
https://doi.org/10.1007/s11228-020-00547-z

On the Positive Definiteness of Limiting Coderivative
for Set-Valued Mappings

T. T. A. Nghia1 ·D. T. Pham2 · T. T. T. Tran1

Received: 26 August 2019 / Accepted: 21 June 2020 /
© Springer Nature B.V. 2020

Abstract
This paper concerns the interconnection between the positive definiteness of limiting
coderivative and the local strong maximal monotonicity of set-valued mappings suspected
in Mordukhovich and Nghia (SIAM J. Optim. 26, 1032–1059, 2016, Conjecture 3.6). We
disprove the conjecture by a counterexample and provide some special classes at which
it is true. However, the positive definiteness of limiting coderivative characterizes a new
property called nearly strong monotonicity. Consequently, we show that the strong met-
ric regularity of set-valued mappings could be obtained under the positive definiteness of
limiting coderivative.

Keywords Local maximal monotone · Positive definiteness · Limiting coderivative ·
Strong metric regularity · Set-valued mappings · Variational analysis
Mathematics Subject Classification (2010) Primary 49J53 · Secondary 49J52

1 Introduction

Maximal monotonicity is a fundamental notion in mathematics with vast applications in
different areas such as partial differential equations [10], control theory [2], optimization
and algorithms [1, 3, 25, 28]. In the recent years, a local version of maximal monotonicity
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[22] has been used to study solution stability of optimization, equilibrium, and variational
problems [18, 19, 22, 23, 26, 27]. In these papers, the local maximal monotonicity of a spe-
cial set-valued mapping that is the subdifferential of nonsmooth and nonconvex functions is
mainly investigated.

Traditionally, maximal monotonicity of a mapping has strong connection with the pos-
itive semi-definitness of its “derivative”. Roughly speaking, a differentiable single-valued
mapping is (maximal) monotone if and only if its derivative is positive semi-definite at any
point. When a single-valued mapping is not differentiable, extension of this classical result
could be found in [5, 11, 13]. For set-valued mappings, e.g., the limiting subdifferential
mapping to a nonsmooth function, the first necessary condition for maximal monotonicity
was established by Poliquin and Rockafellar [23, Theorem 2.1] via the semi-definiteness
of limiting coderivatives acting on these mappings at any point on their graphs. Recently,
Chieu et al. [6] showed that this condition turns to be sufficient under the assumption
of hypomonotonicity on the set-valued mappings. Both [6, 23] literally use the limiting
coderivative, one of the most important notions in variational analysis introduced by Mor-
dukhovich; see his monographs [15, 16] for its detail developments and vast applications to
optimization and optimal control.

For local maximal monotonicity, similar connections could be established around the
point in question [18, 22]. But when dealing with a local property, a pointwise char-
acterization is usually more favorable. Even in the case of a continuously differentiable
single-valued mapping, the semi-positive definiteness of its derivative at one point is not
enough to guarantee the local maximal monotonicity of this mapping. However, the point-
wise positive definiteness of its derivative is equivalent to a stronger concept, the local
strong maximal monotonicity; see, e.g. [18, 23]. In the case of nondifferentiable Lips-
chitz continuous single-valued mappings, Mordukhovich and Nghia [18, Corollary 3.5]
showed that such monotonicity could be characterized by the positive definiteness of lim-
iting coderivative at the point in question. They also conjectured in [18, Conjecture 3.6]
that the criteria remains valid for hypomonotone set-valued mappings. There are several
evidences of this conjecture established in [18] for broad classes of set-valued mappings
containing limiting subdifferential of nonsmooth nonconvex functions.

Our paper mainly surrounds the aforementioned conjecture with more emphasis on the
positive definiteness of limiting coderivative for set-valued mappings. We indeed provide a
counterexample, but show that the pointbased positive definiteness of limiting coderivative
is equivalent to a property that is strongly related to the local maximal strong monotonicity.
This allows us to establish some special classes different from those in [18] where the con-
jecture is true. Furthermore, we show that the positive definiteness of limiting coderivative
is sufficient for strong metric regularity. This important property of set-valued mappings
introduced by Robinson [24] is usually characterized via strict graphical derivative [28]
and degree theory [9], both of which are usually difficult to check. We also connect the
pointwise semi-definiteness of limiting coderivative with the so-called strict 2-submonotone
property relating to the terminology introduced by Spingarn [29].

The rest of the paper is organized as follows. To be self-contained, Section 2 recalls some
basic definitions in variational analysis and generalized differentiation used in our paper.
In Section 3, we analyze the mentioned [18, Conjecture 3.6], introduce and characterize
the so-called nearly strong monotonicity of set-valued mappings via positive definiteness of
the limiting coderivative. Examples will be given to demonstrate our results. We conclude
this section by showing that [18, Conjecture 3.6] is indeed true in one dimension or under
some extra symmetric assumptions. Section 4 gives a few conclusions and leaves some open
questions for future work.
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2 Preliminaries

In this section we recall notations from variational analysis that will be used in sequel; see
[15, 28] for further details. Let � ⊂ R

n be locally closed around x̄ ∈ �, the (Fréchet)
regular normal cone to � at x̄ ∈ � is defined by:

̂N(x̄; �) :=
⎧

⎨

⎩

v ∈ R
n| lim sup

x
�→x̄

〈v, x − x̄〉
‖x − x̄‖ ≤ 0

⎫

⎬

⎭

,

where x
�→ x̄ means x → x̄ and x ∈ �. Another important normal cone structure mainly

used in our paper is the Mordukhovich limiting normal cone to � at x̄ ∈ �:

N(x̄; �) :=
{

v ∈ R
n| ∃ xk

�→ x̄, vk ∈ ̂N(xk; �), vk → v
}

.

Given a set-valued mapping F : Rn ⇒ R
n then its domain and graph are given respectively

by:

domF := {

x ∈ R
n |F(x) 
= ∅}

and gphF := {

(x, y) ∈ R
n × R

n
∣

∣ y ∈ F(x)
}

.

Suppose that gphF is locally closed around (x̄, ȳ) ∈ gphF, we also recall here the regular
and limiting coderivatives of F at (x̄, ȳ), respectively, by:

̂D∗F(x̄|ȳ)(w) := {

z ∈ R
n
∣

∣ (z,−w) ∈ ̂NgphF (x̄, ȳ)
}

, w ∈ R
n,

D∗F(x̄|ȳ)(w) := {

z ∈ R
n
∣

∣ (z,−w) ∈ NgphF (x̄, ȳ)
}

, w ∈ R
n,

where ȳ is skipped from the coderivative notation when F is single-valued around x̄.
A set-valued mapping F : Rn ⇒ R

n is Lipschitz-like (Aubin property) around (x̄, ȳ) ∈
gphF with modulus � > 0 if there exists a neighborhood U × V ⊂ R

n ×R
n of (x̄, ȳ) such

that
F(x) ∩ V ⊂ F(u) + �‖x − u‖B for all x, u ∈ U .

