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ABSTRACT: Quantification of halogen-bonding abilities is described for a

series of monodentate and bis(imidazolium) halogen-bond donors (XBDs)

using 3'P NMR spectroscopy. The measured AS(*'P) values correlate with

calculated activation free energy AG* and catalytic activity for a Friedel—Crafts

2A° indole addition. This rapid method also serves as a sensitive indicator for
Brensted acid impurities.

Increasing A5(*'P) (ppm)

Halogen-bonding (X-bonding) is a noncovalent interaction
between an electrophilic halogen atom and a Lewis base.!
Owing to the high directionality, hydrophobicity, and tunability,
X-bonding has been utilized in crystal engineering and material
science to control molecular assembly.>* More recently, X-
bonding has been applied to molecular recognition* and
catalysis® in solution-phase.® In general, X-bonding of organic
scaffolds is a relatively weak interaction with a low association
affinity to Lewis bases.” The investigation of X-bonding on
organic scaffolds relies on high sensitivity techniques such as
IR,® Raman,’ UV—Vis, ' and NMR'!"* spectroscopies.

Due to the versatility and ability to provide detailed structural
information, solution NMR spectroscopy has been the most
common technique for analyzing X-bonding for organic
scaffolds (Figure 1).!! With 'H and '°F NMR, chemical shifts
provide insight regarding X-bonding at least two bonds away
from the interaction site to the reporter nucleus, albeit often with
low magnitudes of the detectable signal (Figure 1A).5: !t
Examples of *C NMR spectroscopy have been successfully
used to detect the formation of X-bonding in solution, yet the
intrinsic low abundance limits the sensitivity, decreasing the
applicability to quantify X-bonding (Figure 1B).” !> Several
examples of quantification of X-bonding using "N NMR
spectroscopy have been reported;'* however, even though the
reporter nitrogen is directly interacting with the halogen atom,
the author reported that the evaluation of weak X-bonding
interactions is not sufficiently accurate (Figure 1C).

3P NMR spectroscopy has been successfully
applied to quantify noncovalent interactions upon
binding to triethylphosphine oxide (TEPO) as a
Lewis basic probe.!# !¢ First reported by Gutmann
and Beckett to measure Lewis acidic solvents,!*
we and others have since adapted this method to
quantify the H-bonding ability of various H-bond
donors.'> Previous work in our group has
successfully demonstrated the proportional

relationship of H-bonding ability and catalytic
activity for a variety of H-bonding donors using
3P NMR spectroscopy (Figure 1D).

Previous work using NMR spectroscopies
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Figure 1. Quantification of noncovalent interactions using
NMR spectroscopy.

Compared to the extensive application for H-bonding, the
investigation of X-bonding ability for organocatalysts is
limited.” '7 Here, we report using *'P NMR spectroscopy
method to systematically quantify X-bonding ability and
correlate the catalytic ability for XBD organocatalysts (Figure
1E). This work examines representative XBD compounds
including neutral (1-4), cationic benzimidazolium- (5),%> f
imidazolium- (6-7), "> and bis(imidazolium)-based** *¢ (8-9)
structures (Figure 2).
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Figure 2. Halogen-bond donors studied.

Method Validation To validate 3'P NMR spectroscopy as a
method to quantify X-bonding ability, factors such as the
XBD-TEPO equilibrium, solvent interferences and the
competition of other noncovalent interactions from impurities
were carefully examined.!® Downfield 3'P NMR shifts (A8) are
observed upon TEPO binding to XBDs (Figure 3A)."° Stronger
X-bonding ability is expected to correlate to larger ASC'P)
values. To assess the XBD-TEPO binding equilibrium,?
titration experiments of XBD (relative to TEPO) were
investigated (Figure 3B). For imidazolium- (6°OTf) and
bis(imidazolium)-based triflate (8c*OTf) XBDs, saturation
occurs at approximately 10 and 15 equivalents, respectively.
With the weakly coordinating counteranion, 7eBAr" and
8ceBAr® XBDs possess enhanced binding ability?! and
saturation was observed for each at ~5 equivalents.

