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Abstract

This paper concerns the interconnection between the positive definiteness of limiting
coderivative and the local strong maximal monotonicity of set-valued mappings suspected
in Mordukhovich and Nghia (STAM J. Optim. 26, 1032-1059, 2016, Conjecture 3.6). We
disprove the conjecture by a counterexample and provide some special classes at which
it is true. However, the positive definiteness of limiting coderivative characterizes a new
property called nearly strong monotonicity. Consequently, we show that the strong met-
ric regularity of set-valued mappings could be obtained under the positive definiteness of
limiting coderivative.

Keywords Local maximal monotone - Positive definiteness - Limiting coderivative -
Strong metric regularity - Set-valued mappings - Variational analysis
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1 Introduction

Maximal monotonicity is a fundamental notion in mathematics with vast applications in
different areas such as partial differential equations [10], control theory [2], optimization
and algorithms [1, 3, 25, 28]. In the recent years, a local version of maximal monotonicity
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[22] has been used to study solution stability of optimization, equilibrium, and variational
problems [18, 19, 22, 23, 26, 27]. In these papers, the local maximal monotonicity of a spe-
cial set-valued mapping that is the subdifferential of nonsmooth and nonconvex functions is
mainly investigated.

Traditionally, maximal monotonicity of a mapping has strong connection with the pos-
itive semi-definitness of its “derivative”. Roughly speaking, a differentiable single-valued
mapping is (maximal) monotone if and only if its derivative is positive semi-definite at any
point. When a single-valued mapping is not differentiable, extension of this classical result
could be found in [5, 11, 13]. For set-valued mappings, e.g., the limiting subdifferential
mapping to a nonsmooth function, the first necessary condition for maximal monotonicity
was established by Poliquin and Rockafellar [23, Theorem 2.1] via the semi-definiteness
of limiting coderivatives acting on these mappings at any point on their graphs. Recently,
Chieu et al. [6] showed that this condition turns to be sufficient under the assumption
of hypomonotonicity on the set-valued mappings. Both [6, 23] literally use the limiting
coderivative, one of the most important notions in variational analysis introduced by Mor-
dukhovich; see his monographs [15, 16] for its detail developments and vast applications to
optimization and optimal control.

For local maximal monotonicity, similar connections could be established around the
point in question [18, 22]. But when dealing with a local property, a pointwise char-
acterization is usually more favorable. Even in the case of a continuously differentiable
single-valued mapping, the semi-positive definiteness of its derivative at one point is not
enough to guarantee the local maximal monotonicity of this mapping. However, the point-
wise positive definiteness of its derivative is equivalent to a stronger concept, the local
strong maximal monotonicity; see, e.g. [18, 23]. In the case of nondifferentiable Lips-
chitz continuous single-valued mappings, Mordukhovich and Nghia [18, Corollary 3.5]
showed that such monotonicity could be characterized by the positive definiteness of lim-
iting coderivative at the point in question. They also conjectured in [18, Conjecture 3.6]
that the criteria remains valid for hypomonotone set-valued mappings. There are several
evidences of this conjecture established in [18] for broad classes of set-valued mappings
containing limiting subdifferential of nonsmooth nonconvex functions.

Our paper mainly surrounds the aforementioned conjecture with more emphasis on the
positive definiteness of limiting coderivative for set-valued mappings. We indeed provide a
counterexample, but show that the pointbased positive definiteness of limiting coderivative
is equivalent to a property that is strongly related to the local maximal strong monotonicity.
This allows us to establish some special classes different from those in [18] where the con-
jecture is true. Furthermore, we show that the positive definiteness of limiting coderivative
is sufficient for strong metric regularity. This important property of set-valued mappings
introduced by Robinson [24] is usually characterized via strict graphical derivative [28]
and degree theory [9], both of which are usually difficult to check. We also connect the
pointwise semi-definiteness of limiting coderivative with the so-called strict 2-submonotone
property relating to the terminology introduced by Spingarn [29].

The rest of the paper is organized as follows. To be self-contained, Section 2 recalls some
basic definitions in variational analysis and generalized differentiation used in our paper.
In Section 3, we analyze the mentioned [18, Conjecture 3.6], introduce and characterize
the so-called nearly strong monotonicity of set-valued mappings via positive definiteness of
the limiting coderivative. Examples will be given to demonstrate our results. We conclude
this section by showing that [18, Conjecture 3.6] is indeed true in one dimension or under
some extra symmetric assumptions. Section 4 gives a few conclusions and leaves some open
questions for future work.
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2 Preliminaries

In this section we recall notations from variational analysis that will be used in sequel; see
[15, 28] for further details. Let 2 C R” be locally closed around x € 2, the (Fréchet)
regular normal cone to Q at x € Q is defined by:

(v, x — Xx)

llx — x|l

= ’

N@&; Q) := {v e R"| limsup
Q

Q - . .
where x — X means x — x and x € . Another important normal cone structure mainly
used in our paper is the Mordukhovich limiting normal cone to Q at x € Q:

NG Q) = {v ERIn 35 v € Ny Q), v — v}.

Given a set-valued mapping F : R" =% R” then its domain and graph are given respectively
by:
domF :={x eR"|F(x) #0} and gphF :={(x,y) e R" xR"| y € F(x)}.

Suppose that gph F is locally closed around (x, y) € gph F, we also recall here the regular
and limiting coderivatives of F at (X, y), respectively, by:

D*F(F7)(w) = {z € R"| (z, ~w) € Ngphr (%, )}, w e R",
D*F(x|y)(w) := {z € R"| (z, —w) € Ngphr (X, )}, w e R,

where y is skipped from the coderivative notation when F is single-valued around x.

A set-valued mapping F : R" = R" is Lipschitz-like (Aubin property) around (X, y) €
gph F with modulus € > 0 if there exists a neighborhood U x V C R" x R” of (x, y) such
that

Fx)NV Cc F(u)+£||x —u||B forall x,u e U.