The infimum of all such � is known as the exact Lipschitzian bound around (x̄, ȳ)

and denoted by lipF(x̄, ȳ). When the graph of F is locally closed around (x̄, ȳ), this
Lipschitz-like property is fully characterized by the Mordukhovich coderivative criterion
[14, Corollary 5.4]

D∗F(x̄|ȳ)(0) = {0}. (2.1)

Next, we present the standard version of single-valued localization of set-valued mapping
used in this paper; see, e.g., [8, 17]. For a different purpose, our definition needs the single-
valued localization ̂F to have full domain U , which is not required in [8].

Definition 2.1 (single-valued localizations) Let F : Rn ⇒ R
n be a set-valued mapping

and let (x̄, ȳ) ∈ gphF . We say that F admits a SINGLE-VALUED LOCALIZATION around
(x̄, ȳ) if there is a neighborhood U × V ⊂ R

n × R
n of (x̄, ȳ) such that the mapping

̂F : U → V defined by gph ̂F := gphF ∩ (U ×V ) is single-valued on U with dom ̂F = U .
In this case we say that ̂F is a single-valued localization of F at x̄ for ȳ. If in addition ̂F

is Lipschitz continuous on U , then F admits a LIPSCHITZ CONTINUOUS SINGLE-VALUED

LOCALIZATION at x̄ for ȳ.

Finally, if the inverse F−1 of a set-valued mapping F : Rn ⇒ R
n admits a Lipschitz

continuous single-valued localization with constant κ > 0 around (v̄, x̄) ∈ gphF−1, we say
F is strongly metrically regular around (x̄, v̄) with modulus κ > 0; see [8, 24] for further
discussions.
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3 Positive Definiteness of Limiting Coderivative and Local Strong
Maximal Monotonicity

Recall that a set-valued mapping T : Rn ⇒ R
n is said to be (globally) monotone if

〈v1 − v2, u1 − u2〉 ≥ 0 whenever (u1, v1), (u2, v2) ∈ gph T .

A monotone operator T : Rn ⇒ R
n is maximally monotone if gph T = gph S for any

monotone operator S : Rn ⇒ R
n satisfying the inclusion gph T ⊂ gph S. We present next

some local monotonicity notions (cf. [18, 21, 23]) considered in this section.

Definition 3.1 (local monotonicity) Let T : Rn ⇒ R
n and let (x̄, v̄) ∈ gph T . We say that:

• T is LOCALLY MONOTONE around (x̄, v̄) if there is a neighborhood U × V of (x̄, v̄)

such that

〈v1 − v2, u1 − u2〉 ≥ 0 for all (u1, v1), (u2, v2) ∈ gph T ∩ (U × V ). (3.1)

T is LOCALLY MAXIMALLY MONOTONE around (x̄, v̄) if there is a neighborhood U ×
V of (x̄, v̄) such that (3.1) holds and that gph T ∩ (U × V ) = gph S ∩ (U × V ) for any
monotone operator S : Rn ⇒ R

n satisfying gph T ∩ (U × V ) ⊂ gph S.
• T is LOCALLY HYPOMONOTONE around (x̄, v̄) if there exists a neighborhood U × V

of this point together with a positive number r > 0 such that

〈v1 − v2, u1 − u2〉 ≥ −r‖u1 − u2‖2 for all (u1, v1), (u2, v2) ∈ gph T ∩ (U × V ).
(3.2)

• T is LOCALLY STRONGLY MONOTONE around (x̄, v̄) with modulus κ > 0 if there
exists a neighborhood U × V of (x̄, v̄) such that

〈v1 − v2, u1 − u2〉 ≥ κ‖u1 − u2‖2 for all (u1, v1), (u2, v2) ∈ gph T ∩ (U × V ).

Finally, we say T is LOCALLY STRONGLY MAXIMALLY MONOTONE around (x̄, v̄)

with modulus κ > 0 if it is locally strongly monotone and locally maximally monotone
around (x̄, v̄).

We recall the following important and useful result taken from [18, Lemma 3.3 and
Theorem 3.4] giving us necessary and sufficient conditions for the local strong maximal
monotonicity of a set-valued mapping.

Theorem 3.2 (necessary and sufficient conditions for local strongly maximal mono-
tonicity, [18]) Let T : Rn ⇒ R

n be a set-valued mapping with (x̄, v̄) ∈ gph T . Suppose
that the graph of T is locally closed around (x̄, v̄). The following statements are equivalent:

(i) T is locally strongly maximally monotone around (x̄, v̄) with modulus κ .
(ii) T admits a Lipschitz continuous single-valued localization ϑ : V → U of T −1

relative to a neighborhood V × U of (v̄, x̄) that satisfies

〈v1 − v2, ϑ(v1) − ϑ(v2)〉 ≥ κ‖ϑ(v1) − ϑ(v2)‖2 for all v1, v2 ∈ V .

(iii) T is locally hypomonotone around (x̄, v̄) and there exists η > 0 such that

〈z, w〉 ≥ κ‖w‖2 for all z ∈ ̂D∗T (u|v)(w), (u, v) ∈ gph T ∩ Bη(x̄, v̄). (3.3)

Although (3.3) is a nice infinitesimal characterization for the local strong maximal
monotonicity, it is natural to question whether a similar pointwise condition holds as in
[18, Conjecture 3.6].
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Conjecture 3.3 (limiting coderivative characterization of local strong maximal mono-
tonicity for set-valued mappings, [18, Conjecture 3.6]) Let T : Rn ⇒ R

n be a set-valued
mapping with closed graph around (x̄, v̄) ∈ gph T . The following assertions are equivalent:

(i) T is locally strongly maximally monotone around (x̄, v̄).
(ii) T is locally hypomonotone around (x̄, v̄) and D∗T (x̄|v̄) is positive definite in the

sense that
〈z, w〉 > 0 whenever z ∈ D∗T (x̄|v̄)(w), w 
= 0. (3.4)

It is shown in [18] that the conjecture is valid in many classes, e.g., when T is either
single-valued and Lipschitz continuous around (x̄, v̄) ∈ gph T or T = f + ∂g, where
f : Rn → R

n is a continuously differentiable mapping around x̄ and g : Rn → R̄ is a
continuously subdifferentiable and prox-regular function at x̄ for v̄ − ∇f (x̄) in the sense
of [23]. The following result, a direct consequence of Theorem 3.2 also provides another
evidence for this conjecture.

Corollary 3.4 (validity of Conjecture 3.3 for Lipschitz-like mappings) Let T : Rn ⇒ R
n

be a set-valued mapping with closed graph around (x̄, v̄) ∈ gph T . Then the implication
[(i)⇒(ii)] holds in Conjecture 3.3. If, in addition, T is Lipschitz-like around (x̄, v̄), the
converse implication is also true.

Proof To justify [(i)⇒(ii)], suppose that T is locally strongly maximally monotone around
(x̄, v̄). It is obvious that T is locally hypomonotone around (x̄, v̄). Pick any (w, z) ∈
gphD∗T (x̄|v̄) with w 
= 0, we find sequences (xk, vk)

gph T→ (x̄, v̄) and (wk, zk) → (w, z)

with zk ∈ ̂D∗T (xk|vk)(wk). By Theorem 3.2, there exists some κ > 0 such that 〈zk, wk〉 ≥
κ‖wk‖2 when k is large enough. Taking k → ∞, we have 〈z, w〉 ≥ κ‖w‖2 > 0. This
clearly verifies (ii) of Conjecture 3.3.

