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Abstract. This paper mainly studies the relationship between quadratic growth and strong
metric subregularity of the subdi↵erential in finite dimensional settings by using the subgradient
graphical derivative. We prove that the positive definiteness of the subgradient graphical derivative
of an extended-real-valued lower semicontinuous proper function at a proximal stationary point is
su�cient for the point to be a local minimizer at which the subdi↵erential is strongly subregular for
0. The latter was known to imply the quadratic growth. When the function is either subdi↵erentially
continuous, prox-regular, twice epidi↵erentiable, or variationally convex, we show that the quadratic
growth, the strong metric subregularity of the subdi↵erential at a local minimizer, and the positive
definiteness of the subgradient graphical derivative at a stationary point are equivalent. For C2-cone
reducible constrained programs satisfying the metric subregularity constraint qualification, we obtain
the same results for the sum of the objective function and the indicator function of the feasible set.
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1. Introduction. Given a proper extended-real-valued function f : Rn
! R, we

say f satisfies the quadratic growth condition (QGC) at a point x̄ 2 Rn (such a point
x̄ is called a strong local minimizer of f) if there exist � > 0 and modulus  > 0 such
that

(1.1) f(x)� f(x̄) �


2
kx� x̄k

2 for all x 2 B�(x̄).

It is an important concept in optimization [3, 6, 7, 19, 24, 25, 27]. In the case of
unconstrained C

2-smooth optimization problems, strong local minimizers are fully
characterized by the positive definiteness of the Hessian of the objective function at
stationary points. When the problem is not smooth, several di↵erent types of second-
order directional derivatives are useful for studying strong minimizers [3, 6, 7, 19, 24,
25, 27]. Especially, the second subderivative can be used to characterize strong local
minimizers [24, Theorem 13.24].

In recent years, the connection between the quadratic growth condition and
the strong metric subregularity of the subdi↵erential at local minimizers, which is
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interesting from a numerical optimization viewpoint [4, 12, 26], has been investi-
gated in [1, 2, 11, 13]. Their relation dates back to the original work of Zhang and
Treiman [28], where they studied functions with upper-Lipschitz inverse subdi↵eren-
tials. Aragón Artacho and Geo↵roy [1] developed the idea of Zhang and Treiman [28]
by replacing the upper-Lipschitz property by some metric regularity properties of the
subdi↵erential, but they focused on the case of convex functions. Among other things,
they [1, Theorem 3.5] showed that when f is a proper lower semicontinuous convex
function, the QGC holds at x̄ if and only if the subdi↵erential @f is strongly metrically
subregular at the minimizer x̄ for 0 in the sense that there exist " > 0 and modulus
` > 0 such that

(1.2) `d(0; @f(x)) � kx� x̄k for all x 2 B"(x̄),

where d(0; @f(x)) is the distance from 0 to the set of subgradients @f(x). Without
convexity, Drusvyatskiy, Mordukhovich, and Nghia [13, Corollary 3.5] proved that the
latter property of the limiting subdi↵erential at a local minimizer implies the qua-
dratic growth condition. Using some facts from semialgebraic geometry, Drusvyatskiy
and Io↵e [11, Theorem 3.1] showed that the converse is also true for nonconvex semial-
gebraic functions. The question of whether this implication holds for other favorable
classes of functions remains open.

Our main aim in the present paper is to find out an answer for the above open
question. To this end, we utilize the subgradient gradient derivative defined as the
graphical derivative acting on the subgradient mapping. Our choice is motivated
by the Levy–Rockafellar criterion on strong metric subregularity via the graphical
derivative, formulas for computing the subgradient graphical derivative [8, 16, 17, 18],
and the results of Aragón Artacho and Geo↵roy [1, 2] showing that the quadratic
growth, the strong metric subregularity of the subdi↵erential at a local minimizer,
and the positive definiteness of the subgradient graphical derivative at a stationary
point are equivalent if the function is lower semicontinuous convex.

The idea of using the subgradient graphical derivative to investigate strong local
minimizers for nonconvex functions dates back to Eberhard and Wenczel [14]. In that
paper, they [14, Theorem 71(2)] claimed that for lower semicontinous prox-bounded
and proximally stable functions, the so-called su�cient condition of the second kind
at a proximal stationary point (see Definition 3.3), which is weaker than the afore-
mentioned positive definiteness of the subgradient graphical derivative, ensures the
validity of the QGC at the reference point. However, our Example 3.4 shows that
the claim fails even for convex functions. On the other hand, since there may ex-
ist stationary points that are not local minimizers if the function is nonconvex, in
order to use [13, Corollary 3.5], we need a subgradient graphical derivative–related
su�cient optimality condition. These lead us to the question of whether the positive
definiteness of the subgradient graphical derivative at a stationary point implies that
the point is a local minimizer.

Our main contributions and the organization of the paper are as follows. Af-
ter recalling in section 2 the needed preliminary material from variational analy-
sis [10, 20, 21, 24], in the first main part of our paper, section 3, we show that the
positive definiteness of the subgradient graphical derivative at proximal stationary
points is su�cient for the point to be a local minimizer at which the subdi↵erential
is strongly subregular for 0. The latter was known to imply the quadratic growth
by [13, Corollary 3.5]. Our proof is strongly based on [13, Corollary 3.3], the Levy–
Rockafellar criterion, and a sum rule for the graphical derivative. For functions from
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the two favorable classes of subdi↵erentially continuous, prox-regular, twice epidif-
ferentiable functions [24, Chapter 13] and variationally convex functions [22, 23],
we show further that the quadratic growth, the strong metric subregularity of the
subdi↵erential at a local minimizer, and the positive definiteness of the subgradient
graphical derivative at a stationary point are equivalent. Since functions from the
just mentioned two classes are not necessarily semialgebraic and convex, our results
complement the corresponding ones constructed in [1, 11, 13].

In the second main part of this paper, section 4, we examine C
2-cone reducible

constrained programs satisfying the metric subregularity constraint qualification. For
the sum of the objective function and the indicator function of the feasible set of
such a conic program, we prove that the quadratic growth, the strong metric sub-
regularity of the subdi↵erential at a local minimizer, and the positive definiteness
of the subgradient graphical derivative at a stationary point are equivalent. To the
best of our knowledge, this result is new even for nonlinear programs. We note that
the constraint qualification also allows us to make the connection between the posi-
tive definiteness of the subgradient graphical derivative and some known second-order
su�cient conditions (Remark 4.8). Furthermore, Example 4.10 shows that in the ab-
sence of the constraint qualification the quadratic growth does not imply the strong
metric subregularity of the subdi↵erential.

Finally, in section 5, we summarize the obtained results of the paper and discuss
the perspectives of this research direction.

2. Preliminaries. In this section, we recall some basic notions and facts from
variational analysis that will be used repeatedly in what follows; see [10, 20, 21, 24]
for more details. Let ⌦ be a nonempty subset of the Euclidean space Rn and x̄ be a
point in ⌦. The (Bouligand–Severi) tangent/contingent cone to the set ⌦ at x̄ 2 ⌦ is
known as

T⌦(x̄) :=
�
v 2 Rn

| there exist tk # 0, vk ! v with x̄+ tkvk 2 ⌦ for all k 2 N
 
.

The polar cone of the tangent cone is the (Fréchet) regular normal cone to ⌦ at x̄

defined by

(2.1) bN⌦(x̄) := T⌦(x̄)
�
.

Another normal cone construction used in our work is the (Mordukhovich) limit-
ing/basic normal cone to ⌦ at x̄ 2 ⌦ defined by

N⌦(x̄) :=
�
v 2 Rn

| there existxk
⌦
! x̄, vk 2 bN⌦(xk) with vk ! v

 
.

When x̄ 62 ⌦, we set T⌦(x̄) = ; and N⌦(x̄) = bN⌦(x̄) = ; by convention. When the
set ⌦ is convex, the above tangent cone and normal cones reduce to the tangent cone
and normal cone in the sense of classical convex analysis.

Consider the set-valued mapping F : Rn ◆ Rm with the domain domF :=�
x 2 Rn

| F (x) 6= ;
 
and graph gphF :=

�
(x, y) 2 Rn

⇥ Rm
| y 2 F (x)

 
. Suppose

that (x̄, ȳ) is an element of gphF . The graphical derivative of F at x̄ for ȳ 2 F (x̄) is
the set-valued mapping DF (x̄|ȳ) : Rn ◆ Rm defined by

(2.2) DF (x̄|ȳ)(w) :=
�
z 2 Rm

| (w, z) 2 TgphF (x̄, ȳ)
 

for w 2 Rn
,

which means gphDF (x̄|ȳ) = TgphF (x̄, ȳ); see, e.g., [10, 24]. Another generalized
derivative for set-valued mappings used (infrequently) in our paper is the regular
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coderivative [20] bD⇤
F (x̄|ȳ) : Rm ◆ Rn of F at x̄ for ȳ 2 F (x̄) defined by

bD⇤
F (x̄|ȳ)(z) :=

�
w 2 Rn

| (w,�z) 2 bNgphF (x̄, ȳ)
 

for all z 2 Rm
.(2.3)

We note further that if � : Rn
! Rm is a single-valued mapping di↵erentiable at

x̄, then D�(x̄|�(x̄))(w) = {r�(x̄)w} for any w 2 Rn, while bD⇤�(x̄|�(x̄))(z) =
{r�(x̄)⇤z} for any z 2 Rm.