The infimum of all such ¢ is known as the exact Lipschitzian bound around (X, y)
and denoted by lip F(x, ¥). When the graph of F is locally closed around (x, y), this
Lipschitz-like property is fully characterized by the Mordukhovich coderivative criterion
[14, Corollary 5.4]

D*F (x]y)(0) = {0}. (2.1)
Next, we present the standard version of single-valued localization of set-valued mapping
used in this paper; see, e.g., [8, 17]. For a different purpose, our definition needs the single-
valued localization F to have full domain U, which is not required in [8].

Definition 2.1 (single-valued localizations) Let F: R” = R” be a set-valued mapping
and let (x, y) € gph F. We say that F' admits a SINGLE-VALUED LOCALIZATION around
(x, y) if there is a neighborhood U x V. C R" x R" of (x, y) such that the mapping
F: U — V defined by gph F:= = gph FN (U x V) is single-valued on U with dom F= U.
In this case we say that Fisa single-valued localization of F at x for y. If in addition F
is Lipschitz continuous on U, then F admits a LIPSCHITZ CONTINUOUS SINGLE-VALUED
LOCALIZATION at x for y.

Finally, if the inverse F~! of a set-valued mapping F: R” = R” admits a Lipschitz
continuous single-valued localization with constant x > 0 around (9, X) € gph F~!, we say
F is strongly metrically regular around (x, v) with modulus « > 0; see [8, 24] for further
discussions.
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3 Positive Definiteness of Limiting Coderivative and Local Strong
Maximal Monotonicity

Recall that a set-valued mapping 7 : R” = R”" is said to be (globally) monotone if
(vi —v2,u; —u2) >0 whenever (u,vy), (u2,v2) € gphT.

A monotone operator 7: R" = R" is maximally monotone if gphT = gph S for any
monotone operator S: R” = R” satisfying the inclusion gph 7" C gph S. We present next
some local monotonicity notions (cf. [18, 21, 23]) considered in this section.

Definition 3.1 (local monotonicity) Let 7: R” — R" and let (x, v) € gph T. We say that:

® T is LOCALLY MONOTONE around (x, v) if there is a neighborhood U x V of (x, v)
such that

(vi —vo,u; —up) >0 forall (uy,v1), (w2, v2) egphT NU x V). (3.1)

T is LOCALLY MAXIMALLY MONOTONE around (X, v) if there is a neighborhood U x
V of (x, v) such that (3.1) holds and that gph T N (U x V) = gph SN (U x V) for any
monotone operator S : R” = R" satisfying gph 7T N (U x V) C gph S.

® T is LOCALLY HYPOMONOTONE around (X, v) if there exists a neighborhood U x V
of this point together with a positive number » > 0 such that

(vi —va, u1 —u2) > —rllug —uol* forall (uy,v1), (2, v2) € gphT N (U x V).

(3.2)

® T is LOCALLY STRONGLY MONOTONE around (x, v) with modulus ¥ > O if there
exists a neighborhood U x V of (x, v) such that

(v — Vo, U1 —u2) > iclluy —uz|* forall (ur,vy), (M2, v2) € gphT N (U x V).

Finally, we say T is LOCALLY STRONGLY MAXIMALLY MONOTONE around (X, v)
with modulus « > 0 if it is locally strongly monotone and locally maximally monotone
around (x, v).

We recall the following important and useful result taken from [18, Lemma 3.3 and
Theorem 3.4] giving us necessary and sufficient conditions for the local strong maximal
monotonicity of a set-valued mapping.

Theorem 3.2 (necessary and sufficient conditions for local strongly maximal mono-
tonicity, [18]) Let T : R" == R”" be a set-valued mapping with (x,v) € gphT. Suppose
that the graph of T is locally closed around (x, v). The following statements are equivalent:

(i) T is locally strongly maximally monotone around (x, v) with modulus k.
(i) T admits a Lipschitz continuous single-valued localization 9 : V. — U of T™!
relative to a neighborhood V- x U of (v, X) that satisfies

(01 =2, P (1) — P () = k[P (1) — PWI* forall vi,vyeV.
(iii) T is locally hypomonotone around (X, v) and there exists n > 0 such that
(z, w) > /<||w||2 forall ze 5*T(u|v)(w), (u,v) € gphT NB,(x,v). (3.3)
Although (3.3) is a nice infinitesimal characterization for the local strong maximal

monotonicity, it is natural to question whether a similar pointwise condition holds as in
[18, Conjecture 3.6].
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Conjecture 3.3 (limiting coderivative characterization of local strong maximal mono-
tonicity for set-valued mappings, [18, Conjecture 3.6]) Let T : R" == R" be a set-valued
mapping with closed graph around (x, v) € gphT. The following assertions are equivalent:

(i) T is locally strongly maximally monotone around (X, v).
(ii) T is locally hypomonotone around (x,v) and D*T (x|v) is positive definite in the
sense that
(z,w) >0 whenever z € D*T(x|v)(w), w # 0. (3.4)

It is shown in [18] that the conjecture is valid in many classes, e.g., when T is either
single-valued and Lipschitz continuous around (x,v) € gphT or T = f 4 9dg, where
f : R" — R" is a continuously differentiable mapping around % and g : R” — Risa
continuously subdifferentiable and prox-regular function at x for v — V f(x) in the sense
of [23]. The following result, a direct consequence of Theorem 3.2 also provides another
evidence for this conjecture.

Corollary 3.4 (validity of Conjecture 3.3 for Lipschitz-like mappings) Let T : R" = R”
be a set-valued mapping with closed graph around (x,v) € gphT. Then the implication
[(D)=(ii)] holds in Conjecture 3.3. If, in addition, T is Lipschitz-like around (x, v), the
converse implication is also true.

