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Abstract

The shape and orientation of data clouds reflect vari-
ability in observations that can confound pattern recogni-
tion systems. Subspace methods, utilizing Grassmann man-
ifolds, have been a great aid in dealing with such variabil-
ity. However, this usefulness begins to falter when the data
cloud contains sufficiently many outliers corresponding to
stray elements from another class or when the number of
data points is larger than the number of features. We illus-
trate how nested subspace methods, utilizing flag manifolds,
can help to deal with such additional confounding factors.
Flag manifolds, which are parameter spaces for nested se-
quences of subspaces, are a natural geometric generaliza-
tion of Grassmann manifolds. We utilize and extend known
algorithms for determining the minimal length geodesic,
the initial direction generating the minimal length geodesic,
and the distance between any pair of points on a flag man-
ifold. The approach is illustrated in the context of (hyper)
spectral imagery showing the impact of ambient dimension,
sample dimension, and flag structure.

1. Introduction

Variability in data observations due, for example, to im-
age lighting, data noise, or batch effects, is typically viewed
as a challenge to pattern recognition. In this paper we
propose to use the framework of flag manifolds to recast
the variation as useful additional structure for classification,
differentiation between similar objects, and anomaly detec-
tion. The geometry underlying a variation of state can be
exploited by observing (via a sensor or collection of sen-
sors) the range of corresponding measurements in sensor
state space. In essence, an object provides a map from a
variation of state space to a sensor state space. In practice,
one is only able to observe a noisy sampling of the map.
An underlying assumption is that characteristics of the map
provide a signature for the object being sensed. This moti-
vates the robust modeling of a set of data, i.e., modeling
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specifically to capture the variability of different realiza-
tions of a data class. Practically, one can often exploit this
variability by considering a collection of observations ab-
stractly as a single point in an appropriate parameter space
and algorithmically exploiting the geometry of the parame-
ter space.

Ideas from geometry and topology have shown consider-
able promise for the analysis of large, and or complex, data
sets given their ability to encode this variability. For exam-
ple, the mathematical framework of the Grassmannian has
proven to be effective at capturing many of the pattern varia-
tions that so often confound pattern recognition systems. In
this setting data is encoded as subspaces and distances are
measured using angles between subspaces. The Grassmann
manifold is a suitable tool for analyzing many data sets but
it requires the dimension of the subspace used to represent
the data to be less than half of the ambient dimension.

Initially explored in the setting of subspace packing
problems [28, 5, 15], the application of Stiefel and Grass-
mann manifolds has become widespread in computer vi-
sion and pattern recognition. Examples include: video pro-
cessing [11], classification [10, 4, 31, 32], action recogni-
tion [2], expression analysis [29, 30, 16], domain adapta-
tion [14, 26], regression [27, 12], pattern recognition [17],
and computation of subspace means [3, 20]. More recently,
Grassmannians have also been explored in the deep neural
network literature [13]. Much of this progress has hinged
on the development of efficient algorithms [7, 9, 1] allow-
ing procedures developed in other settings to be transported
to analogous procedures on Grassmann manifolds. A col-
lection of papers by Nishimori et al introduced flag mani-
folds in the context of independent component analysis and
optimization [24, 23, 22, 25]. Later work by others used
and extended some of these ideas in a variety of contexts
[8, 6, 20, 21, 19]. Very recent work of Ye, Wong, and Lim
gives an expanded view of the local differential geometry
of flag manifolds with a very practical viewpoint [33]. Two
features of [19] are an iterative algorithm for determining
the distances between given points [A], [B] on a flag man-
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ifold (where A and B are arbitrary orthogonal matrix rep-
resentatives for [A] and [B]) and algorithms for determin-
ing how to move from [A] to [B] along a minimal length
geodesic. These algorithms allow practical computations to
be made on flag manifolds. In this paper we utilize such
algorithms and illustrate their effectiveness in several sam-
ple problems in data analysis. In addition, we develop a
modification that allows for more efficient computations to
be made in the setting where the final dimension jump in
the flag manifold signature is greater than one half of the
ambient dimension.