Following [10, section 3H], we say F is metrically subregular at x̄ 2 domF for
ȳ 2 F (x̄) with modulus  > 0 if there exists a neighborhood U of x̄ such that

(2.4) d(x;F�1(ȳ))   d(ȳ;F (x)) for all x 2 U,

where d(x;⌦) represents the distance from a point x 2 Rn to a set ⌦ ⇢ Rn. The infi-
mum of all such  is the modulus of metric subregularity, denoted by subregF (x̄|ȳ).
If additionally x̄ is an isolated point to F

�1(ȳ), we say F is strongly metrically sub-
regular at x̄ for ȳ. It is known from [10, Theorem 4E.1] that F is strongly metrically
subregular at x̄ for ȳ if and only if

(2.5) DF (x̄|ȳ)�1(0) = {0}.

Moreover, in the latter case, its modulus of (strong) metric subregularity is computed
by

(2.6) subregF (x̄|ȳ) =
1

inf{kzk| z 2 DF (x̄|ȳ)(w), kwk = 1}
.

Assume that f : Rn
! R := R [ {1} is an extended-real-valued lower semicon-

tinuous (l.s.c.) proper function with x̄ 2 dom f :=
�
x 2 Rn

| f(x) < 1
 
. The limiting

subdi↵erential (known also as the Mordukhovich/basic subdi↵erential) of f at x̄ is
defined by

@f(x̄) :=
�
v 2 Rn

| (v,�1) 2 Nepif (x̄, f(x̄))
 
,

where epi f :=
�
(x, r) 2 Rn

⇥ R| r � f(x)
 
is the epigraph of f . Another subdi↵er-

ential construction used in this paper is the proximal subdi↵erential of f at x̄ defined
by

(2.7) @pf(x̄) :=

(
v 2 Rn

| lim inf
x!x̄

f(x)� f(x̄)� hv, x� x̄i

kx� x̄k2
> �1

)
.

It is well known that

@f(x̄) =
�
v 2 Rn

| there exists (xk, vk) ! (x̄, v) with vk 2 @pf(xk) and f(xk) ! f(x̄)
 
,(2.8)

which shows that @pf(x̄) ⇢ @f(x̄).
Function f is said to be prox-regular at x̄ 2 dom f for v̄ 2 @f(x̄) if there exist

r, " > 0 such that for all x, u 2 B"(x̄) with |f(u)� f(x̄)| < " we have

(2.9) f(x) � f(u) + hv, x� ui �
r

2
kx� uk

2 for all v 2 @f(u) \ B"(v̄),

where B"(x̄) := {x| kx � x̄k  "} is the closed ball with center x̄ and radius ";
see [24, Definition 13.27]. This clearly implies that @f(u) \ B"(v̄) ⇢ @pf(x) whenever
ku � x̄k < " with |f(u) � f(x̄)| < ". Moreover, f is said to be subdi↵erentially
continuous at x̄ for v̄ if whenever (xk, vk) ! (x̄, v̄) and vk 2 @f(xk), one has f(xk) !
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f(x̄); see [24, Definition 13.28]. In the case that f is subdi↵erentially continuous at
x̄ for v̄, the inequality “|f(u) � f(x̄)| < "” in the definition of prox-regularity above
could be omitted.

Recall from [24, Definition 13.3] that the second subderivative of f at x̄ for v 2 Rn

and w 2 Rn is given by

(2.10) d
2
f(x̄|v)(w) = lim inf

⌧&0
w0�!w

�2
⌧f(x̄|v)(w

0),

where

�2
⌧f(x̄|v)(w

0) =
f(x̄+ ⌧w

0)� f(x̄)� ⌧hv, w
0
i

1
2⌧

2
.

Function f is said to be twice epidi↵erentiable at x̄ 2 Rn for v 2 Rn if for every
w 2 Rn and choice of ⌧k & 0 there exists wk

! w such that

f(x̄+ ⌧kw
k)� f(x̄)� ⌧khv, w

k
i

1
2⌧

2
k

! d
2
f(x̄|v)(w);

see, e.g., [24, Definition 13.6]. We note that fully amenable functions, including the
maximum of finitely many C

2-functions, are important examples for subdi↵erentially
continuous prox-regular and twice epidi↵erentiable l.s.c. proper functions [24, Corol-
lary 13.15 and Proposition 13.32].

The main second-order structure used in this paper is the subgradient graphical
derivative D(@f)(x̄|v̄) : Rn ◆ Rn at x̄ for v̄ 2 @f(x̄), which is defined from (2.2) by

(2.11) D(@f)(x̄|v̄)(w) :=
�
z | (w, z) 2 Tgph @f (x̄, v̄)

 
for all w 2 Rn

.

In the case that f is twice epidi↵erentiable, prox-regular, and subdi↵erentially con-
tinuous at x̄ for v̄, it is known from [24, Theorem 13.40] that

(2.12) D(@f)(x̄|v̄) = @h with h =
1

2
d
2
f(x̄|v̄),

which is an important formula in our study. When f is twice di↵erentiable at x̄, it is
clear that D(@f)(x̄|rf(x̄)) = {r

2
f(x̄)}.

3. Quadratic growth and strong metric subregularity of the subdi↵er-
entials of extended-real-valued functions. Given a function f : Rn

! R and a
point x̄ 2 dom f , x̄ is said to be a strong local minimizer of f with modulus  > 0 if
there is a number � > 0 such that the quadratic growth condition (QGC) (1.1) holds.
We define the exact modulus for the QGC of f at x̄ by

QG (f ; x̄) := sup
�
 > 0 | x̄ is a strong local minimizer of f with modulus 

 
.

In this section, we first introduce several new su�cient and necessary conditions
for the QGC (1.1) by using the second-order construction defined in (2.11). The fol-
lowing fact, taken from [13, Corollary 3.3], which provides a su�cient condition for
the QGC of f at x̄ (1.1) via strong metric subregularity (SMS) of the subdi↵erential
(1.2), is a significant tool in our analysis. We will show later that SMS of the subdif-
ferential (1.2) at a local minimizer x̄ is also a necessary condition for the QGC of f
at x̄ in several classes of optimization.
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Lemma 3.1 (SMS of the subdi↵erential and QGC [13, Corollary 3.3]). Let
f : Rn

! R be an l.s.c. proper function, and let x̄ 2 dom f with 0 2 @f(x̄). Sup-
pose that the subgradient mapping @f is strongly metrically subregular at x̄ for 0 with
modulus  > 0 and there are real numbers r 2 (0,�1) and � > 0 such that

f(x) � f(x̄)�
r

2
kx� x̄k

2 for all x 2 B�(x̄).(3.1)

Then, for any ↵ 2 (0,�1), there exists a real number ⌘ > 0 such that

f(x) � f(x̄) +
↵

2
kx� x̄k

2 for all x 2 B⌘(x̄).(3.2)

When the function f is convex, the QGC could be fully characterized via the pos-
itive definiteness of the subgradient graphical derivative defined by (2.11) [2, Corol-
lary 3.7]. Without convexity, we show in the next result that such a property is
su�cient for the QGC.

Theorem 3.2 (su�cient conditions for the QGC via the positive definiteness of
the subgradient graphical derivative). Let f : Rn

! R be a proper l.s.c. function with
x̄ 2 dom f . Consider the following assertions:
(i) The quadratic growth condition (1.1) is satisfied.
(ii) x̄ is a local minimizer and @f is strongly metrically subregular at x̄ for 0.
(iii) 0 2 @pf(x̄) and D(@f)(x̄|0) is positive definite in the following sense:

(3.3)
hz, wi > 0 for all z 2 D(@f)(x̄|0)(w) and w 2 domD(@f)(x̄|0) \ {0}.

(iv) 0 2 @pf(x̄) and there exists some real number c > 0 such that
(3.4)

hz, wi � ckwk
2 for all z 2 D(@f)(x̄|0)(w) and w 2 domD(@f)(x̄|0).

Then we have the implications [(iv))(iii))(ii))(i)]. Moreover, if (iv) is valid, we
have

(3.5) QG(f ; x̄) � inf

⇢
hz, wi

kwk2

��� z 2 D(@f)(x̄|0)(w), w 2 domD(@f)(x̄|0)

�

with the convention that 0/0 = 1.

