L(X),
and
(f) p1 +deg(D2(N)) < po +deg(D2(N)) < --- < pg + deg(D2(X)) are the left minimal indices of L(X).

3. Strong linearizations for matrix polynomials in the Newton basis. Let {z1,..., 2z} be a set
of k distinct nodes, and let P(\) = Zf:o P;n;(\) be an m x n matrix polynomial expressed in the Newton
basis associated with this set of nodes.

Associated with the set of nodes {z1,x2,...,zr} we introduce the following polynomials
(3.23) viA)=A—z; (j=1,2,...,k)
and
‘ I\ ifj >
3.24 iy = 4 He=ive =7 (,j=1,2,...,k).
(324) iy {1 R (PR

Notice that njl()\) is just the jth Newton polynomial n;(A) for j =1,2,... k.

Let 0 < u <k — 1 be an integer and let n and m be positive integers. We define the matrix pencils

(I V-1 (N1
(3.25) KN\ = —In Vk*?()‘)jn .
i —In Y1 (M
[~ I V(M)
(3.26) KN = —Im wfl.FA)Im ) |
- I (N

where the polynomials 7, () are defined in (3.23), and where the empty block-entries are assumed to be zero
blocks. We note that, if u = 0 (resp., p = k — 1), the matrix KJ¥(\) (resp., KI¥()\)) is an empty matrix.

LEMMA 3.1. Let {x1,...,x} be a set of distinct nodes, and let 0 < p < k—1 be an integer. The matrix
pencils KN(X\) and K (\) defined, respectively, in (3.25) and (3.26) are minimal bases when they are not
empty. Moreover, in this case,

ny 1 (NI [, (N, ]

e (M) ny 1 (M,
(3.27) DNV .= : and DY (N = : ,

i (NI, n1(A) I,

L In L Im B

where the n? (\) polynomials are defined in (3.24), are dual minimal bases of KN (\) and K (\), respectively.

Proof. The minimality of KV (\), K¥()\), DY¥()) and DY () follows immediately from the characteri-
zation of minimal bases in Theorem 2.7. The duality of the pairs (K (\), DY (\)) and (K2 (\), DY (\)) can
be established by direct matrix multiplication. 0



Electronic Journal of Linear Algebra, ISSN 1081-3810 I L

A publication of the International Linear Algebra Society
Volume 36, pp. 799-833, December 2020.

809 Linearizations for Interpolatory Bases — a Comparison: New Families of Linearizations

We now consider strong block minimal basis pencils of the form

M) K (NT

(3.28) L= viy o

We will refer to (3.28) as a Newton pencil. In Theorem 3.2, we show how to choose the body of a Newton
pencil L(A) as in (3.28) so that L(A) is a strong linearization of a prescribed matrix polynomial.

THEOREM 3.2. Let P(\) = Zf:o P;ni(N) be an m x n matriz polynomial expressed in the Newton basis
associated with the nodes {x1,...,x}. Let 0 < pu <k —1 be an integer, and let

[ v\ Py + Po—1 Po—2 -+ Puy1 | Pu ]
P,
P>
3.29 MY () = "
(3.29) e ; .
Py
i L
Then, the Newton pencil
MT(N) B (AT
3.30 NEN) = K 2
is a strong linearization of P(X\). We will refer to (3.30) as the colleague Newton pencil of P()) associated
with w.
Proof. By direct matrix multiplication, we have DY (A\)M [ (A)DYY(A\)" = P()). Hence, by Theorem
2.12 together with Lemma 3.1, the colleague Newton pencil Nj () is a strong linearization of P(\). 0

Using Theorem 2.13, we can now construct an infinite family of Newton pencils that are strong lineariza-
tions of a prescribed m x n matrix polynomial P()) expressed in the Newton basis.

THEOREM 3.3. Let P(\) = Zf:o P;n;(A) be an m x n matriz polynomial expressed in the Newton basis
associated with the nodes {x1,...,z;} and let 0 < p < k — 1 be an integer. Let MZLV()\) be defined as in
(3.29), and let A and B be two arbitrary matrices of size (u+ 1)m x (k — p — 1)n and pm x (k — p)n,
respectively. Then, the Newton pencil

_ MY+ AKY () + KFN)TB KN (V)T

(3.31) N o0 .

is a strong linearization of P(\). We will refer to (3.31) as a Newton linearization of the matriz polynomial
P(X) with parameter p.

REMARK 3.4. Note that every Newton linearization (3.31) of a matrix polynomial P(\) can be factored
as

0 I(k—u—l)n K{V()‘) 0 B Lym

Hence, for a fixed integer w, all Newton linearizations of the form (3.31) are strictly equivalent to the
colleague Newton pencil (3.30). Notice that, in particular, the matrix A (resp., B) can be chosen to contain
a single nonzero block-entry, which can be interpreted as an elementary (e.g. Gaussian) block-row (resp.,
block-column) operation on the matrix pencil (3.30). Using this idea, we produce some examples of Newton
linearizations in Example 3.5.
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EXAMPLE 3.5. Let P(\) = Z?:o P;n;(\) be an m x n matrix polynomial of degree 5 expressed in the
Newton basis. Let u = 2. Then, the Newton colleague linearization of P()) associated with pu is given by

s\ Ps+ P, Py P, —I, 0
0 0 Pl "/2(>\)Im _Im
NE(N) = 0 0 50 0 Y1 (M) I
-1, Y4 (M), 0 0 0
0 I, (M) 0 0

By Theorem 3.3, the following Newton pencils are also strong linearizations of P(\). They are obtained from
N 12;(>\) by applying a finite number of elementary block-row or block-column operations. Using the notation
in Theorem 3.3, we specify the matrices A and B used to obtain the body of each particular linearization.
For lack of space, we omit the dependence in A of the 7;(\) polynomials.

The following linearization has been obtained from N3(A) by adding to the first block-row the fifth
block-row multiplied by Ps:

’y5P5 + Py 0 ’}/3P3 + P | I 0
0 0 P1 "}/QIm —Im 0 P3
./\[1()\) = 0 0 P 0 yilm |, A= 0 O , B=0.
-1, Yaln 0 0 0 0 O
0 —I, Yaln 0 0

The following linearization has been obtained from A7 () by adding to the first block-row the fourth block-
row multiplied by Pj:

V5Ps vaPys vysPs+ P | —1In 0

0 0 P1 ’yg[n —[n P4 Pg
NQ()\) = 0 0 P() 0 71In 5 A = 0 0 B B = 0
—In 0 0 0 0 0
0 —I, v31In, 0

REMARK 3.6. In the literature, a family of strong linearizations of a matrix polynomial P()\) expressed
in the Newton basis can be found in [22]. The pencils in this family receive the name of Newton-Fiedler
pencils, since they generalize the family of Fiedler pencils [5]. As the Newton linearizations, Newton-Fiedler
pencils can be easily constructed from the coefficients P; and the nodes {x1,...,z}. However, one of the
drawbacks of the family of Newton-Fiedler pencils is that the Newton-Fiedler pencils are defined implicitly
as products of matrices, while the Newton linearizations, being block minimal basis pencils, are given in an
explicit way.

In the following two sections, we will show how to recover the eigenvectors, minimal indices and minimal
bases of a matrix polynomial from those of its Newton linearizations. We will need the following definition.

DEFINITION 3.7. (Newton-Horner shifts) Given a matrix polynomial P(\) = Zf:o P; n;(\) expressed
in the Newton basis associated with nodes {z1,...,zx}, the ith Newton-Horner shift of P()) is given by

PYN) == Punyq_i(A) + P nZﬁ_i()\) +o+ Pryiog niﬁ:ﬁ()\) + P,

where the n? (\) polynomials are defined in (3.24). In particular, P*(\) = Py nf(\)+P,_; and P*(\) = P()).
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Newton-Horner shifts satisfy the following recurrence relation
where v;_; () is as in (3.23).

Theorem 3.8 gives right- and left-sided factorizations of the Newton colleague pencil (3.30).

