
Pervasive and Mobile Computing 76 (2021) 101459

C
a

b

c

w
M
e
d
c
s
A

Contents lists available at ScienceDirect

Pervasive andMobile Computing

journal homepage: www.elsevier.com/locate/pmc

REAM: A Framework for Resource Efficient Adaptive
Monitoring of Community Spaces
Praveen Venkateswaran a,∗, Kyle E. Benson b, Chia-Ying Hsieh c,
heng-Hsin Hsu c, Sharad Mehrotra a, Nalini Venkatasubramanian a

University of California, Irvine, USA
Real-Time Innovations, Sunnyvale, USA
National Tsing-Hua University, Taiwan

a r t i c l e i n f o

Article history:
Received 12 January 2021
Received in revised form 5 June 2021
Accepted 5 August 2021
Available online 13 August 2021

Keywords:
Smart Community
IoT
Edge computing
Adaptive Monitoring
Reinforcement learning

a b s t r a c t

Nowadays, many Internet-of-Things (IoT) devices with rich sensors and actuators are
being deployed to monitor community spaces. The data generated by these devices
are analyzed and turned into actionable information by analytics operators. In this
article, we present a Resource Efficient Adaptive Monitoring (REAM) framework at the
edge that adaptively selects workflows of devices and analytics to maintain an adequate
quality of information for the applications at hand while judiciously consuming the
limited resources available on edge servers. Since community spaces are complex and
in a state of continuous flux, developing a one-size-fits-all model that works for all
spaces is infeasible. The REAM framework utilizes reinforcement learning agents that
learn by interacting with each community space and make decisions based on the state
of the environment in each space and other contextual information. We demonstrate
the resource-efficient monitoring capabilities of REAM on two real-world testbeds in
Orange County, USA and NTHU, Taiwan, where we show that community spaces using
REAM can achieve > 90% monitoring accuracy while incurring ∼ 50% less resource
consumption costs compared to existing static monitoring approaches. We also show
REAM’s awareness of network link quality in its decision-making, resulting in a 42%
improvement in accuracy over network agnostic approaches.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Modern community spaces, such as classrooms, buildings, campuses, districts, and cities, are increasingly instrumented
ith Internet-of-Things (IoT) sensors and actuators, which enable many real-time community monitoring applications.
onitoring applications are now ubiquitous across many domains like smart transportation, smart water infrastructure,
nvironmental sensing, among others [1,2]. A typical monitoring workflow involves collecting data through sensors
eployed in the community spaces and analyzing this data to generate meaningful and actionable information. While the
ollected IoT sensor data can be sent to cloud data centers for analysis, oftentimes this can lead to high operational costs,
low response times, and service interruptions, as the data centers are often far away from the community spaces [3].
n alternate solution is to leverage edge servers which can be network gateways or dedicated workstations, that are in

closer proximity [4] for less expensive, more responsive, and more reliable analysis results. In addition, many community

∗ Corresponding author.
E-mail address: praveenv@uci.edu (P. Venkateswaran).
https://doi.org/10.1016/j.pmcj.2021.101459
1574-1192/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.pmcj.2021.101459
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmcj.2021.101459&domain=pdf
mailto:praveenv@uci.edu
https://doi.org/10.1016/j.pmcj.2021.101459

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

a
s
m

gencies have privacy and security policies that prevent them from using a public cloud provider, and instead require
olutions that can be situated on servers located on-premise. The deployment of an edge driven solution is important for
onitoring applications run by these public works agencies.
In this article, we refer to the algorithms that analyze the sensor data into analysis results as analytics, which are

composed of multiple operators that can be dynamically deployed on different networked edge servers. These operators
can range from simple rule-based heuristics to complex machine learning models. System administrators or community
stakeholders could concurrently execute multiple monitoring applications using different sensors and analytics at any
time. However, the quality of network links over which the sensor data and analytics results are sent can impact the
effectiveness of the monitoring applications due to the loss of data packets, low bandwidth availability, etc. Given that
the applications, sensors, analytics, networks, and edge servers are all highly heterogeneous, effective sensor/analytics
selection and efficient resource allocation are key to the success of smart community monitoring applications.

In this article, we propose a Resource Efficient Adaptive Monitoring (REAM) framework to dynamically select the
sensors/analytics to execute at the edge, in order to meet the objectives of multiple monitoring applications in a
community space. Realizing REAM is no easy task due to the following challenges:

• High interoperability. Most community spaces are progressively deployed with high heterogeneity. REAM has to
ensure efficient data and information exchange between IoT devices and edge servers.

• High flexibility. The objective of each monitoring application can be met with different workflows of sensors and
analytics, each of which would require a certain amount of compute, networking, and other resources, and provide a
certain quality of results [5,6]. REAM therefore should leverage the different options of sensors and analytics, while
meeting the quality requirements of each monitoring application.

• High adaptability. Community spaces are complex and dynamic, while events in different spaces can take place
under different contexts due to differences in location, demographics, structure, etc. It is, therefore, extremely
challenging to develop accurate rules or models for each individual space. It is also important for the framework to
be able to make online decisions with noisy inputs and to work well under diverse network conditions and resource
availability. Making adaptation decisions, therefore, is a key objective of our REAM framework.

Our earlier work [7] presented an initial framework design for REAM. In this article, we have taken several steps toward
a real-world deployment of the REAM framework to address the above challenges. To achieve interoperability, we adopt the
publish–subscribe data exchange model to facilitate efficient information exchange. This provides a robust methodology
for control and data flows within the REAM architecture, where devices, agents, and edge nodes can communicate with
one another allowing for users to easily deploy and manage REAM in a distributed environment. We also partnered with
Real Time Innovations [8] and use their software to implement data exchange in our REAM deployments. Secondly, in
addition to sensing and analytics, we also incorporate network quality awareness in REAM’s decision making for better
flexibility. Most real-world deployments have heterogeneous modes of connectivity such as WiFi, Bluetooth, etc., which
offer varying levels of Quality-of-Service (QoS). Moreover, the quality of connectivity is not constant and can vary based on
the network utilization and data transmission of other devices and applications. Incorporating network quality awareness
is an important step toward a practical and more realistic approach to real-world deployments which we demonstrate
through experimental evaluations in this article. To the best of our knowledge, most prior efforts to monitor community
spaces with IoT analytics assume each application only comes with a predetermined workflow of sensors/analytics [2,9].
For high adaptability, we apply Reinforcement Learning (RL) [10] to develop a decision making algorithm for the most
appropriate adaptation decisions at any given moment. Our RL-based algorithm employs agents to directly learn from
experience by interacting with the diverse and dynamic environments. We demonstrate how our design choices enable
seamless integration of the RL agents with the publish–subscribe data exchange, as well as how the incorporation of
network quality awareness is critical for improved decision making in real-world community spaces. We extensively
evaluate REAM on real world testbeds and demonstrate its effectiveness across diverse applications and deployments, in
addition to evaluating its scalability for large-scale deployments.

This article makes the following contributions.

• We design a novel REAM framework that jointly considers IoT sensors, analytics operators, and network links at the
edge when monitoring community spaces.

• We formulate a decision making problem for the REAM framework to make adaptation decisions under the
constraints of resource availability and network quality. We then present our RL-based algorithm and show case
two real monitoring applications: stormwater contamination monitoring and pedestrian counting, while many other
monitoring applications are possible.

• We evaluate our REAM framework on two real-world testbeds in Orange County, USA and NTHU, Taiwan and
compare it to baseline approaches, when assuming the network loss is negligible. We show that REAM can achieve
>90% monitoring accuracy while incurring ∼50% lower resource consumption costs compared to existing static
monitoring approaches.

• We also conduct detailed simulations to validate the network-quality awareness of our framework under different
network loss rates as well as its scalability to larger-scale deployments. We demonstrate that REAM can achieve up to
42% improvement in accuracy over static approaches by being cognizant of and adapting to differing network quality
conditions. We also show that REAM can provide near real-time service for a multitude of monitoring applications,
and incurs only a minimal increase in runtime (<0.002 s), for even large scale deployments with over 1000 nodes.
2

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459
Fig. 1. REAM monitoring framework architecture.