To assess that TEPO binding can probe X-bonding ability,
the AS8C'P) values for XBDs with different electrophilic
halogen atoms were measured (Figure 2, S5a—SbeOTf{,
7e—T7g*OTf, 8¢—8d*OTf). The more electrophilic halogen
atom (I > Br > CI) should correlate with larger AS(*'P) values.
Indeed, switching from iodo to bromo and chloro (in 7e-7g*OTY)
significantly decreased A8(*'P) values (Table 1), matching a
decrease in polarizability of the halogen substituents and hence
the X-bonding ability.
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Figure 3. (A) Example 3'P NMR spectra for the downfield >'P
NMR shifts upon TEPO binding to XBD (in CD:Clz). (B)
Titration experiments comparing XBDs. Calculation of binding
constant: 8csBAr¥, K. = 186 + 4 M"! (see SI).?!

To validate *'P NMR spectroscopy and the ability of TEPO
binding to quantify electronic effects for X-bonding, a Hammett
plot was created for a series of 2-iodoimidazolium triflate salts
(7a—7e*OTf) with electronically varied substituents on the
conjugated benzene ring (Table 1, Figure 4). A linear
relationship (R? = 0.988) was observed, indicating that ASC*'P)
values can accurately quantify the electronic changes affecting
X-bonding ability.
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Figure 4. Correlation of AS(*'P) and Hammett 6 parameters for
imidazolium triflates 7a—7e*OTf (Table 1).

Result and Discussion To build a scale to quantify X-bonding
ability of organocatalysts, AS(*'P) values were measured for a
variety of XBD compounds (Table 1). TEPO binding with most
neutral XBDs (e.g. 1-2, 4) results in very low ASC*'P) values,
indicating low X-bonding ability; however, X-bonding ability
were notably increased with a high electronegative atom
attached to the halogen atom (e.g. 3a). Without the cationic
charge on the XBD core, the AS(*'P) values are < 1.0 ppm and
interactions are too weak to observe trends, highlighting the
importance of the cationic charge for increasing the X-bonding
ability (e.g. 4a—4d). The larger AS(’'P) value of cationic
benzimidazolium-based XBD (5a*OTf, AS(*'P) = 4.94 ppm)
compared to cationic imidazolium-based XBD (6°OTf, A5(*'P)
= 4.03 ppm) suggested higher X-bonding ability. This is



attributed to the extended aromaticity of the benzimidazolium
core.”? By increasing the electron deficiency of the
benzimidazolium core (5d*OTf), the largest AS(*'P) value
among cationic XBD triflates was observed (5.76 ppm).

3P NMR spectroscopy was also utilized to investigate the
effect of different counteranions for imidazolium 6 on X-
bonding interactions.> " The largest AS(*'P) value was
measured for 6BArf (5.68 ppm) matching the decreased
coordinating ability for the BAr’ counterion and hence
increased X-bonding ability. The AS(*'P) values for 6*SbFs and
6°BPh4 were observed to generally follow the trend for anion-
coordinating ability.?> 24

Table 1. Measured *'P NMR shifts and kobs for XBDs in CD2Cl,

ASC'P)  ASC'P)  AS('P) Avg Kobs X

XBD? (ppm)  (ppm)  (ppm)  ASC'P)  10*

Trial 1° Trial 2 Trial 3* (ppm)° min’

1 0.20 0.22 0.22 0.21 NR¢
2 0.12 0.14 0.13 0.13 -
3a 10.01 9.99 9.97 9.99 -¢
3b 1.42 1.36 1.44 1.41 =€
3c 1.34 1.41 1.38 1.38 -
4a 0.05 0.01 0.05 0.04 -
4b 0.84 0.82 0.84 0.83 -
4c 0.89 0.89 0.97 0.92 -
4d 0.88 0.89 0.89 0.89 -

5a-OTf 4.94 4.94 4.93 4.94 4.57
5beOTf 1.77 1.64 1.61 1.67 -

S5c.OTf 1.24 1.26 1.25 1.25 -
5d-OTf 5.77 5.74 5.76 5.76 13.00
6°OTf 4.06 4.02 4.01 4.03 NRY