Proof. Let us start the proof by assuming that (iv) is valid, i.e., 0 2 @pf(x̄) and
condition (3.4) is satisfied. We claim that (3.5) holds.

Since 0 2 @pf(x̄), we have 0 2 @f(x̄) and there exist r, � > 0 such that

(3.6) f(x)� f(x̄) � �
r

2
kx� x̄k

2 for all x 2 B�(x̄).

To proceed, pick any s > r and define g(x) := f(x) + s
2kx� x̄k

2, and then it is clear
that

(3.7) g(x)� g(x̄) �
s� r

2
kx� x̄k

2 for all x 2 B�(x̄).

Note further that @g(x) = @f(x) + s(x� x̄) and thus 0 2 @g(x̄). Thanks to the sum
rule of the graphical derivative [10, Proposition 4A.2], we have

(3.8) D(@g)(x̄|0)(w) = D(@f)(x̄|0)(w) + sw for all w 2 Rn
.
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Take any (z, w) 2 Rn
⇥ Rn with z 2 D(@g)(x̄|0)(w), i.e., z � sw 2 D(@f)(x̄|0)(w). It

follows from (3.4) that hz � sw,wi � ckwk
2, which implies

(3.9) kzk · kwk � hz, wi � (c+ s)kwk2.

We obtain that D(@g)(x̄, 0)�1(0) = {0}, i.e., @g is strongly metrically subregular at
x̄ for 0 by (2.5). Moreover, (2.6) tells us that

subreg @g(x̄|0)  (c+ s)�1
.

Since x̄ is a local minimizer of g by (3.7), it follows from Lemma 3.1 that for any
" > 0 there exists ⌘ 2 (0, �) such that

g(x)� g(x̄) + 1
2(subreg @g(x̄|0)+")kx� x̄k

2

� g(x̄) + 1
2((c+s)�1+")kx� x̄k

2

for all x 2 B⌘(x̄). Since f(x) = g(x)� s
2kx� x̄k

2, we obtain from the latter that

(3.10) f(x) � f(x̄)+
1

2

h 1

(c+ s)�1 + "
�s

i
kx� x̄k

2 = f(x̄)+
1

2

c
c+s � s"

(c+ s)�1 + "
kx� x̄k

2
.

By choosing " > 0 su�ciently small, x̄ is a strong local minimizer of f with a positive
modulus being smaller than but arbitrarily close to c. Moreover, inequality (3.5)
follows from (3.10) when taking " # 0 and c ! the right-hand side of (3.5).

Let us verify next [(iv))(iii))(ii))(i)]. Obviously, [(iv))(iii)] and [(ii))(i)]
follow directly from Lemma 3.1. It su�ces to prove [(iii))(ii)]. Suppose that (iii) is
valid, i.e., 0 2 @pf(x̄) and condition (3.3) is satisfied. It follows that

D(@f)(x̄|0)�1(0) = {0}.

By (2.5), @f is strongly metrically subregular at x̄ for 0 with any modulus  >

subreg@f(x̄|0) � 0. Since 0 2 @pf(x̄), we find some r, � > 0 satisfying (3.6) again.
Pick any s > r, and define g(x) = f(x)+ s

2kx�x̄k
2 as above. For any (z, w) 2 Rn

⇥Rn

with z 2 D(@g)(x̄|0)(w), we derive from (3.8) that z�sw 2 D(@f)(x̄|0)(w). It follows
from (3.3) that hz � sw,wi � 0, which means

kzk · kwk � hz, wi � skwk
2
.

This together with (2.5) and (2.6) tells us that @g is strongly metrically subregular
at x̄ for 0 with

subreg @g(x̄|0)  s
�1

.

Since x̄ is a local minimizer of g by (3.7), it follows from Lemma 3.1 again that for
any " > 0 with s"

s�1+" < 
�1, there exists � 2 (0, �) such that

g(x)� g(x̄) + 1
2(subreg @g(x̄|0)+")kx� x̄k

2

� g(x̄) + 1
2(s�1+")kx� x̄k

2 for all x 2 B�(x̄).

Since f(x) = g(x)� s
2kx� x̄k

2, we derive

f(x) � f(x̄)+
1

2

h 1

s�1 + "
�s

i
kx�x̄k

2 = f(x̄)�
1

2

s"

s�1 + "
kx�x̄k

2 for all x 2 B�(x̄).

Since s"
s�1+" < 

�1 and @f is strongly metrically subregular at x̄ for 0 with modulus
, x̄ is a (strong) local minimizer of f by Lemma 3.1 again. The proof is complete.
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It is worth noting that the implication [(iii))(ii)] is the main part in the above
result. The validity of (iii) implies SMS of the subdi↵erential is straightforward from
Levy–Rockafellar criterion (2.5), but the proof that turns the proximal stationary
point x̄ in (iii) to a local minimizer in (ii) is not trivial.

When the function f is twice di↵erentiable, the above theorem recovers the clas-
sical second-order su�cient condition, which says if rf(x̄) = 0 and there exists some
c > 0 such that

hr
2
f(x̄)w,wi � ckwk

2 for all w 2 Rn
,

then x̄ is a strong local minimizer of f . The above condition is usually written as an
equivalent form by

hr
2
f(x̄)w,wi > 0 for all w 2 Rn

, w 6= 0,

which is (3.3) in this case. In the nondi↵erential case as in Theorem 3.2, it is also
natural to question whether condition (3.4) is equivalent to (3.3). Obviously, (3.3) is
a consequence of (3.4). In the general case, we do not know yet whether the converse
implication is also true. But the equivalence between them will be clarified later in
Theorems 3.7, 3.10, and 4.7 for several broad classes of nondi↵erentiable functions.

As far as we know, the first idea of using the subgradient graphical derivative to
study the QGC was initiated by Eberhard and Wenczel [14], in which they introduced
the su�cient conditions of the second and third kinds (3.11).

Definition 3.3 (su�cient conditions of the second and third kinds [14]). Let
f : Rn

! R be a proper l.s.c. function with x̄ 2 dom f and 0 2 @pf(x̄). We say the
su�cient condition of the second kind holds at x̄ if there exists some c > 0 such that
for any w 2 domD(@pf)(x̄|0) with kwk = 1,

(3.11) 9 z 2 D(@pf)(x̄|0)(w) satisfying hz, wi � c,

where @pf is the proximal subdi↵erential of f .
Moreover, the su�cient condition of the third kind is said to hold at x̄ when there

exists  > 0 such that
(3.12)
hz, wi �  for all z 2 bD⇤(@pf)(x̄|0)(w) and w 2 dom bD⇤(@f)(x̄|0), kwk = 1.

Precisely, Theorem 71(2) in [14] claims that when the function f : Rn
! R is

l.s.c., prox-bounded, and proximally stable, the su�cient condition of the second kind
at x̄ with 0 2 @pf(x̄) ensures the QGC of f at x̄. Moreover, the su�cient condition of
the third kind at x̄ is also su�cient for the QGC due to [14, Theorem 69]. However,
it seems to us that these two results are incorrect due to the following example.1

Example 3.4 (inaccuracy of [14, Theorems 69 and 71(2)]). Define the function
f : R ! R by

f(x) =

8
>><

>>:

x if x > 1,
↵n+1x+ �n+1 if ↵n+1 < x  ↵n, n = 0, 1, 2, . . . ,
� if x = 0,
+1 if x < 0,

(3.13)

1This example modified from our previous one in the original submission by cutting one branch
on its graph was suggested by one of the referees.

D
ow

nl
oa

de
d 

04
/0

7/
21

 to
 1

41
.2

17
.8

4.
20

8.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUADRATIC GROWTH AND STRONG METRIC SUBREGULARITY 553

where ↵n = 1/(n+1)!, �n+1 :=
nX

k=0

1

k!(k + 2)!
with n = 0, 1, 2, . . ., �0 = 0, and � = lim

n!1
�n.

It is easy to see that f is a l.s.c. convex function with global optimal solution x̄ := 0, which
clearly implies that f is prox-bounded and proximally stable at x̄ in the sense of [14].

Figure 1: Graph of the l.s.c. convex function f .

Moreover, direct computation on @pf gives us that

@pf(x) = @f(x) =

8
>>>><

>>>>:

{1} if x > 1
[↵n+1,↵n] if x = ↵n, n = 0, 1, 2, . . .
{↵n+1} if ↵n+1 < x < ↵n, n = 0, 1, 2, . . .
R� if x = 0
; if x < 0.

(3.14)

Figure 2: Graph of the subgradient mapping @pf

9

Fig. 1. Graph of the l.s.c. convex function f .

where ↵n = 1/(n+1)!, �n+1 :=
nX

k=0

1

k!(k + 2)!
with n = 0, 1, 2, . . ., �0 = 0, and � = lim

n!1
�n.

It is easy to see that f is a l.s.c. convex function with global optimal solution x̄ := 0, which
clearly implies that f is prox-bounded and proximally stable at x̄ in the sense of [14].