Section 2 describes the architecture and workflow of REAM, and we present our formulation and detailed approach
in Section 3. We describe our real-world testbeds and present our experimental results in Section 4. Section 5 discusses
existing related work. We present our conclusion and future work ideas in Section 6.

2. REAM overview

In this section, we describe the design choices and architecture of our proposed REAM framework. In order to optimize
the selection of sensors, analytics operators, and their associated network links, we organize them into workflows. The
choice of using RL agents over a supervised learning approach is due to the fact that community behavior and patterns
often change over time and hence the definition of events in a space can change. It is also not always obvious what the
right sensing and analytics option is and may require a sequence of selections, and hence RL provides more flexibility in
the way an agent can be trained to adapt to changing conditions. In order to support the publish–subscribe data exchange
described earlier, we develop a middleware at each edge server and also define a coordinator between edge servers.

2.1. REAM architecture

Fig. 1 illustrates our proposed monitoring framework with two edge servers that have three sample monitoring
applications running on them. Each monitoring application relies on the measurements of a specific set of sensors that
have been instrumented in the community space. The communication and data transmission between the sensors and the
edge server can take place through various networks like WiFi, Bluetooth, ZigBee, LoRa, Ethernet, optical fiber, etc. These
network links can have differing quality levels captured by network loss rate, available bandwidth, etc, depicted by the
dashed lines in Fig. 1. Once the sensor data are received at the edge server, they are run through a set of analytic operators
which could constitute ETL (Extract, Transforming, Load) functions, Machine Learning models, Time-series analysis, among
others in order to obtain useful information. Next, we introduce several key software components in REAM architecture.

Action plans. Since each application can use different combinations of sensors and analytics to achieve its objective with
differing quality of results, we define each combination as an action plan where each plan can be thought of as a workflow,
3

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

o
w
v
i
a

d
t
t
d

Fig. 2. REAM uses a publish–subscribe data exchange model for control and data flows.

r an execution graph, of sensors, analytic operators, and network links. They can vary in their execution complexity (large
orkflows with numerous sensor inputs and analytics), their resource requirements (resource-heavy sensors, large data
olumes, complex analytics models), as well as in the quality of their network links (links with high loss rates would result
n more packets being dropped). In our framework, as illustrated in Fig. 1, every monitoring application is a collection of
ction plans which can be a coarse-grained action plan that provides a baseline quality of continuous monitoring while

consuming less resources, or various fine-grained action plans that provide a range of in-depth monitoring at higher costs,
providing better results.

RL agents. In the REAM framework, at each timestep, an application can choose to execute one of its action plans as
denoted by the current tags in Fig. 1. The decision of which action plan to execute is taken by an RL agent that learns
by interacting with the community space based on its application’s objective. The agent observes the readings from the
application’s sensors, network link quality information, outputs of the analytic operators, and other external community
space contextual information such as the weather and time-of-day. It uses this information to develop a probabilistic
learning model that drives the selection of which action plan to execute based on the effectiveness or utility of each plan.

Our framework design assigns one agent for each application. We opt not to create a global agent across all applications
at the edge for the following reasons - (1) Flexibility: Individual agents simplify the process of dynamically adding or
removing monitoring applications since agents can be trained independently of others unlike with a global agent; (2)
Tractability: The dynamic and complex nature of community spaces can result in the agent having to reason about an
extremely large number of states [11]. By assigning one agent to each application, we can ensure that the number of states
is manageable; (3) Simplicity: Applications can have different objectives and operate at different time granularities. It is
therefore difficult to define a global objective for each community space that is normalized across different applications.
Furthermore, individual agents allow each application to set its own timestep granularity for sensing, monitoring, and
analysis, despite the resulting decisions may slightly differ from the optimal ones. Hence, we opt for individual agents.

REAM runtime. In order to facilitate the exchange of information — both data and control messages, we implement a
middleware on each edge server called REAM Runtime. As shown in Fig. 2, the REAM Runtime hosts the publish–subscribe
ata exchange implementation of REAM, and handles the information flow of data from the community environment to
he edge server, capturing the network and environment states. In addition, the REAM Runtime middleware also tracks
he amount of resources available on the edge server which is an essential information for the RL agent to be able to
ecide on feasible action plans that it can utilize. Finally, REAM Runtime also communicates back to the devices and
4

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

a
m
(
n
t

2

a
t
t
h
a
a
a
a

3

a
s

3

p
t
d
o

o
a
t

Table 1
Symbols used in the article.
Symbol Description

A Set of monitoring applications
S Set of sensors
aφ

i Priority of application ai
O Set of analytic operators
L Set of network links
P Set of action plans
B(pj) Benefit of action plan pj
C(pj) Cost of action plan pj
Rk Amount of resource of type k
N (pj) Network loss on links of action plan pj
U(pj) Utility of an action plan pj
rt Reward at time step t
S′ Operating state of the sensor servicing the application
O′ Analytic operators currently running
v(A′) Value returned by the analytic operators
N ′ Loss rates of the network links used by the application
Ext External contextual information about the community space
P ′ Set of valid action plans
Jt Cumulative reward

analytics operators that have been selected by the RL agent using the publish–subscribe paradigm. We further detail the
control and data flows in REAM in the next section.

Edge server coordinator. In order to maintain a repository of the available action plans and the state of each edge server
nd its applications, we design an Edge Server Coordinator that can reside in the cloud or on an edge server. It also
aintains knowledge of (1) the application states including their action plans, resource requirements, and objectives, and

2) the edge server states which include their resource availability, current applications, action plans, and corresponding
etwork link quality. Agents can use such information to take decisions, and system administrators can use the coordinator
o modify application objectives and resource availability.

.2. REAM control/data flows

Fig. 2 presents the control and data flows in our REAM framework. In order to facilitate information and data exchange
among the components, the REAM framework architecture uses a publish–subscribe data exchange model. This model
llows sensors, edge servers, network links, analytic operators, and the coordinator to have their own topics (or channels)
hat they publish information to, which can be accessed by subscribing to these topics. In particular, sensors publish
heir raw data streams and network link quality information to dedicated topics, which are subscribed to by edge servers
osting one or more analytic operators that analyze the sensor’s data. The computed analytics results by these operators
re then published to dedicated topics for each application, that can be subscribed to by community stakeholders and
dministrators. The action plans selected by the RL agents are also published in order to activate the appropriate sensors
nd operators in the selected plan by the REAM Runtime. It also communicates with the coordinator to exchange resource
vailability, action plan selection, and metadata information.

. REAM formulation

In this section, we formulate the problem of resource efficient adaptive monitoring in community spaces, describe our
pproach to represent the decision making as an RL task, and then present our solution approach. We provide a list of
ymbols used throughout this article in Table 1.

.1. Utility driven action plan selection

We consider a community space that has a set of monitoring applications A, where each application ai ∈ A has a
riority aφ

i associated with it. For example, a gunshot detection application in a community would have a higher priority
han a parking violation monitoring application. The community space is instrumented with a set of sensors S , whose
ata can be analyzed using a set of analytic operators O that are transmitted over a set of network links L and are hosted
n a set of edge servers.
We define a set of action plans P , where each plan pj ∈ P consists of a workflow of sensors, network links, and analytic

perators, and services a specific application. Each action plan pj provides a certain benefit, B(pj), for the monitoring
pplication it services which is dependent on the application’s objective. Each plan pj also incurs a cost C(pj) which reflects
he amount of resources R of type k (e.g., CPU, bandwidth, power, memory, etc.), that it consumes to run all the sensing
k

5

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

t

s
a

Fig. 3. Example of two action plans for a stormwater visible contamination monitoring application.