To prove the converse implication, suppose that (ii) of Conjecture 3.3 is valid and that
T is Lipschitz-like around (x̄, v̄). By Theorem 3.2, it suffices to show that condition (3.3)

holds. By contradiction, we find sequences (xk, vk)
gph T→ (x̄, v̄) and (wk, zk) → (w, z) with

zk ∈ ̂D∗T (xk|vk)(wk) such that 〈zk, wk〉 < 1
k
‖wk‖2. This implies that wk 
= 0. Define

w̄k := wk/‖wk‖ and z̄k := zk/‖wk‖, we have 〈z̄k, w̄k〉 < 1
k
and z̄k ∈ ̂D∗T (xk|vk)(w̄k).

Since T is Lipschitz-like around (x̄, v̄), there exists some � > 0 such that

‖z̄k‖ ≤ �‖w̄k‖ = � for sufficient large k

by [15, Theorem 4.7]. Without loss of generality, we assume that (z̄k, w̄k) converges to some
(z̄, w̄). It follows that

z̄ ∈ D∗T (x̄|v̄)(w̄), 〈z̄, w̄〉 ≤ 0, and ‖w̄‖ = 1,

which contradicts (3.4). Hence condition (3.3) holds. By Theorem 3.2, (i) of Conjecture 3.3
is satisfied.

Despite of many evidences of Conjecture 3.3 as discussed above, the next example shows
that Conjecture 3.3 is indeed not true in general. More precisely, we construct a set-valued
hypomonotone mapping T satisfying a stronger condition:

〈z,w〉 ≥ �‖w‖2 whenever z ∈ D∗T (x̄|v̄)(w), w ∈ R
n (3.5)

with some constant � > 0, but T is even not locally monotone around (x̄, v̄).

287On the Positive Definiteness of Limiting Coderivative for Set-Valued Mappings



Example 3.5 (a counterexample of [18, Conjecture 3.6]) Consider the following mapping
T : R2 ⇒ R

2

T (x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

x1,
x2

x2
1

)

if (x1, x2) ∈ R
2, x1 
= 0,

{0} × R if (x1, x2) = (0, 0),
∅ if x1 = 0, x2 
= 0.

(3.6)

Define x̄ := (0, 0) and v̄ := (0, 1), note that the graph of T is closed around (x̄, v̄). Let us
check that T is locally hypomonotone around (x̄, v̄) by showing that

〈(y1, y2) − (v1, v2), (x1, x2) − (u1, u2)〉 ≥ −(2ε + ε2)‖(x1, x2) − (u1, u2)‖2 (3.7)

for any ε ∈ (0, 1) and ((x1, x2), (y1, y2)), ((u1, u2), (v1, v2)) ∈ gph T ∩ (U × V ) with
U = (−ε, ε) × (−ε, ε) and V = (−ε, ε) × (1 − ε, 1 + ε). Let us consider the following
three cases:

Case 1. Both (x1, x2) and (u1, u2) are (0, 0). Then (3.7) is trivial.
Case 2. Only one of (x1, x2) and (u1, u2) is (0, 0). Without loss of generality, suppose
that (x1, x2) 
= (u1, u2) = (0, 0). From the definition of T , v1 = 0. Since v2 ∈ V ⊂
(0, 2), we have

〈(x1, x2) − (u1, u2), (y1, y2) − (v1, v2)〉 = 〈(x1, x2), (x1, x2

x2
1

− v2)〉 = x2
1 + x2

2

x2
1

− v2x2

≥ x2
1 + x2

2

x2
1

− 2|x2| ≥ 0,

which also verifies (3.7).
Case 3. Both (x1, x2) and (u1, u2) are different from (0, 0). Without loss of generality,
suppose that |x1| ≥ |u1|, it follows from (3.6) that

〈(y1, y2) − (v1, v2), (x1, x2) − (u1, u2)〉 = 〈(x1 − u1, y2 − v2), (x1 − u1, x
2
1y2 − u21v2)〉

= (x1 − u1)
2 + (x2

1y2 − u21v2)(y2 − v2) = (x1 − u1)
2 +

[

x2
1 (y2 − v2) + (x2

1 − u21)v2

]

(y2 − v2)

≥ −(2ε + ε2)(x1 − u1)
2 +

[

(1 + ε)2(x1 − u1)
2 + x2

1 (y2 − v2)
2
]

− |x2
1 − u21| · |v2| · |y2 − v2|

≥ −(2ε + ε2)(x1 − u1)
2 + 2(1 + ε)|x1 − u1| · |x1| · |y2 − v2| − |x2

1 − u21| · |v2| · |y2 − v2|
≥ −(2ε + ε2)(x1 − u1)

2 + [2(1 + ε)|x1| − |x1 + u1| · |v2|] |x1 − u1| · |y2 − v2|
≥ −(2ε + ε2)(x1 − u1)

2,

where the last inequality holds due to |x1 + u1| ≤ |x1| + |u1| ≤ 2|x1| and |v2| ≤
1 + ε. This clearly verifies (3.7) and completes the proof for local hypomonotonicity of
T around (x̄, v̄).

We claim next that T is not locally monotone around (x̄, v̄). Indeed, define the sequences

xk = (xk
1 , x

k
2 ) :=

(

(1 − k−1)k−1, (1 − k−1)k−2
)

and uk = (uk
1, u

k
2) :=

(

k−1, k−2
)

with k ∈ N.

It follows that

yk = (yk
1 , y

k
2 ) := ((1 − k−1)k−1, (1 − k−1)−1) ∈ T (xk) and vk = (vk

1 , v
k
2) := (k−1, 1) ∈ T (uk).
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Moreover, we have

〈yk − vk, xk − uk〉 = (xk
1 − uk

1)
2 + (yk

2 − vk
2)(x

k
2 − uk

2)

= k−4 − ((1 − k−1)−1 − 1)k−3

= k−4 − (1 − k−1)−1k−4

= −(1 − k−1)−1k−5 < 0.

Since xk, uk → x̄ and yk, vk → v̄ as k → ∞, T is not locally monotone around (x̄, v̄).
Finally, we check that the positive definiteness of D∗T (x̄|v̄) in both (3.4) and (3.5) are

satisfied. Observe that T (x) = P −1(x), where P : R2 → R
2 is defined by P(x1, x2) =

(x1, x
2
1x2). Moreover, P is continuously differentiable with ∇P(x1, x2) =

(

1 0
2x1x2 x2

1

)

for

any (x1, x2) ∈ R
2. Note further that z ∈ D∗T (x̄|v̄)(w) if any only if

−w ∈ D∗T −1(v̄|x̄)(−z) = D∗P(v̄|x̄)(−z) = ∇P(v̄)∗(−z) = (−z1, 0).

It follows that

〈z, w〉 = ‖z1‖2 = ‖w‖2,
which clearly verifies both (3.4) and (3.5).