6°BAr" 5.75 5.65 5.66 5.68 5.77
6°SbF! 5.34 5.29 5.29 5.31 -&
6BPh,! 4.62 4.49 4.46 4.52 -8
7asOTf 4.70 4.68 4.68 4.69 2.72
7beOTf 4.79 4.78 4.78 4.78 4.86
TceOTf 5.00 5.01 5.01 5.01 7.03
7d*OTf 5.12 5.10 5.11 5.11 7.16
7eOTf 5.29 5.28 5.29 5.28 8.51
7esBAr"f 6.24 6.29 6.23 6.25 11.47
T£OTf 1.43 1.44 1.39 1.42 NR!
7g*OTf 1.22 1.13 1.27 1.21 NR¢
8a-OTf" 0.94 0.99 0.98 0.97 NR¢
8beOTf" 4.87 4.88 4.88 4.88 8.23
8c°OTf" 491 4,92 5.03 4.95 9.21
8ceBAr™ 10.47 10.44 10.46 10.46  32.64
8d-OTf" 2.54 2.46 2.52 2.51 NR¢
9:0Tf 4.01 3.90 3.89 3.91 8.28
*Experiments performed at 15 mM TEPO in CD.Cl> with 10
equiv. XBD unless otherwise indicated. °AS('P) =
S(XBD*TEPO complex) — d(free TEPO) °Standard deviation
(n=3) for all XBDs are <0.10 ppm. Avg AS(*'P) values used for
correlation. “No reaction observed; kovs assumed to be zero. *Not
reported; observed rate is attributed to in-situ formation of
elemental halogens (e.g. 1) rather than respective XBDs. {One
drop of 2,6-di-tert-butylpyridine (DTP) was added. £No
reaction observed with DTP added. "Using 15 equiv of XBD.
iUsing 5 equiv of XBD. iUsing 3 equiv of XBD.?

To investigate the denticity effect based on substituent
pattern for X-bonding ability, bis(imidazolium) salts 8-9 were
quantified. AS(*'P) values were collected using 3.0 equivalents
of XBD (relative to TEPO) for the direct comparison between
meta-substituted 8c*OTf (2.58 ppm) and para-substituted
bis(imidazolium) 9eOTf (3.91 ppm).2® The larger AS(*'P) value
of 9OT{ suggests enhanced bidentate capability for the para-
substituted bis(imidazolium); however, it was observed that
meta-substituted bis(imidazolium) 8c*BArf, has a nearly
double AS(*'P) relative to 6*BAr", suggesting bidenticity with
the BArF counterion.?

TEPO Signal as an Indicator for Impurities An integral part
of this quantification method is to ensure the absence of any
impurities, especially trace acids formed from the counter-
anions. Impurities that bind with the TEPO probe effectively
can broaden and shift the 3'P NMR signal (e.g. Figure 5A vs
5B). Undesired AS(*'P) values from broad peaks would not
accurately reflect the X-bonding ability (i.e. Figure 5B). To
remove acid (and other) impurities, a purification procedure
was performed for XBDs and the *'P NMR signals were
compared before and after purification.”” A sharp peak and
reliable AS(’'P) values were consistently acquired when
purified XBDs were used in binding experiments (Figure 5A).
Even in cases when 'H and °F NMR did not detect impurities,
the 3'P NMR signal was shown to be more sensitive. Therefore,
it is noteworthy that *'P NMR and the TEPO signal can serve
as a sensitive indicator for trace amounts of impurities that may
not be detectable using 'H and '"F NMR (see Supporting
Information, Section VIb).
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Figure 5. (A) Reliable and consistent AS(*'P) values are
determined from sharp 3'P NMR signals after rigorous
purification (e.g. binding to 5d*OTY). (B) Even when no TfOH
is observed using 'H and "F NMR, a broader peak is observed
using *'P NMR (after extraction and the first silica column).”’

Correlation of AS(*'P) and AG* The ability to correlate 3'P
NMR data with thermodynamic properties was envisioned by
using activation free energy AG* values for reactions catalyzed
by XBDs. Measured AS8(*'P) values were compared to
previously calculated AG* values?® for a Friedel—Crafts addition
of indole 10 to frans-crotonophenone 11 catalyzed by XBD
organocatalysts in benzene (Eq 1). The direct comparison
between AS(’'P) and calculated AG* values affords a good
correlation (R* = 0.775). Considering the logarithm form of
Arrhenius equation, log AS(*'P) values were also examined and
show a stronger correlation with AG* (R? = 0.899). The strong



correlation between log AS(*'P) and calculated AG* values
demonstrates the capability of correlating >'P NMR shifts with
thermodynamic properties. The data also suggest that TEPO is
a suitable isostere for carbonyl activation-type reactions.