Fig. 4. REAM action plan selection workflow.

and analytics present in the action plan. Each plan also incurs a network loss N (pj) reflecting the network loss rates across
he links li ∈ L, connecting the devices in the plan. We then define the overall utility of an action plan pj as:

U(pj) =
B(pj)
C(pj)

×
1

N (pj)
. (1)

Fig. 3 shows an example of two different action plans that service the same stormwater visible contamination
monitoring application. Plan p1 utilizes a simple turbidity sensor that would be less accurate than the camera based
olution of plan p2, since it relies on a manually set and potentially erroneous threshold. Moreover, today’s state-of-the-
rt vision algorithms can typically achieve high levels of accuracy and thus p2 can provide a much higher benefit to the

application. However, the cost incurred by p1 is much lower than that of p2, since the periodic capture and transmission
of images would consume a lot of network bandwidth, the camera would require more power, and the vision algorithm
would also consume more compute resources in order to provide results in near real-time.

Moreover, the benefit vs. cost tradeoff captured by the utility of an action plan, is also dependent on various
environmental contexts of the community space which REAM leverages on. For instance, at night, the camera images
may not be good enough for the vision algorithm to detect discoloration and debris, which might result in both action
plans having similar accuracy. Hence, it would be a prudent decision to execute the coarse-grained plan more frequently
at night since it can achieve similar benefit at lower costs, and the fine-grained plan during the day when it can provide
much higher benefit. Furthermore, it is also important to consider the quality of the network links across which data is
transmitted by each plan. If the links in plan p2 result in a large number of packets being dropped, this can cause a drop
in monitoring accuracy due to the lack of data delivery, even though the camera images provide high quality information,
and hence using the turbidity sensor based plan p1 might provide higher utility due to consistent data delivery.

We visualize the action plan selection workflow used by REAM in Fig. 4. Each edge server receives sensor data and
network link quality information through the publish–subscribe data exchange model. The RL agent in the edge server
then leverages this information, along with knowledge of the environment states, current resource availability of the
edge server, as well as available action plans, in order to generate a set of action plan candidates along with their

expected benefit and cost attributes. It then computes the relative utility of each plan and selects the plan with the highest

6

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459
Fig. 5. REAM RL with DNN driven policy.

utility. Once the plan has been selected by the agent, the REAM Runtime middleware then publishes this information to
community stakeholders as well as to activate the sensors in the selected action plan.

3.2. Defining RL agents in REAM

Consider the general setting shown in Fig. 5, where an RL agent interacts with an environment. At each time step t , the
agent observes some state st , and then chooses to perform an action at based on a policy. Once the action is performed,
the environment transitions its state to st+1 and the agent receives a reward rt . The state transitions and rewards are
stochastic and are assumed to have the Markov property, i.e., the state transition probabilities and rewards depend only
on the state of the environment st and the action at taken by the agent.

State space. In the REAM framework, we represent the state st of each application’s RL agent at any given time as a class
object that consists of the following attributes - (1) S ′

: the operating state of the sensors servicing the application, (2)
O′

: the analytic operators currently running, (3) v(A′) : the value returned by the analytic operators, (4) N ′
: the network

loss rates of the network links used by the application, and (5) Ext : external state and contextual information about the
community space (e.g., time-of-day, weather information, etc.), which can influence the performance of the sensors and
analytic operators.

Action space. At each timestep, an application’s agent determines its action space as a set of valid action plans P ′
⊆ P

that it could potentially execute from its current state. The timestep is configurable, which can be different for individual
applications in the space. Each plan pj ∈ P ′ consists of a set of active sensors, their operational states (on/off for simple
sensors, pan–tilt–zoom for a camera), the network links used by devices in the plan, and a set of active analytic operators
together with its workflow.

Reward. The reward rt obtained by the agent for executing an action plan is the utility provided by that plan. The benefit
of plan pj depends on the specific application (e.g., classification accuracy, distance based error, etc.). We compute the
cost of pj by first normalizing the amount of resources required of each resource type (CPU, bandwidth, memory, etc.)
across all action plans of the application and then calculating a weighted sum of these normalized costs for plan pj as:
C(pj) =

∑
|R|
k=1 wk × R

pj
k , where wk refers to the weight and R

pj
k refers to the normalized amount of resources of type k

required for plan pj. The weights allow system administrators to prioritize the conservation of certain types of resources
and lessen their importance if they are abundantly available. We then compute the network loss for pj as the multiplication
of the loss rates across all the links, li ∈ L used by the plan, i.e., N (pj) =

∏n
i=1 li.

3.3. Training RL agents

Each agent can only control its action plan selection and has no apriori knowledge of the rewards or the state transitions
which can be affected by external factors. During training, the agent interacts with the community space environment and
observes the rewards and state transitions while choosing different action plans. The agent’s goal is to select action plans
in a way that maximizes the cumulative reward Jt it receives over any time period T , i.e., Jt =

∑T
t ′=t γ

t ′−t rt ′ , where γ is
a discount factor ∈ [0, 1] and rt ′ is the reward at timestep t ′. We then define Q ∗(s, pj) as the maximum expected reward
achievable by following a policy π (s, pj), which refers to the probability of action plan pj being chosen by the agent when
in state s. That is, Q ∗(s, pj) = maxπE[Jt |st = s, pjt = pj, π]. Using the Bellman equation [12], this can be represented as:

Q ∗(s, pj) = E[rt + γ maxQ ∗(st+1, pjt+1)|st , pjt].
pj t+1

7

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

(
A

i

e
w

h
E
O

F

Since community spaces are complex and can have a large number of possible {state, action plan} pairs, it would be
infeasible to store the policy in a tabular form as a lookup table, also known as a Q-table. Instead, it is more common to use
function approximators to represent the policy by estimating Q ∗(s, pj). Among the approximators, Deep Neural Networks
DNNs) [13] have recently gained popularity for solving large-scale RL tasks since they do not need hand-crafted weights.
network with weights θ can be trained by minimizing a sequence of loss functions Li(θi) at each iteration i, where:

Li(θi) = E
[(

rt + γ max
at+1

Q (st+1, at+1; θi−1)− Q (st , at; θi)
)2]

.

Algorithm 1 Deep Q-learning Algorithm
1: Initialize Replay Buffer D
2: Initialize Q, DNN with random weights θ

3: for t = 1 → T do
4: With probability ϵ, select a random action plan pj

otherwise, select pj = max
p

Q (st , p; θ)

5: Communicate chosen plan with REAM Runtime and
receive allowed plan p′j

6: Execute action plan p′j and observe environment to get
reward rt and state st+1

7: Store transition (st , p′j, rt , st+1) in D
8: Sample random minibatch of transitions (sk, pk, rk, sk+1)

from D
9: Set yj = rj + γ max

p
Q (st+1, p; θ)

10: Perform gradient descent step on (yj − Q (st , pj; θ))2 with
respect to θ

11: end for

We represent the action plan decision making policy as a neural network with weights θ which takes the current state
of the RL agent as input and outputs a probability distribution over all valid potential next action plans. Note that we
allow the RL agent to continue executing the current action plan in the next timestep as well.

We train the agents using the deep Q-learning algorithm [14] as shown in Algorithm 1. It uses an ϵ-greedy policy [10]
n order to select an action plan by either randomly selecting a plan pj with a probability ϵ, or selecting the plan with
the maximum value of the probability distribution. At each timestep, the chosen action plan is executed and its reward
and the next state are observed. We store the agent’s transitions in a buffer D of a fixed size and then perform gradient
descent to update the weights θ of the neural network (Line 10) using a minibatch of transitions drawn at random from
the buffer as

∇θiLi(θi) = E
[(

r + γ max
at+1

Q (st+1, at+1; θi−1)− Q (st , at; θ)
)
∇θiQ (st , at; θi)

]
.

Rather than computing the full expectations in the above gradient, it is often computationally expedient to optimize the
loss function using approaches like stochastic gradient descent, Adam [15], RMSProp [16], etc.

3.4. Prioritized action plan selection

Before the RL agents identify the optimal action plans, the edge server must perform a sanity check to find the subset
of all action plans that can be feasibly executed without saturating all the available resources. That is, the REAM Runtime
middleware at each edge server employs our proposed Prioritized Action Plan Section (PAPS) algorithm, as shown in
Algorithm 2, to coordinate with the RL Agents in selecting action plans for varying resource availabilities and publishing
that information to activate the appropriate sensors and analytic operators in the selected plans.