Proof To justify [(i)=-(ii)], suppose that T is locally strongly maximally monotone around
(x, v). It is obvious that T is locally hypomonotone around (x, v). Pick any (w,z) €
h T

gph D*T()ﬂﬁ) with w # 0, we find sequences (xg, vx) 8 (x,v) and (wg, zx) — (w, 2)
with zx € D*T (xi|vr) (wg). By Theorem 3.2, there exists some « > 0 such that (zx, wg) >
Kk|lwe||? when k is large enough. Taking k — oo, we have (z, w) > kllwl|*> > 0. This
clearly verifies (ii) of Conjecture 3.3.

To prove the converse implication, suppose that (ii) of Conjecture 3.3 is valid and that
T is Lipschitz-like around (x, v). By Theorem 3.2, it suffices to show that condition (3.3)

h T

holds. By contradiction, we find sequences (xx, vg) 8 (x, v) and (wy, zx) — (w, z) with
zx € D*T (xr|vg)(wy) such that (zz, wi) < %||wk||2. This implies that wy # 0. Define
Wi = wi/llwell and Zx := zx/|well, we have (Zx, W) < + and Zx € D*T (xy|vg) (Wp).
Since T is Lipschitz-like around (X, v), there exists some £ > 0 such that

lzkll < £llwk|l = € for sufficient large k

by [15, Theorem 4.7]. Without loss of generality, we assume that (Zj, wy) converges to some
(z, w). It follows that

7€ D'T(x|v)(w), (z,w)<0, and |w]=1,
which contradicts (3.4). Hence condition (3.3) holds. By Theorem 3.2, (i) of Conjecture 3.3
is satisfied. O

Despite of many evidences of Conjecture 3.3 as discussed above, the next example shows
that Conjecture 3.3 is indeed not true in general. More precisely, we construct a set-valued
hypomonotone mapping 7T satisfying a stronger condition:

(z,w) > €|w||> whenever z e D*T(x[0)(w), w € R" (3.5)

with some constant £ > 0, but T is even not locally monotone around (x, v).
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Example 3.5 (a counterexample of [18, Conjecture 3.6]) Consider the following mapping
T:R?=R?

<X1, xi) if (x1,x2) € Rz,xl #0,
T(x) = X1 (3.6)
{0} x R if (x1,x2) = (0, 0),

) if x1=0,x3 #0.
Define x := (0, 0) and v := (0, 1), note that the graph of T is closed around (x, v). Let us
check that T is locally hypomonotone around (x, v) by showing that

(1, 32) — (U1, v2), (x1, X2) — (U1, u2)) > — Qe + H)||(x1, x2) — 1, w) > (3.7)
for any ¢ € (0, 1) and ((x1, x2), (¥1, ¥2)), ((u1, u2), (vi,v2)) € gphT N (U x V) with

U= (—¢&¢)x(—g¢e)and V = (—¢,¢) x (1 — e, 1+ ¢). Let us consider the following
three cases:

Case 1. Both (x1, x2) and (u1, up) are (0, 0). Then (3.7) is trivial.

Case 2. Only one of (x1, x2) and (ug, uz) is (0, 0). Without loss of generality, suppose
that (x1, x2) # (u1,u2) = (0,0). From the definition of 7', v = 0. Since v; € V C
(0, 2), we have

2
X2 X
((x1, x2) = (w1, u2), (y1, y2) — (v1,v2)) = ((x1, x2), (x1, 27 ) =x7 + x% — X2
i i
2

Y
> x? 4+ =2 —2[x| > 0,
X1
which also verifies (3.7).
Case 3. Both (x1, x2) and (u1, up) are different from (0, 0). Without loss of generality,
suppose that |x1| > |u1], it follows from (3.6) that

(01, ¥2) = (U1, v2), (x1, X2) — (1, u2)) = (X1 — u1, y2 — v2), (X1 — ur, x}y2 — uv2))

=1 —u)? + (v — ) (2 — v2) = (01 —u)? + [xlz(yz — )+ (xF - u%)vz] (y2 —v2)
= —Qe+ e —u)? + [(1+020n —u)? + 02 = v?] = 1xF =l fual - Iy = val
> —Qe+eN) e —un)? +2(1+e)lxy —uy| - x1| - |y2 — val = xf —uil - va| - [y2 — va

> —Qe+ M)t —un)? + 20+ &)x1] — x1 +url - valllx1 — ui] - [y2 — 2
> — (e + &M (x1 — up)?,

where the last inequality holds due to |x; + u1| < |x1]| 4+ |u1] < 2|x1] and |vp| <
1 + ¢. This clearly verifies (3.7) and completes the proof for local hypomonotonicity of
T around (x, v).

We claim next that 7 is not locally monotone around (X, v). Indeed, define the sequences

ok = (b xky = ((1 — —k‘l)k_z) and ¥ = (b, ub) = (k‘l,k_z) with ke N.

It follows that

Y=k =@ -k, =k H™H e and oF = 05, 08 = (1) € TWF).
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Moreover, we have

OF =k —uf) = (f =) + (05 — 0D (a5 — uy)
=kt -1 —-kH -1k
— k1 =k
=—(1-kH%> <o

Since x*, u* — x and yk, v — v as k — oo, T is not locally monotone around (x, v).
Finally, we check that the positive definiteness of D*T (x|v) in both (3.4) and (3.5) are

satisfied. Observe that T'(x) = P~ !(x), where P : R? — R2 is defined by P(x1,x2) =

k

. . . . . 1
(x1, xlzxz). Moreover, P is continuously differentiable with VP (x1, x2) = (2x . x02> for
1X2 X4

any (x1, x2) € RZ. Note further that z € D*T (X|D)(w) if any only if
—w e D*T7 ' (#|%)(—=z) = D* P(3|X)(—z) = VP(D)*(—z) = (—z1,0).
It follows that
(z,w) = Izt = llwl,
which clearly verifies both (3.4) and (3.5).