H3C
©\/\> o XBD (10 mol %) Ph
+
1
N HSC/\)J\ Ph CD,Cly, rt Ny o M
H or N
benzene (ref 28) H
10 1 . ) 12
(AG* calcuated in benzene)
50
] 45 R? = 0.899
[ Bt
% o ~-\49 | °
2 35 [ Tt
-+ "“Q\‘ —
3 30 o
25
1 0 1
log AS(3P)

XBD AP (ppm) In ASCP) log AB(3'P) AGF (kcal/mol)?

1 0.21 -1.56 -0.68 +41.0
5b-OTf 1.67 0.51 0.22 +38.3
6-0Tf 4.03 1.39 0.61 +32.5
5a-OTf 4.94 1.60 0.69 +31.5
3a 9.99 2.30 1.00 +30.3

aCalculated activation free energies were obtained from ref. 28

Figure 6. Correlation (R* = 0.899) of calculated AG* values (in
benzene)?® for the Friedel-Crafts reaction of indole 10 to trans-
crotonophenone 11 with log AS(*'P) values (in CD2Cly).

Correlation of A3(*'P) and Catalytic Activity The measured
AS(*'P) values for XBDs were correlated to catalytic activity for
a Friedel—Crafts indole addition (Eq 1 and Figure 7A). %73 In
order to evaluate using *'P NMR spectroscopy to predict
catalytic activity, the observed rates (kobs) of the Friedel—Crafts
addition reaction in CD:Cl, were monitored using 'H NMR
spectroscopy (Table 1; see details in Supporting Information).3!
Based on the observed correlation, when AS(*'P) is less than
4.03 ppm, the X-bonding interaction is too weak to promote the
indole addition (Table 1). The XBD with highest catalytic
activity, bisimidazolium BAr" salt (8csBArF), was successfully
predicted by the largest AS(*'P) value (10.46 ppm). Moreover,
a linear relationship was observed for Hammett 6 parameters to
the rate constants kobs for para-substituted phenyl-imidazolium
triflate XBDs (Table 1, 7a—7e*OTf) (Figure 7B). While the
overall correlation for XBDs studied was lower (R*> = 0.765), a
high correlation is observed between AS('P) values and Kobs
within the sub-class of monodentate triflate XBDs (R? = 0.922).
This correlation supports that TEPO binding and AS(*'P) values
can be a predictor of catalytic activity for carbonyl activation-
type reactions within structural classes of XBDs.
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Figure 7. (A) Relationship between AS(*'P) and kobs (Table 1)
for the Friedel—Crafts addition reaction of indole 10 to trans-
crotonophenone 11 in CDxCl> (4 : subset of monodentate
triflate XBDs; &: subset of BAr" XBDs; £: all other XBDs).
(B) Correlation of Hammett ¢ parameters and Kobs.

Comparison of AS(C!'P) values between non-covalent
interactions TEPO binding and *'P NMR quantification
provides a common scale to compare X-bonding with other
non-covalent interactions commonly used in catalysis. X-
bonding is a relatively weak non-covalent interaction with
AS('P) values for TEPO binding up to 10.5 ppm compared to
that of H-bonding (up to 24.6 ppm)!® and Lewis acid-
ligand/counterion complexes (up to 48.2 ppm).!*

Conclusions A commercially available phosphine oxide can
quantify X-bonding ability using 3'P NMR spectroscopy.
Altering the structures and halogen atoms on XBD scaffolds
supports that TEPO is probing X-bonding interactions. We also
demonstrated that TEPO binding serves as a sensitive indicator
of residual acidic impurities. We successfully correlated AS(*'P)
values for TEPO binding with activation free energy values
previously reported for a Friedel-Crafts indole addition
reaction with trans-crotonophenone. TEPO binding also
correlated with catalytic activity measured within the class of
monodentate triflate XBDs. We expect that this rapid method
can be applied to predict the catalytic ability of new XBDs that
will enhance knowledge for X-bonding catalysis.
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