More specifically, at each timestep, the REAM Runtime sequentially communicates with each application’s RL agent in
the order of their priority Aφ . It limits the candidate action plans for each agent (P ′

∈ P) based on the current resource
availability. The agent then selects an action plan with the highest utility (Eq. (1)), based on the current state of the
community environment. The REAM Runtime then obtains the selected action plan pj, and updates the available resources
(R) as well as publishes this information to activate the sensors and operators that are parts of the selected plan pj. If an
dge server has limited resource availability, the algorithm ensures that high priority applications can select action plans
ith high utility, while potentially limiting the plans selected by low priority applications.
At every timestep, Algorithm 2 must handle all monitoring applications in the environment (|A|), each of which can

ave |P| number of action plans. This can result in the need to publish to |E| number of sensors and operators where
represents the total set of sensors and operators in the environment. This results in a polynomial time complexity of
(PAE).
To illustrate our RL-based approach and the selection of action plans by the REAM RL agents, we give an example in

ig. 4. We see that the edge server receives sensor data from heterogeneous devices across network links with varying
8

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

t
u

Algorithm 2 Prioritized Action Plan Selection (PAPS)

1: Input: Action Plans P = {p1, ..., pn}, Plan resource requirements PR
= {pR1, ..., p

R
j }, Application priority A≺

= {aφ

1 , ..., aφ

j },
Available edge server resources R = {R1, ...,Rk}

2: for t = 1 → T do
3: for φ = 1 → j do
4: Pass action plan candidates {P ′

∈ P | (P ′)R > R} to agent aφ

i
5: Obtain action plan pj ∈ P ′ with max. utility (Eq. (1))
6: R = R \ pRj
7: Publish to activate sensors and operators ∈ pj
8: end for
9: end for

quality. Algorithm 2 is used to determine the available resources on the edge server, and to determine the feasible action
plans as shown in the third box. We can see that the three available action plans have varying benefits (B), costs (C) in
erms of power consumption, and network loss (N). To determine the reward of each plan, we normalize the values and
se Eq. (1) to obtain a utility of [28.0, 9.1, 5.9] for the three action plans respectively. The RL agent hence chooses the

first plan and publishes it. The sensors and analytics in the selected plan are then activated and this process repeats for
the newly observed state from the sensors in the selected plan.

4. Experimental evaluation

In this section we evaluate the resource-aware monitoring capabilities of REAM and compare its performance to
existing approaches. We present two monitoring applications in real-world testbeds located in Orange County, USA and
NTHU, Taiwan.

In our first set of experiments (Sections 4.2 and 4.3) we evaluate the benefit vs. cost tradeoff in REAM. We assume that
the network loss in these experiments are negligible. For each application, we compare the performance of REAM with
static monitoring approaches that execute specific action plans in isolation. We also compare with a machine learning
approach using random forest that uses the same training and test data.

We then evaluate how REAM performs in environments with network loss. Since a controlled introduction of loss in
the real community testbeds is challenging, we simulate the input to the REAM prototype under conditions of network
loss. We compare its performance with a network agnostic planning approach to evaluate the impact that network quality
aware monitoring has on the monitoring accuracy (Section 4.4). We also evaluate the scalability of REAM to large-scale
community deployments (Section 4.5)

4.1. Experimental setup

Prototype implementation. We implemented our REAM prototype shown in Fig. 2 using Python.1 The RL agents are
implemented using Keras [17], where each agent is a neural network containing two fully connected hidden layers with
24 neurons. We update the policy network parameters using the Adam algorithm [15] with a learning rate of 10−3 and
implement our analytic operators for monitoring applications using Scikit-learn [18].

For the data exchange implementation in the prototype, although there are many publish–subscribe protocols available
(e.g., AMQP, MQTT), the REAM prototype implementation uses the Data Distribution Service (DDS) protocol which offers
several advantages. Unlike other protocols, DDS does not require centralized brokers and instead allows for fully
decentralized, data-centric, and peer-to-peer communications. DDS supports dynamic discovery of publishers, subscribers,
and data transmission while offering 30+ QoS levels for tuning data exchange performance, resource usage, priority,
reliability, etc., which allows REAM to be fine-tuned for various environments. DDS also supports UDP for both high-
performance and multicast communications. There are various DDS libraries available like OpenDDS, Opensplice, Fast
DDS, etc. [19–21]. We chose to implement DDS in our prototype using the Real Time Innovations (RTI) Connext DDS
framework [8] which provides specific implementations for resource-limited devices that are often found in smart
community deployments.

Our prototype implementation defines publish–subscribe topics for each sensor and analytics output, coordinator
messages, and every edge server using the DDSTopic interface found in the RTI Connext API [22]. Each topic is
listened to using the DDSTopicListener interface, and also published to by implementing an object of DDSPublisher
class associated with each sensor and analytics operator. The network monitoring through DDS is done using the

1 https://github.com/praveenv/REAM.
9

https://github.com/praveenv/REAM

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

D
s

R
u
v
a
t

4

(
T
a
s
t
u
c
u

Table 2
Power consumption of key devices.
Device Make/Model Power (W) Note

Motion Optex LX-402 0.33
Camera LiteOn 3MP 3
PC Intel i3 @ 1.7 GHz 6 Idle
PC Intel i3 @ 1.7 GHz 27.5 Loaded
Stormwater In-Situ 600 0.54

Table 3
Resource consumption of video analytics.
Analytics CPU usage Memory usage Running time per frame

OpenCV 194.80% 1.7% 0.052 s
YOLOv3 100.43% 8.5% 17.38 s

Fig. 6. Our testbed in Orange County, USA: a storm drain and the locations of sensing units.

DSFlowController interface that also allows packets to be sent using a fixed rate or even on demand. Each edge
erver has an instance of such a network monitoring component implemented in the REAM Runtime middleware.

esource measurements. Since the goal of the REAM framework is to be able to achieve application objectives while
tilizing as little resources as possible, we capture the actual resource consumption (CPU, networking, and power) of the
arious devices and analytic operators in order to run faithful experiments when comparing our solution against baseline
pproaches. Tables 2 and 3 summarize the resource consumption of individual devices and analytic operators in both
estbeds.

.2. Smart stormwater infrastructure

We utilize five stormwater sensing units that have been instrumented by Orange County Public Works Department
OCPWD) in order to monitor the quality of the water flowing through the storm drains, which is depicted in Fig. 6.
he stormwater can get contaminated while flowing into the drains by collecting pollutants like bacteria from human or
nimal waste, fertilizers, and even chemicals from industries that illicitly discharge their waste into these drains [23]. Each
ensing unit consists of several hydraulic and chemical sensors to measure pH, turbidity, dissolved oxygen, flow rate, etc.,
hat together are capable of detecting a wide range of potential contaminants. The sensor measurements are transmitted
sing LoRa networks and are analyzed at an edge server using Machine Learning classifiers to determine the presence of
ontamination. The sensing units are deployed in secure underwater housing and are battery powered. Accessing these
nits in order to replace the batteries, therefore, involves significant efforts to dig up the housing and access the hardware
10

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

T
S

s
f
w
c
a

4

w
t
t
t
V
o
p
c
a
b
i

4

a
t
b
g
p
d

4
R
g
p
e
d
s
e

1
w

able 4
tormwater contamination monitoring — Location A.
Comparison approach Accuracy (%) Total energy Consum. (J) Exp. Batt. life (days) Avg. detection delay (min)

REAM 90.9 86.40 53 20.2
Random forest 88.2 101.77 44 24.7
Fine-grained 95.4 155.52 29 14.4
Coarse-grained 73.3 46.08 98 45.9

Table 5
Stormwater contamination monitoring — Location B.
Comparison approach Accuracy (%) Total energy Consum. (J) Exp. Batt. life (days) Avg. detection delay (min)

REAM 80.1 95.76 46 14.5
Random forest 76.9 120.93 35 19.3
Fine-grained 86.1 163.44 27 10.1
Coarse-grained 68.6 54.21 90 24.6

within, hence frequent battery replacement would incur large costs. OCPWD’s objective is to prolong the battery life while
maintaining contamination event detection accuracy.