THEOREM 3.8. Let P(\) = Zf:o P;ni(N) be an m x n matriz polynomial expressed in the Newton basis

associated with nodes {x1,...,x}. Let Nh(X\) be the Newton colleague pencil associated with pu, and let
DN (X) and DY ()\) be the minimal bases in (3.27).

ForO<pu<k—1, let

Hy ()" = [DY () PEr)T o PR )T PRty
and for =0, let
HvNT = DY\ = [ne—1(N I ne—a(NI, - ni(NI, L.
For0<p<k—1, let
Gy = [DY () (X)) PYA) (W) PR - (X)) PRV
and for =k —1, let
GR(A) :== DY (N) = [mp—1(N) I oM -+ na(N Ly I -

Then, the following right- and left-sided factorizations hold
NENHRKN) = €1 @ P(A)  and Gy (ANB(A) = ei_, ® P()),

where the vector e; denotes the ith column of the k X k identity matriz.

Proof. With the help of the recurrence (3.32) and the fact that n;11(\) = 7341 (A) n; (), the results can
be directly checked by multiplying N5 (A)HAi (A) and G (AMNE(N) 0

3.1. Recovery of eigenvectors from Newton linearizations. Assume that the matrix polynomial
P\ = Zf:o P;n;(A) is regular. In this section, we provide recovery formulas for the (left and right)
eigenvectors of P(\) from those of its Newton linearizations.

We start by giving a close formula for the right and left eigenvectors of the Newton colleague pencil
(3.30) associated with its finite eigenvalues.

THEOREM 3.9. Let P(\) = Ef:o P;n;(X) be an nxn regular matriz polynomial expressed in the Newton
basis associated with nodes {x1,...,x,}. Let Ao be a finite eigenvalue of P(N). Let N5(\) be the Newton
colleague pencil in (3.30) associated with . Then, z (resp., w) is a right (resp., left) eigenvector of N'5(X\)
associated with \o if and only if z = H(Xo)x (resp., w = Gh:(No)Ty), where x (resp., y) is a right (resp.,
left) eigenvector of P(X\) associated with \g.

Proof. If follows immediately from Theorems 2.15 and 3.8. |

The next result provides recovery formulas of eigenvectors associated with finite and infinite eigenvalues
of a matrix polynomial from those of its Newton linearizations. The eigenvectors of the linearizations are
considered block vectors of length k& with block-entries of length n.
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THEOREM 3.10. (Recovery of eigenvectors from Newton linearizations) Let P(\) = Zf:o Pn;(\) be an
n X n regular matriz polynomial expressed in the Newton basis associated with nodes {x1,...,x}. Let g
be an eigenvalue of P(X). Let N()\) be a Newton linearization of P(\) with parameter v as in (3.31). Let z
and w be, respectively, a right and a left eigenvector of N(\) associated with Ag.

1. Assume A\g is finite. Then,
o z(k—p) is a right eigenvector of P(X) associated with Xo. If, in addition, o ¢ {x;41,. .., Tk—1},
then the block-entries z(1),2(2),...z(k — p) are also right eigenvectors of P(\) associated with
Ao-
o w(p+1) is a left eigenvector of P(\) associated with \o. If, in addition, Ao ¢ {x1,...,2,},
then the block-entries w(1),w(2),...w(u + 1) are left eigenvectors of P(X) associated with Ag.
2. Assume \g is infinite. Then,
e 2(1) is a right eigenvector of P(\) associated with Ag.
e w(1) is a left eigenvector of P(\) associated with \o.

Proof. We prove the result for the right eigenvectors. The proof is similar for the left eigenvectors.
We show first that the theorem holds for the Newton colleague pencil N5 ().

Case I: Assume that )¢ is a finite eigenvalue. By Theorem 3.9, z = H;(Ao)z for some eigenvector
of P(\) associated with Ag. Since the (k — p)th block-entry of HA; (o) is the identity matrix, we have that
z(k — p) = x is a right eigenvector of P(A) with eigenvalue Ag. Further, if A\g ¢ {z,41,...,2x—1}, then all
the block-entries of Hi;(A\o)z in positions 1,2,...,k — p — 1 are nonzero multiples of the vector z. Hence,
2(1),...,z(k — p) are all eigenvectors of P(\) with eigenvalue \o.

Case II: Assume that \g is an infinite eigenvalue. This implies that 0 is an eigenvalue of revy P(\) and
revi Nj5(A). By Lemma 2.3, we have

k k
revi P(\) = Y Pirevgni(A) = Y P AFT'(N),
=0 =0

where n;(\) = H;Zl(l — x;A). Thus, revy P(0) = P, which implies that « is a right eigenvector of P(\)
with eigenvalue at infinity if and only if x is a right eigenvector of Pj, with eigenvalue 0. Moreover, we have

P, 0 0 -~ 0]0O0 -+ 0

0|1, 0

010 1

(% 0) = n
reviNp(0) 0 I, 0 0
0o 0 I, 0

| 0 0 O I, ]
Hence, any right eigenvector z of revy N5(A) with eigenvalue 0 is necessarily of the form [.’L’T 0o --- O}T

for some eigenvector x of Py with eigenvalue 0. Conclusively, the first block-entry of z, when seen as a block
vector of length k, is an eigenvector of P(\) with eigenvalue infinity.
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Let us now prove the results for any Newton linearization N(A). By Remark 3.4, we have

I A I 0
3.33 N(\) = | wthn ]N“ A [ (k—p)n }
(3.33) (A 0 Loyt PN g Lo,

for some matrices A and B. The equivalence transformation (3.33) implies that z is a right eigenvector of
N(\) with eigenvalue (finite or infinite) Ao if and only if 2 := [I(’“g”"‘ Ifm] z is an eigenvector of N5 (\) with
eigenvalue (finite or infinite) Ag. To finish the proof, it suffices to notice that the first k& — u blocks of the

eigenvectors z and Zz are the same. ]

REMARK 3.11. Until very recently, there was no consensus in the literature on how to properly define
eigenvectors of singular matrix polynomials. In [10], such a definition is constructed using the concept of
root polynomials, after extending their definition in [15] for regular matrix polynomials to the singular case.
Root polynomials are also very closely related to Jordan chains of matrix polynomials. Thus, providing
recovery formulas for maximal sets of root polynomials is useful in both the regular and the singular case.
In the case of the Newton linearizations, it can be proven that if {r1(A),r2(A),...,rs(A\)} is a maximal set
of root polynomials at Ag (of orders ¢; > --- > {;) for a Newton linearization N(\) associated with the
parameter p, and for all j € {1,2,...,s}, 7(A\) denotes the (k — p)th block of 7;(\), then {71 (A\),...,7s(A\)}
is a maximal set of root polynomials at Ay for P(\) of orders ¢; > --- > £s. The proof is identical to the
proof of Theorem 8.5 in [10] taking into account that there exist unimodular matrices U and V such that

I 0

TN = | pey |
where the last block column of V() is of the form [DI¥ (X)X (A)T]T for some matrix polynomial X ()\) and
DY contains a block equal to I,, in position k—p. In fact, since multiplying a maximal set of root polynomials
at Ao by a scalar polynomial g()\) such that g(\g) # 0 generates another maximal set of root polynomials
at Ao of the same orders, taking into account that all the block entries of DIV are of the form ¢(\)I,, for
some scalar polynomial g(A) such that g(Ag) # 0 for all finite eigenvalues of P, the proof of Theorem 8.5 can
be slightly modified to show that the block entries of r1,79,...,7s in positions j € {1,2,...,k — u} form a
maximal set of root polynomials at Ay for P(\) of orders ¢1 > --- > £, which is consistent with the recovery
formulas for eigenvectors of regular Newton polynomials given in Theorem 3.10. A similar remark applies to
Lagrange and Chebyshev polynomials. We do not include these results formally to keep the paper as concise
as possible.

3.2. Recovery of minimal bases and minimal indices from Newton linearizations. Assume
the m x n matrix polynomial P(\) = Zf:o P;n;()\) is singular. In this section, we show how to recover the
minimal indices and minimal bases of P(A) from those of its Newton linearizations.