From the data analysis perspective, points on a Grass-
mann manifold Gr(k,n) parameterize k-dimensional lin-
ear subspaces V' C R”. Points on a flag manifold
FL(ay,as,...,aq) parameterize sequences of nested linear
subspaces Vi C Vo C --- C Vg = R™ with a; = dim(V;)
(sometimes the notation F'L(ny,na,...,ng) is used where
ny = a1 and n; = dim(V;) — dim(V;_1) for ¢ > 1). Flag
manifolds can be viewed as generalizations or refinements
of Grassmannians and have the ability to encode more sub-
tle relationships than are capable with Grassmannians. In
practice, the Grassmannian seems to be well suited for data
sets where the ambient dimension is much larger than the
number of data points (tall matrices) and where the data set
is relatively pure. While applicable in this setting, the flag
manifold approach is also suitable to the analysis of some
data sets where the data dimension may be small relative to
the number of observations (wide matrices), where the data
set may consist of a mixture of classes, and where the data
has been collected under multiple variations of state.

As described above, flag manifolds constitute a refine-
ment of Grassmann manifolds that enable the measurement
of the distance between nested spaces. One setting that il-
lustrates their advantage is the problem of comparing mixed
data sets. An example of what is meant by this is the follow-
ing: suppose that one data set has 80 percent of its samples
drawn from class A and 20 percent from class B and a sec-
ond data set has the reverse mixture. The different concen-
trations lead to different basis vectors in the singular value
decomposition. Grassmann methods typically consider the
span of the first few basis vectors and utilize the resulting
subspace as a representative of the data set. Flag methods
refine this approach by utilizing a nested sequence of vector
spaces as a representative. The extra structure, i.e. infor-
mation, in the nested sequence of subspaces increases the
ability to distinguish between these data sets as compared
to using the information in a single subspace.

Mathematically, as is demonstrated in this paper, the
tools for measuring geodesic distances between data repre-
sented by tall versus wide matrices are utilized in a different
manner. Here we utilize the algorithms of [19] for com-
puting distances between wide matrices and show their use
for solving pattern recognition and computer vision prob-

lems. The work is in the same spirit as Grassmannian data
processing but extends these tools to a distinct yet impor-
tant application. We argue that in many cases where data is
subject to wide variability, the distances measured between
large sets of small feature spaces captures more fidelity than
algorithms on Euclidean space.

The outline of this paper is as follows: In Section 2 we
review the geometric framework of the Grassmannian. In
Section 3 the theory of the flag manifold is developed along
with efficient algorithms to compute geodesic distances. In
Section 4 we illustrate the applicability of the method on
hyperspectral imagery. In Section 5 we summarize the fea-
tures of the methodology.

2. The Grassmannian

The Grassmannian, denoted by Gr(k, n), is a geometric
object whose points parameterize the k-dimensional sub-
spaces of a fixed n-dimensional vector space. In the context
of applications, the fixed n-dimensional vector space is typ-
ically taken to be R™ or C™ (though vector spaces over other
fields can also be considered). For the purposes of this pa-
per, the ambient vector space is taken to be R™ and we rep-
resent Gr(k,n) as a real matrix manifold. Each point in
Gr(k,n) is identified with an equivalence class of orthog-
onal matrices leading to the representation of Gr(k,n) as
O(n)/O(k) x O(n — k) or alternatively in terms of spe-
cial orthogonal matrices as SO(n)/S(O(k) x O(n — k)).
In these formulas, O(n) denotes the group of n x n or-
thogonal matrices and O(k) x O(n — k) denotes the sub-
group of O(n) consisting of block diagonal matrices with
elements from O(k) in the first block and elements from
O(n — k) in the second block. The notation SO(n) (resp.
S(O(k) x O(n — k))) denotes the subgroup of O(n) (resp.
O(k) x O(n — k)) with determinant 1. Thus a point on
Gr(k,n) can be identified with an equivalence classes of n-
by-n special orthogonal matrices [Y] C SO(n) where two
elements Y, Y’ € SO(n) are in the same equivalence class,
written Y ~ Y if there exists an M such that Y’ = Y M
where

0 M, , 6]

M- [ M;, 0 }
with M, € O(k), M,_. € O(n — k), and det(Mk) .
det(My—) = 1. If Y ~ Y’ then [Y] = [Y”] denote the
same point on the Grassmann manifold Gr(k,n). One ad-
vantage of this characterization is that we can utilize the
well-studied geometry of SO(n) to understand the geom-
etry of Gr(k,n). It is well known that a geodesic path
on SO(n), starting at a point ) € SO(n), is given by a
one parameter exponential flow : ¢ — @ exp(tH) where
H is an n-by-n skew-symmetric matrix. Since Gr(k,n) is
a quotient manifold of SO(n) by the subgroup S(O(k) x
O(n — k)), it can be readily verified that when representing
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geodesics on Gr(k,n), one can further restrict H to be a
skew symmetric matrix of the form