Since stormwater contamination events occur sporadically with long periods of normal activity, measurements of a
ubset of sensors can be sufficient to provide coarse-grained signatures that can then be used to trigger all the sensors
or fine-grained monitoring during contamination events. This is because using all the sensors for continuous monitoring
ould consume a lot of battery power. The goal of deploying our REAM framework is to accurately identify stormwater
ontamination events while prolonging the battery life of these sensing units by appropriately switching between coarse
nd fine grained monitoring.

.2.1. Stormwater data
We use four months of sensor measurements from the sensing units at two different locations (A, B). For each location,

e use three months of data for training and one month for testing. The measurements have a granularity of 15 min and
he contamination event ground truth was annotated by an expert from OCPWD. We also obtained precipitation data for
he location and battery consumption information of the sensing unit. We use two sensors — dissolved oxygen and pH,
hat are most sensitive to changes in the ecosystem to form the coarse-grained baseline action plan along with a Support
ector Machine (SVM) classifier. But since the changes can be due to minor natural variances in the chemical composition
f the water, the coarse-grained plan can result in a number of false-positives. We hence define one fine-grained action
lan that uses more information, consisting of the previous sensors along with temperature, Total Dissolved Solids (TDS),
onductivity, and turbidity sensors and uses a Random Forest classifier, that is triggered by the coarse-grained approach
nd can more accurately determine if a contamination event has occurred. We define the reward for the REAM RL agent
ased on the utility provided, where the benefit B(pj) of every action plan is its classification accuracy and its cost C(pj)
s the total battery consumption of the sensors and analytic operators in the action plan.

.2.2. Stormwater contamination monitoring results
We measured the accuracy achieved in classifying contamination events for the test data from both locations (Tables 4

nd 5). We observed that REAM achieved 90.9% and 80.1% accuracy at location A and B respectively, which is comparable
o the 95.4% and 86.1% achieved by using only the fine-grained action plan and better than the 88.2% and 76.9% obtained
y using the Random Forest supervised learning approach and the 73.3% and 68.6% achieved by using just the coarse-
rained action plan. Moreover, the REAM framework consumed on average 42% less energy than the fine-grained action
lan across both locations, resulting in a longer battery life by 24 days at location A and 19 days at location B that we
erived based on the two D-cell alkaline battery capacity of the In-Situ 600 stormwater sensing unit.
At location A, REAM had a 20 min delay on average in detecting contamination events, compared to the 14, 24 and

5 min delays achieved by the fine-grained, Random Forest, and coarse-grained approaches respectively. At location B,
EAM’s average detection delay was 14 min, compared to 10, 19 and 24 of the fine-grained, Random Forest and coarse-
rained approaches respectively. Fig. 7 shows a zoomed in view of the contamination event ground truth and the action
lans chosen by the REAM RL agent during a week of the test period. We observe that for most of the contamination
vents, the agent utilizes the fine-grained action plan to achieve high accuracy and ends up using the coarse-grained plan
uring periods when no events occur. The occasional shift to the fine grained plan as shown by the red circle occurs
ince the agent explores different action plans based on the ϵ-greedy policy described in Section 3.2 to adapt to changing
nvironmental conditions, e.g., dry vs. wet weather, seasonal patterns, etc.
From these results, we can see that the REAM framework can increase the battery replacement cycle from less than

month with the fine-grained approach to almost 2 months with less than a 5% drop in accuracy and a detection delay
ithin 5 min on average.
11

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459
Fig. 7. The action plans selected by the REAL RL agent to determine contamination events.

Fig. 8. Sensor-rich smart street lamps - NTHU campus, Taiwan.

Fig. 9. Our testbed at NTHU campus, Taiwan: a smart street lamp (left) and a motion sensor (right).
12

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

a
(
(
c
m
p
m
s

m
c
a
l
p
c
a
f
m

4

f
i
a
e
t
a

c
n
s
w
w
T
o
o

Fig. 10. Sample video frames from a street lamp camera for the pedestrian counting application. The recognized objects and bounding boxes are
given by YOLOv3.

4.3. Smart campus

We have instrumented eight smart street lamps on the NTHU campus in Taiwan, as shown in Fig. 8 for smart campus
pplications. In our testbed, each street lamp is instrumented with a power supply, an Ethernet switch, a Raspberry Pi
which also serves as a Bluetooth and Zigbee gateway), and a wide spectrum of environmental sensors, such as motion
PIR, passive infrared), temperature/humidity, and air quality (PM 2.5) sensors. Four of the lamps are equipped with 3MP
ameras, of which three are fixed bullet cameras and one is a Pan–Tilt–Zoom (PTZ) camera. There is also an outdoor
otion sensor installed on one of the lamps, providing longer sensing range (12 m) for the intersection. Fig. 9 gives the
hotos of our NTHU testbed. The lamps are connected using a heterogeneous network consisting of Gigabit Ethernet, WiFi
esh, LoRa, and NB-IoT. We install edge servers in two of the street lamps for running monitoring applications. The edge
ervers are Intel NUC PCs, each has a 4-core CPU at 1.7 GHz, 8 GB RAM, and 500 GB disk.
We utilize this testbed for a pedestrian counting application that attempts to profile the movement of people at

ain intersections. This is to dynamically dispatch security guards to direct on-campus vehicles when intersections are
rowded. The goal of the campus administration is to infer these profiles using as little resources as possible to ensure
vailability for other on-demand (emergency) applications. Using fine-grained camera feeds coupled with analytic libraries
ike YOLOv3 [24] and OpenCV [25] can result in accurate counts, but this approach is resource intensive. Since the flow of
edestrians is not continuous (fewer people walking at night), a coarse-grained motion sensor could be used to trigger the
amera based analytics in order to conserve resources. However, since different moving objects (e.g., car, bicycle, etc.) can
lso activate the motion sensor, its accuracy would be lower than that of camera feeds. The goal of deploying our REAM
ramework is to be able to learn when pedestrians are likely to be present and switch between coarse- and fine-grained
onitoring to preserve resources.

.3.1. Pedestrian flow data
For the pedestrian counting application, we use two different sets of data collected over different time periods. The

irst dataset (termed Data1) consisting of video data from a camera and a motion sensor on a street lamp overlooking an
ntersection, was obtained over a week in April. The second dataset (termed Data2), utilized three week’s worth of video
nd motion sensor data from the same street lamp during August. Using two such datasets also allows us to evaluate the
ffectiveness of REAM during extended periods of differing pedestrian flow. For Data1, we use five days for training and
wo days for testing, while for Data2 we use ten days for training and the remainder for testing. The measurements have
granularity of one second.
Fig. 10 shows four sample frames of the video data. For both datasets, we define the coarse-grained action plan to

onsist of the binary output analyzed from the motion sensor. This plan is sufficient to capture situations where there are
one or just one pedestrian at a given time as shown in the top left frame of Fig. 10. However, we notice that the motion
ensor can be triggered by other objects such as the vehicles in the top right frame resulting in false positives. Hence,
e define two fine-grained action plans that run OpenCV [25] and YOLOv3 [24] object detection algorithms respectively,
hich can also handle cases where there are many pedestrians simultaneously present as shown in the bottom left frame.
he YOLOv3 library is more powerful in that it can more accurately handle situations where there are multiple different
bjects like pedestrians and vehicles present together as shown in the bottom right frame. We hence assume that the
utput of the YOLOv3 plan is the ground truth for our evaluations. The benefit of every action plan is defined as its distance
13

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

T
P

s
e
b
a
t
c
t

a
r
(
t
w
s
m
c
c

4

o

able 6
edestrian counting–Data1 (April).
Comparison approach Distance from ground truth (%) Total power consumption (W) Total data generated (GB)

REAM 7.1 61.8 33.1
Random forest 15.4 54.6 30.3
YOLOv3 0 126.5 55.62
OpenCV 37.3 39.32 55.62
Motion sensor 62.3 36 0.0005

Table 7
Pedestrian counting–Data2 (August).
Comparison approach Distance from ground truth (%) Total power consumption (W) Total data generated (GB)

REAM 8.6 319.9 160.5
Random forest 14.1 291.3 141.6
YOLOv3 0 697.5 305.9
OpenCV 32.1 246.2 305.9
Motion sensor 54.9 198 0.006

Fig. 11. Comparisons of hourly pedestrian count ground truth and action plan chosen by REAM framework during a week—Data1 (April).

from the ground truth in terms of the pedestrian count, and its cost is a weighted sum of its power, bandwidth, and CPU
consumption. We assume equal weights in the evaluations if not otherwise specified.