Figure 1: Graph of the l.s.c. convex function f .

Moreover, direct computation on @pf gives us that

@pf(x) = @f(x) =

8
>>>><

>>>>:

{1} if x > 1
[↵n+1,↵n] if x = ↵n, n = 0, 1, 2, . . .
{↵n+1} if ↵n+1 < x < ↵n, n = 0, 1, 2, . . .
R� if x = 0
; if x < 0.

(3.14)

Figure 2: Graph of the subgradient mapping @pf

9

Fig. 2. Graph of the subgradient mapping @pf .

where ↵n = 1/(n + 1)!, �n+1 :=
Pn

k=0
1

k!(k+2)! with n = 0, 1, 2, . . . , �0 = 0, and

� = limn!1 �n (see Figure 1 for the graph of f). It is easy to see that f is an
l.s.c. convex function with global optimal solution x̄ := 0, which clearly implies that f
is prox-bounded and proximally stable at x̄ in the sense of [14].

Moreover, direct computation on @pf gives us that

@pf(x) = @f(x) =

8
>>>><

>>>>:

{1} if x > 1,
[↵n+1,↵n] if x = ↵n, n = 0, 1, 2, . . . ,
{↵n+1} if ↵n+1 < x < ↵n, n = 0, 1, 2, . . . ,
R� if x = 0,
; if x < 0.

(3.14)

See Figure 2 for the graph of @pf . Define further K := {(w, z)| 0  z  w}[{0}⇥R�;
then we have gph @pf ⇢ K and

(3.15) T := Tgph @pf (x̄, 0) ⇢ TK(x̄, 0) = K.

Next we verify the “�” inclusion in (3.15). Take any (w, z) with 0  z  w, and
consider the following three cases:
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• Case 1: (w, z) = (0, 0) clearly belongs to T .
• Case 2: z = 0 < w. Choose tn = ↵n/w # 0 as n ! 1; then we have
tn(w,

w
n+2 ) = (↵n,↵n+1) 2 gph @pf , and thus (w, w

n+2 ) ! (w, 0) 2 T .
• Case 3: 0 < z  w. Fix k 2 N satisfying 1/(k + 2)  z/w, and define
tn := ↵n/w for n � k; then we have tn(w, z) = (↵n,↵nz/w) 2 {↵n} ⇥

[↵n+1,↵n] ⇢ gph @pf .
It follows that {(w, z)| 0  z  w} ⇢ T . Moreover, for any z 2 R�, n 2 N,
we have 1

nz 2 @pf(0) for any n, which means (0, z) 2 T , i.e., {0} ⇥ R� ⇢ T .
Combining this inclusion with (3.15) ensures the equality in (3.15). Note further
that 1 2 D(@pf)(x̄|0)(1), which verifies the su�cient condition of the second kind
(3.11) at x̄ with  = 1. However, both (3.3) and (3.4) are not satisfied and the
quadratic growth condition (1.1) is not valid at x̄. This tells us that the statement
of [14, Theorem 71(2)] is not accurate even in the convex case.

Observe further that z 2 bD⇤(@pf)(x̄|0)(w) if and only if

(3.16) (z,�w) 2 bNgph @pf (x̄, 0) = T
� = {(x, y)| � x � y � 0},

which means z  w  0. It follows that

hz, wi � kwk
2

for any z 2 bD⇤(@pf)(x̄|0)(w). Hence, the su�cient condition of the third kind is also
satisfied, but as mentioned above, x̄ is not a strong local minimizer. It means [14,
Theorem 69] is incorrect too.

Analyzing the proofs of [14, Theorems 69 and 71(2)] reveals that the condition

(3.17) ri
⇣
dom bD⇤(@pf)(x̄|0)

⌘
6= {0}

observed from [14, Proposition 64] is missed in their statements, where ri(⌦) represents
the relative interior of a set ⌦ ⇢ Rm.2 However, note that (3.17) is also satisfied for
our function f , since

dom bD⇤(@pf)(x̄|0) = R�

thanks to (3.16).

As discussed in the introduction, the QGC and strong local minimizer could be
fully characterized via several di↵erent types of second-order directional derivatives
[3, 7, 24, 25, 27]. For instance, it follows from [24, Theorem 13.24] that x̄ is a strong
local minimizer to a proper function f : Rn

! R if and only if 0 2 @f(x̄) (or 0 2

@pf(x̄)) and the second subderivative (2.10) of f at x̄ for 0 is positive definite in the
sense that

(3.18) d
2
f(x̄|0)(w) > 0 for all w 2 Rn

, w 6= 0.

It is clear that the second subderivative (2.10) is a construction on primal space,
while the subgradient graphical derivative (2.11) includes both primal and dual spaces.
Connection between these two constructions could be found in (2.12) for a special class
of twice epidi↵erentiable functions. Despite the simplicity of the second subderivative
and the full characterization of QGC (3.18), computing d

2
f(x̄|0) could be challenging

under some strong regularity conditions. On the other hand, the subgradient graphical

2This nice observation was pointed out by one of the referees.
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derivative is fully computed in many broad classes of optimization problems [8, 9, 16]
under milder assumptions.

Unlike (3.18), both of our conditions (3.3) and (3.4) are not generally necessary
conditions for strong local minimizers, as shown in the following example.

Example 3.5. Let f : R ! R be the function defined as follows:

f(x) =

8
>>><

>>>:

x if x 2 {0} [ [1,+1),
1
2n if x 2 [ 3

2n+2 ,
1
2n ), n = 0, 1, 2, . . . ,

2x�
1

2n+1 if x 2 [ 1
2n+1 ,

3
2n+2 ), n = 0, 1, 2, . . . ,

f(�x) if x < 0.

We see that f(x) � f(0) + |x|
2 for all x 2 [�1, 1], which means that x̄ = 0 is a strong

local minimizer of f . On the other hand, since
 1[

n=0

✓
�

1

2n
,�

3

2n+2

◆
[ {0} [

1[

n=0

✓
3

2n+2
,
1

2n

◆!
⇥ {0} ⇢ gph @f,

it follows that R⇥ {0} ⇢ Tgph @f (x̄, 0). Therefore, for w 2 R\{0} and z = 0, we have

z 2 D(@f)(x̄|0)(w) and hz, wi = 0.

This shows that (3.3) and (3.4) are not necessary conditions for strong local minimiz-
ers.

Our next aim is to present several classes of functions at which both (3.3) and
(3.4) are also necessary conditions for strong local minimizers. To this end, we first
need the following lemma.

Lemma 3.6. Let h : Rn
! R be a proper function. Suppose that h is positively

homogeneous of degree 2 in the sense that h(�w) = �
2
h(w) for all � > 0 and w 2

domh. Then, for any w 2 domh and z 2 @h(w), we have hz, wi = 2h(w).

Proof. For any z 2 @h(w) with w 2 domh, by (2.7) and (2.8) we find sequences
{wk} ⇢ domh, zk 2 @ph(wk), and "k, rk > 0 such that wk ! w, h(wk) ! h(w), and
zk ! z and that

h(u)� h(wk) � hzk, u� wki �
rk

2
ku� wkk

2 for all u 2 B"k(wk).

By choosing u = �wk 2 B"k(wk) with 0 < � and kwkk · |� � 1| < "k in the above
inequality, the positive homogeneity of degree 2 of h tells us that

(3.19) (�2
� 1)h(wk) = h(�wk)� h(wk) � hzk, (�� 1)wki �

rk

2
(�� 1)2kwkk

2
.

When � > 1 satisfying kwkk · (�� 1) < "k, we get from inequality (3.19) that

(�+ 1)h(wk) � hzk, wki �
rk

2
(�� 1)kwkk

2
.

Taking � # 1 gives us that 2h(wk) � hzk, wki. Similarly, when 0 < � < 1 with
kwkk · (1� �) < "k, we derive from (3.19) that

(�+ 1)h(wk)  hzk, wki �
rk

2
(�� 1)kwkk

2
.

By letting � " 1, the latter implies 2h(wk)  hzk, wki. Thus, we have hzk, wki =
2h(wk), which clearly yields hz, wi = 2h(w) when k ! 1 due to the choice of zk, wk

at the beginning.
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Theorem 3.7 (equivalence between the QGC and SMS of the subdi↵erential at
a local minimizer for prox-regular and twice epidi↵erentiable functions). Let f :
Rn

! R be an l.s.c. proper function with x̄ 2 dom f . Suppose that 0 2 @f(x̄) and f is
subdi↵erentially continuous, prox-regular, and twice epidi↵erentiable at x̄ for 0. Then
the following assertions are equivalent:
(i) The QGC (1.1) is satisfied at x̄.
(ii) x̄ is a local minimizer and @f is strongly metrically subregular at x̄ for 0.
(iii) D(@f)(x̄|0) is positive definite in the sense of (3.3).
(iv) D(@f)(x̄|0) is positive definite in the sense of (3.4).
Moreover, if one of the assertions (i)–(iv) holds, then

(3.20) QG(f ; x̄) = inf

⇢
hz, wi

kwk2

��� z 2 D(@f)(x̄|0)(w), w 2 domD(@f)(x̄|0)

�
.