From the above example, the local hypomonotonicity of 7 together with (3.5) and
(3.4) is not enough to verify local strong monotonicity. However, in the following result,
we show that condition (3.5) characterizes a close property, which is called nearly strong
monotonicity.

Theorem 3.6 (positive definiteness of limiting coderivative and nearly strong mono-
tonicity) Let T : R" = R”" be a set-valued mapping with closed graph around (x, v) €
gph T. Suppose that T is locally hypomonotone around (x, v). The following assertions are
equivalent:

(i) T is nearly strongly monotone around (x, v) with modulus k > 0 in the sense that for
any ¢ > 0 there exists § > 0 such that Bs(v) C dom T~ and that

(vi—v2, up—u2) = kllur—uz||*—ellvi—v2l|* forall (uy,vy), (uz,v2) € gph TNBs(X, v).
(3.8)

(i) D*T (x|v) is positive definite with modulus k > 0 in the sense that

(zow) > k|w||*> whenever z e D*T(x|0)(w), w e R™. 3.9

Proof Suppose that (i) is valid, i.e., for any ¢ > 0 there exists some § > 0 such that
(3.8) holds. Define ¢ : Bs(t) = R” by gph®¥ = gphT~' N (Bs(®) x R"). For any
(v1,uyp), (v2, up) € gph v, it follows from (3.8) that

2 2
0> «lluy —uzll” = llvy —v2|l - luy — uzll — ellvy — v2|”,

which yields
14+ /1 +4ek

lur = uall = ————1lvi = 2. (3.10)
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Since Bs(?) C dom 7!, we derive from (3.10) that ¢ is single-valued and Lipschitz-

14+ /14 4ek

2k R
Pick any (u, v) € gphT N (Bs(x) x Bs(v)) and z € D*T (u|v)(w), we claim that

(z,w) = k|w|? — ¢llz — 2wl (3.11)

Indeed, since z € ﬁ*T(u|v)(w), for any v > 0 there exist some n with B, (u, v) C Bs(x, v)
such that

continuous on Bg(v) with modulus L, :=

vilx —ull +1ly —vll = (z.x —u) = (w,y —v) forall (x,y) € B,u,v). (3.12)

Define v; := v+1(z—2kw) € B, (v) C Bs(v) for ¢t > 0 sufficiently small and u; := ¥ (v;).
Since ¥ is Lipschitz continuous on Bs(v), we have u; := ¢(v;) € B,(v) whent > 0is
small enough. It follows from (3.8) that

o = v) + 26w, up — u) — Hw, 7 — 2kw)

Vy — UV, Uy — U
- “,7[)+2K(w,u,—u) — t(w, z) + 20 w]?

<Z1ul —M) - (U),Ut _v)

K &

> ;nu,—unz—;nvt—v||2+2x<w,u,—u>—r<w,z>+2m||w||2
K

= [ =l + 2w, — ) + ol ] = rlw,2)

2 ¢ 2
+ex|lw|” — ;Ilvz — v

A%

2 € 2
—t{w, z) +tx|lwl” — tllv:—vll

= —t{w, 2) + t|w|? — tellz — 2k w] %

Observe further from the Lipschitz continuity of ¢ that

v (llur —ull + llve —vll) = v 19 () —F @I+ llve — vl
=v(Lellve —vll + llve — vl
=v(Lg + Dt]z —2«w|.

This together with the above inequalities and (3.12) tells us that
v(Le + Dllz = 2cw] = —(z, w) + clw])? — ez — 2cw])?

for any v > 0. Letting v — 0, we derive (3.11) as claimed.
Now we prove the desired positive definiteness of D*T (x|v) in (3.9). Indeed, pick any
z € D*T (x|v)(w), w € R". Hence there is a sequence (u, Vg, Wk, Zk) € (R™)* such that

hT ~
(ur, vi) B (%, 7) and (g, 2x) — (w, 2) with zx € D*T (ug|ve)(we). Thanks to (3.11),
we have
(zk, wi) > Kk ||wi ||2 —éellzk — 2wy ||2 for sufficiently large k.

Passing k — oo, this inequality gives us
(2, w) = icllwl)? = ellz — 2w,

Since (z, w) is independent from the arbitrary small ¢ > 0, we derive (3.9) from the latter
and complete the proof for [(i)=(ii)].

To proceed the converse implication, suppose that (3.9) holds. Since T is hypomonotone
around (x, v), by (3.2) we find some r > 0 and neighborhood U x V of (x, v) such that

(v —v, w1 —uz) > —rlus—ua||* forall (uy,v1), (2, v2) € gphTN(U x V). (3.13)
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Pick any s > r + 1 and define J;(v,u) := (u,v — s(u — X)) for any (u,v) € R" x R”
and denote by I the identity mapping in R”. We show next that Fy := (T + sI — sx)~! has
a localization around (v, x) that is single-valued and Lipschitz continuous around v with a
modulus (k + s — &)~! for some arbitrarily small « € (0,« +r) C (0, x + ). Pick any
w € D*F;(v|x)(z), we have
—z € D*(T +sI—sX)(x|v)(—w) = D*(T +sI)(X|v +s%)(—w) = D*T (x|v)(—w) — sw,
which implies that —z+sw € D*T (x|v)(—w). It follows from (3.9) that (—z+sw, —w) >
«||w]|? and thus

2l - lwll = {2, w) > (c + ) |lw]*.
Hence we have |z]| > (k + s)||lw]| for any w € D*F(v|x)(z). Thanks to [15, Theo-
rem 4.10], F; is Lipschitz-like around (v, x) with the exact Lipschitzian bound smaller or
equal to (« + s)~ L. Hence for any o € (0, k + r) there exists some small number n > 0
depending on « and s such that

Fy(v) NBy(x) C Fy(v2) + (k +5 — oe)_1 lvi —v2[ By forall vy, v, € By,(v). (3.14)
This gives us that
x e F;(v)NB,(x) C Fs(v) + (k +5 — o) v —7|B; for ve B, (). (3.15)
Hence F(v) # @ for all v € B, (v). Define ¢, : B, (v) = R" with
gphos = gph Fx N (B, (V) X Byy_g)-1,(%))
and thus dom ¢; = B, (v) due to (3.15).