_nT
H:{Ok B

(n—k)xk
B On—k]’BGR 2)

where the size and location of the zero-blocks mirror the
size and location of My, M,,_;, in the block diagonal matrix
M. A geodesic on Gr(k,n), starting at the point [Q] €
Gr(k,n), can thus be expressed in parameterized form as:

a0 =qentt| ) ) ()

The sub-matrix B specifies the direction and the speed of
the geodesic path. More details can be found in [7]. As
will be seen later in Section 3.2, an advantage of the char-
acterization of the Grassmannian as an equivalence class of
special orthogonal matrices is that this approach allows a
straightforward generalization for defining and represent-
ing points and geodesics on a flag manifold thanks to the
underlying Lie theory.

Computations of distances between points on the Grass-
mannian Gr(k, n) are often performed using an n-by-k or-
thonormal matrix representative (whose column space cor-
responds to the point on Gr(k,n)). In this setting, a point
on Gr(k,n) can be represented as an equivalence class of
n-by-k orthonormal matrices where X ~ X' iff X' = XU
where U € O(k). The distance between two points on
Gr(k,n) (i.e. two k-dimensional subspaces of R™) [X] and
[Y] can be computed via the compact SVD of X1V, ie.,
ULVT := XTY. From the SVD, the geodesic distance
between [X] and [Y] is defined as:

QXL =R+ B+ 4 @

where \; = arccos(o;) with o; denoting the j" diagonal
element of X. In the formula (XU)TYV = ¥, the columns
of XU and YV are the principal vectors between [X| and
[Y]. The geodesic between [X] and [Y] rotates the columns
of XU to the columns of YV while the diagonal elements
of X encode the cosine of the angles between these corre-
sponding columns.

3. The Flag Manifold

The distinction between geodesics on Grassmannians
and flags is captured pictorially in Figure 1. For Grassman-
nians, one is moving a subspace into another subspace along
the shortest trajectory. In the flag setting, this trajectory has
to remain faithful to the nesting structure of the subspaces.
In Figure 1 (right) we see the required flag alignment of the
coordinate directions in the 2D subspace whereas no align-
ment is required for the Grassmannian (left). The details
and ramifications of this difference are elucidated below.

Figure 1: A comparison of geodesics on the Grassmannian
(left) and flag (right) manifolds for representing the distance
between two data sets. The red subspace is being moved to
the blue subspace via the gray subspace in each case.

3.1. Flags and their appearance in data analysis

A flag of subspaces in R" is a nested sequence of sub-
spaces V1 C Vg C --- C V4 = R". The signature or type
of the flag is the sequence (dim V1, dim Vo, ..., dim V).
This dimension information can also be encoded as
the sequence (dimVi,dimVy — dimV;,dimVs —
dim Vs, ..., dim V4 — dim V4_1). In this paper, we will
use this second type of encoding for the signature of a
flag, thus we will identify the type of a flag in R™ by
the sequence of positive integers (n1,n2,...,n4) where
dimV; = ¥/_n; and ny +ng + -+ + ng = n. We let
FL(ny,na,...,ngq) denote the flag manifold whose points
parameterize all flags of type (n1,n2,...,n4). As a special
case, a flag of type (k,n — k) is simply a k—dimensional
subspace of R™ (which can be considered as a point on the
Grassmann manifold Gr(k,n)). Hence FL(k,n — k) =
Gr(k,n). The idea that the flag manifold is a generalization
of the Grassmann manifold will be utilized in Section 3.2 to
introduce the geodesic formula on the flag manifold (see
[33] for a nice expanded development of the geodesic for-
mula). The nested structure inherent in a flag appears natu-
rally in the context of data analysis.