From the above example, the local hypomonotonicity of T together with (3.5) and
(3.4) is not enough to verify local strong monotonicity. However, in the following result,
we show that condition (3.5) characterizes a close property, which is called nearly strong
monotonicity.

Theorem 3.6 (positive definiteness of limiting coderivative and nearly strong mono-
tonicity) Let T : Rn ⇒ R

n be a set-valued mapping with closed graph around (x̄, v̄) ∈
gph T . Suppose that T is locally hypomonotone around (x̄, v̄). The following assertions are
equivalent:

(i) T is nearly strongly monotone around (x̄, v̄) with modulus κ > 0 in the sense that for
any ε > 0 there exists δ > 0 such that Bδ(v̄) ⊂ dom T −1 and that

〈v1−v2, u1−u2〉 ≥ κ‖u1−u2‖2−ε‖v1−v2‖2 for all (u1, v1), (u2, v2) ∈ gph T ∩Bδ(x̄, v̄).
(3.8)

(ii) D∗T (x̄|v̄) is positive definite with modulus κ > 0 in the sense that

〈z,w〉 ≥ κ‖w‖2 whenever z ∈ D∗T (x̄|v̄)(w), w ∈ R
n. (3.9)

Proof Suppose that (i) is valid, i.e., for any ε > 0 there exists some δ > 0 such that
(3.8) holds. Define ϑ : Bδ(v̄) ⇒ R

n by gphϑ = gph T −1 ∩ (Bδ(v̄) × R
n). For any

(v1, u1), (v2, u2) ∈ gphϑ , it follows from (3.8) that

0 ≥ κ‖u1 − u2‖2 − ‖v1 − v2‖ · ‖u1 − u2‖ − ε‖v1 − v2‖2,
which yields

‖u1 − u2‖ ≤ 1 + √
1 + 4εκ

2κ
‖v1 − v2‖. (3.10)
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Since Bδ(v̄) ⊂ dom T −1, we derive from (3.10) that ϑ is single-valued and Lipschitz-

continuous on Bδ(v̄) with modulus Lε := 1 + √
1 + 4εκ

2κ
.

Pick any (u, v) ∈ gph T ∩ (Bδ(x̄) × Bδ(v̄)) and z ∈ ̂D∗T (u|v)(w), we claim that

〈z, w〉 ≥ κ‖w‖2 − ε‖z − 2κw‖2. (3.11)

Indeed, since z ∈ ̂D∗T (u|v)(w), for any ν > 0 there exist some η with Bη(u, v) ⊂ Bδ(x̄, v̄)

such that

ν [‖x − u‖ + ‖y − v‖] ≥ 〈z, x − u〉 − 〈w, y − v〉 for all (x, y) ∈ Bη(u, v). (3.12)

Define vt := v+ t (z−2κw) ∈ Bη(v) ⊂ Bδ(v̄) for t > 0 sufficiently small and ut := ϑ(vt ).
Since ϑ is Lipschitz continuous on Bδ(v̄), we have ut := ϑ(vt ) ∈ Bη(v) when t > 0 is
small enough. It follows from (3.8) that

〈z, ut − u〉 − 〈w, vt − v〉 = 〈t−1(vt − v) + 2κw, ut − u〉 − t〈w, z − 2κw〉
= 〈vt − v, ut − u〉

t
+ 2κ〈w, ut − u〉 − t〈w, z〉 + 2tκ‖w‖2

≥ κ

t
‖ut − u‖2 − ε

t
‖vt − v‖2 + 2κ〈w, ut − u〉 − t〈w, z〉 + 2tκ‖w‖2

=
[κ

t
‖ut − u‖2 + 2κ〈w, ut − u〉 + tκ‖w‖2

]

− t〈w, z〉
+tκ‖w‖2 − ε

t
‖vt − v‖2

≥ −t〈w, z〉 + tκ‖w‖2 − ε

t
‖vt − v‖2

= −t〈w, z〉 + tκ‖w‖2 − tε‖z − 2κw‖2.

Observe further from the Lipschitz continuity of ϑ that

ν (‖ut − u‖ + ‖vt − v‖) = ν (‖ϑ(vt ) − ϑ(v)‖ + ‖vt − v‖)
≤ ν (Lε‖vt − v‖ + ‖vt − v‖)
= ν(Lε + 1)t‖z − 2κw‖.

This together with the above inequalities and (3.12) tells us that

ν(Lε + 1)‖z − 2κw‖ ≥ −〈z, w〉 + κ‖w‖2 − ε‖z − 2κw‖2
for any ν > 0. Letting ν → 0, we derive (3.11) as claimed.

Now we prove the desired positive definiteness of D∗T (x̄|v̄) in (3.9). Indeed, pick any
z ∈ D∗T (x̄|v̄)(w), w ∈ R

n. Hence there is a sequence (uk, vk, wk, zk) ∈ (Rn)4 such that

(uk, vk)
gphT→ (x̄, v̄) and (wk, zk) → (w, z) with zk ∈ ̂D∗T (uk|vk)(wk). Thanks to (3.11),

we have
〈zk, wk〉 ≥ κ‖wk‖2 − ε‖zk − 2κwk‖2 for sufficiently large k.

Passing k → ∞, this inequality gives us

〈z, w〉 ≥ κ‖w‖2 − ε‖z − 2κw‖2.
Since (z, w) is independent from the arbitrary small ε > 0, we derive (3.9) from the latter
and complete the proof for [(i)⇒(ii)].

To proceed the converse implication, suppose that (3.9) holds. Since T is hypomonotone
around (x̄, v̄), by (3.2) we find some r > 0 and neighborhood U × V of (x̄, v̄) such that

〈v1−v2, u1−u2〉 ≥ −r‖u1−u2‖2 for all (u1, v1), (u2, v2) ∈ gph T ∩(U ×V ). (3.13)
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Pick any s > r + 1 and define Js(v, u) := (u, v − s(u − x̄)) for any (u, v) ∈ R
n × R

n

and denote by I the identity mapping in R
n. We show next that Fs := (T + sI − sx̄)−1 has

a localization around (v̄, x̄) that is single-valued and Lipschitz continuous around v̄ with a
modulus (κ + s − α)−1 for some arbitrarily small α ∈ (0, κ + r) ⊂ (0, κ + s). Pick any
w ∈ D∗Fs(v̄|x̄)(z), we have

−z ∈ D∗(T + sI− sx̄)(x̄|v̄)(−w) = D∗(T + sI)(x̄|v̄ + sx̄)(−w) = D∗T (x̄|v̄)(−w)− sw,

which implies that −z+sw ∈ D∗T (x̄|v̄)(−w). It follows from (3.9) that 〈−z+sw,−w〉 ≥
κ‖w‖2 and thus

‖z‖ · ‖w‖ ≥ 〈z,w〉 ≥ (κ + s)‖w‖2.
Hence we have ‖z‖ ≥ (κ + s)‖w‖ for any w ∈ D∗Fs(v̄|x̄)(z). Thanks to [15, Theo-
rem 4.10], Fs is Lipschitz-like around (v̄, x̄) with the exact Lipschitzian bound smaller or
equal to (κ + s)−1. Hence for any α ∈ (0, κ + r) there exists some small number η > 0
depending on α and s such that