By choosing 5 sufficiently small, we may suppose that J;(B,(v, x)) C U x V. Pick
(vi,u;) € gphys, i = 1,2, we have u; € IB(KJFFQ)*],?()E) C By(x), since k +s5 —a >
s —r > 1. It follows that (u;, v; — s(u; — x)) = Js(vi, u;) € gphT N (U x V). By (3.13),
we obtain

v — vall - lur — wall = (v1 — va, uy — u2) > (s — r)luy — ua||?,
which tells us that ¢ is single-valued and Lipschitz continuous with modulus (s — )~
By (3.14) there exists up € Fy(v;) such that
los (1) = all < (e +5 =) lvr = va. (3.16)
Hence we have
lps (1) — X[ + (k +5 — ) g — 2|

<
= llgs (1) — s (D)l + (k + 5 — ) vy — va
<G =r"Hor =0l + & +s—a) v — v

% — x|

-1
s —a
G r)(—Kl——’l_—;(K —:s e n, n} and restrict vy, vy € B, (v), we get

from the above inequalities that u#, € IB%(K +S7a)—ln()?f), which means 7, = ¢;(v3). This
together with (3.16) gives us that

Define v := min{

lps 1) — @5 < (c +s =)oy —wal| forall vy, vy € By (D). (3.17)

Thus F; admits a single-valued and Lipschitz continuous localization around (v, x) with
modulus (xk + s — )~ L.

We are ready to prove (3.8). Pick any ¢ > 0 and choose § > 0 sufficiently small such
that J;(Bs(x, v)) C B, (v) x IB(KJFFH)?],?()E). For any (u;, v;) € gphT NBs(x,v),i = 1,2,
we have

(Wi + 5@ — ), u;) € gph Fy N By(@) X By pg_g)-1, ()
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This together with (3.17) tells us that

2 2 2 2 2 2
(k+s—a) fluy—uz||” < lvi—v2+s@i—u2)||” = [[vi—v2 |7 +2s (v —v2, w1 —u2)+s~ lug —uz||*.

It follows that

(k — )

2s

2 1 2
+x—a)lluy —ul” — g”vl — 2" (3.18)

(v1 — Vo, uy —uz) > <

Since ¢ > 0 and s > r 4 1 could be chosen arbitrarily small and large respectively, we
could suppose innitially that

2
u—i—x—azx and — — > —e.
2s 2s
This together with (3.18) justifies (3.8). To complete the proof of the theorem, we only need
to show that v € int (dom 7~!). This is indeed trivial due to the Lipschitz-like property of
7! around (9, %) obtained by (3.9) and the Mordukhovich coderivative criterion (2.1). [

Remark 3.7 When the mapping T admits a Lipschitz continuous localization at x for v, it
is obvious that the nearly strong monotonicity of 7 (3.8) around (x, v) is equivalent to the
local strong maximal monotonicity of 7" around (x, v). Moreover, if T could be represented
by T = f + dg with f : R" — R” being a continuously differentiable mapping around
% and g : R” — R being a continuously subdifferentiable and prox-regular function at X
for v — V f(x) in the sense of [23], [18, Corollary 3.5] together with the above theorem
tells us that the nearly strong monotonicity and the local strong maximal monotonicity of
T around (x, v) are also the same. The difference between these two types of monotonicity
may appear for set-valued mappings that involves the subdifferentials in some indirect ways.
As in Example 3.5 and Theorem 3.6, the mapping in (3.6) is nearly strongly monotone but
it is not even locally monotone around the point in question.

Remark 3.8 Full calculus of the limiting coderivative D*T for set-valued mappings 7T is
well-known; see, e.g., [15, Chapter 3]. When T involves subdifferential/normal cone map-
pings, full calculation for D*T is a research challenge especially when the corresponding
system is degenerate. This topic belonging to the area of second-order variational analysis
[28, Chapter 13] is out of scope of our paper; see also [16, Chapter 3] for a brief discussion
about recent developments in this direction.

Given a set-valued mapping T that is locally hypomonotone around (x, v), [18, The-
orem 3.4] shows that the positive definiteness of D*T around (X, v) with some modulus
k > 0 ensures the strong metric regularity [24] of T around (X, v). Our next result, a con-
sequence of Theorem 3.6 provides a pointbased sufficient condition for such a property on
T via the positive definiteness of D*T (x|v).

Corollary 3.9 (sufficient condition for strong metric regularityI) LetT : R" = R" bea
set-valued mapping with closed graph around (x, v) € gph T. Suppose that T is hypomono-
tone around (x, v) and that D*T (X|v) is positive definite with modulus k > 0 in the sense

of (3.9). Then T is strongly metrically regular around (X, v) with lip T~' (v, ¥) < kL.
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Proof Under the above assumptions, 7 is nearly strongly monotone around (x, v) as in
(3.8) due to Theorem 3.6. Observe from the proof of the implication [(i)=>(ii)] in Theo-
rem 3.6, e.g., (3.10) that 7! admits a Lipschitz continuous and single-valued localization

14+ 1 +4ek
2K

with modulus L, = , which is arbitrarily close to ¥ ~! for sufficiently small

e > 0. Then T is strongly metrically regular around (x, v) with lip7~'(3,x) <«~!. O

As a counterpart of Theorem 3.6, the positive semi-definiteness of hypomonotone
mapping T ensures a close property to local monotonicity.