THEOREM 3.12. (Recovery of minimal bases and minimal indices from Newton linearizations) Let
P\ = Zf:o P;n;(X) be an m X n singular matriz polynomial expressed in the Newton basis associated with
nodes {x1,...,x}. Let N(X) be a Newton linearization of P(\) with parameter u as in (3.31).

(al) Suppose that {z1(X), z2(N), ..., 2p(N)} is a minimal basis for the right nullspace of N (X), with vector
polynomials z; partitioned into blocks conformable with the blocks of N(X), and let z¢(\) be the
(k — p)th block-entry of z¢(A) for £ =1,2,...,p. Then, {z1(N),...,zp(A)} is a minimal basis for the
right nullspace of P(X).

(a2) If0 < e < --- < ¢, are the right minimal indices of N(X), then

0<ea—-k+p+tl<e-k+p+1<---<e—-k+p+1l
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are the right minimal indices of P(\).

(b1) Suppose that {wi(A),...,we(A)} is a minimal basis for the left nullspace of N(X), with vectors w;
partitioned into blocks conformable with the blocks of N(X), and let yg(\) be the (u+1)th block-entry
of we(A) for £ =1,2,...,q. Then, {y1(N),...,y4(N)} is a minimal basis for the left nullspace of
P()).

(b2) If 0 < pg < -+ < g are the left minimal indices of N()\), then

O0<pr—p<po—p<--<pp—p

are the left minimal indices of P(\).

Proof. The proof follows closely the proof of Theorem 3.10, so we just sketch it. First, using Theorem
2.15 together with the one-sided factorizations in Theorem 3.8 one proves the results for the Newton colleague
pencil (3.30). Then, using the strict equivalence

I A I 0
N(\) = |Fwthm ]/\/’“ A { (k—p)n ],
( ) 0 I(kfﬂfl)n P( ) B Ip,m

that transforms the Newton colleague pencil into the Newton linearization N(\), one proves the result for
N(A). O

4. Strong linearizations for matrix polynomials in the Lagrange basis. Let {x1,...,x+1} be
a set of k + 1 nodes, and let P(\) be a matrix polynomial expressed in the modified Lagrange form:

k+1
(4.34) PO =t P 7“(’;), Py, ..., Py € CX
i=1 i

where 7;(A\) = A—z;, and ¢(\) and w; are as in (2.14). In this section, we present a family of strong lineariza-
tions of the polynomial P()\) that can be easily constructed from the coefficients P; and the corresponding
nodes.

Let 0 < u <k —1 be an integer. We define the following matrix pencils

’Yk:Jrl()\)In _'ykrfl()\)]n
WML 2N

(4.35) KO = |
sV eV
and
Va2 W Im =7u(N)Im
(4.36) KE(\) = Vut1(A) I —wil(A)Im | |

73()\).Im 1M,

where the polynomials v;(\) are defined in (3.23). Notice that when y = 0 (resp., u = k — 1), the matrix
pencil KF(\) (resp., K¥()\)) is an empty matrix.
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LEMMA 4.1. Let {xy,...,2k11} be a set of nodes, and let 0 < p < k—1 be an integer. The matriz pencils

KE(\) and K£()\) given in (4.35) and (4.36) are both minimal bases. Moreover, the matriz polynomials

ma ] RO ]
Vet (A) k(A" Va2 N Va1 (A) "
niEO) LARCYI
(4.37) DI =1 %Wy (M) and DN = | 71 (M) |
sty 20
L Ytz (N) e (A) L )y

where the polynomials n? (\) are defined in (3.24), are, respectively, dual bases of K¥(\) and K& ()).

Proof. Tt is easy to check through straightforward computations that KI(\)DL(\)T = 0 and
KE(\)DE(A\)T = 0. The minimality of the four matrix polynomials follows from the characterization of
minimal bases in Theorem 2.7. d

We now consider strong block minimal basis pencils of the form

M) Kz(W)T

(4.38) L=y o

We will refer to (4.38) as a Lagrange pencil. In theorem 4.2, we show how to chose the body M(X) of a
Lagrange pencil (4.38) so that the Lagrange pencil is a strong linearization of the matrix polynomial (4.34).

THEOREM 4.2. Let P(\) be an m x n matriz polynomial as in (4.34). Let 0 < u < k — 1 be an integer
and let MML(/\) =

Pi1wg17e(A) + Pewgve+1(A) - Pe—1wg—1ve(A) - Pug1wWpu1vus2(A)
Puwuyu41(A)

Pyways ()
P1 w172 ()\)

when 0 < p < k—1; and

Pry1wis176(A) + Prwrye+1(N)
Py _ywi—176(A)

Pywyys(A)
Prwiya(A)

when u =k — 1. Then, the Lagrange pencil

_ My Kz()T

(4.39) =y o

is a strong linearization of P(\). We will refer to (4.39) as the colleague Lagrange pencil of P(X\) associated
with p.
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Proof. By direct matrix multiplication, we have D5 (A\) M7 (A) D ()T = P(X), where D{(\) and D3 ())
are the dual minimal basis of K ()\) and K4 ()), respectively. Thus, by Theorem 2.12, the colleague Lagrance
pencil L, (A) is a strong linearization of the matrix polynomial P()). |

REMARK 4.3. Previously to this work, and as far as we know, the only strong linearization for matrix
polynomials in the Lagrange basis as in (4.34) of size nk x nk explicitly constructed is

NPy —7b ~Yk—1Pr—2 = Pi—1 — k105, ' P
Yol 2011
(4.40) :
—Vk—3l  Vk—10k—21
—Yk—21 Vibk—11
where 6; = Y=L for i = 1,...,k, and where we omit the dependence on A of the 7; polynomials for lack

ws,

of space. This strong linearization was introduced in [27], and it can be easily established to be strictly
equivalent to the Lagrange colleague pencil (4.39) associated with p = 0.

By applying Theorem 2.13 to the colleague Lagrange pencil (4.39), we construct in Theorem 4.4 an
infinite family of strong linearizations of a matrix polynomial P()\) expressed in the Lagrange basis.

THEOREM 4.4. Let P(\) be a matriz polynomial expressed in the Lagrange basis as in (4.34). Let
0 < u<k—1 be an integer and let M/f be as in Theorem 4.2. Let A and B be two arbitrary matrices of
size (p+ D)m x (k— p— D)n and pm x (k — p)n, respectively. Then, the pencil

(4.41) L\ = [ ME(N) + AKE(N) + K¥Y(V)TB | KE(W)T ]

KF(\) 0
is a strong linearization of P(\). We will refer to (4.41) as a Lagrange linearization of the matriz polynomial
P(X\) with parameter p.

REMARK 4.5. Note that every Lagrange linearization (4.41) of a matrix polynomial P()) is strictly
equivalent to the colleague Lagrange pencil L(\) as in (4.39), since we have

L()\) — I(MJrl)m A M;AL(/\) K2L(A)T I(krfp,)n 0
0 [(k—u—l)n KlL()‘) 0 B I,um ’

Next we construct a few examples of Lagrange linearizations of a matrix polynomial of grade 5.

EXAMPLE 4.6. Let P(\) be a matrix polynomial expressed in the Lagrange basis as in (4.34) of grade
5. Then, the Lagrange colleague pencil of P()\) associated with u = 2 is given by L%()\) =

Pswegys + Pswsys  Paways Pawsys | valm 0
0 0 P2w2'73 _'72Im '73Im
0 O lel’)/g 0 *"YlIm s
Yo In —v41, 0 0 0
0 ’YSIn _’YSIn 0 0

where, for lack of space, we omit the dependence in A of the ~;(A) polynomials. By Theorem 4.4, the
following Lagrange pencils are also strong linearizations of P(A). They are obtained from the Lagrange
colleague pencil by applying a finite number of elementary block-row or block-column operations, in the
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same spirit as in Example 3.5. Using the notation in Theorem 4.4, we specify the matrices A and B used to
obtain the body of each particular linearization.