Fs(v1) ∩ Bη(x̄) ⊂ Fs(v2) + (κ + s − α)−1‖v1 − v2‖B1 for all v1, v2 ∈ Bη(v̄). (3.14)

This gives us that

x̄ ∈ Fs(v̄) ∩ Bη(x̄) ⊂ Fs(v) + (κ + s − α)−1‖v − v̄‖B1 for v ∈ Bη(v̄). (3.15)

Hence Fs(v) 
= ∅ for all v ∈ Bη(v̄). Define ϕs : Bη(v̄) ⇒ R
n with

gphϕs = gphFs ∩ (Bη(v̄) × B(κ+s−α)−1η(x̄))

and thus domϕs = Bη(v̄) due to (3.15).
By choosing η sufficiently small, we may suppose that Js(Bη(v̄, x̄)) ⊂ U × V . Pick

(vi, ui) ∈ gphϕs , i = 1, 2, we have ui ∈ B(κ+s−α)−1η(x̄) ⊂ Bη(x̄), since κ + s − α ≥
s − r > 1. It follows that (ui, vi − s(ui − x̄)) = Js(vi, ui) ∈ gph T ∩ (U × V ). By (3.13),
we obtain

‖v1 − v2‖ · ‖u1 − u2‖ ≥ 〈v1 − v2, u1 − u2〉 ≥ (s − r)‖u1 − u2‖2,
which tells us that ϕs is single-valued and Lipschitz continuous with modulus (s − r)−1.

By (3.14) there exists û2 ∈ Fs(v2) such that

‖ϕs(v1) − û2‖ ≤ (κ + s − α)−1‖v1 − v2‖. (3.16)

Hence we have

‖x̄ − û2‖ ≤ ‖ϕs(v1) − x̄‖ + (κ + s − α)−1‖v1 − v2‖
= ‖ϕs(v1) − ϕs(v̄)‖ + (κ + s − α)−1‖v1 − v2‖
≤ (s − r)−1‖v1 − v̄‖ + (κ + s − α)−1‖v1 − v2‖

Define ν := min

{

(κ + s − α)−1

(s − r)−1 + 2(κ + s − α)−1
η, η

}

and restrict v1, v2 ∈ Bν(v̄), we get

from the above inequalities that û2 ∈ B(κ+s−a)−1η(x̄), which means û2 = ϕs(v2). This
together with (3.16) gives us that

‖ϕs(v1) − ϕs(v2)‖ ≤ (κ + s − α)−1‖v1 − v2‖ for all v1, v2 ∈ Bν(v̄). (3.17)

Thus Fs admits a single-valued and Lipschitz continuous localization around (v̄, x̄) with
modulus (κ + s − α)−1.

We are ready to prove (3.8). Pick any ε > 0 and choose δ > 0 sufficiently small such
that Js(Bδ(x̄, v̄)) ⊂ Bν(v̄)×B(κ+s−a)−1η(x̄). For any (ui, vi) ∈ gph T ∩Bδ(x̄, v̄), i = 1, 2,
we have

(vi + s(ui − x̄), ui) ∈ gphFs ∩ (Bν(v̄) × B(κ+s−a)−1η(x̄)).
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This together with (3.17) tells us that

(κ+s−α)2‖u1−u2‖2 ≤ ‖v1−v2+s(u1−u2)‖2 = ‖v1−v2‖2+2s〈v1−v2, u1−u2〉+s2‖u1−u2‖2.

It follows that

〈v1 − v2, u1 − u2〉 ≥
(

(κ − α)2

2s
+ κ − α

)

‖u1 − u2‖2 − 1

2s
‖v1 − v2‖2. (3.18)

Since α > 0 and s > r + 1 could be chosen arbitrarily small and large respectively, we
could suppose innitially that

(κ − α)2

2s
+ κ − α ≥ κ and − 1

2s
≥ −ε.

This together with (3.18) justifies (3.8). To complete the proof of the theorem, we only need
to show that v̄ ∈ int (dom T −1). This is indeed trivial due to the Lipschitz-like property of
T −1 around (v̄, x̄) obtained by (3.9) and the Mordukhovich coderivative criterion (2.1).

Remark 3.7 When the mapping T admits a Lipschitz continuous localization at x̄ for v̄, it
is obvious that the nearly strong monotonicity of T (3.8) around (x̄, v̄) is equivalent to the
local strong maximal monotonicity of T around (x̄, v̄). Moreover, if T could be represented
by T = f + ∂g with f : Rn → R

n being a continuously differentiable mapping around
x̄ and g : Rn → R̄ being a continuously subdifferentiable and prox-regular function at x̄

for v̄ − ∇f (x̄) in the sense of [23], [18, Corollary 3.5] together with the above theorem
tells us that the nearly strong monotonicity and the local strong maximal monotonicity of
T around (x̄, v̄) are also the same. The difference between these two types of monotonicity
may appear for set-valued mappings that involves the subdifferentials in some indirect ways.
As in Example 3.5 and Theorem 3.6, the mapping in (3.6) is nearly strongly monotone but
it is not even locally monotone around the point in question.

Remark 3.8 Full calculus of the limiting coderivative D∗T for set-valued mappings T is
well-known; see, e.g., [15, Chapter 3]. When T involves subdifferential/normal cone map-
pings, full calculation for D∗T is a research challenge especially when the corresponding
system is degenerate. This topic belonging to the area of second-order variational analysis
[28, Chapter 13] is out of scope of our paper; see also [16, Chapter 3] for a brief discussion
about recent developments in this direction.

Given a set-valued mapping T that is locally hypomonotone around (x̄, v̄), [18, The-
orem 3.4] shows that the positive definiteness of ̂D∗T around (x̄, v̄) with some modulus
κ > 0 ensures the strong metric regularity [24] of T around (x̄, v̄). Our next result, a con-
sequence of Theorem 3.6 provides a pointbased sufficient condition for such a property on
T via the positive definiteness of D∗T (x̄|v̄).

Corollary 3.9 (sufficient condition for strong metric regularity I) Let T : Rn ⇒ R
n be a

set-valued mapping with closed graph around (x̄, v̄) ∈ gph T . Suppose that T is hypomono-
tone around (x̄, v̄) and that D∗T (x̄|v̄) is positive definite with modulus κ > 0 in the sense
of (3.9). Then T is strongly metrically regular around (x̄, v̄) with lip T −1(v̄, x̄) ≤ κ−1.
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Proof Under the above assumptions, T is nearly strongly monotone around (x̄, v̄) as in
(3.8) due to Theorem 3.6. Observe from the proof of the implication [(i)⇒(ii)] in Theo-
rem 3.6, e.g., (3.10) that T −1 admits a Lipschitz continuous and single-valued localization

with modulus Lε = 1 + √
1 + 4εκ

2κ
, which is arbitrarily close to κ−1 for sufficiently small

ε > 0. Then T is strongly metrically regular around (x̄, v̄) with lip T −1(v̄, x̄) ≤ κ−1.