Proof. Since f is subdi↵erentially continuous and prox-regular at x̄ for 0 2 @f(x̄),
we have 0 2 @pf(x̄). Thus, implications [(iv) ) (iii) ) (ii) ) (i)] follow from
Theorem 3.2. It remains to verify that [(i) ) (iv)] and (3.20) is valid. To this end,
suppose that x̄ is a strong local minimizer with modulus  as in (1.1). We derive from
(1.1) and (2.10) that

(3.21) d
2
f(x̄|0)(w) � kwk

2 for all w 2 Rn
.

Since f is subdi↵erentially continuous, prox-regular, and twice epidi↵erentiable at x̄

for 0 2 @f(x̄), it follows from (2.12) that

(3.22) D(@f)(x̄|0) = @h with h(·) :=
1

2
d
2
f(x̄|0)(·).

Note from (2.10) and (3.21) that h is proper and positively homogeneous of degree
2. By Lemma 3.6, for any z 2 D(@f)(x̄|0)(w) = @h(w), we obtain from (3.21) and
(3.22) that

(3.23) hz, wi = 2h(w) = d
2
f(x̄|0)(w) � kwk

2
,

which clearly verifies (iv) and

  inf

⇢
hz, wi

kwk2

��� z 2 D(@f)(x̄|0)(w), w 2 domD(@f)(x̄|0)

�
.

Since  is an arbitrary modulus of the strong local minimizer x̄, the latter implies
that

QG(f ; x̄)  inf

⇢
hz, wi

kwk2

��� z 2 D(@f)(x̄|0)(w)

�
.

This along with (3.5) justifies (3.20) and finishes the proof.

Besides the full characterization of strong local minimizers in terms of (3.4) and
(3.3) for a class of prox-regular and twice epidi↵erentiable functions, the above theo-
rem also tells us the equivalence between the QGC and SMS of the subdi↵erential at
a local minimizer for 0. This correlation has been also established for di↵erent classes
of functions in [1, 11, 13].

The above theorem allows us to recover [14, Corollary 73].

Corollary 3.8. Let f : Rn
! R be an l.s.c. proper function with x̄ 2 dom f .

Suppose that 0 2 @f(x̄) and that f is subdi↵erentially continuous, prox-regular, and
twice epidi↵erentiable at x̄ for 0. Then the following assertions are equivalent:
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(i) x̄ is a strong local minimizer.
(ii) The su�cient condition of the second kind in Definition 3.3 holds at x̄.

Proof. Since f is subdi↵erentially continuous, prox-regular, and twice epidi↵er-
entiable at x̄ for 0 2 @f(x̄), the proof of Theorem 3.7, e.g., (3.23) tells us that

hz, wi = d
2
f(x̄|0)(w) for all z 2 D(@f)(x̄|0)(w) = D(@pf)(x̄|0)(w).

Hence, (ii) in this corollary is equivalent to Theorem 3.7(iv). The proof is complete
via Theorem 3.7.

The following concept of variational convexity was introduced recently by Rock-
afellar [23, Definition 2].

Definition 3.9 (variational convexity). Let f : Rn
! R̄ be an l.s.c. proper func-

tion, and let (x̄, v̄) 2 gph @f. One says that f is variationally convex at x̄ for v̄ if

there exist an open neighborhood X ⇥ V of (x̄, v̄) and a convex l.s.c. function bf  f

on X and " > 0 such that

[X" ⇥ V ] \ gph @f = [X ⇥ V ] \ gph @ bf,

and f(x) = bf(x) for every x 2 ⇧X

�
[X" ⇥ V ] \ gph @f

�
, where X" := {x 2 X|f(x) <

f(x̄) + "} and ⇧X : Rn
⇥Rn

! Rn is the mapping given by ⇧X(x, v) = x for x 2 Rn

and v 2 Rn
.

The class of variationally convex functions includes convex functions. However, it
may contain nonconvex functions [22]. Note further that variational convexity implies
prox-regularity and subdi↵erential continuity [22]. The following result resembles
Theorem 3.7 for the class of variationally convex functions.

Theorem 3.10 (equivalence between the QGC and SMS of the subdi↵erential
at a local minimizer for variationally convex functions). Let f : Rn

! R̄ be an
l.s.c. proper function with x̄ 2 dom f . Suppose that 0 2 @f(x̄) and that f is varia-
tionally convex at x̄ for 0. Then the following assertions are equivalent:
(i) The QGC (1.1) is satisfied at x̄.
(ii) x̄ is a local minimizer and @f is strongly metrically subregular at x̄ for 0.
(iii) D(@f)(x̄|0) is positive definite in the sense of (3.3).
(iv) D(@f)(x̄|0) is positive definite in the sense of (3.4).
Moreover, if one of the assertions (i)–(iv) holds, then

QG(f ; x̄) � inf

⇢
hz, wi

kwk2

��� z 2 D(@f)(x̄|0)(w), w 2 domD(@f)(x̄|0)

�
�

1
2
QG(f ; x̄).(3.24)

Proof. Note from the variational convexity of f at x̄ for 0 2 @f(x̄) and (2.9) that

0 2 @ bf(x̄) and 0 2 @pf(x̄). Similarly to the proof of Theorem 3.7, we only need to
verify [(i) ) (iv)] and the right inequality in (3.24) due to (3.5). Suppose that x̄ is a
strong local minimizer with modulus , that is, there is a number � > 0 such that

(3.25) f(x)� f(x̄) �


2
kx� x̄k

2 for all x 2 B�(x̄).

The variational convexity of f at x̄ for 0 allows us to find an open neighborhood X⇥V

of (x̄, v̄) and a convex l.s.c. function bf  f on X with

[X ⇥ V ] \ gph @f = [X ⇥ V ] \ gph @ bf,
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and f(x) = bf(x) for every x 2 ⇧X

�
[X ⇥ V ] \ gph @f

�
. Pick any z 2 D@f(x̄|0)(w);

then, by (2.11), there exist tk # 0 and (zk, wk) ! (z, w) such that

(x̄, 0) + tk(wk, zk) 2 [X ⇥ V ] \ gph @f = [X ⇥ V ] \ gph @ bf.

Note that x̄, x̄+ tkwk 2 ⇧X

�
[X ⇥ V ] \ gph @f

�
. It follows from (3.25) that

bf(x̄+ tkwk) = f(x̄+ tkwk) � f(x̄) +


2
t
2
kkwkk

2 = bf(x̄) + 

2
t
2
kkwkk

2

for all k su�ciently large.

Furthermore, since bf is convex and (x̄, 0) + tk(wk, zk) 2 gph @ bf, we have

bf(x̄)� bf(x̄+ tkwk) � �htkzk, tkwki for all k.

Combining the above two inequalities gives us that hzk, wki �

2 kwkk

2 for su�ciently
large k . Letting k ! 1, we get hz, wi �


2 kwk

2
, which clearly clarifies [(i) ) (iv)]

and the right inequality in (3.24).

4. Equivalence between the quadratic growth and SMS of the sub-
di↵erentials for conic programs. In this section, let us consider the following
constrained optimization problem:

(4.1) (P ) min
x2Rn

g(x) s.t. q(x) 2 ⇥,

where g : Rn
! R and q : Rn

! Rm with q(x) =
�
q1(x), ..., qm(x)

�
are twice

continuously di↵erentiable, and ⇥ is a nonempty closed convex subset of Rm
.

Define � := {x 2 Rn
| q(x) 2 ⇥} as the feasible solution set to problem (4.1), and

fix x̄ 2 � with ȳ := q(x̄). Put

(4.2) f(x) := g(x) + ��(x) for all x 2 Rn
,

where ��(x) is the indicator function to �, which equals 0 when x 2 � and1 otherwise.
Problem (4.1) can be rewritten as an unconstrained optimization problem:

min
x2Rn

f(x).

The given point x̄ 2 � is said to be a strong local minimizer to problem (4.1) if
there exist numbers  > 0, � > 0 such that

(4.3) g(x) � g(x̄) +


2
kx� x̄k

2 for all x 2 � \ B�(x̄),

that is, x̄ is a strong local minimizer of the function f defined above. In the case of
(4.3), we say the QGC holds at x̄ to problem (4.1). Moreover, the exact modulus for
problem (4.1) at x̄ denoted by QG((P ); x̄) is the supremum of all  such that (4.3) is
satisfied, i.e., QG((P ); x̄) = QG(f ; x̄).