4.3.2. Pedestrian counting results
Tables 6 and 7 show a summary of the performance comparisons, where we report the total power consumption as a

um of the power consumption of the sensors (motion, camera) and the edge servers. REAM achieved pedestrian count
rrors of 7.1% and 8.6% for Data1 and Data2, respectively, compared to the YOLOv3 based approach that we assumed to
e the ground truth and performed better than the Random Forest, OpenCV, and the coarse-grained motion sensor based
pproaches for both Data1 and Data2. However, the YOLOv3 library is very resource intensive, and this coupled with
he significant power consumption of using a camera continuously, results in REAM having 51.0% and 54.1% less power
onsumption over the two datasets. The REAM framework also results in 44.0% and 47.5% less data being generated than
he YOLOv3 and OpenCV approaches that require continuous generation and transmission of video data.

Figs. 11 and 12 illustrate heatmap based comparisons of the ground truth of average hourly pedestrian flow per week
nd the corresponding most frequent action plan chosen by the REAM RL agent during that hour for Data1 and Data2,
espectively. While we observe that the flow of pedestrians was slightly lower in Data2 (August) compared to Data1
April), in both cases, the number of pedestrians is the highest during the day (8 am – 5 pm) and during those periods
he predominantly used action plan is YOLOv3 which results in high accuracy. Also, during the night and early mornings,
hen extremely few pedestrians are on the road, the RL agent chooses to use the motion sensor approach which is
ufficiently accurate to model the pedestrian flow. The REAM framework can thus achieve >90% accuracy (hence not
issing many people), while consuming ∼50% less power and generating less data (hence consuming less resources),
ompared to static monitoring approaches. The performance of the RL agent could be made better by including additional
ontextual information like the weather, campus holidays, etc., that would have a direct impact on the pedestrian flow.

.4. Exploring network loss performance of REAM

We next evaluate the performance of our REAM prototype in the presence of network loss. Due to the challenge
f experimenting with controlled network loss in a real community, we simulate the input and network loss to the
14

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

s
c
a

p
b

t
i
t
s
L
s
a

R
b
l
t
w

t
d

Fig. 12. Comparisons of hourly pedestrian count ground truth and action plan chosen by REAM framework during a week—Data2 (August).

Fig. 13. Network quality simulator: (a) experiment setup and (b) action plans selected by the REAM and static planner.

prototype based on our testbed and compare the performance of REAM with a network agnostic planning approach. We
use images from camera sensors with two different analytic operators YOLOv3 and OpenCV. As described earlier, while
YOLOv3 achieves higher levels of accuracy, it uses more resources in terms of power consumption, CPU, and memory, as
compared to OpenCV. In addition, we also leverage a feature in RTI’s DDS framework to track the number of messages
lost or received across all action plans over time.

In order to evaluate REAM under conditions with network loss, we define two action plans as shown in Fig. 13(a). The
etup consists of 2 camera sensors {s1, s2}, 2 edge servers {e1, e2}, and 2 receivers {r1, r2}, with network links {l1, . . . , l6}
onnecting them as shown in the figure. There are 2 action plans {a1, a2} that can be chosen, where a1 uses OpenCV, and
2 uses Yolov3 as the analytics operators respectively and hence benefit B(a2) > B(a1). We assume that the sensors and

edge servers are homogeneous which means that the cost C(a2) = C(a1). When each experiment begins, the nodes start
ublishing data, and after 15 s, we introduce network loss on Link l2. The loss rate persists for 60 s, after which it is set
ack to zero.
We compare the performance of REAM’s network aware action plan selections with a static planning approach

hat uses Benefit and Cost to determine the action plan to use, but is agnostic to variability in network link quality,
.e., Ustatic = B(pj)/C(pj). Fig. 13(b) shows the action plan selections during the experiments by both approaches. We see
hat for the initial period with no network loss, both approaches choose action plan a2 which has higher utility than a1,
ince its benefit is higher and the cost and network loss is the same. However, when the network loss is introduced on
ink l2, REAM uses this information and selects a1, whose utility becomes larger due to the network loss. However, the
tatic planning approach continues to use a2. When the network quality is restored, REAM once again switches back to
ction plan a2 whose utility is once again larger than that of a1.
For the above experiments, we first compare the cumulative data delivery rate over the affected Link l2 achieved by

EAM and the static planner for two different network loss rates of 0.1 and 0.5. As shown in Fig. 14, the loss incurred
y REAM is significantly lower as compared to that by the static planner. The difference ranges from 6% for 0.1 network
oss rate to 27.5% for 0.5 network loss rate. Since this difference in delivery rate is a function of the network loss rate on
he affected link, the link quality of the alternative paths, as well as the duration for which the link disruption persists, it
ould be even bigger for large-scale disruptions on multiple network links.
We then compare the benefit achieved over time by REAM and the static planner during the experiments. We measure

he accuracy over time by multiplying the expected accuracy of each selected action plan with the measured message
elivery rate. We calculate the delivery rate for each action plan as the number of packets received each timestep divided
15

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

b

Fig. 14. Cumulative data delivered by the REAM and static planner at the network loss rates of: (a) 0.1 and (b) 0.5, respectively.

Fig. 15. Average accuracy obtained by the REAM and static planner at the network loss rates of: (a) 0.1 and (b) 0.5, respectively.

Fig. 16. Running time taken per application in environments raging: (a) from 120 to 1200 nodes and (b) from 1 to 10 tasks.

y the total number of packets sent for that plan. Fig. 15 shows the accuracy values per timestamp achieved by both
approaches over the entire experiments for both 0.1 and 0.5 network loss rates. We see that before the introduction of
the network loss rates, both REAM and the static planner achieve the same high accuracy since they both use the high
utility action plan a2. We also see that the introduction of network loss results in a drop in accuracy for both approaches.
However, REAM’s agent recomputes the utility values and selects action plan a1 unlike the static planner that continues
with a2 and thus suffers from lost packets. The average difference in accuracy levels ranges from 11% with 0.1 network
loss rate and 42% with 0.5 network loss rate. When the network condition on the affected link recovers, REAM switches
back to action plan a2.

4.5. Scalability of REAM

In this section, we evaluate the scalability of REAM for large-scale community environments consisting of a multitude
of sensors, edge servers, receivers, and monitoring applications with varying action plan complexities. We use the same
prototype and simulated input setup as in the network loss experiment. We first varied the total number of sensors,
edge servers, and receivers, and then measured the time taken by REAM to handle action plan selections for multiple
applications. Fig. 16(a) shows the time taken per application by REAM for 100 applications, in environments ranging from
120 nodes (100 sensors, 10 edge servers, and 10 receivers), to 1200 nodes (1000 sensors, 100 edge servers, and 100
receivers). Each action plan candidate for the applications was set to have 3 tasks (sensing, compute, and publication).
We observed that the time taken per application remained relative constant despite the 10x scaling of the environment
size. The runtime of REAM ranged from 0.020 to 0.022 s to select and publish action plans for each application which
shows a near constant runtime, thus showing REAM’s effectiveness in handling large-scale community environments.

We then varied the number of tasks (i.e., the number of data processing steps) associated with each action plan from 1
to 10 for 100 applications. We kept the environment size constant at 1200 (1000 sensors, 100 edge servers, 100 receivers).
16

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

F
i
a
l

5

p
m
F
a
B
m
i
p

E
p
s
t
a
t
t
m
p
c

M
a
i
d
m
p
T
W
L
a
m
e
d

V
t
c
a
f
a
e
p
w
i

6

r
m
d
c
a
c

ig. 16(b) shows that there is a small increase in the time taken to select and publish action plans per application while
ncreasing the number of tasks per action plan. The runtime ranges from 0.019 to 0.032 s for an average of 0.027 s per
pplication. Given how small these runtimes are, it is an insignificant increase in the runtime of REAM when handling a
arger number of tasks per action plan.