The following linearization has been obtained from L%()) by adding to the first block-row the fifth
block-row multiplied by —Pjwy:

Psweys + Psws e 0 Pywyyz + Pswzys | valm 0
0 0 Prways —v2lm  Y3lm
Li(\) = 0 0 Prwyy, 0 —Y1lm |,
YoIn —Yaln 0 0 0
0 'YSIn —73],1 0 0

In this case, we have A = [§ 7P§w4} and B = 0.

The following linearization has been obtained from L;(\) by adding to the first block-row the fourth
block-row multiplied by —Psws:

Psweys Pswsya Paways + Pswsys | vyalm 0
0 0 P2w273 _7217rz 'YSIm
LQ(A) = 0 O Pl’wl’}/g 0 7’)/1Im
’ygln —’Y4In 0 0 0
0 v51p —v31l, 0 0
In this case, we have A = _P§w5 _Pgwﬂ and B = 0.

Our next goal is to obtain recovery rules for eigenvectors, and minimal bases and minimal indices of a
matrix polynomial P(\) from those of its Lagrange linearizations. We will need the following notation.

Associated with the matrix polynomial P(\) in (4.34), we define the matrix polynomials

J k+1
P _ . Wi an P = : Wi = .
TP (\) —E(A);R%(A) d S7(\) é(A)i;Pz%(A) G=1,....k+1),

where, we recall, £(\) = nfTH()\) = Hf:ll (A — z;). Observe that T;7, | (A) = ST(A) = P(X). Moreover, we
have
SELN) + TP\ =P\, forj=1,2,... k

Let 0 < p < k—1 be an integer and let a1, ..., a2, a; be the coordinates of the (scalar) polynomial p(z) =1
“in the basis DZ())”, that is,

pn+2 A pn+2 Y 42 A w2 A
O S i IO i RO i c NPt CY R
Yur2(A)Vur1(A) Va1 (M) (A) 73(A)72(A) Y2(M)71(A)
We call [a,41,ay,...,a2,a1] the p-2-coordinates of 1. We notice that, by evaluating the expression (4.42)

at the nodes 1 and x,,49, respectively, we get the values of a; and a,42, namely,

1 1
and ayy1 = —=x

Hf:;(xl — ;) i1 (Tpt2 — ) .

ai
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The rest of the coordinates can be obtained from the recurrence relation

L PO e O

TPV e3 V) OV et oY | N

which is the result of evaluating (4.42) at the node x; (i =2,...,u+1).

Similarly, let b1, by42, - . -, br be the coordinates of the polynomial p(z) = 1 “in the basis D¥(\)”, that

is,
k+1 k+1 k+1
n A n A n A
(4.43) T2 L O R /25 Lo R W 25 L OB
7k+1(/\)7k(>\) %+3()\)7u+2(/\) ’Yu+2(/\)%+1(>\)
We call [bg, . .., by42,bu41] the p-1-coordinates of 1. The numbers b; can be obtained using the same approach

used to compute the p-2-coordinates of 1.

Finally, we denote

+1
Z ’YJ+1 SP (A + MZ aiMT-P(A)
-1 %+1 A i Yi(A)vigr(N) 7 7
for 5 =1,2,...,u, and
J k
Yi+1(A) Yi+1(A)  p
Qi () =~ by — =S (A + by — LT TP (A
i) i:zu;ﬂ ¥i(A)vit1(A) i) Z-;rl Yi(A)virr(A) 7 9

for j = p+1,...,k — 1. We observe that both P}(\) (j = 1,...,u) and Qf(\) (j = p+1,...,k — 1) are
matrix polynomials.
Theorem 4.7 gives right- and left-sided factorizations of the Lagrange colleague pencil (4.39).

THEOREM 4.7. Let P(X\) be a matriz polynomial of degree k as in (4.34), let L'»(\) be the Lagrange
colleague pencil associated wih p given in (4.39), and let D¥(X\) and DE(X) be the minimal bases in (4.37).

ForO<pu<k-—1, let

HEWT = [DEO) PENT Pl o P
and for u =0, let HY (AT := DF(N).
ForO<u<k-—1, let
GY(A) = [Dy(\) 9 (N - Qh(N],

and for p =k —1, let G (X) := D5 (X). Then, the following right- and left-sided factorizations hold

p+1 k
LE(NHE(N) = (Z a#Hiei) ®@P(A) and GY(AN)LH(N) = Z bie;?F ® P(X),
i=1 i=p+1
where e; denotes the ith column of the k x k identity matriz, and where [au_H s al] and

[bk oo byyo bu+1] are, respectively, the u-2-coordinates and p-1-coordinates of 1.
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Proof. We prove the right-sided factorization. The left-sided factorization can be proven similarly.

By the duality of the minimal bases K¥(\) and D¥()\), it is clear that the ith block entry, with i €
{p+1,u+2,...,k}, of L's(\)HY(X) is zero.

Let i € {1,2,..., 1+ 1}. We need to compute the product of the ith block row of Hf'(\) and L»(X). To
do this, we have to distinguish three cases:

Case I: Let i = 1. By direct matrix multiplication, the product of the first block row of H}'(\) and
L%(N) is given by

k+1 P
Ma ) 30 5+ w2 WPEO) = SHE + e (VPEO)
i=p+1

SPAO) & a1t (M,
B Ma)) -2 1652)3 (32)@) SN + aua T (A)
i=1 g i+1

55+1()‘)7i ain‘fﬂ()\) 55+1(>‘)
ni(A) = N (A) nf(Y)
( Sir1(M)

_ S _ (1= Ap+1 R ptl
= 0 (1 SO VR )> V)
= du+1 (55+1(/\) + T/f(/\)) = a,+1P(N),

-+ CLlH_le()\)

+au1 Ty (N)

which is the desired result.

Case II: Let i € {2,3,...,u}, and let 7 = p+ 2 —i. The product of the ith block row of H}'(\) and
L%(N) is given by

nE ()
Y1 (M) Vut2(A)

= Prwpyri1 nﬁié()\)

Prwr’}/r-ﬁ—l()‘) - ’YT()\)P#()\) + 'YT-‘rl()‘),Pﬁ—l()‘)

pt1

(4.44) - N, ) e ) e
%(A)( ; ZW(A)%“(A)STH(A)JFi:;l w,»(A)wH(A)T’“ (A))

r—1 pn+1
+Yr1(A) (‘ a»%Sf(A) + Z aimTfl(A)> .

= i=r

Taking into account that SP”(\) = SF 1 (A) + nfTH(N) Paw, /4, (\), we get

QPTRACY LTS TCY P RN e S A CV AT Cy e
2 By oW T e TR S

i (A (A) = i(M)via(A) T
N Q.M P _Tila.w P ! Wy
(1) 7; "9 ()it (V) 1) ; " (A)vir1 (V) (Sr+1()\)+ ! (A)PT%()\))
5P S e Pt ()
=S i (/\)'Yi()‘)')/iﬂ()\).
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Taking into account that 77 (\) = T.X {(A) + ¥ () Poaw,. /4,-()), we obtain

pt1 pt1

)\ 7r+1(A) 77"(/\)77“—&-1()\) P
- a; TP (N) + a; LT RTI P (A
Z;rl )\ %Jrl (/\) ; 71()‘)72+1()\) 1( )
& 1
Arr+1(A) < P 10y ) N1 (A) e
4.46 == 3 A (TP () +n EICVISETEV PN
( ) i=r+1 'YH-I(/\) 1( ) ! ( ; A 'Yl-i-l(/\) ( )
P S k+1 Yrt1(N)
= arTrf A) — aiPrwr by Ti‘
) i:zr;rl e )%‘(/\)%‘H(/\)

Substituting (4.45) and (4.46) into (4.46) yields

i)
YVt 1 (M) Vpt2(A)
- Prwr’%”rl()‘)nﬁié( ) + aTSrJrl( ) + aTT’rPil()‘)

r—1 pt2 ptl 142
ainy " (A) a;ny " (N) b1
+ — 1 2 _aimy N ) kL s Po,

(; i (A)yie1 (N) izr;rl (N yip1 (V) a3 (M1 (A)

— Pyt (nEEE ) + 4,851 (V) + 0,17 1 (V)

+<*-“mﬁ“)>m“@> ()P
YoM yrr1(N) ] HF3 Yr+1 W,

= arSerl()‘) +a, T (N) + arnlf+1()‘)Pr

Prwr')/r-‘rl()‘) rYT(/\),P#(/\) + 7T+1()‘),P7€L—1()‘)

'Yr(/\)

as we wanted to show.