We call x̄ 2 � a local minimizer to (4.1) if condition (4.3) holds with some � >

0 and  = 0. Furthermore, x̄ is a stationary point when there exists a Lagrange
multiplier � 2 N⇥(q(x̄)) such that

(4.4) 0 = rg(x̄) +rq(x̄)T�.

The set of Lagrange multipliers satisfying (4.4) is denoted by ⇤(x̄).
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In what follows, we always assume that the closed convex set ⇥ is C2-cone reduc-
ible at ȳ to a pointed closed convex cone C ⇢ Rl in the sense that there exists a neigh-
borhood V ⇢ Rm of ȳ and a twice continuously di↵erentiable mapping h : V ! Rl

such that

(4.5) h(ȳ) = 0, rh(ȳ) is surjective, and ⇥ \ V =
�
y 2 V | h(y) 2 C

 
.

For more information on the concept of C2-cone reducibility, we refer the reader to the
paragraph right after Definition 3.135 in [7]. Note that the assumption of reducible
sets allows us to cover a wide range of optimization problems, including nonlinear
programming, semidefinite programming, and second-order cone programming; see,
e.g., [7, section 3.4.4].

Furthermore, we assume that the metric subregularity constraint qualification
(MSCQ) [15, 16] holds at x̄, which means the set-valued mapping F (x) := q(x)�⇥,
x 2 Rn, is metrically subregular at x̄ for 0. This condition is well known to be sta-
ble around x̄ and strictly weaker than the notable Robinson constraint qualification
(RCQ) at x̄:

(4.6) 0 2 int {q(x̄) +rq(x̄)Rn
�⇥}.

Furthermore, if the MSCQ is satisfied at x̄, there exists some ⌘ > 0 such that the
normal cone N�(x) is identical with @p��(x) for all x 2 B⌘(x̄) and is computed by

(4.7) N�(x) = @p��(x) = {rq(x)T�| � 2 N⇥(q(x))} for x 2 B⌘(x̄).

The main purpose of this section is to establish that for the function f given by
(4.2), the quadratic growth, SMS of the subdi↵erential at a local minimizer, and the
positive definiteness of the subgradient graphical derivative at a stationary point are
three equivalent properties.

To this end, we need to calculate the subgradient graphical derivative on the
function f defined in (4.2) at the given point x̄ for 0 due to Theorem 3.2 under the
assumption that 0 2 @pf(x̄). Under the MSCQ at x̄, it follows from (4.7) that

(4.8) @pf(x) = rg(x) + @p��(x) = @f(x) for x 2 B⌘(x̄)

with the same ⌘ in (4.7). By (4.8), observe that 0 2 @pf(x̄) if and only if x̄ is a
stationary point to (4.4). Furthermore, we have

(4.9) D(@f)(x̄|0)(w) = D(rg +N�)(x̄|0)(w) = r
2
g(x̄)w +DN�(x̄|�rg(x̄))(w).

The following result taken from [16, Corollary 5.4] is helpful in our study.

Lemma 4.1 (see [16, Corollary 5.4 and Theorem 3.3]). Let x̄ be a stationary
point to problem (4.1). Suppose that the MSCQ is satisfied at x̄ and that the set ⇥ is
C
2-reducible at ȳ = q(x̄). Then we have

(4.10)

DN�(x̄,�rg(x̄))(w) =
n�

r
2(�T

q)(x̄) + eH�

�
w | � 2 ⇤(x̄;w)

o
+NK(w) for w 2 Rn

,

where K is the critical cone defined by

(4.11) K := K
�
x̄,�rg(x̄)

�
:= T�(x̄) \ {�rg(x̄)}?

and the set ⇤(x̄;w) is written by

(4.12) ⇤(x̄;w) := argmax
�
w

T
r

2(�T
q)(x̄)w + w

T eH�w| � 2 ⇤
�
x̄)
� 

6= ;
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with

(4.13) eH�w := rq(x̄)Tr2

⌧⇣
rh
�
q(x̄)

�⇤⌘�1
(�), h(·)

��
q(x̄)

�
rq(x̄)w.

Pick any z 2 D(@f)(x̄|0)(w); then it follows from (4.9) and (4.10) that w 2

domD(@f)(x̄|0) = K and there exist �̄ 2 ⇤(x̄;w) and u 2 NK(w) such that

z = r
2
g(x̄)w +

�
r

2(�̄T
q)(x̄) + eH�̄

�
w + u.

Hence, we have

hz, wi = hr
2
g(x̄)w,wi+ w

T
r

2(�̄T
q)w + w

T eH�̄w + hu,wi.

Since K is a cone, hu,wi = 0. We derive from the latter and (4.12) that

hz, wi = max
�
wT

r
2L(x̄,�)w + wT eH�w | � 2 ⇤(x̄)

 
for z 2 D(@f)(x̄|0)(w), w 2 K,(4.14)

with the Lagrange function L(x,�) := g(x) + h�, q(x)i for x 2 Rn
,� 2 Rm. This

together with Theorem 3.2 tells us that the second-order condition

(4.15) max
�
w

T
r

2
L(x̄,�)w + w

T eH�w | � 2 ⇤(x̄)
 
> 0 for all w 2 K

is su�cient for strong local minimizer x̄ when the MSCQ holds at the stationary point
x̄. This is a classical fact [7, Theorem 3.137] established under the strictly stronger
RCQ. Moreover, (4.15) is necessary for the strong local minimizer x̄ under the RCQ.
In order to show this fact under the MSCQ, we need a few lemmas in preparation.

Let Q : q�1(V ) ! R` be given by Q(x) = h � q(x) with h and V taken from (4.5).

Lemma 4.2 (see [16, Proposition 3.1]). Suppose that the MSCQ holds for the
system q(x) 2 ⇥ at x̄ 2 �. Then with any w 2 Rn satisfying rQ(x̄)w 2 C one can
find a positive number  such that for any (z, y) 2 Rn

⇥ R` with

rQ(x̄)z + hw,r
2
Q(x̄)wi+ y 2 TC(rQ(x̄)w),

there exists ez 2 Rn satisfying the conditions

rQ(x̄)ez + hw,r
2
Q(x̄)wi 2 TC(rQ(x̄)w) and kez � zk  kyk.

The latter condition can be reformulated as the upper Lipschitzian property

 (y) ⇢  (0) + kykBRn for all y 2 R`
,

where

 (y) :=
�
z 2 Rn

| rQ(x̄)z + hw,r
2
Q(x̄)wi+ y 2 TC(rQ(x̄)w)

 
.

Lemma 4.3 (see [7, p. 242]). If w 2 Rn with rQ(x̄)w 2 C, then

T
2
C

�
Q(x̄),rQ(x̄)w

�
= TC

�
rQ(x̄)w

�
,

where

T
2
C

�
Q(x̄),rQ(x̄)w

�
:=

⇢
v | 9tk & 0 s.t. d

✓
Q(x̄) + tkw +

1

2
t
2
kv;C

◆
= o(t2k)

�

is the outer second-order tangent cone to the set C at Q(x̄) and in the direction
w 2 TC(Q(x̄)).
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Lemma 4.4. Let x̄ be a local minimizer of (4.1) satisfying the MSCQ. Then, for
each w 2 K

�
x̄,�rg(x̄)

�
and z 2 Rn with

(4.16) rQ(x̄)z + hw,r
2
Q(x̄)wi 2 T

2
C

�
Q(x̄),rQ(x̄)w

�
,

we have
rg(x̄)z + hw,r

2
g(x̄)wi � 0.

Proof. Take any w 2 K
�
x̄,�rg(x̄)

�
and z 2 Rn satisfying (4.16). Then there

exists tk & 0 such that

(4.17) d

✓
Q(x̄) + tkrQ(x̄)w +

1

2
t
2
k

�
rQ(x̄)z + hw,r

2
Q(x̄)wi

�
;C

◆
= o(t2k).

Defining x(tk) := x̄+ tkw + 1
2 t

2
kz, we have

d
⇣
Q
�
x(tk)

�
;C

⌘
= d

✓
Q(x̄)+tkrQ(x̄)w+

1
2
t2k
�
rQ(x̄)z+hw,r2Q(x̄)wi

�
+o(t2k), C

◆
= o(t2k).

Since the MSCQ holds at x̄, the set-valued mapping MQ(x) = Q(x) � C is metri-
cally subregular at x̄ for 0 = Q(x̄) 2 R` by [16, Lemma 5.2]. Then there exist a
neighborhood U of x̄ and a real number  > 0 such that

d
�
x;� \ q

�1(V )
�
= d(x;M�1

Q (0)
�
 d

�
0;MQ(x)

�
= d

�
Q(x);C

�
for all x 2 U.

We assume without loss of generality that x(tk) 2 U for all k. Consequently,

d
�
x(tk);� \ q

�1(V )
�
 d

⇣
Q
�
x(tk)

�
;C
⌘
= o(t2k).