. Related work

Smart spaces. The concept of continuously monitoring smart spaces has appeared in several research areas, including
ervasive computing [26] and ambient sensing [27]. Multiple prior studies [28,29] built smart spaces which were instru-
ented with in-situ sensors, where raw sensor data were passed through analytics algorithms for semantic interpretation.
or example, Cook et al. [30] applied machine learning techniques to predict human activities and generate actions for
ctuators. Shelke and Aksanli [31] employed six different Machine Learning algorithms, including logistic regression, Naive
ayes, etc., to detect the activities in smart spaces. Barker et al. [32] developed frameworks for non-intrusive occupancy
onitoring to minimize power consumption in smart buildings. Venkateswaran et al. [33,34] developed a prioritized

mpact driven methodology to determine sensor placement in smart water networks. The solution proposed in the current
aper can be adopted in diverse smart community spaces for resource efficient, and high quality continuous monitoring.

dge analytics. While resource-heavy analytics are typically offloaded to cloud data centers, sending raw sensor data to
otentially far-away data centers can result in longer response times and larger network traffic. Resources closer to the
mart spaces, e.g., on edge servers or cloudlets [4], can be leveraged to host analytics for shorter response times. Similar
o cloud computing, management of resources on multiple edge servers have been studied. Merlino et al. [35] proposed
middleware to progressively process the sensor data at the edge server, fog nodes, and the cloud server to accelerate

he analytics in smart spaces. Hong et al. [3] considered the problem of splitting analytics into smaller pieces to deploy
hem on heterogeneous fog nodes. Jang et al. [36] studied the problem of leveraging in-situ and edge sensors to optimize
obile applications. Similar to these papers [3,35,36], we also employ edge servers to host analytics; but the current
aper focuses on a logically centralized edge server. This edge server, however, can be an abstraction of an edge server
luster, to apply our solution in distributed setups.

achine learning for smart spaces. Various Machine Learning algorithms have been applied in smart spaces for edge
nalytics. Zhang et al. [37] tailored a Convolutional Neural Network (CNN) model for activity recognition analytics to fit
t on multiple less-powerful edge nodes. Similarly, Hung et al. [38] proposed VideoEdge, a framework to cost-efficiently
etermine query plans for analyzing video streams. They used dominant demand to identify the best tradeoff between
ultiple resources and accuracy and identify a pareto band of potential resource configurations. Das et al. [39] studied the
roblem of activity recognition in smart homes, but focused on detecting abnormal activity patterns of elderly occupants.
heir system alerted elderly occupants whose standard activity patterns are learnt, upon observing an abnormal one.
emlinger and Holder [40] addressed the activity recognition problem across different environments as some Machine

earning models cannot be easily generalized. Their core objective was to make sure trained classifiers also work well in
n environment different from the one used for training. Venkatesh et al. [41] broke the smart health-related analytics into
ultiple stages. Through identifying common stages, they proposed to use intermediate data streams to avoid duplicated
fforts among various analytics algorithms. Oda et al. [42] pushed a step further by employing deep RL to make actuation
ecisions in smart spaces.
There were also efforts that apply Machine Learning for decision making under resource constraints. For example,

aisenberg et al. [43] leveraged Partially Observable Markov Decision Process (POMDP) to control surveillance cameras
o record events in resource-constrained smart spaces. In their setup, a few PTZ cameras were the critical resource
onstraints, and a POMDP-based scheduler was designed to control these cameras. Han et al. [44] used RL to develop
middleware for event identification in community water systems. Mao et al. [45] used RL to develop a task packing

ramework that handles resource demands from multiple tasks in a compute cluster setting. Chen et al. [46] adopted RL
lgorithms to migrate edge analytics for better energy efficiency or service quality. Their Q-learning based algorithm was
valuated on a testbed with two edge servers and four mobile devices. Gai et al. [47] considered the analytics deployment
roblem. They also employed RL algorithms to allocate analytics workload among a larger number of edge servers. While
e leverage RL techniques, in this paper we focus on continuous monitoring and determine the granularity levels of

ndividual analytics to minimize system-wide resource consumption while still delivering good quality monitoring results.

. Conclusion

In this article, we present REAM, a Resource Efficient Adaptive Monitoring framework at the edge, that balances the
esource requirements and objectives of multiple community monitoring applications in order to provide good quality
onitoring of community spaces, while incurring low compute, networking, and energy costs. REAM uses RL agents that
etermine which sensors and analytics workflows to execute by interacting with the community space and obtaining
ontextual information about the environment. We evaluate the framework with data from two real-world testbeds
nd observe that the REAM framework can achieve >90% monitoring accuracy while incurring ∼50% lower resource
onsumption costs than static monitoring approaches. We demonstrate that the network awareness capabilities of REAM
17

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459

d
t

D

a

A

B
a

R

uring decision making, can result in a 42% improvement in accuracy over network agnostic approaches. We also show
hat REAM can scale to service large community deployments.

As part of our future work, we intend to investigate the following research directions.

• Cascading events and resource profiles. Events occurring in the community space have the potential to trigger other
events resulting in a cascade. This inter-relationship between events can be modeled to provide more knowledge to
the RL agents to proactively predict and react to the occurrence of related events. We also assume a static resource
profile for each action plan that is given in advance. The RL paradigm can handle situations where there is partial
knowledge of the state by casting the decision problem as a POMDP [48]. We intend to model these inter-event
relationships and develop mechanisms for higher robustness to uncertainty in resource requirements.

• Optimization across edge servers. In the current article, we focus on scenarios where edge servers work indepen-
dently. We intend to work on solutions that cater to optimization and resource sharing for applications distributed
across multiple edge servers using the coordinator in future work.

• Sensor and communication failures. In practice, sensors can fail for various reasons resulting in lack of measure-
ments and a complete picture of the state of the community space for the monitoring application. This can also
happen due to failures in communicating the data from the sensors to the edge servers. We intend to consider
failure scenarios as part of the framework to improve error resiliency.

• Learning action plans. We assume that the execution graph forming each action plan is pre-defined and known to
the RL agent. An interesting question is whether the RL agent, given sensor and analytics association rules, was able
to learn which combinations would result in good monitoring results under different contexts thus giving system
administrators more freedom to deploy sensors and analytic operators.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

cknowledgment

This work was supported by National Science Foundation Award No. CNS1528995 and CNS1952247, U.S. Army Small
usiness Technology Transfer Program Office and the Army Research Office under Contract No. W911NF-20-P-0027, and
NOVATEK fellowship.

eferences

[1] Y. Sun, H. Song, et al., Internet of things and big data analytics for smart and connected communities, IEEE Access (2016).
[2] A. Zanella, N. Bui, et al., Internet of Things for smart cities, IEEE Internet Things J. 1 (2014).
[3] H. Hong, P. Tsai, et al., Supporting Internet-of-Things analytics in a fog computing platform, in: CloudCom’17, 2017.
[4] V. Bahl, Cloud 2020: Emergence of micro data centers (cloudlets) for latency sensitive computing, in: Middleware, 2015.
[5] G. D’Angelo, S. Ferretti, V. Ghini, Simulation of the internet of things, in: HPCS 2016, 2016, pp. 1–8.
[6] W. Dong, G. Guan, et al., Mosaic: Towards city scale sensing with mobile sensor networks, in: ICPADS, 2015.
[7] P. Venkateswaran, C.-H. Hsu, S. Mehrotra, N. Venkatasubramanian, REAM: Resource efficient adaptive monitoring of community spaces at the

edge using reinforcement learning, in: 2020 IEEE International Conference on Smart Computing (SMARTCOMP), IEEE, 2020, pp. 17–24.
[8] R.-T. Innovations, RTI connext DDS, 2018, Accessed: Apr 16 2018.
[9] E. Siow, T. Tiropanis, W. Hall, Analytics for the internet of things: A survey, ACM Comput. Surv. 51 (4) (2018) 74:1–74:36, http://dx.doi.org/

10.1145/3204947, URL: http://doi.acm.org/10.1145/3204947.
[10] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT press, 2018.
[11] G. Dulac-Arnold, R. Evans, et al., Deep reinforcement learning in large discrete action spaces, 2015, arXiv preprint arXiv:1512.07679.
[12] S.P. Singh, T. Jaakkola, et al., Reinforcement learning with soft state aggregation, in: NIPS, 1995.
[13] M.T. Hagan, H.B. Demuth, M.H. Beale, O. De Jesús, Neural Network Design, Vol. 20, Pws Pub., Boston, 1996.
[14] V. Mnih, K. Kavukcuoglu, et al., Playing Atari with deep reinforcement learning, 2013, arXiv preprint arXiv:1312.5602.
[15] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint arXiv:1412.6980.
[16] T. Tieleman, G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, COURSERA: Neural Netw. Mach.