In [18] a pictorial illustration of the geodesic between
discrete Daubechies2 and Daubechies4 wavelets was pre-
sented by observing the action, of points along the geodesic
between the wavelets on F'L(4,4,8,16), on a photograph.
In the context of data analysis, one can attach points on a
flag manifold to a data set as follows. Let X € R"*? be
a data matrix of p samples in R™. The left singular vec-
tors U obtained from the compact SVD, X = UXVT, de-
termine an ordered basis for the column span of X. The
ordering is based on the magnitude of the corresponding
singular values and provides a straightforward way to as-
sociate a flag to U. For example, to U = [uq|uz]. .. |ug],
construct the nested sequence of subspaces span([u;]) C
span([uilug]) C --- C span(fui|---|ug]) C R™. This
is a flag of type (1,1,...,1,n — k) in R™ and corre-
sponds to a point [U] on FL(1,1,...,1,n — k). In order
to produce a point on F'L(3,4,n — 7) one could consider
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span([u|---|us]) C span([ui]---|ur]) C R™. As will be
discussed in Section 4, using an SVD basis of a data set to
produce a flag with a given signature can provide additional
information when comparing data sets.

3.2. Representation of the flag manifold

The flag manifold F'L(n1,ns,...,n,) parametrizes all
flags of type (n1,na, ..., nq). The presentation in [7] gives
a representation of the Grassmann manifold Gr(k,n) as
the quotient manifold O(n)/O(k) x O(n — k). Similarly,
we can view a flag manifold as a quotient manifold con-
structed from O(n). In particular, F'L(ny,ng, -+ ,ng) =
O(n)/O(n1) x O(ng) X - -+ x O(ng) where ny +no+- -+
ng = n. In this definition, O(n1) x O(ng) x -+ x O(ng)
denotes the subgroup of O(n) consisting of block diago-
nal matrices with elements from O(ny) in the k' block.
Although it is common to represent a flag manifold as a
quotient manifold of O(n), it is more convenient to rep-
resent a flag manifold as a quotient manifold of SO(n)
for the purposes of computations involving the exp map
(since exp(H) € SO(n) for any skew-symmetric matrix
H). Hence for the computations in this paper, we make the
representation F'L(ny,ng, -+ ,nq) = SO(n)/S(O(ny) x

- x O(ng)). Let Q@ € SO(n) be an n-by-n orthogonal
matrix, the equivalence class [()], representing a point on
the flag manifold, is the set of orthogonal matrices

M, - 0
RI=49Q| : S
0 - My
where Z?:l n; =n, M, € O(n;), and Hle det(M;) = 1.

3.2.1 Example: FL(1,1,1)

As a special case, a flag of type (1,1,---,1) is called a
full flag and FL(1,1,---,1) is the full flag manifold in
R™. One way to visualize a full flag in R? is to pic-
ture a 1-dimensional line living in a 2-dimensional plane
living in R®. The set of all such flags is FL(1,1,1) =
0(3)/0(1) x O(1) x O(1). From the perspective of com-
paring data sets, Figure 2 shows that the SVD basis of ellip-
soidal data points corresponds to a flag on F'L(1,1,1). Let
[u1, uz, us] € O(3) be the SVD basis of some ellipsoid or-
dered by the corresponding singular values, here wuy,us2,us
are simply the major, median and minor axis respectively
and [u1, ua, ug] is a flag representation of the ellipsoid data
set. Comparing two ellipsoids amounts to measuring the
geodesic distance between the two corresponding flags on
FL(1,1,1).

3.3. Tangent space at [Q] to FL(ny,na, -+ ,nq)

Let @ be an element of SO(n) and let (nq, ng, ..., ng)
be any sequence of positive integers which add up to n. We

Figure 2: Two sets of ellipsoid shaped data points in R3.
Each SVD basis can be viewed as a point on F'L(1,1,1)

can use () to build a flag with signature (ny,na,...,ng).
In doing this, we can consider () as a representative for
a point [@Q] in FL(ny,na, -+ ,n4). A tangent vector at
@ € SO(n) can be decomposed uniquely as a compo-
nent in a direction that does not modify the nested se-
quence of subspaces and a component in an orthogonal di-
rection that does. The latter represent a tangent vector to
FL(ny,ng,- -+ ,ng) at [@]. It can be readily computed that
tangent vectors in directions that preserve the flag [Q)] cor-
respond to n-by-n block diagonal skew-symmetric matrices
of the form:

Gy, - 0
G=| 1 . i 5)
0 - Gy

where G is an n;-by-n; skew-symmetric matrix. The span
of matrices of this form is sometimes called the vertical
space of the quotient manifold. The horizontal space is
defined to be the orthogonal complement to the vertical
space with respect to the standard inner product on matri-
ces. Thus, the horizontal space consists of matrices of the
form:
0, *
H=| : - (©)
—xT ... 0,,

where H is skew symmetric with blocks of zeros down the
diagonal where 0,,, denotes an n; X n; matrix of zeros. Ele-
ments in the horizontal space correspond to elements in the
tangent space to F'L(ny, na, -+ ,ng) at [Q)], i.e. to elements
in T[Q]FL(nh nog, .-+ ,nd).