As a counterpart of Theorem 3.6, the positive semi-definiteness of hypomonotone
mapping T ensures a close property to local monotonicity.

Corollary 3.10 (positive semidefiniteness of limiting coderivative) Let T : Rn ⇒ R
n be

a set-valued mapping with closed graph around (x̄, v̄) ∈ gph T . Suppose that T is locally
hypomonotone around (x̄, v̄). If D∗T (x̄|v̄) is positive semidefinite:

〈z, w〉 ≥ 0 whenever z ∈ D∗T (x̄|v̄)(w), w ∈ R
n (3.19)

then T is nearly monotone around (x̄, v̄) in the sense that for any ε > 0 there exists δ > 0
such that

〈v1−v2, u1−u2〉 ≥ −ε‖v1−v2‖2 for all (u1, v1), (u2, v2) ∈ gph T ∩Bδ(x̄, v̄). (3.20)

Proof To justify, pick any ε > 0 and fix any s > 0. Define Ts = sI+T − sx̄. It is clear that
Ts is locally hypomonotone around (x̄, v̄) and D∗Ts(x̄|v̄) is positive definite with modulus
s when (3.19) is valid. By applying Theorem 3.6 on Ts , there exists some η > 0 such that

〈v1 −v2, u1 −u2〉 ≥ s‖u1 −u2‖2 −ε‖v1 −v2‖2 for all (u1, v1), (u2, v2) ∈ gph Ts ∩Bη(x̄, v̄).

This is equivalent to (3.20) after translation. The proof is complete.

The above result also tells us that the positive semi-definiteness of limiting coderivative
D∗T (x̄|v̄) is sufficient for the strict 2-submonotonicity on T −1 around (v̄, x̄) in the sense
that

lim inf
(ui ,vi )

gph T−→ (x̄,v̄), i=1,2
v1 
=v2

〈v1 − v2, u1 − u2〉
‖v1 − v2‖2 ≥ 0.

provided that T is locally hypomonotone around (x̄, v̄). It is worth noting that the strict 2-
submonotonicity on T −1 above implies that T −1 is also strictly submonotone around (v̄, x̄)

as follows:

lim inf
(ui ,vi )

gph T−→ (x̄,v̄), i=1,2
v1 
=v2

〈v1 − v2, u1 − u2〉
‖v1 − v2‖ ≥ 0. (3.21)

The terminology of strict submonotonicity was first introduced by Spingarn in [29] and usu-
ally used on subdifferential mappings to characterize approximate convexity on functions
[7, 20]. Our definition (3.21) is slightly different when we restrict the local property on both
x̄ and v̄.

Thanks to Corollary 3.10, we can replace the positive definiteness with modulus κ (3.9)
by the stronger one (3.4) to obtain the strong metric regularity of a local hypomonotone
mapping as in Corollary 3.9. This result is significant in our later analysis.

Corollary 3.11 (sufficient condition for strong metric regularity II) Let T : R
n ⇒

R
n be a set-valued mapping with closed graph around (x̄, v̄) ∈ gph T . Suppose that T is
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hypomonotone around (x̄, v̄) and that D∗T (x̄|v̄) is positive definite in the sense of (3.4).
Then T is strongly metrically regular around (x̄, v̄).

Proof Suppose that D∗T (x̄|v̄) is positive definite in the sense of (3.4). Then, D∗T (x̄|v̄) is
also positive semidefinite. Hence, by Corollary 3.10, for any ε > 0 there exists δ > 0 such
that (3.20) is satisfied.

Note further that the positive definiteness (3.4) implies the Lipschitz-like property of
T −1 around (v̄, x̄) due to Mordukhovich coderivative criterion (2.1). Fix ε > 0 and define
the mapping T̄s := T −1 + sI − sv̄ where s > ε. It is easy to check that gph T̄s is closed
around (v̄, x̄). Moreover, by (3.20) T̄s is strongly monotone around (v̄, x̄) with modulus
(s − ε). For any w ∈ D∗T̄s (v̄|x̄)(0), we obtain

w ∈ D∗T −1(v̄|x̄)(0),

which means 0 ∈ D∗T (x̄|v̄)(−w). It follows from (3.4) that w = 0. By Mordukhovich
coderivative criterion (2.1) again, T̄s is Lipschitz-like around (v̄, x̄). Since T̄s is strongly
monotone around (v̄, x̄), it is also single-valued around (v̄, x̄). As a result, T̄s admits a Lip-
schitz continuous and single-valued localization around (v̄, x̄), and so does T −1. Therefore,
T is strongly metrically regular around (x̄, v̄). The proof is complete.

Corollaries 3.9 and 3.11 indeed tell us that studying positive definiteness of D∗T (x̄|v̄)

in (3.4) or (3.9) only makes sense under the strong metric regularity. That is the reason why
the following lemma established by Poliquin and Rockafellar [22, Lemma 5.6] is useful in
our study.

Lemma 3.12 (strong monotonicity of inverse mapping) Suppose that P is a Lipschitz
continuous mapping from an open convex set O into R

n. The following are equivalent for
any α > 0:

(i) T = P −1 is strongly monotone with modulus α, which means

〈v1 − v2, P (v1) − P(v2)〉 ≥ α‖P(v1) − P(v2)‖2 for all v1, v2 ∈ O. (3.22)

(ii) For any v ∈ O where P is differentiable, the Jacobian matrix satisfies

〈z,∇P(v)z〉 ≥ α‖∇P(v)z‖2 for all z ∈ R
n.

It is worth recalling here from Example 3.5 that even T −1 admits a continuously differen-
tiable localization and T satisfies (3.9), T may be not locally strongly maximally monotone.
In the next theorem, we add some additional conditions to show that the positive definiteness
of D∗T (x̄|v̄) in (3.9) could be sufficient for local strong maximal monotonicity.

Theorem 3.13 (sufficient condition for local strong maximal monotone under symme-
try) Let T : Rn ⇒ R

n be a set-valued mapping with closed graph around (x̄, v̄) ∈ gph T .
Suppose that T is hypomonotone around (x̄, v̄) and that D∗T (x̄|v̄) is positive definite with
modulus κ > 0 in the sense of (3.9). Let P be a single-valued and Lipschitz continuous
localization of T −1 around (v̄, x̄) described in Corollary 3.9. Assume that ∇P(v) (if exist)
are symmetric matrices for all v near v̄. Then T is locally strongly maximally monotone
around (x̄, v̄) with any modulus in (0, κ).
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Proof Under the assumptions in this theorem, suppose without loss of generality that
gphPη := gph T −1 ∩ Bη(v̄, x̄) ⊂ gphP with some η > 0 such that ∇Pη(v) is symmet-
ric for any v ∈ Bη(v̄) at which Pη is differentiable. For any ε ∈ (0, κ), we assume from
Corollary 3.9 that Pη is Lipschitz continuous with modulus (κ − ε)−1.