Learn. 4 (2) (2012) 26–31.
[17] F. Chollet, et al., Keras: The Python Deep Learning Library, Ascl, 2018, pp. ascl–1806.
[18] F. Pedregosa, G. Varoquaux, et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (Oct) (2011).
[19] P.W. Li, H.L. Zhao, H.T. Yang, S. Sun, Performance evaluation of transport protocol in data distribution service middleware, in: Advanced Materials

Research, Vol. 926, Trans Tech Publ, 2014, pp. 1984–1987.
[20] P. Bellavista, A. Corradi, L. Foschini, A. Pernafini, Data Distribution Service (DDS): A performance comparison of OpenSplice and RTI

implementations, in: 2013 IEEE Symposium on Computers and Communications (ISCC), IEEE, 2013, pp. 000377–000383.
[21] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, A. Knoll, OPC UA versus ROS, DDS, and MQTT: performance evaluation of industry 4.0 protocols,

in: 2019 IEEE International Conference on Industrial Technology (ICIT), IEEE, 2019, pp. 955–962.
[22] R.-T. Innovations, 2021, http://community.rti.com/rti-doc/510/ndds/doc/html/api_cpp/index.html.
[23] B. Urbonas, P. Stahre, Stormwater: Best Management Practices and Detention for Water Quality, Drainage, and CSO Management, 1993.
[24] J. Redmon, A. Farhadi, Yolov3: An incremental improvement, 2018, arXiv preprint arXiv:1804.02767.
[25] G. Bradski, A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library, O’Reilly Media, Inc., 2008.
[26] M. Ebling, R. Want, Satya revisits ‘‘pervasive computing: Vision and challenges’’, IEEE Pervasive Comput. 16 (3) (2017) 20–23.

[27] E. Massaro, et al., The car as an ambient sensing platform, Proc. IEEE 105 (1) (2017) 3–7.

18

http://refhub.elsevier.com/S1574-1192(21)00097-3/sb1
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb2
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb3
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb4
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb5
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb6
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb7
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb7
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb7
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb8
http://dx.doi.org/10.1145/3204947
http://dx.doi.org/10.1145/3204947
http://dx.doi.org/10.1145/3204947
http://doi.acm.org/10.1145/3204947
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb10
http://arxiv.org/abs/1512.07679
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb12
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb13
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb16
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb16
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb16
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb17
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb18
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb19
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb19
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb19
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb20
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb20
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb20
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb21
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb21
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb21
http://community.rti.com/rti-doc/510/ndds/doc/html/api_cpp/index.html
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb23
http://arxiv.org/abs/1804.02767
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb25
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb26
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb27

P. Venkateswaran, K.E. Benson, C.-Y. Hsieh et al. Pervasive and Mobile Computing 76 (2021) 101459
[28] T. Nef, et al., Evaluation of three state-of-the-art classifiers for recognition of activities of daily living from smart home ambient data, Sensors
15 (2015).

[29] T. Stavropoulos, G. Meditskos, et al., DemaWare2: Integrating sensors, multimedia and semantic analysis for the ambient care of dementia,
Pervasive Mob. Comput. 34 (2017).

[30] D. Cook, M. Youngblood, S. Das, A multi-agent approach to controlling a smart environment, in: Designing Smart Homes: The Role of Artificial
Intelligence, 2006, pp. 165–182.

[31] S. Shelke, B. Aksanli, Static and dynamic activity detection with ambient sensors in smart spaces, Sensors 19 (2019).
[32] S. Barker, et al., Smart*: An open data set and tools for enabling research in sustainable homes, in: SustKDD, August 111, 2012, p. 108.
[33] P. Venkateswaran, et al., Impact driven sensor placement for leak detection in community water networks, in: International Conference on

Cyber-Physical Systems, 2018.
[34] P. Venkateswaran, M.A. Suresh, N. Venkatasubramanian, Augmenting in-situ with mobile sensing for adaptive monitoring of water distribution

networks, in: Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, 2019, pp. 151–162.
[35] G. Merlino, R. Dautov, et al., Enabling workload engineering in edge, fog, and cloud computing through OpenStack-based middleware, ACM

Trans. Internet Technol. (2019).
[36] M. Jang, H. Lee, et al., SOUL: An edge-cloud system for mobile applications in a sensor-rich world, in: Symposium on Edge Computing (SEC’16),

2016.
[37] S. Zhang, W. Li, et al., Enabling edge intelligence for activity recognition in smart homes, in: MASS, 2018.
[38] C.-C. Hung, et al., Videoedge: Processing camera streams using hierarchical clusters, in: Symposium on Edge Computing (SEC), 2018.
[39] B. Das, et al., One-class classification-based real-time activity error detection in smart homes, IEEE J. Sel. Top. Sign. Proces. 10 (2016).
[40] J. Venkatesh, B. Aksanli, C. Chan, A. Akyurek, T. Rosing, Cross-environment activity recognition using a shared semantic vocabulary, Pervasive

Mob. Comput. 51 (2018) 150–159.
[41] J. Venkatesh, B. Aksanli, C. Chan, A. Akyurek, T. Rosing, Modular and personalized smart health application design in a smart city environment,

IEEE Internet Things J. 5 (2) (2018) 614–623.
[42] T. Oda, et al., Design of a deep Q-network based simulation system for actuation decision in ambient intelligence, in: AINA, 2019.
[43] R. Vaisenberg, et al., Scheduling sensors for monitoring sentient spaces using an approximate POMDP policy, Pervasive Mob. Comput. (2014).
[44] Q. Han, et al., AquaEIS: Middleware support for event identification in community water infrastructures, in: Middleware, 2019.
[45] H. Mao, et al., Resource management with deep reinforcement learning, in: Hotnets, 2016.
[46] M. Chen, et al., A dynamic service migration mechanism in edge cognitive computing, ACM TOIT 19 (2019).
[47] K. Gai, M. Qiu, M. Liu, H. Zhao, Smart resource allocation using reinforcement learning in content-centric cyber-physical systems, in: International

Conference on Smart Computing and Communication, Springer, 2017, pp. 39–52.
[48] L.P. Kaelbling, et al., Planning and acting in partially observable stochastic domains, Artificial Intelligence 101 (1998).
19

http://refhub.elsevier.com/S1574-1192(21)00097-3/sb28
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb28
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb28
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb29
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb29
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb29
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb30
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb30
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb30
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb31
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb32
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb33
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb33
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb33
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb35
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb35
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb35
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb36
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb36
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb36
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb37
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb38
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb39
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb40
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb40
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb40
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb41
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb41
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb41
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb42
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb43
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb44
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb45
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb46
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb47
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb47
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb47
http://refhub.elsevier.com/S1574-1192(21)00097-3/sb48

	REAM: A Framework for Resource Efficient Adaptive Monitoring of Community Spaces
	Introduction
	REAM overview
	REAM architecture
	REAM control/data flows

	REAM formulation
	Utility driven action plan selection
	Defining RL agents in REAM
	Training RL agents
	Prioritized action plan selection

	Experimental evaluation
	Experimental setup
	Smart stormwater infrastructure
	Stormwater data
	Stormwater contamination monitoring results

	Smart campus
	Pedestrian flow data
	Pedestrian counting results

	Exploring network loss performance of REAM
	Scalability of REAM

	Related work
	Conclusion
	Declaration of competing interest
	Acknowledgment
	References