Case III: Let i = p+ 1. The product of the (u + 1)th block row of HY(X) and Li5()) is given by

Hmw@%ﬁjﬁxgﬂ—%OWﬂMzéﬁ%%—%@WﬁM
- g s -3 ey
=£?38>+M55“>-§§%<Qiﬁ% §Z?>
=éﬁﬁw%ﬁﬁ”—C“T373)ué&

= a1 (S5 (\) + T (\)) = arP(V),

as we wanted to prove. 0
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4.1. Recovery of eigenvectors from Lagrange linearizations. Assume the matrix polynomial
(2.12) is regular. In this section, we provide recovery formulas for the (left and right) eigenvectors of P()\)
from those of its Lagrange linearizations.

Theorem 4.8 provides explicit formulas for the eigenvectors of the Lagrange colleague pencil.

THEOREM 4.8. Let P()\) be a regular matriz polynomial expressed in the modified Lagrange basis asso-
ciated with nodes {x1,...,xk+1}. Let Ao be a finite eigenvalue of P(X\). Let L'n(\) be the Lagrange colleague
pencil associated with p giwen in (4.39). Then, z (resp., w) is a right (resp., left) eigenvector of LI ()
associated with \o if and only if z = HY!(Xo)x (resp., Gt (No)Ty), where x (resp., y) is a right (resp., left)
eigenvector of P(X\) associated with Ag.

Proof. The eigenvector formulas follow from Theorems 2.15 and 4.7. a0

Theorem 4.9 provides recovery formulas of eigenvectors (associated with finite and infinite eigenvalues)
of the matrix polynomial P(A) from those of its Lagrange linearizations. We note that, in this theorem,
we only consider finite eigenvalues A\ that are not an interpolation node, which is the most likely case in
applications, since when A is a node, many sub-cases need to be considered and make the theorem difficult
to read. In any case, in Remark 4.10, all those sub-cases are presented for completion.

THEOREM 4.9. (Recovery of eigenvectors from Lagrange linearizations) Let P(\) be an n X n regular
matriz polynomial expressed in the modified Lagrange basis as in (4.34), and let Ao be an eigenvalue (finite
or infinite) of P(X). Let L(\) be a Lagrange linearization of P(\) as in (4.41). Let z and w be, respectively,
a right and a left eigenvector of L(\) associated with \g.

1. Assume \g is finite and \g ¢ {x1,22,...,Tkr+1}. Then,
e the block-entries z(1),2(2),...,z(k — p) are right eigenvectors of P(\) associated with Ao, and
o the block-entries w(l),w(2),...,w(p+ 1) are left eigenvectors of P(\) associated with Ag.

2. Assume Ao is infinite. Then,
o the block entries z(1),2(2),...,z(k — u) are right eigenvectors of P(X) associated with Ao, and
o the block-entries w(l),w(2),...,w(p+ 1) are left eigenvectors of P(\) associated with \g.

Proof. We prove the result for the right eigenvectors. The proof is similar for the left eigenvectors.
We show first that the theorem holds for the Lagrange colleague pencil L (X).

Case I: Assume that )¢ is a finite eigenvalue such that Ao ¢ {z1,22,...,2Zk41}, and let z be a right
eigenvector of the Lagrange colleague pencil L% ()) associated with Ag. By Theorem 4.8, we have z =
HY(Xo)z for some right eigenvector  of P()\) with eigenvalue A\g. Then, it is clear that the top k — p block
entries of z are all nonzero multiples of the eigenvector x.

Case II: Assume that Ao is an infinite eigenvalue of P(A). This means that zero is an eigenvalue of
revy P(A) and revy L5 (A). By Lemma 2.3, we have

k+1 k41
reviP(A) = Y Pirevili(A) = Y Pili(N),
=1 1=1
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where £;(\) = w; H?Zl’#i(l —2;A). Thus, revi P(0) = Zfill w; P;. Moreover, we also have revy L’ (0) =

[ Peyiwiir + Powe  Pooqwg—1 Poswi—s -+ Puprwuqr | In o - 0
PHwH _In In
: 0 0
Powy N S
P1w1 0 e O —In
I, —1I, 0 0
: . . . 0
I 0 0 I, -1, ]

From the structure of the matrix revy L', (0), it follows that any right eigenvector of revy L, (\) with eigenvalue
zero must be of the form
k+1 k41 kil B
zZ=|xr - r — Zi=u+1 Pzwlx — Zi:u lel:z: s — Zi=2 lei’l,’:|
for some eigenvector z of revy P(A) with eigenvalue zero. Hence, we can recover = from any of the top k — p
block-entries of z.

The results for the Lagrange linearization L(A) in (4.41) follow from the results for the Lagrange colleague
pencil L, (\) and Remark (4.5). O

REMARK 4.10. In the unlikely case that \g € {z1,x2,...,Zkt1}, right and left eigenvectors of P(X) can
still be recovered from the eigenvectors of a Lagrange linearization. With the notation used in Theorem 4.9,
we have:

o If \g = x1 (resp., Ao = x,42), then 2(1),...,2(k — p) (resp., z(k — p— 1) and z(k — p)) are right
eigenvectors of P(\) associated with A\, and w(u + 1) (resp., w(1)) is a left eigenvector of P(\)
associated with Ag.

o If \g =2, € {x2,...,2,}, then 2(1),..., z(k — u) are right eigenvectors of P()) associated with A,
and w(p — j + 2) and w(p — j + 3) are left eigenvectors of P(\) associated with Ag.

o If \o = x,41 (resp., Ao = Ti41), then z(k — p) (resp., 2(1)) is a right eigenvector of P(\) associated
with Ao, and w(1) and w(2) (resp., w(l),...w(p + 1)) are left eigenvectors of P(\) associated with
)\0.

o If \g = z; € {x,43,...,2k}, then z(k — j + 1) and z(k — j + 2) are right eigenvectors of P(\)
associated with Ag, and w(1),...,w(p+ 1) are left eigenvectors of P(\) associated with Ag.

4.2. Recovery of minimal bases and minimal indices from Lagrange linearizations. Assume
the matrix polynomial P()) in (4.34) is singular. In this section, we show how to recover the minimal indices
and minimal bases of P(\) from those of its Lagrange linearizations.

THEOREM 4.11. (Recovery of minimal bases and minimal indices from Lagrange linearizations) Let P(\)
be a singular matriz polynomial expressed in the modified Lagrange basis as in (4.34). Let L(\) be a Lagrange
linearization of P(\) with parameter v as in (4.41). Let ayq1,...,a1 and by, ..., b1 be, respectively, the
w-1- and p-2-coordinates of 1.
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(al) Suppose that {z1(N), 22(A),...,2,(N)} is a minimal basis for the right nullspace of L(X), with vector
polynomials z; partitioned into blocks conformable with the blocks of L(X). Let

(N = [beln -+ bupiln 0 - 0] z(N) (i=1,...,p).

Then, {x1(X),z2(N), ..., zp(N)} is a minimal basis for the right nullspace of P(X).
(a2) If 0 < e <--- < ¢, are the right minimal indices of L(\), then

0<er—k+p+1<---<e—k+pu+l

are the right minimal indices of P(\).
(bl) Suppose that {wi(X), wa2(A),...,we(N)} is a minimal basis for the left nullspace of L(\), with vector
polynomials w; partitioned into blocks conformable with the blocks of L(\). Let

yiN) = [api1lm -+ arly 0 - 0Jwi(N) (i=1,....q).