By Theorem 3.2, to obtain the local strong maximal monotonicity of T with modulus
κ − ε, we only need to prove (3.22) with α = κ − ε when η is sufficiently small. By
contradiction and Lemma 3.12, suppose that there exists a sequence vk → v̄ at which P is
differentiable and zk ∈ R

n such that

〈zk,∇P(vk)zk〉 < (κ − ε)‖∇P(vk)zk‖2 (3.23)

and that ∇P(vk) is symmetric. Due to the hypomonotonicity of T around (x̄, v̄) with
modulus r > 0 we may suppose that

〈v − vk, P (v) − P(vk)〉 ≥ −r‖P(v) − P(vk)‖2 for all v ∈ Bη(v̄).

For any z ∈ R
n, substituting v = vk + tz ∈ Bη(v̄) with t > 0 into the above inequality gives

us that
〈tz, t∇P(vk)z + o(t)〉 ≥ −r‖t∇P(vk)z + o(t)‖2.

By dividing both sides by t2 and taking t ↓ 0, we obtain

〈z,∇P(vk)z〉 ≥ −r‖∇P(vk)z‖2 for all z ∈ R
n. (3.24)

Since Ak := ∇P(vk) is symmetric, from the spectral decomposition and (3.24) all eigenval-
ues λi(Ak), i = 1, . . . , n satisfy either λi(Ak) ≥ 0 or λi(Ak) ≤ − 1

r
. It follows that for any

s > r , λi(I + sAk) ≥ 1 or λi(I + sAk) ≤ 1 − s
r

< 0. Hence we have I + sAk is invertible.
Observe further from (3.24) that

〈(I + sAk)z, Akz〉 ≥ (s − r)‖Akz‖2 for all z ∈ R
n.

Replacing z in this inequality by (I + sAk)
−1z, we have

〈z, Bkz〉 ≥ (s − r)‖Bkz‖2 for all z ∈ R
n with Bk := Ak(I + sAk)

−1. (3.25)

Note that

Bk = 1

s
(I + sAk − I)(I + sAk)

−1 = 1

s
(I − (I + sAk)

−1). (3.26)

is also symmetric. It follows from (3.25) that Bk is positive semidefinite. Moreover, we get
from (3.23) that

〈(I + sAk)zk, Akzk〉 < (s + κ − ε)‖Akzk‖2.
Define z̄k := (I + sAk)zk , we derive from the latter and (3.25) that

〈z̄k, Bkz̄k〉 < (s + κ − ε)‖Bkz̄k‖2.
Let Uk(diag(λi(Bk)))U

∗
k be the spectral decomposition of Bk . Define wk := U∗

k z̄k , we
obtain from the above inequalities that

0 ≤
n

∑

i=1

λi(Bk)w
2
ki

< (s + κ − ε)

[

n
∑

i=1

λ2i (Bk)w
2
ki

]

≤ (s + κ − ε)λmax(Bk)

[

n
∑

i=1

λi(Bk)w
2
ki

]

.

It follows that
n

∑

i=1

λi(Bk)w
2
ki

> 0 and

‖Bk‖ = λmax(Bk) ≥ 1

s + κ − ε
. (3.27)

295On the Positive Definiteness of Limiting Coderivative for Set-Valued Mappings



Furthermore, since Pη is Lipschitz continuous around v̄ with modulus (κ − ε)−1, we have
‖∇P(vk)‖ ≤ (κ − ε)−1 for all k. By passing to a subsequence, suppose that Ak = ∇P(vk)

converges to a symmetric matrixA as k → ∞. Note further that∇Pη(vk)
∗z = ̂D∗Pη(vk)(z)

for any z ∈ R
n. It follows that A∗z ∈ D∗Pη(v̄)(z), i.e., −z ∈ D∗T (x̄|v̄)(−A∗z). This

together with (3.9) tells us that

〈z, Az〉 = 〈z, A∗z〉 ≥ κ‖A∗z‖2 = κ‖Az‖2 for all z ∈ R
n,

which implies 0 ≤ λi(A) ≤ 1
κ
due to the spectral decomposition and that I+sA is invertible.

Define B := A(I + sA)−1, it is similar to (3.26) and (3.25) that B is symmetric and

〈z, Bz〉 ≥ (s + κ)‖Bz‖2 for all z ∈ R
n.

By the spectral decomposition again for B, we obtain that

min
z∈Rn

〈z, Bz〉
‖Bz‖2 = 1

λmax(B)
= 1

‖B‖ ≥ s + κ . (3.28)

Moreover, since Ak → A, we have Bk → B. Note from (3.27) that ‖B‖ ≥ (s + κ − ε)−1,
which contradicts the inequality ‖B‖−1 ≥ (s + κ) in (3.28). Thus inequality (3.23) could
not be satisfied. This completes the proof of the theorem.

In Theorem 3.6, the positive definiteness of coderivative (3.9) is characterized via nearly
strong monotonicity around the point in question. Characterization for its variant (3.4) as
desired in [18, Conjecture 3.6] is still missing. At this moment we do not know whether
(3.4) and (3.9) are equivalent in general, but under some special circumstances , e.g., T is
the subdifferential mapping to a lower semicontinuous extended real-valued function [17].

Theorem 3.14 (equivalence between two kinds of positive definiteness of limiting
coderivative) Let T : Rn ⇒ R

n be strongly metrically regular at x̄ ∈ dom T for v̄ ∈ T (x̄)

and let P be a Lipschitz continuous localization of T −1 around (v̄, x̄). Conditions (3.4) and
(3.9) are equivalent when one of the following three statements holds:

(i) The Bouligand generalized Jacobian

∇BP (v̄) := {A ∈ R
n×n| ∃ {vk} → v̄, P is differentiable at vk, ∇P(vk) → A}

contains finitely many elements.
(ii) All matrices in ∇BP (v̄) have the same rank.
(iii) All matrices in ∇BP (v̄) are symmetric.

Proof It suffices to prove the implication [(3.4) ⇒(3.9)].

(i) Suppose that ∇BP (v̄) contains finitely many elements. Pick any A ∈ ∇BP (v̄) and
z ∈ R

n. Since P is Lipschitz continuous around v̄, we have

AT z ∈ ∂〈z, P 〉(v̄) = D∗T −1(v̄|x̄)(z),

which implies −z ∈ D∗T (x̄|v̄)(−AT z). It follows from (3.4) that

〈z,AT z〉 > 0 whenever AT z 
= 0. (3.29)

For any u ∈ KerAT and v ∈ ImA, we have

0 ≤ 〈(u + v),AT (u + v)〉 = 〈u,AT v〉 + 〈v, AT v〉.
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Replacing u above by λu with any λ ∈ R gives us 〈u,AT v〉 = 0. Moreover, since
KerAT ∩ ImA = {0}, we get from (3.4) that 〈v,AT v〉 > 0 for any v ∈ ImA \ {0}.
Hence there exists a positive constant c such that 〈v,AT v〉 ≥ c‖v‖2 for all v ∈ ImA.

Since KerAT ⊕ ImA = R
n, for any z ∈ R

n, we find u ∈ KerAT and v ∈ ImA

with z = u + v. It follows that

〈z, AT z〉 = 〈u, AT v〉+〈v, AT v〉 = 〈v, AT v〉 ≥ c‖v‖2 ≥ c

‖AT ‖2 ‖AT v‖2 = c

‖AT ‖2 ‖AT z‖2.