Corollary 3.10 (positive semidefiniteness of limiting coderivative) Let T : R" = R” be
a set-valued mapping with closed graph around (x,v) € gphT. Suppose that T is locally
hypomonotone around (x, v). If D*T (x|v) is positive semidefinite:

(z,w) >0 whenever z € D*T(x|0)(w), w € R" (3.19)

then T is nearly monotone around (x, v) in the sense that for any € > 0 there exists § > 0
such that

(vi—v2, w1 —u2) > —ellvi—v2ll® forall (ur,vr), (uz, v2) € gph TNBs(X, B). (3.20)

Proof To justify, pick any ¢ > 0 and fix any s > 0. Define T; = s[4+ T —sx. Itis clear that
T; is locally hypomonotone around (X, v) and D*T; (X |v) is positive definite with modulus
s when (3.19) is valid. By applying Theorem 3.6 on Tj, there exists some n > 0 such that

(v —v2, Uy —uz) > slluy —ua)|* —ellvr —v2||* forall (ur, 1), (u2, v2) € gph Ty NB, (X, ¥).

This is equivalent to (3.20) after translation. The proof is complete. O

The above result also tells us that the positive semi-definiteness of limiting coderivative
D*T (x|v) is sufficient for the strict 2-submonotonicity on T~" around (v, X) in the sense

that
liminf (LU M)
(u[.W)gﬂT(;.a).i:Lz oy — val
V1 £V
provided that T is locally hypomonotone around (x, v). It is worth noting that the strict 2-
submonotonicity on T ~! above implies that 7~ is also strictly submonotone around (v, ¥)

as follows:

liminf (LU ) (3.21)
L L ]
v Fvy

The terminology of strict submonotonicity was first introduced by Spingarn in [29] and usu-
ally used on subdifferential mappings to characterize approximate convexity on functions
[7, 20]. Our definition (3.21) is slightly different when we restrict the local property on both
X and v.

Thanks to Corollary 3.10, we can replace the positive definiteness with modulus « (3.9)
by the stronger one (3.4) to obtain the strong metric regularity of a local hypomonotone
mapping as in Corollary 3.9. This result is significant in our later analysis.

Corollary 3.11 (sufficient condition for strong metric regularity II) Let T : R" =
R"™ be a set-valued mapping with closed graph around (x,v) € gphT. Suppose that T is
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hypomonotone around (X, v) and that D*T (x|v) is positive definite in the sense of (3.4).
Then T is strongly metrically regular around (X, v).

Proof Suppose that D*T (x|v) is positive definite in the sense of (3.4). Then, D*T (x|v) is
also positive semidefinite. Hence, by Corollary 3.10, for any ¢ > 0O there exists § > 0 such
that (3.20) is satisfied.

Note further that the positive definiteness (3.4) implies the Lipschitz-like property of
T-! around (¥, X) due to Mordukhovich coderivative criterion (2.1). Fix ¢ > 0 and define
the mapping Ts := T~ + sI — st where s > ¢. It is easy to check that gph 7y is closed
around (v, x). Moreover, by (3.20) T, is strongly monotone around (v, X) with modulus
(s —¢).Forany w € D*Ty(9|%)(0), we obtain

w € D*T~1(|%)(0),
which means 0 € D*T (x|v)(—w). It follows from (3.4) that w = 0. By Mordukhovich

coderivative criterion (2.1) again, Ty is Lipschitz-like around (o, x). Since Ty is strongly
monotone around (v, X), it is also single-valued around (v, x). As a result, 7y admits a Lip-
schitz continuous and single-valued localization around (v, x), and so does T !. Therefore,

T is strongly metrically regular around (x, v). The proof is complete. O

Corollaries 3.9 and 3.11 indeed tell us that studying positive definiteness of D*T (x|v)
in (3.4) or (3.9) only makes sense under the strong metric regularity. That is the reason why
the following lemma established by Poliquin and Rockafellar [22, Lemma 5.6] is useful in
our study.

Lemma 3.12 (strong monotonicity of inverse mapping) Suppose that P is a Lipschitz
continuous mapping from an open convex set O into R". The following are equivalent for
any a > 0:

@ T=P'lis strongly monotone with modulus o, which means
(v1 — v, P(v1) — P(v2) = a| P(v1) — Pl forall vi,vmeO. (3.22)
(ii) For any v € O where P is differentiable, the Jacobian matrix satisfies

(z, VP(0)2) > a|VPW)z|? forall zeR".

It is worth recalling here from Example 3.5 that even 7! admits a continuously differen-
tiable localization and T satisfies (3.9), T may be not locally strongly maximally monotone.
In the next theorem, we add some additional conditions to show that the positive definiteness
of D*T (x|v) in (3.9) could be sufficient for local strong maximal monotonicity.

Theorem 3.13 (sufficient condition for local strong maximal monotone under symme-
try) Let T : R" = R” be a set-valued mapping with closed graph around (x, v) € gphT.
Suppose that T is hypomonotone around (X, v) and that D*T (X|v) is positive definite with
modulus k > 0 in the sense of (3.9). Let P be a single-valued and Lipschitz continuous
localization of T~™" around (v, %) described in Corollary 3.9. Assume that V P (v) (if exist)
are symmetric matrices for all v near v. Then T is locally strongly maximally monotone
around (x, v) with any modulus in (0, ).
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Proof Under the assumptions in this theorem, suppose without loss of generality that
gph P, := gph T'n B, (v, x) C gph P with some > 0 such that V P, (v) is symmet-
ric for any v € B, (v) at which P, is differentiable. For any ¢ € (0, k), we assume from
Corollary 3.9 that Py, is Lipschitz continuous with modulus (« — &)~ L.