Then {y1(A),y2(A), ..., yg(A)} is a minimal basis for the left nullspace of P(X).
(b2) If 0 < pq < --- < g are the left minimal indices of L(\), then

0<m —p< - <pg—p

are the left minimal indices of P(\).

Proof. We prove the result for the right minimal indices and bases. The results for the left minimal
indices and bases can be proven similarly.

Let B(A\) be a matrix whose columns form a basis for the right nullspace of P(\). From Theorems
2.15 and 4.7, we have that the columns of H} (A)B(A) form a basis for the right nullspace of the Lagrange
colleague pencil L (X) in (4.39). From the definition of the p-1-coordinates of 1, we have

(bl - buln 0 - 0] HE(A)B() = B(N).

Hence, part (al) holds for the Lagrange colleague pencil. Part (a2) follows also from Theorems 2.15 and
4.7, together with the fact deg(D¥()\)) = k — p — 1, in the case that L()) is the Lagrange colleague pencil.
When L(A) is a Lagrange linearization other than the Lagrange colleague pencil, parts (al) and (a2) follow
from Remark (4.5), together with parts (al) and (a2) applied to the Lagrange colleague pencil. |

5. Strong linearizations for matrix polynomials in the Chebyshev basis. We finish the paper
with the Chebyshev bases. Some of the information that we include here can be found in [20], where an
infinite family of block minimal basis linearizations of a matrix polynomial expressed in either the Chebyshev
basis of the first kind or the second kind is presented.

In order to write the results in a more compact way, we use a nonstandard notation to represent the
Chebyshev polynomials. We denote by ¢5L1)()\) (resp., %2)()\)) the nth Chebyshev polynomial of the first
kind (resp., of the second kind). Our goal is, then, to construct strong linearizations for matrix polynomials
of the form

k
(5.47) PN =Y_"P¢"(N), Po,....P,eC”" re{1,2}.
1=0
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Let 0 < e <k —1 be an integer, and let n and m be positive integers. We define the matrix pencils

(1, —2\I, I,
I, —2XI, I,
(5.48) K9P\ = :
I, =2\, I,
L I _¢gl)()\)1" enX(e+1)n
(1, —2XI, I,
I, =2XI, I,
(5.49) K0 = ’
I, =2\, I,
(4)
L In _(bl (/\)I" (k—1—e)mx(k—e)m

where 4, j € {1,2}.

LEMMA 5.1. Let 0 < e < k — 1 be an integer, and let i,j € {1,2}. The matriz pencils Kfc’i)()\) and
KQ(C’])(A) given in (5.48) and (5.49) are both minimal bases. Moreover, the matriz polynomials

FIQIGNTA ROV A

(Cy8) \\T __ ; (C.3) (\\T .
(5.50) DIEINT = SO 01, and Dy (A)T = 9N
8" (M1, 3§ (N

are, respectively, dual minimal bases of Kfc’i)(/\) and Kéc’j)()\).

Proof. The minimality of the four matrix polynomials follows readily from the characterization of mini-
mal bases in Theorem 2.7. Moreover, by using the recurrence relationship of Chebyshev polynomials (2.16),
one can establish the duality by direct matrix multiplication. 0

We now consider strong block minimal basis pencils of the form

M) KEEP0

(5.51) C\) = K(C’i)()\) 0

We will refer to (5.51) as a Chebyshev pencil. The following theorem shows how to choose the body M (\)
so that the Chebyshev pencil (5.51) is a strong linearization of the matrix polynomial (5.47).

THEOREM 5.2. Let P(\) = Zf:o P; QSET) (A), where r € {1,2}, be an m x n matriz polynomial expressed
in a Chebyshev basis. Let 0 < e <k — 1 be an integer, and let

_2)‘Pk+Pk—1 —P 0 0
Pk—Q - Pk 7Pk—1 :
Mec()\) = ng_3 ,
: —FPoyo 0 e .0
L Pg Psfl _P5+1 P572 P673 PO_
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when 1 <e<k—2;

ME(\):==[2APy+ Py_1 Poo—P, Pi3 -+ P P,

when e =k —1;
1
MEQ) =5 [2APT + PL, PL,—2PT PL,—PL, - PF-Pf 2PT P[]’

€ i

when e =0 and r = 1; and

MEW) = WBF + B, PL, Pl PL, - PP P

€

when € =0 and r = 2.

(a) If P()\) is expressed in the Chebyshev basis of the first kind, then the Chebyshev pencil

ME(N) Ké“”(A)T]

(5.52) O5(\) = ch’l)()\) ;

is a strong linearization of P(\).
(b) If P(\) is expressed in the Chebyshev basis of the second kind, then the Chebyshev pencil

C (C,2)
(5.53) CH(\) = [ M) Ko (A)T]

K9P 0

is a strong linearization of P(\).
We will refer to (5.52)-(5.53) as the colleague Chebyshev pencil of P(\) associated with the parameter e.
Proof. The proof follows by using Theorem 2.12, together with Lemmas 2.2 and 5.1. O

REMARK 5.3. In the case where the matrix polynomial P()\) is expressed in the Chebyshev polynomial
basis of the first kind, one could consider a colleague pencil of the form

M(\) Ké“”(A)T}

C -
) leC@)(A) 0

The construction of linearizations of this form is very similar to the case (5.52), so we do not pursue this
further. One could also consider a colleague pencil of the form

M(X) Ké“’(»T]

Cp(A\) =
KD 0

However, when constructing linearizations of this form, some of the block entries of M(\) become linear

combinations of a large number of matrix coefficients of P()\) and thus, may cause numerical problems due

to cancellation errors; see, for example, [20, Remark 3.8].
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EXAMPLE 5.4. Let P(\) = Z?:o P (bl(-l)(/\) be an m X n matrix polynomial of degree 5 expressed in the
Chebyshev basis of the first kind. Let € = 3. Then,

ONPs + Py —DPs 0 0 I
P,—Ps P—-P P Py | —2AI,,

C5(N) = I, oI, I, 0 0

0 I, -2\, I, 0

0 0 I, —M,| 0

is the colleague Chebyshev pencil of P(\) associated with € = 3.

Let P(\) = Z?:O P; ¢§2)()\) be an m X n matrix polynomial of degree 5 expressed in the Chebyshev
basis of the second kind. Let e = 1. Then

2APs + P,  —P; I, 0 0

Ps—Ps  —Py | =2\, I, 0

CoH(N) = Py —P; Lo =2, In
P Po—P| 0 Lo =2\,

I, —2X, 0 0 0

is the colleague Chebyshev pencil of P()) associated with € = 1.

REMARK 5.5. A drawback of the Chebyshev colleague linearizations of a matrix polynomial P(\) is that
they are not companion forms since the matrix coefficient corresponding to the zero-degree term of these
linearizations contains blocks which are sums of matrix coefficients of P(A). The Newton and Lagrange
colleague linearizations are companion forms though.

An infinite family of linearizations for matrix polynomials in the Chebyshev basis (of the first kind or
the second kind) can be constructed combining the colleague Chebyshev pencil and Theorem 2.13.

THEOREM 5.6. Let P(\) = Zf:o P qﬁgr) (N), where r € {1,2}, be an m x n matric polynomial expressed
in a Chebyshev basis. Let 0 < e <k — 1 be an integer and let ME(\) be as in Theorem 5.2. Let A and B be
two arbitrary matrices of sizes (k —e)m x en and (k — 1 — €)m X (e + 1)n, respectively.

(a) Ifr =1, then the Chebyshev pencil

c (¢.1) (C2) (\\T (C2) /\\T

KD 0

is a strong linearization of P()\).
(b) If r =2, then the Chebyshev pencil

c (€.2) (C2) (\\T (C2) [ \\T

K () 0

is a strong linearization of P()\).

We will refer to a Chebyshev pencil of the form (5.54)-(5.55) as a Chebyshev linearization of P(\) with
parameter €.
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REMARK 5.7. Observe that every Chebyshev linearization (5.54)-(5.55) is strictly equivalent to the col-
league pencil (5.52)-(5.53):

T A I 0
' \) = (k—e)m €\ (e+1)n
(5 56) C( ) |: 0 Ien:| CP( ) |: B I(k;—l—e)ﬂb

In the following two sections, we obtain recovery rules for eigenvectors, and minimal bases and minimal
indices of a matrix polynomial P(\) from those of its Chebyshev linearizations. We will need the following
definitions and results.