Since there are finitely many elements in ∇BP (v̄), we could find a constant κ > 0
such that

〈z,AT z〉 ≥ κ‖AT z‖2 for all A ∈ ∇BP (v̄), z ∈ R
n. (3.30)

Define JP (v̄) := co∇BP (v̄) as the Clarke generalized Jacobian; [4, Defini-
tion 2.6.1]. Due to the convexity of ‖ · ‖2, it is easy to obtain from (3.30) that

〈z, AT z〉 ≥ κ‖AT z‖2 for all A ∈ JP (v̄), z ∈ R
n. (3.31)

Pick any (w, z) ∈ R
n × R

n with z ∈ D∗T (x̄|v̄)(w), we have −w ∈ D∗P(v̄|x̄)(−z).
It follows from the Lipschitz continuity of P at v̄ that obtain that

−w ∈ ∂〈 − z, P 〉(v̄) ⊂ ∂C〈 − z, P 〉(v̄) = JP (v̄)T (−z),

where ∂C denotes the Clarke’s generalized gradient; see, e.g., [4, Theorem 2.6.6].
Thanks to the above inclusion and (3.31), there exists A ∈ JP (v̄) such that w = AT z

and
〈w, z〉 = 〈AT z, z〉 ≥ κ‖AT z‖2 = κ‖w‖2,

which clearly verifies (3.9).
(ii) All matrices in ∇BP (v̄) have the same rank r . Thanks to (3.29), we have

〈z,AT z〉 = 0 implies AT z = 0 for all A ∈ ∇BP (v̄).

A matrix A ∈ ∇BP (v̄) satisfying the above property is called positive semidefinite
plus [9]. By [12, Proposition 1], A could be decomposed by

A = UT

(

�r + N 0
0 0

)

U,

where UT

(

�r 0
0 0

)

U is the spectral decomposition of 1
2 (A + AT ) with �r =

diag{λ1, λ2, . . . , λr }, λ1 ≥ λ2 ≥ . . . ≥ λr > 0 due to (3.29) and N is an r × r skew-

symmetric matrix with 1
2 (A−AT ) = UT

(

N 0
0 0

)

U . For any z ∈ R
n, define u = Uz,

we have

〈z,AT z〉 = 〈z, 1
2
(A + AT )z〉 = 〈z, UT

(

�r 0
0 0

)

Uz〉 =
r

∑

i=1

λiu
2
i

≥ min

{

λ1

λ21 + ‖N‖2 ,
λr

λ2r + ‖N‖2
}

r
∑

i=1

(λ2i + ‖N‖2)u2i

≥ min

{

0.5λ1
λ21 + ‖N‖2 ,

0.5λr

λ2r + ‖N‖2
}

‖
(

�r − N 0
0 0

)

u‖2

= min

{

0.5λ1
λ21 + 0.25‖A − AT ‖2 ,

0.5λr

λ2r + 0.25‖A − AT ‖2
}

‖AT z‖2
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for all A ∈ ∇BP (v̄). Since λ1 = λ1(
1
2 (A + AT )) and λr = λr(

1
2 (A + AT )) are

continuous functions with respect to A, the quantity

min

{

0.5λ1(0.5(A + AT ))

λ21(0.5(A + AT )) + 0.25‖A − AT ‖2 ,
0.5λr(0.5(A + AT ))

λ2r (0.5(A + AT )) + 0.25‖A − AT ‖2
}

> 0

attains a positive minimum value on the compact set ∇BP (v̄). This tells us that
(3.30) is also true with some constant κ > 0. Imitating the proof of (i) after (3.30),
we also derive (3.9).

(iii) All matrices in ∇BP (v̄) are symmetric. Similarly to (3.29), all matrices in ∇BP (v̄)

are semidefinite. Following the proof in case (i), we only need to prove the existence
of κ > 0 in (3.30). Indeed, due to the spectral decomposition, we obtain that

〈z, Az〉 ≥ 1

λmax(A)
‖Az‖2 for all A ∈ ∇BP (v̄). (3.32)

Since ∇BP (v̄) is a compact set and λmax(·) is a continuous function, λmax(·) is
bounded above in ∇BP (v̄). This together with (3.32) verifies (3.30) and thus (3.9).
The proof is complete.

The assumption of strong metric regularity on T in the above theorem is not restrictive
at all, since as either (3.4) or (3.9) is satisfied, such property is automatically valid due
to Corollaries 3.9 and 3.11. Furthermore, if one could construct a Lipschitz continuous
mapping P : R2 → R

2 around v̄ ∈ R
2 satisfying

∇BP (v̄) =
{(

1 0
0 0

)

,

(

1 1
n

− 1
n

1
n4

)

, n = 1, 2 . . .

}

then (3.4) is satisfied with T = P −1 and x̄ = P(v̄), but (3.9) is not necessarily valid, since
there is no uniform κ > 0 such that (3.30) holds for all A ∈ ∇BP (v̄). Unfortunately, at
this moment we do not know either how to construct such mapping P or whether such a
mapping P exists.

Let us finish this section by showing that Conjecture 3.3 is indeed true for the case of
one dimension by applying Theorems 3.13 and 3.14.

Corollary 3.15 (Validity of Conjecture 3.3 in one dimension) Let T : R ⇒ R be a
set-valued mapping with closed graph around (x̄, v̄) ∈ gph T . Suppose that T is locally
hypomonotone around (x̄, v̄). Then the assertions in Conjecture 3.3 are equivalent.

Proof Since the implication [(i)⇒(ii)] is already proved in Corollary 3.4, we only need
to show the converse implication. Suppose that T is hypomonotone around (x̄, v̄) and
D∗T (x̄|v̄) is positive definite in the sense of (3.4). By Corollary 3.11, T is strongly metri-
cally regular around (x̄, v̄). Let P : R → R be a single-valued and Lipschitz continuous
localization of T −1 around (v̄, x̄). Since ∇BP (v̄) ⊂ R, the assertion (iii) in Theorem 3.14
holds and thus T satisfies (3.9). It follows from Theorem 3.13 that T is locally strongly
maximally monotone around (x̄, v̄), which verifies (i).
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4 Conclusion

In this paper, we disprove [18, Conjecture 3.6], which speculates the interconnection
between the positive definiteness of limiting coderivative and the local strong maximal
monotonicity. The conjecture is only true in one dimension or under some extra assump-
tions. However, we are able to characterize the positive definiteness of limiting coderivative
by the nearly strong monotonicity, which is even not locally monotone. Consequently,
the positive definiteness of limiting coderivative is sufficient for strong metric regular-
ity. The pointwise infinitesimal characterization of local strong maximal monotonicity for
set-valued mapping remains open. Whether two kinds of positive definiteness of limiting
coderivative (3.4) and (3.9) are equivalent in general is also not known yet. In the future,
we plan to use our results, e.g., Theorem 3.6 and Corollary 3.10 to study the nearly strong
monotonicity and strong metric regularity for variational systems [15] and generalized equa-
tions [24] that may involve further advances on second-order variational analysis; especially
when the corresponding system is degenerate.
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