So for each k one can find ex(tk) 2 � \ q
�1(V ) with kx(tk) � ex(tk)k = o(t2k). Noting

that x(tk) ! x̄ as k ! 1 and x̄ is a local optimal solution to (4.1), we may assume
that g

�
ex(tk)

�
� g(x̄) for all k. On the other hand, by the Taylor expansion,

g
�
x(tk)

�
= g(x̄) + tkrg(x̄)w +

1

2
t
2
k

�
rg(x̄)z + hw,r

2
g(x̄)wi

�
+ o(t2k),

and g
�
x(tk)

�
= g
�
ex(tk)

�
+ o(t2k). We have

g(x̄) + tkrg(x̄)w +
1

2
t
2
k

�
rg(x̄)z + hw,r

2
g(x̄)wi

�
+ o(t2k) � g(x̄) for all k.

Combining this with rg(x̄)w = 0 yields

1

2
t
2
k

�
rg(x̄)z + hw,r

2
g(x̄)wi

�
+ o(t2k) � 0.

This implies that rg(x̄)z + hw,r
2
g(x̄)wi � 0.

Lemma 4.5 (second-order necessary optimality conditions for local minimizers of
conic program under the MSCQ and C

2-cone reducibility constraint). Suppose that
x̄ is a stationary point of (4.1) at which the MSCQ is satisfied and that ⇥ is C

2-
cone reducible at ȳ = q(x̄) to a pointed closed convex cone C. Consider the following
assertions:

(i) x̄ is a local minimizer for (4.1).
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(ii) D(@f)(x̄|0) is positive semidefinite in the sense that

(4.18) hz, wi � 0 for all z 2 D(@f)(x̄|0)(w), w 2 domD(@f)(x̄|0).

(iii) For each w 2 domD(@f)(x̄|0), there exists z 2 D(@f)(x̄|0)(w) such that

(4.19) hz, wi � 0.

(iv) For each w 2 K, one has

max
�
w

T
r

2
L(x̄,�)w + w

T eH�w | � 2 ⇤
�
x̄
� 

� 0

with eH� defined in (4.13).
Then we have [(i) ) (ii) , (iii) , (iv)].

Proof. [(i) ) (iv)]. Suppose x̄ is a local minimizer for (4.1). For each w 2 K, let
us consider the linear conic problem ( eP ) defined as

( eP )
inf

z2Rn
rg(x̄)z + hw,r

2
g(x̄)wi

s.t. rQ(x̄)z + hw,r
2
Q(x̄)wi 2 TC

�
rQ(x̄)w

�
,

and its parametric dual ( eD) given by

( eD)
sup
µ2R`

w
T
r

2
xL(x̄, µ)w

s.t. µ 2 NC

�
rQ(x̄)w

�
,rQ(x̄)Tµ = �rg(x̄),

where L(x, µ) = g(x) + hµ,Q(x)i, (x, µ) 2 Rn
⇥R`

. By Lemma 4.2, the feasible set of
( eP ) is nonempty. Moreover, by Lemmas 4.3 and 4.4, val( eP ) is finite and val( eP ) � 0,
where val( eP ) is the optimal value of ( eP ). Due to the upper Lipschitz continuity
of the mapping  in Lemma 4.2, we derive from [7, Propositions 2.147 and 2.186]
that val( eP ) = val( eD) and that the optimal solution set to ( eD) is nonempty. With

� = rh
�
q(x̄)

�T
µ, note that

w
T
r

2
xL(x̄, µ)w

= w
T
r

2
xL(x̄,�)w +

D
µ, (rq(x̄)w)Tr2

h
�
q(x̄)

�
(rq(x̄)w)

E

= w
T
r

2
xL(x̄,�)w +

D⇣
rh
�
q(x̄)

�⇤⌘�1
(�), (rq(x̄)w)Tr2

h
�
q(x̄)

�
(rq(x̄)w)

E

= w
T
r

2
xL(x̄,�)w + w

T eH�w.

We claim further that

(4.20) {� = rh
�
q(x̄)

�T
µ| µ 2 NC

�
rQ(x̄)w

�
,rQ(x̄)Tµ = �rg(x̄)} = ⇤(x̄).

To justify the “⇢” inclusion, pick any µ 2 NC

�
rQ(x̄)w

�
⇢ C

� with rQ(x̄)Tµ =

�rg(x̄) and define � := rh
�
q(x̄)

�T
µ. Since C is a convex cone and Q(x̄) = h

�
q(x̄)

�
=

h(ȳ) = 0, we have

� = rh
�
q(x̄)

�T
µ 2 rh

�
q(x̄)

�T
C

� = rh
�
q(x̄)

�T
NC(Q(x̄)) = N⇥(q(x̄)).

Moreover, it is clear that

(4.21) rq(x̄)T� = rq(x̄)Trh
�
q(x̄)

�T
µ = rQ(x̄)Tµ = �rg(x̄).
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This shows that � 2 ⇤(x̄) and thus verifies the “⇢” inclusion in (4.20).
To ensure the opposite inclusion in (4.20), take any � 2 ⇤(x̄). Since � 2

N⇥(q(x̄)) = rh(q(x̄))TNC

�
Q(x̄)

�
, we find µ 2 NC(Q(x̄)) = C

� with � = rh(q(x̄))Tµ.
It is similar to (4.21) that rQ(x̄)Tµ = �rg(x̄). Moreover, note from the fact
w 2 K := T�(x̄) \ {�rg(x̄)}? that

hµ,rQ(x̄)wi = hrQ(x̄)Tµ,wi = h�rg(x̄), wi = 0,

showing that µ 2 {rQ(x̄)w}?. Since C is a convex cone, NC(rQ(x̄)w) = C
�
\

{rQ(x̄)w}?. Thus, µ 2 NC(rQ(x̄)w). This clearly verifies the “�” inclusion in
(4.20).

Note further from (4.5) that rh(q(x̄))T is injective; then we derive that

(4.22) val( eD) = max
�
w

T
r

2
L(x̄,�)w + w

T eH�w | � 2 ⇤(x̄)
 
.

Since val( eD) = val( eP ) � 0, the latter implies assertion (iv).
[(iv) , (iii) , (ii)]. Take any z 2 D(@f)(x̄|0)(w) with w 2 domD(@f)(x̄|0).

We obtain from (4.9) and Lemma 4.1 that domD@f(x̄|0) = K. The equivalence
[(iv) , (iii) , (ii)] simply follows from (4.14). The proof is complete.

Remark 4.6. For the nonlinear programming, the mapping h in the definition of
C

2-conic reducible sets can be chosen to be an a�ne mapping, and thus eH�u = 0 for
all u 2 Rn

. In this case, the implication [(i) ) (iv)] was established by Guo, Lin, and
Ye [18, Theorem 2.1] under the calmness condition, which is weaker than the MSCQ.

The main result of this section reads as follows.

Theorem 4.7 (equivalence between the QGC and SMS of the subdi↵erential at
a local minimizer for C

2-reducible conic programs under the MSCQ). Suppose that
x̄ is a stationary point of (4.1) satisfying MSCQ and that ⇥ is C

2-cone reducible at
ȳ = q(x̄) to a pointed closed convex cone C. The following assertions are equivalent:

(i) f satisfies QGC (1.1) at x̄.
(ii) x̄ is a local minimizer to (4.1) and @f is strongly metrically subregular at x̄

for 0.
(iii) D(@f)(x̄|0) is positive definite in the sense of (3.3).
(iv) There exists  > 0 such that

(4.23) hz, wi � kwk
2 for all z 2 D(@f)(x̄|0)(w), w 2 domD(@f)(x̄|0).

Moreover, if one of the assertions (i)–(iv) holds, then

(4.24) QG(f ; x̄) = inf

⇢
hz, wi

kwk2

��� z 2 D(@f)(x̄|0)(w), w 2 domD(@f)(x̄|0)

�
.

Proof. We see that x̄ is a strong local minimizer for (4.1) with modulus  if and
only if x̄ is a local minimizer of the function

g(x) := g(x)�


2
kx� x̄k

2 over �.

Applying Lemma 4.5 by replacing the function g there by g(x) along with using the
sum rules of the graphical derivative, the latter gives us that

hz, wi � kwk
2 for all z 2 D(@f)(x̄|0)(w), w 2 domD(@f)(x̄|0),
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which verifies [(i) ) (iv)] and

QG(f ; x̄)  inf

⇢
hz, wi

kwk2

��� z 2 D(@f)(x̄|0)(w), w 2 domD(@f)(x̄|0)

�
.

Note further from (4.7) and (4.8) that @pf(x) = @f(x) for x around x̄. Thus, the
implication [(iv) ) (iii) ) (ii) ) (i)] and the “�” inequality in (4.24) follows from
Theorem 3.2. This verifies the equivalence of (i)–(iv) and the validity of (4.24). The
proof is complete.