DEFINITION 5.8. (Chebyshev-Horner shifts) Let &k and 0 < € < k — 1 be integers. Given a matrix
polynomial P(\) = Zf:o P; ¢§r)()\) expressed in the Chebyshev basis of the rth kind, where r € {1,2}, the
ith Chebyshev-Horner shift of P()\) associated with e is given by

L) = Puoll ) + Pecadli (V) 4 Pacign 85 () + PeciD ()
for i = 0,1,...,k —e. Note that Py,.(\) = P and PJ,(A) = P()) for r = 1,2.
Lemma 5.9 provides a property of the Chebyshev-Horner shifts of a matrix polynomial that will be useful

to prove Theorem 5.10.

LEMMA 5.9. Let P(\) = Zf:o P; (;SET)()\), with r € {1,2}, be a matriz polynomial of degree k expressed
in the Chebyshev basis of rth kind. Then, the ith Chebyshev Horner shift polynomial Pér()\) is a polynomial
of degree € +1i and

PIYA) = 20PL (A) = Pi_y o(N) + Poeic190 (V) (i=1,...,k = 1).

€,r

Proof. From ¢ () = 22¢\”, (A) =\, (), r € {1,2}, we obtain 2AP} . (\) = P'_; .(A) = Pugl); 1 (\)+
P4 ¢£QZ(/\) +o 4 Pk_iqbgz_)l(/\). The result now follows from the definition of Chebyshev Horner shift of
P(X) and the fact that the Chebyshev bases are degree-graded bases. ]

Theorem 5.10 gives right- and left-sided factorizations of the colleague Chebyshev pencil (5.52)-(5.53).

THEOREM 5.10. Let P(\) = ZLO P QSET)(A), where v € {1,2}, be a matriz polynomial expressed in

the Chebyshev basis of the rth kind. Let Cp () be the colleague Chebyshev pencil (5.52)-(5.53) of P(\)

associated with €, and let Dgc’i)()\) and Déc’j)()\) be the minimal bases defined in (5.50).

ForO0<e<k—1andr e {1,2}, define

T C T
HEWT = DOV —PLOT —P2,(0T - —PEI ()T

and

)

GeN) = [DIP0) —Riz ) —Ri) o R0

Fore=0 andr =1, define

He = [ (-r e B50) 0 (crons B2) o (cron ) ]

and G&(X) == DCP (\).
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For e =0 and r = 2, define

HEWT = [In =PV =P,V - =By (V7]

s

and G5 () := DEP (N).
Fore=k—1 andr € {1,2}, define H;(\)B := D{“M(\) and

Go(N) = [In —Pia(\) —Fga(h) - —Pya' (V)]

Then, the following right- and left-sided factorizations hold:
CrNHEWN) =er—e @ P(\) and  GE(NCH(N) = efyy @ P(N),

where e; denotes the ith column of the k X k identity matrix.

Proof. By using Lemma 5.9, the results can be easily shown using straightforward but tedious calcula-
tions. O

5.1. Recovery of eigenvectors from Chebyshev linearizations. Assume that the matrix polyno-
mial P()) is regular. In this section, we show how to recover (left and right) eigenvectors of P(\) from those
of its Chebyshev linearizations.

First, Theorem 5.11 gives a close formula for the right and left eigenvectors of the Chebyshev pencil
(5.52)-(5.53) associated with its finite eigenvalues.

THEOREM 5.11. Let P(\) = Zf:opi ¢Z@()\) be an n X n regular matriz polynomial expressed in the
Chebyshev basis of rth kind, where r € {1,2}. Let Ao be a finite eigenvalue of P(N). Let CH(N\) be the
Chebyshev colleague pencil of P(X) associated with e (defined in (5.52)-(5.53)). Then, z (resp., w) is a right
(resp., left) eigenvector of C&(N) associated with o if and only if z = H&(Xo)z (resp., w = G&(No)Ty),
where x (resp., y) is a right (resp., left) eigenvector of P(\) with eigenvalue Ag.

Proof. This result is an immediate consequence of Theorems 2.15 and 5.10. O

Theorem 5.12 shows how to recover the eigenvectors of the matrix polynomial P()\) from those of its
Chebyshev linearizations.

THEOREM 5.12. (Recovery of eigenvectors from Chebyshev linearizations) Let P(\) = Zf:o P, d)gr) N
be an n x n regular matriz polynomial expressed in the Chebyshev basis of rth kind, where r € {1,2}, and
let Ao be an eigenvalue (finite or infinite) of P(X\). Let C(X) be a Chebyshev linearization of P(X) as in
(5.54)-(5.55). Let z and w be, respectively, a right and a left eigenvector of C'(X) associated with Ag.

1. Assume g is finite. Then,
e the block entry z(e + 1) is a right eigenvector of P(\) with eigenvalue \g, and
o the block entry w(k — €) is a left eigenvector of P(\) with eigenvalue \g.
2. Assume \q is infinite. Then,
o the block entry z(1) is a right eigenvector of P(\) with eigenvalue at infinity, and
o the block entry w(l) is a left eigenvector of P(\) with eigenvalue at infinity.

Proof. We prove the result for the right eigenvectors. The proof for the left eigenvectors is analogous.

We first show that the theorem holds for the Chebyshev colleague pencil C% () defined in (5.52)-(5.53).
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Case I: Assume that \g is a finite eigenvalue, and let z be a right eigenvector of the Chebyshev colleague
pencil associated with Ag. From Theorem 5.11, we obtain that z = HE(Ao)x for some right eigenvector x of
P()) with eigenvalue Ag. Then, the recovery rule follows from the fact that the e+ 1 block-entry of H¢ (Ao)x
is the vector z.

Case II: Assume that )\ is an infinite eigenvalue. Since the Chebyshev bases are degree-graded, we have
that revy, P(0) = Py. Hence, z is an eigenvector of P(\) with eigenvalue at infinity if and only if  # 0 and
Prx = 0. Moreover, if 0 < € < k — 1, by evaluating the reversal of the Chebyshev colleague pencil at A = 0,
we obtain

2P 0 0 0 0 0 0 T
0 0 0 0 =21, 0 0
0 0 0 0 0 =21, - 0

reviCp(0)= 1| 0 0 0 0 0 0 cee =21
0 -2I, 0 0 0 0 0
0 0 -2, 0 0 0 0

L 0 0 0 s =1y 0 0 0 |

Thus, every right eigenvector z of C%(\) with eigenvalue at infinity must be of the form [x 0o --- O] for

some right eigenvector x of P()\) with eigenvalue at infinity. A similar argument shows that this is also the
case when e =0ore=F% — 1.

The recovery rules when C(\) is a Chebyshev linearization other than the Chebyshev colleague pencil
follow from the Chebyshev colleague’s recovery rules and the equivalence transformation in (5.56). ]

5.2. Recovery of minimal bases and minimal indices from Chebyshev linearizations. Assume
that the matrix polynomial P(\) is singular. In this section, we show how to recover the minimal indices
and minimal bases of P()\) from those of its Chebyshev linearizations.

THEOREM 5.13. (Recovery of minimal bases and minimal indices from Chebyshev linearizations, [20])
Let P(\) = Zf:o P; (;SET)()\) be an m x n singular matriz polynomial expressed in the Chebyshev basis of rth
kind, where r € {1,2}. Let C(\) be a Chebyshev linearization of P(X\) with parameter € as in (5.54)-(5.55).

(al) Suppose that {z1(N),...,2p(N)} is any right minimal basis of C(X), with vectors partitioned into
blocks conformable to the blocks of C'(N\), and let x¢(\) be the (e+1)th block of z¢(A) forl =1,2,...,p.
Then, {x1(X),...,xp(X)} is a right minimal basis of P(X).