By Theorem 3.2, to obtain the local strong maximal monotonicity of 7 with modulus
k — &, we only need to prove (3.22) with « = k — ¢ when 7 is sufficiently small. By
contradiction and Lemma 3.12, suppose that there exists a sequence vy — v at which P is
differentiable and z; € R” such that

(zk, VP(ui)zi) < (k — &) VP o)z (3.23)

and that VP (v) is symmetric. Due to the hypomonotonicity of T around (X, v) with
modulus r > 0 we may suppose that

(v—vg, P(v) — P(vp)) = —r||P(v) — P(vk)||2 forall v e B,(v).

For any z € R”, substituting v = vy +tz € B, (v) with ¢ > 0 into the above inequality gives
us that

(12, 1VP Rz + o) = —rlltV P(u)z + o(0)|.
By dividing both sides by ¢2 and taking ¢ | 0, we obtain

(2. VP(O)z) = —r[[VP(up)z||* forall zeR" (3.24)

Since Ay := V P(vx) is symmetric, from the spectral decomposition and (3.24) all eigenval-
ues A (Ag), i =1, ..., n satisfy either A; (Ax) > 0 or X;(Ag) < —%. It follows that for any
s>r,Ai(I+sAr) = Tora;(I+sAr) < 1— % <0.Hence we have I 4 s Ay is invertible.
Observe further from (3.24) that

(T + sAp)z, Agz) = (s — ;’)||Akz||2 forall z e R".
Replacing z in this inequality by (I + sAz)~'z, we have
(z, Bkz) > (s — r)||Brzl|> forall zeR" with By := Ayl +sA)~!.  (3.25)
Note that
By = %(]H—sAk DI +s40) " = %(H — (I+sA0™h. (3.26)

is also symmetric. It follows from (3.25) that By is positive semidefinite. Moreover, we get
from (3.23) that
(T+ sARzx, Arzi) < (s + & — )| Aeze |1
Define z; := (I + s Ag)zk, we derive from the latter and (3.25) that
(2. BiZk) < (s + & — o)l Bizl.

Let Uy (diag(; (Bx)))U} be the spectral decomposition of By. Define wy := UjzZx, we
obtain from the above inequalities that

0< Y MBOw}, < (s+x—¢) {Z x%(Bk)w,i} < (5 + K — &) Amax (Br) {Z )Li(Bk)w,%i:| :

i=1 i=1 i=1

n
It follows that Z Ai (Bk)w,%i > (0 and

i=1

1
| Bell = Amax(Bk) = P (3.27)
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Furthermore, since P, is Lipschitz continuous around v with modulus (x — e)~1, we have
IVP ) < (k — &)~} for all k. By passing to a subsequence, suppose that Al&: VP (v)
converges to a symmetric matrix A as k — oo. Note further that V P, (vy)*z = D* P, (vy)(2)
for any z € R". It follows that A*z € D*P,(v)(2), i.e., —z € D*T (x|v)(—A*z). This
together with (3.9) tells us that

(z, Az) = (z, A*z) > k||A*z||> = k||Az|® forall zeR",

which implies 0 < A; (A) < % due to the spectral decomposition and that I+s A is invertible.
Define B := A(I + sA)~L, it is similar to (3.26) and (3.25) that B is symmetric and

(z, Bz) > (s + )| Bz||> forall ze R

By the spectral decomposition again for B, we obtain that

(z, Bz) 1 1
mi > = = > 5 +k. (3.28)
zeR" || Bz|| Amax (B) I Bl

Moreover, since Ay — A, we have By — B. Note from (3.27) that || B|| > (s + k — &)™},
which contradicts the inequality IBI~! > (s + ) in (3.28). Thus inequality (3.23) could
not be satisfied. This completes the proof of the theorem. (]

In Theorem 3.6, the positive definiteness of coderivative (3.9) is characterized via nearly
strong monotonicity around the point in question. Characterization for its variant (3.4) as
desired in [18, Conjecture 3.6] is still missing. At this moment we do not know whether
(3.4) and (3.9) are equivalent in general, but under some special circumstances , e.g., T is
the subdifferential mapping to a lower semicontinuous extended real-valued function [17].

Theorem 3.14 (equivalence between two Kkinds of positive definiteness of limiting
coderivative) Let T : R" == R" be strongly metrically regular at x € dom T for v € T (x)
and let P be a Lipschitz continuous localization c)fT_1 around (v, x). Conditions (3.4) and
(3.9) are equivalent when one of the following three statements holds:

(i) The Bouligand generalized Jacobian
VP (v) :={A € R""| I{vy} — v, Pis differentiable atvy, VP (vy) — A)

contains finitely many elements.
(ii) All matrices in Vg P (v) have the same rank.
(iii) All matrices in Vg P(v) are symmetric.

Proof 1t suffices to prove the implication [(3.4) =(3.9)].

(i) Suppose that Vp P(v) contains finitely many elements. Pick any A € Vg P(v) and
z € R". Since P is Lipschitz continuous around v, we have

ATz € 3(z, P)(®) = D*T ™ (¥]%)(2),
which implies —z € D*T (x|0)(—AT z). It follows from (3.4) that

(z, ATz) >0 whenever Az #0. (3.29)
For any u € Ker AT and v € Im A, we have

0<((u+v), ATw+v)) =, ATv) + (v, ATv).
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(i)

Replacing u above by Au with any A € R gives us (u, ATv) = 0. Moreover, since
Ker AT NImA = {0}, we get from (3.4) that (v, ATv) > 0 for any v € Im A \ {0}.
Hence there exists a positive constant ¢ such that (v, ATv) > c|lv||? for all v € Im A.

Since Ker AT @ Im A = R”, for any z € R", we find u € Ker AT andv € Im A
with z = u + v. It follows that

(z. ATz) = (u, ATv)+(v, ATv) = (v, ATv) = c|Jv||? AT v|? AT z||.