Remark 4.8 (comparison of the positive definiteness of the subgradient graphical
derivative with other second-order optimality conditions). Under the assumption of
Theorem 4.7, consider the following assertions:

(v) The su�cient condition of the second kind in Definition 3.3 holds at x̄; i.e.,
there exists  > 0 such that for each w 2 domD(@pf)(x̄|0) with kwk = 1 condition
(3.11) holds.

(vi) The second-order su�cient condition holds at x̄ in the sense that for each
w 2 K \ {0} one has

max
�
w

T
r

2
L(x̄,�)w + w

T eH�w | � 2 ⇤(x̄)
 
> 0.

(vii) There exists  > 0 such that

(4.25) max
�
w

T
r

2
L(x̄,�)w + w

T eH�w | � 2 ⇤(x̄)
 
� kwk

2 for all w 2 K.

Using (4.14) and the equality domD(@f)(x̄|0) = K, we see that

[(v) , (iv) , (vii) ) (vi) ) (iii)].

So, by Theorem 4.7, assertions (i)–(vii) are indeed equivalent. Furthermore, it is easy
to check that

QG((P ); x̄) := QG(f ; x̄) = inf
w2K,kwk=1

max
�
w

T
r

2
L(x̄,�)w + w

T eH�w | � 2 ⇤(x̄)
 
.

The equivalence between (i) and (vi) above was established under the RCQ in
Bonnans and Shapiro [7, Theorem 1.137]. An earlier version of this no gap second-
order optimality condition for nonlinear programming was proved in Io↵e [19] and
Ben-Tal [5] under the Mangasarian–Fromovitz constraint qualification (MFCQ), a
particular of RCQ (4.6).

Next let us provide an example where the MSCQ holds while RCQ (4.6) does not,
but assertions (i)–(iv) in Theorem 4.7 are satisfied.

Example 4.9. Consider the problem (EP1) as follows:

(4.26) (EP1) min
x2R3

g(x) s.t. q(x) 2 Q3,

where Q3 =
�
(s0, s1, s2) 2 R3

| s0 �

p
s
2
1 + s

2
2

 
is the second-order cone in R3

, and
the objective function and the constraint mapping are given, respectively, by

g(x) :=
1

2
x
2
1 + x

2
2 and q(x) :=

�
2x2

2, x
2
2 � x3, x

2
2 + x3

�
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for all x = (x1, x2, x3) 2 R3
. It is well known that the second-order cone Q3 is C2-cone

reducible. Moreover, define

� :=
�
x| q(x) 2 Q3

 
=
�
x = (x1, x2, x3) 2 R3

| x
2
2 � |x3|

 
.

With x̄ := (0, 0, 0), we see that

g(x)� g(x̄)= 1
2x

2
1 + x

2
2

= 1
2x

2
1 +

1
2x

2
2 +

1
2x

2
2

�
1
2x

2
1 +

1
2x

2
2 +

1
2 |x3|

�
1
2 (x

2
1 + x

2
2 + x

2
3)

= 1
2kxk

2

for all x = (x1, x2, x3) 2 � with |x3|  1. So x̄ is a strong local minimizer to problem
(4.26).

It is easy to check that

rq(x̄) =

0

@
0 0 0
0 0 �1
0 0 1

1

A , NQ3

�
q(x̄)

�
= �Q3.

Hence we have

NQ3

�
q(x̄)

�
\ kerrq(x̄)T =

[

t2R
(�1,�

p

2|t|]⇥ {t}⇥ {t},

which shows that RCQ (4.6) is not satisfied at x̄.
Next let us verify the validity of the MSCQ at x̄. Since q(x) 2 �Q3 if and only

if x2 = x3 = 0, we have d
�
q(x);Q3

�
= 0 when q(x) 2 Q3 [ (�Q3). When q(x) /2

Q3 [ (�Q3), note that
q
(x2

2 � x3)2 + (x2
2 + x3)2�2x2

2 =
q
2x4

2 + 2x2
3�2x2

2 � (|x3|+x
2
2)�2x2

2 = |x3|�x
2
2 > 0.

It follows that

d
�
q(x);Q3

�
=

(
0 if q(x) 2 Q3 [ (�Q3),

1p
2

�p
2x4

2 + 2x2
3 � 2x2

2

�
if q(x) 62 Q3 [ (�Q3).

When q(x) 2 Q3 [ (�Q3), we have d(x;�) = d
�
q(x);Q3

�
= 0. When q(x) 62 Q3 [

(�Q3), define u :=
�
x1, x2,

x3
|x3|x

2
2

�
2 � and observe that

d(x;�)  kx� uk =

����x3 �
x3

|x3|
x
2
2

���� =
��|x3|� x

2
2

�� = |x3|� x
2
2 

p

2d
�
q(x),Q3

�
.

This shows that the MSCQ holds at x̄. By Theorem 4.7, assertions (i)–(iv) hold.

Under the setting of Theorem 4.7, condition (vi) is equivalent to the su�cient
condition given in [7, Theorem 3.86], ensuring that not only is the point in question
a strong local minimizer, but the subdi↵erential is all strongly metrically subregular.
As shown by the following example [9], in the absence of the MSCQ, the condition
given in [7, Theorem 3.86] is su�cient for the point to be a strong local minimizer
alone, without SMS of the subdi↵erential.
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Example 4.10. Consider the problem (EP2) as follows:

(4.27) (EP2) min
x2R

g(x) := 1
2x

2 s.t. q(x) 2 ⇥,

where

q(x) =

(
x
6 sin 1

x if x 6= 0,

0 if x = 0,

and ⇥ = {0}. Put

� := q
�1(⇥) = {0} [

⇢
1

n⇡
: n = ±1, ±2, ±3, . . .

�
.

For xn = 1
2

�
1
n⇡ + 1

(n+1)⇡

�
= 2n+1

2n(n+1)⇡ , n = 1, 2, . . . , we see that

d(xn,�) =
1

2n(n+ 1)⇡
and d

�
q(xn),⇥

�
= |x

6
n sin

1

xn
| 

✓
2n+ 1

2n(n+ 1)⇡

◆6

.

Hence,

lim
n!1

d
�
q(xn),⇥

�

d(xn,�)
= 0,

proving that the MSCQ is not satisfied at x̄ := 0 2 �. Obviously, K = R, ⇤(x̄) = R,
and

⇤G(x̄) :=
�
(↵,�) 2 R+ ⇥ R : rxL

G(x̄,↵,�) = 0, (↵,�) 6= (0, 0)
 

=
�
(↵,�) 2 R+ ⇥ R : (↵,�) 6= (0, 0)

 
,

where L
G(x,↵,�) := ↵g(x) + h�, q(x)i. For T (h) := T

2
⇥

�
q(x̄),rq(x̄)h

�
= {0}, we

have
�(�, T (h)

�
= 0 for all h 2 R,

and thus

h
T
r

2
xL

G(x̄,↵,�)h� �(�, T (h)
�
= |h|

2
> 0 for all h 2 K\{0}, (↵,�) 2 ⇤G(x̄),

where �(�, T (h)
�
:= supv2T (h)h�, vi. Moreover, for each h 2 K, ⇥ := {0} is outer

second-order regular at the point q(x̄) in the direction rq(x̄)h and with respect to
rq(x̄) in the sense of [7, Theorem 3.86]. Therefore, [7, Theorem 3.86] can be used to
justify that x̄ is a strong local minimizer. Note that, for f(x) := g(x) + ��(x), x 2 R,
we see that

@f(x) =

(
R if x 2 �,

; if x 2 R\�,

and thus @f(·) is not strongly metrically subregular at x̄ for 0 2 @f(x̄). This shows, in
the absence of the MSCQ, that the su�cient condition formulated in [7, Theorem 3.86]
guarantees that x̄ is a strong local minimizer alone, without SMS of the subdi↵erential.

5. Conclusion. For an extended-real-valued lower semicontinuous proper func-
tion, we have shown that the positive definiteness of the subgradient graphical deriv-
ative at a proximal stationary point is su�cient for the point to be a local minimizer
at which the subdi↵erential is strongly subregular for 0. The latter was known to
imply the quadratic growth. When the function is either a subdi↵erentially continu-
ous, prox-regular, twice epidi↵erentiable function, a variationally convex function, or
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the sum of the objective function and the indicator function of the feasible set of a
C
2-cone reducible constrained program satisfying the MSCQ, we have proved that the

quadratic growth, SMS of the subdi↵erential at a local minimizer, and the positive
definiteness of the subgradient graphical derivative at a stationary point are equiv-
alent. In the future, we intend to extend our applications to di↵erent optimization
problems, including composite functions [6, 7, 24] and mathematical programs with
equilibrium constraints [17, 18]. This extension will require further computation on
the second-order structures of the subgradient graphical derivative presented in our
paper. Another direction that caught our attention is to study the epidi↵erentiability
of composite functions in order to use the advantage of Theorem 3.7.
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