(a2) If0 < e <--- < ¢, are the right minimal indices of C()), then

0<eg—e<egg—e<---<¢g—c

are the right minimal indices of P(\).

(b1) Suppose that {w1(N), ..., we(\)} is any left minimal basis of C(X), with vectors partitioned into blocks
conformable to the blocks of C(X), and let ye(\) be the (k — €)th block of we(X) for £ =1,2,...,q.
Then, {y1(A),...,yq(N)} is a left minimal basis of P(\).

(b2) If 0 < pq < -+ < g are the left minimal indices of C(X), then

0<pu—k+14+e<e—k+1+e<---<eg—k+1+4e€

are the left minimal indices of P(\).
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6. Conclusions. When solving a polynomial eigenvalue problem (PEP) P(A)z = 0, the polynomial
P()) is sometimes expressed in a basis other than the monomial basis, for example, when it is the approxi-
mation of a nonlinear eigenvalue problem. In particular, the Chebyshev, Newton and Lagrange bases are the
most commonly used. The solution of a PEP usually involves a linearization. In the literature, most of the
available linearizations are constructed from the coefficients of the polynomial expressed in the monomial
basis. From the numerical point of view, it is not wise to do the computations necessary to express P())
in the monomial basis, when it is originally expressed in a non-monomial basis, in order to use one of the
linearizations in the literature. A much better approach is to construct linearizations that can directly be
constructed from the matrix coefficients of P(X) regardless of the basis it is expressed in. In this paper, we
have constructed three families of block minimal basis pencils that are strong linearizations of P(\) when
it is expressed in one of the three non-monomial bases mentioned above. These linearizations are easy to
construct from the coefficients of P(\) and they include the so-called “colleague linearizations” for each
type of basis used in the literature. Additionally, we have shown that it is easy to recover the eigenvectors,
minimal bases and minimal indices of P(A) from those of the linearizations. We notice though that not all
of the families are equally convenient when solving a nonlinear eigenvalue problem T'(A)x = 0. While the
Newton and Lagrange bases can be used when the domain of T' is a subset of the complex numbers, the
Chebyshev basis can only be used when the domain of T is a subset of the real numbers or a parametrizable
curve. Moreover, the linearizations that we construct as well as the few available in the literature are com-
panion forms in the Newton and Lagrange case while those in the Chebyshev family are not. However, the
Chebyshev basis is the most commonly used basis in these applications. Our goal, in a subsequent paper, is
to compare the linearizations in these three families from the numerical point of view, that is, in terms of
conditioning of eigenvalues and backward errors with the objective of providing a guidance on what bases
to use in each situation and, once chosen a basis, provide information about what linearization, within the
family, has a better performance.

Appendix A. Proof of Theorem 2.15. Parts (e) and (f) have been proven in [8, Theorem 3.6].
Moreover, parts (b) and (d) follow from applying parts (a) and (c) to L(A)T and P(\)T and then taking
transposes. Hence, we only need to prove parts (a) and (c).

Proof of part (a). Let Ao be a finite eigenvalue of P()\) and let g := dimN,.(P(\g)). Since L()) is a
strong linearization of P(\), we have that A is an eigenvalue of L()) and dim N,.(L(\g)) = g.

Let {z1,...,2,} be a basis for N,.(P()g)), and consider the vectors

Dl()\o)T] ,

v; = z, (1=1,...,9).

oy ] ¢ &

We are going to prove that {vq,...,v4} is a basis for N,.(L(X\g)). First, we note that the vectors v; are

nonzero because D;(A\)T has full column rank for any A € C since it is a minimal basis. Second, from the
right-sided factorization, we get

D1(Ao)”

L(Xo)vi = L(Ao) [ X (Ao)

] z; = (v®I,)P(AN)z; =0.

Hence, v; € N;.(L(\o)). To finish the proof, it suffices to show that the vectors v; are linearly independent.
Assume they are not independent, that is, assume there are constants ¢;, not all zero, such that civ; +--- +
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cpvp = 0. Then,
D1(Xo)"

Ozclvl—l—---—i—cpvp:[

which implies ciz1 +- - - +cpxp = 0. But this contradicts the fact that the x; vectors are linearly independent.
Thus, the vectors v; must be independent and form a basis for N,.(L()\o)).

Let {v1,...,v4} be a basis for N,.(L(X\g)). We are going to show that

v = [Dl()\o)T

X ]x (i=1,....,p)

for some basis {z1,...,2,} of N;.(P(N\o)). Let {Z1,...,%,} be some basis for N,.(P(X\g)). Then, we have that

=[50 o om= 500 |5

is a basis for N;.(L(\g)), as proven above. Hence,

p

vi=> V5 = [D;((())‘\‘;))T] jz:cy)gi = [D;((();\Z))T] i (i=1,...,p)

j=1

for some constants cgi). To finish the proof, it suffices to show that the vectors x; € N,.(P(\g)) are linearly

independent. But their independence follows easily from the fact that the v; vectors are independent.
Proof of part (c). Since L()) is a strong linearization of P()), p := dimN,.(P())) = dim N,.(L(N)).
Let {z1(\),...,2,(A)} be a minimal basis of N.(P(\)) and let €; := degx;(\) for i = 1,...,p. Without

loss of generality, assume €; > €3 > --- > ¢€,. Consider the polynomial vectors

T
v;(\) = [Dﬁlf((i)) ]xi()\) (i=1,...,p).

From the right-sided factorization, we obtain

Di(M)T

zoyu) =209 [70)

2 = ) POO) 0.

Thus, v;(A) € N.(L()\)) for i = 1,...,p. Furthermore, the polynomial vectors v;(\) are linearly independent
because the polynomial vectors x;(\) are independent and D;(\)7 has full column rank. Hence, according
to part (e), to show that {vi(X),...,v,(A\)} is a basis for N,.(L(\)), it suffices to show that degv;(\) =
€; +deg D1(A) for ¢ = 1,...,p. This degree shifting property follows from the following argument. From
L(N)v;(A\) =0, we get

(A57) KN XN (A) = —MA)DT (V)i (V).
We note that

deg KQ(A)TX(A)ZE»L‘(A) = deg K> (/\)T +deg X(N)x;(N\) =1+ deg X (N)z;(N),
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where the first equality follows from the fact that K5()) is a minimal basis. Moreover, degM (\) DT (A)x;(\) <
1+ degD¥ (M\)z;(N\). Then, by (A.57), we get deg X (\)z;(A\) < deg D1(A)x;()\) for i = 1,...,p. Therefore,

L [Di)Ta(N)
degv;(A) =deg { X(N)zi(N)
(A) =

deg Dy (M) (A

(A.53) ] = max{degD1(\)"z;(X), deg X (\)z; ()} =

degx;(A) + deg D1(A) = €; + deg D1(A),
where the fourth equality follows from the fact that D;(\) is a minimal basis. This proves the claim.

Now we prove the converse. Let {v1(\),...,v,(A)} be a minimal basis for N, (L(A)) ordered so that
degvi(A) > -+ > degvy(X). We are going to show that

vi(A) = { ((/;))] A (@G=1,...,p)

for some minimal basis {z1(\),...,z,(A)} of N.(P(X)). Let {Z1(A),...,Z,(\)} be some minimal basis for
N, (P(X)). Then, by the previous proof of part (c), we have that

{au) - {D;((a);] TN, Ty (N = {D;((a);] @,(A)}

is a minimal basis for N, (L())). Hence,

=Y dwn = [0 | wmm = [0 [ =1

j=1 j=1

for some (scalar) polynomials cg-i)()\) (see [14], Part 4 in Main Theorem). We observe that the polynomial
vectors x;(A) € N,.(P()\)) form a basis for N,.(P(}\)), since they are linearly independent. Moreover, the
degree-shifting property (A.58) implies degv;(A) = deg D1(A) 4+ degz;()), and part (e) implies degv;(\) =
€; +deg D1(N), where €1, ..., €, are the right minimal indices of P(A). Hence, degz;(A) =¢; fori=1,...,p.
Therefore, {z1()),...,2,(\)} is a minimal basis for N,.(P(\)).
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