3.4. Geodesic and distance: exp and log map

We now describe the exponential map and logarithmic
map in the setting of flag manifolds.

4188



3.4.1 Exponential map

As is mentioned earlier, a geodesic path on SO(n) start-
ing at a point @) is given by an exponential flow Q(¢) =
Qexp(tX) where X € R™ " is any skew-symmetric ma-
trix. Viewing F'L(n1,na,...,nq) as a quotient manifold of
SO(n), one can show that a geodesic on SO(n) is also a
geodesic on F'L(ny,na,...,nq) as long as the skew sym-
metric matrix X points in a direction that is perpendicu-
lar to the orbit determined by S(O(ny1) x O(ng) X --- X
O(ng)). This leads one to conclude that a geodesic path
on FL(ny,na,...,ng) at [@] is an exponential flow of the
form Q(t) = Q exp(tH) where H takes the form in (6).

Since each flag is an equivalence class of matrices,
Q(t) is just one of the possible representations of a given
geodesic flow. Each geodesic flow emanating from [Q)] €
FL(ni,na,- -+ ,ng) has the form

M, -+ 0
Qexp(tH) |+ . (N
0 - My

Q)] =

where M; € O(n;) and H?zl det(M;) = 1. Equipped
with the metric induced by the inner product < A, B >=
1Tr(AT B), we can compute the length of the path between
[Q(0)] and [Q(1)] along the geodesic determined by H:

1
Length = §Tr(HTH) =

where {£i);} are the eigenvalues of H. This mapping of a
tangent vector (based at [Q)]) to the flag manifold is referred
to as the exponential map which in this paper is found by
applying the matrix exponential.

3.4.2 Logarithmic map

In data analysis, it is often the case that one is given data
sets or representations of data sets (e.g. through an SVD
basis) and one wants to measure their similarity. If the rep-
resentation of the data is given as an orthonormal matrix,
M, one can consider the columns of M as an ordered ba-
sis and use this ordering to consider M as a representative
for a point [M] on a flag manifold. An interesting feature of
flag manifolds is that there are typically many geodesics be-
tween points. In order to measure the distance between two
points on a flag manifold, one needs to find the length of the
shortest geodesic between their representations. In order to
do this, one needs to find a tangent vector, H, that achieves
the smallest value for < H, H > among all tangent vec-
tors determining a geodesic between the points. This tan-
gent vector is found via the inverse operation of the expo-
nential map (referred to as the logarithmic map). In [19]

there is a description of an iterative algorithm which takes
as input two orthogonal matrices )y, )1 and a flag signa-
ture (nq,...,nq) and produces as output skew symmetric
matrices, G, H, of the forms given in (5) and (6) which sat-
isfy Q1 = Qoexp(H )exp(G) and with < H, H > minimal
among all such expressions of this form. In other words, the
iterative algorithm approximates the tangent vector H that
determines a minimal length geodesic (and determines the
distance) between [Qo] and [Q1] on F'L(ny,ng, -+ ,ng).

3.5. 2k Embedding

For many practical applications, the trailing n4 columns
are not of interest, e.g. computations on F'L(k,n — k) =
Gr(k,n) are usually performed using n-by-k orthonormal
matrices since only the first & columns are of interest. Here
in this section we will prove that the iterative algorithm
from [19] can be performed in a lower dimensional space
if k = Z?:_ll n; is relatively small, more specifically, if
k<mn/2.