C
B IIATII2 T AT

Since there are finitely many elements in Vp P (v), we could find a constant « > 0
such that
(z, ATz) > k||ATz)? forall A e VgP(D),ze€R". (3.30)
Define JP(v) := coVpP(v) as the Clarke generalized Jacobian; [4, Defini-
tion 2.6.1]. Due to the convexity of || - 12, it is easy to obtain from (3.30) that
(z, ATz) > k||ATz|)> forall A e JP(®),zeR™. (3.31)
Pick any (w, z) € R" x R" with z € D*T (x|v)(w), we have —w € D*P(v|x)(—z).
It follows from the Lipschitz continuity of P at v that obtain that
—w € d(—z, P)(®) Cdc(—z PY©)=JP®) (-2),

where dc denotes the Clarke’s generalized gradient; see, e.g., [4, Theorem 2.6.6].
Thanks to the above inclusion and (3.31), there exists A € J P(¥) such thatw = A7 z
and
(w,z) = (ATz,2) = k| ATz)* = k|lw]%,
which clearly verifies (3.9).
All matrices in Vg P (v) have the same rank r. Thanks to (3.29), we have
(z,ATz) =0 implies ATz=0 forall A e VgP@).

A matrix A € Vp P (v) satisfying the above property is called positive semidefinite
plus [9]. By [12, Proposition 1], A could be decomposed by

7 (A+NO
A_U< o 0)0,

A, 0O
T
where U 0 0

diag{Ai, A2, ..., A}, A1 = A > ... > X > 0dueto (3.29) and N is an r x r skew-
N O) U.Forany z € R", defineu = Uz,

U is the spectral decomposition of %(A + AT) with A, =

symmetric matrix with (A — A7) = UT ( 0 0

we have

1
(2, AT2) = (2, S(A+ AD)2) = (2, UT< ) Zx,

Ar

. Al 2
> min (A7 + INIP)uf
M+ INE A2+||N||2}Z

. 0.54 0.5%, Ar—N O\ o
> min [ 0 ul|

A2+ (INJ2T A2+ N2 0

0.54 0.52, -
2 T2 A2 2 (1147l
22402514 — AT|2 22+ 0254 — AT |

= min

@ Springer



298 T.T.A. Nghia et al.

forall A € VgP(d). Since A1 = A1($(A + AT)) and A, = A, ($(A + AT)) are
continuous functions with respect to A, the quantity

i 0.511(0.5(A + AT)) 0.54,(0.5(A + AT)) 0
22(0.5(A + AT)) +0.25|A — AT|27 22(0.5(A + AT)) +0.25]| A — AT |12

attains a positive minimum value on the compact set Vg P (v). This tells us that
(3.30) is also true with some constant ¥ > 0. Imitating the proof of (i) after (3.30),
we also derive (3.9).
(iii) All matrices in Vp P(v) are symmetric. Similarly to (3.29), all matrices in Vg P (v)
are semidefinite. Following the proof in case (i), we only need to prove the existence
of k > 01in (3.30). Indeed, due to the spectral decomposition, we obtain that

(z, Az) > |Az||> forall A e VgP(D). (3.32)

~ Amax(A)
Since VpP(v) is a compact set and Amax(-) is a continuous function, Amax(-) is
bounded above in Vg P (v). This together with (3.32) verifies (3.30) and thus (3.9).
The proof is complete.

O

The assumption of strong metric regularity on 7 in the above theorem is not restrictive
at all, since as either (3.4) or (3.9) is satisfied, such property is automatically valid due
to Corollaries 3.9 and 3.11. Furthermore, if one could construct a Lipschitz continuous
mapping P : R? — R? around v € R? satisfying

1 1
VBPw):{(é 8),<_l i),n:l,Z...}
n n

then (3.4) is satisfied with 7 = P~!and ¥ = P (v), but (3.9) is not necessarily valid, since
there is no uniform « > 0 such that (3.30) holds for all A € VpP(v). Unfortunately, at
this moment we do not know either how to construct such mapping P or whether such a
mapping P exists.

Let us finish this section by showing that Conjecture 3.3 is indeed true for the case of
one dimension by applying Theorems 3.13 and 3.14.

Corollary 3.15 (Validity of Conjecture 3.3 in one dimension) Ler T : R = R be a
set-valued mapping with closed graph around (x,v) € gphT. Suppose that T is locally
hypomonotone around (X, v). Then the assertions in Conjecture 3.3 are equivalent.

Proof Since the implication [(i)=(ii)] is already proved in Corollary 3.4, we only need
to show the converse implication. Suppose that 7' is hypomonotone around (x, v) and
D*T (x|v) is positive definite in the sense of (3.4). By Corollary 3.11, T is strongly metri-
cally regular around (x, v). Let P : R — R be a single-valued and Lipschitz continuous
localization of 7! around (v, ). Since Vg P(¥) C R, the assertion (iii) in Theorem 3.14
holds and thus T satisfies (3.9). It follows from Theorem 3.13 that T is locally strongly
maximally monotone around (x, v), which verifies (i). O
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4 Conclusion

In this paper, we disprove [18, Conjecture 3.6], which speculates the interconnection
between the positive definiteness of limiting coderivative and the local strong maximal
monotonicity. The conjecture is only true in one dimension or under some extra assump-
tions. However, we are able to characterize the positive definiteness of limiting coderivative
by the nearly strong monotonicity, which is even not locally monotone. Consequently,
the positive definiteness of limiting coderivative is sufficient for strong metric regular-
ity. The pointwise infinitesimal characterization of local strong maximal monotonicity for
set-valued mapping remains open. Whether two kinds of positive definiteness of limiting
coderivative (3.4) and (3.9) are equivalent in general is also not known yet. In the future,
we plan to use our results, e.g., Theorem 3.6 and Corollary 3.10 to study the nearly strong
monotonicity and strong metric regularity for variational systems [15] and generalized equa-
tions [24] that may involve further advances on second-order variational analysis; especially
when the corresponding system is degenerate.
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