Without loss of generality, the geodesic between two
flags of type (n1,ns, - -+ ,ng) can always be identified with
a geodesic between the identity matrix, I, and some Q) €
SO(n) by moving the initial point to I, i.e.,

_pT
A B}) )

0~ tom] 4

where £ = Zz‘d:_ll n;,, B € R(=F)*Xk and A is a k-by-k
skew-symmetric matrix of the form

0n, —BgT,l _Bd?l,l
Bs 0, —-B;_
A= . 2 d—1,2 (10)
Bg_11 Bg-12 - 0, ,

A -BT
QW = resit] 5
n representation of the geodesic flow between [I] and [Q)].
The following theorem and its corollary provides a method
to modify the iterative algorithm from [19] with 2k-by-2k
matrices instead of n-by-n matrices.

}),t € [0, 1] traces an n-by-

Theorem 1. Ler [Q] € FL(ni,na,- - ,ng).
_pT

Q) =ewit| 5 Ty | w0 =10 = Q

is a flag geodesic flow between [I] and [Q). If

Suppose

_pT
o })In,k an

(0 =it |
and span{q(0)}Nspan{q(1)} = {0}, then forallt € [0, 1],

span{q(t)} C span{[q(0),q(1)]}, where k = 3" i
and I, i, denotes the first k columns of an n-by-n identity
matrix.
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Note that if 2k > n, Theorem 1 is trivial. So here we
assume 2k < n. Before proving the theorem, we need to
introduce some notation. Let ¢ := QI ; = ¢(1) be the
first k& columns of Q. In fact, ¢(t) defined in Equation (11)
can be understood as a geodesic path between I, ;, and ¢ by
viewing F'L(nq,ne, - ,n4) as a quotient manifold of the
Stiefel manifold St(k,n) (refer to [33] for more details).
Further, we write the n-by-k orthonormal matrix ¢ in block

matrix form as
dk
= 12
q { I ] (12)
where ¢, and g, _j denote the first k£ rows and the trailing
n — k rows of ¢ respectively.

Lemma 1. [f q(t) is defined as in Equation (11), such that
q(0) = I, . and q(1) = q, then span{q,_ } = span{B}.

Proof. LetUpRp := B be the compact QR decomposition
of B (Up: (n — k)-by-k, Rp: k-by-k). Define

f(t) =T -UgUE)Jq(t) (13)

where J = [ 0 I, g ] is the last n — k rows of the n-
by-n identity matrix. Hence left multiplication by J on ¢(t)
simply selects the last n — k rows of ¢(¢). By definition
f(0) = 0. Differentiate f(t) to get:

A -BT

foy=u-vsvdi| 5 g Jaw=o a4

Therefore, f(t) = 0 for t € [0,1]. If we evaluate f(t) at
t =1, we get:

f(1) = -UpUE)gn-r =0 (15)

By the assumption that ¢(0) and ¢(1) do not intersect, we
know ¢, is of rank k hence Upg is also of rank k. The
conclusion follows. O

Now we present a proof to the theorem.

Proof. Let UR := [I,, 1, q] be the thin QR-decomposition
of [¢(0),¢(1)]. Consequently, U is an orthonormal basis
for span{[q(0), ¢(1)]}. The n-by-k orthonormal matrix U
takes the block form

[ L 0
U[O c]' (16)

Note that span{C'} = span{g,—_} where g,_y, is defined
in Equation (12). Define

g(t) = (I = UU)q(1). a7
By definition, g(0) = (I —UUT)I,_j = 0. If we differen-
tiate g(t), we get:

0 0

(Infk _ CCT)B 0 Q(t) (18)

g(t) =

By Lemma 1, span{B} = span{q,_r} = span{C}. We
conclude that ¢(t) = 0, which implies g(t) = 0. Therefore
q(t) is always living in the span of [¢(0), ¢(1)]. O

The theorem shows that the flag geodesic flow ¢(t) be-
tween I, ;, and ¢ never leaves the 2k-dimensional subspace
span{[I,.k, q]}, which leads to the conclusion that the log-
arithmic map computation can be performed within this 2k
dimensional space without loss of information. Here we in-
troduce the following corollary.

Corollary 1. Suppose q(t) is defined as in Equation (11)
such that ¢(0) = I, ;, and q(1) = q. Let UR := [I,, 1, q] be
the compact QR-decomposition of [q(0), q(1)), then ¢(t) =
UTq(t) is a geodesic flow between ¢(0) = UTq(0) and
#(1) = UTq(1) on FL(ny,n2,--- ,ng_1,k). Moreover,
A(6(0), 6(1)) = d(g(0), a(1)) and g(t) = VU 6(0).

This corollary can be proved by combining the results
from Theorem 1 and Corollary 2.2 in [7].

4. Numerical Experiments
4.1. Ellipsoid data

The purpose of this synthetic example is to show the
difference between a flag geodesic and a Grassmannian
geodesic, as well as their corresponding geodesic distances,
when comparing data sets. As can be seen in Figure 2, each
ellipsoid data cloud contains 100 data points in R®. Let
{r;} and {b;} denote the data points in the red and blue
ellipsoid respectively. Each data set can be written as a
short wide data matrix [ry, 72, ,7100] = R € R3*100
and [by, by, - ,bigo] = B € R3*100 We denote the SVD

basis for each ellipsoid data set by Ur = [ug), ug), ug’)}

and Up = [ug), ug), ug’)]. One can view the SVD basis
as giving the major, medium, and minor axes of the corre-
sponding ellipsoid.

The Grassmannian geodesic distance between the two
bases is 0 since the columns of Ug, or U span all of R3. To
compare two ellipsoids via the Grassmannian setting, one
would typically represent the data sets with their first princi-
pal components namely ug) and ug) , and then compute the
distance between these two vectors on G(1,3). Hence the
Grassmannian geodesic between the two ellipsoids is the ro-
tation that moves the major axis of the first ellipsoid to the
major axis of the second ellipsoid. The distance between
these representations on Gr(1, 3) is the angle between the
major axes. The information contained in the relationship
between the other two axes is lost. Note that this limitation
comes from the Grassmannian rather than the data itself.

By representing the two ellipsoids of data points by their
SVD bases Ug, Up such that [Ugr], [Ug] € FL(1,1,1),
one retains more information in describing the correspond-
ing ellipsoids since F'L(1,1,1) has dimension 3 (while
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Gr(1,3) has dimension 2). The geodesic between the two
flag representations correspondingly encodes more infor-
mation than in the Grassmannian setting.

4.2. MNIST image data set

Here we utilize the well-studied MNIST data set to illus-
trate the use of the flag manifold for comparing sets of SVD
bases of “mixed” digits. We select hand written digits “1”
and “5” from the training set of the MNIST data set, where
each digit is a 28 x 28 image. All images are vectorized
and centered by subtracting the mean of all images. Then
we form a set of mixed digits data sets consisting of two
classes, namely “major 1 /minor 5” and “major 5/minor 1”.
“major 1/minor 5” (resp. “major 5/minor 17) is formed by
concatenating m “1”’s (resp. m “5”’s) and p “5”’s (resp. p
“1”’s). In general m is assumed to be larger then p. Hence
each data set is represented by a 784 x (m + p) matrix. We
compute the SVD basis for each 784 x (m + p) matrix and
select the first k& columns of the SVD basis as a represen-
tation for each data set. Thus each data set is represented
by a 784 x k orthonormal matrix. For the following ex-
periment m = 16, p = 9 and £k = 5. We may consider
each 784 x 5 SVD basis as a data point on F'L(2,3,779)
or Gr(5,784). The first 5 eigen-digits for both of the two
classes in this experiment are presented in Figure 4. One
can compute the pairwise flag and Grassmannian geodesic
distances and store the data in a distance matrix. We then
embed these data points in Euclidean space using multi-
dimensional scaling.

In Figure 3, we see the configurations produced from
MDS using Grassmannian and flag distances. We observe
that the Grassmannian MDS configuration has significant
overlapping between the two classes. This is not surprising
since each data point, no matter which class is considered,
captures the span of both “1”’s and “5”’s. As can be seen
in the flag MDS configuration, there is a much clearer sepa-
ration between the two classes (except for one point). Note
that the input matrices fed to the algorithm are identical for
each of the configurations. The improvement comes from
the additional structure in the flag.
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Figure 3: Grassmannian vs flag MDS configurations

4.3. Indian Pines hyperspectral image data

To further illustrate the utility of the flag model, we ap-
ply it to the Indian Pines hyperspectral image data set. The

-
HEEBE
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Figure 4: First 5 eigendigits of major 5/minor 1 data set and
of major 1/minor 5 data set
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Figure 5: Comparison of the Grassmann and Flag manifolds
for representing Grass-Pasture and CornNotill. The sub-
space dimension is fixed while ambient dimension varies.

hyperspectral images in this data set are 145 x 145 pixels by
220 spectral bands (from 0.4pum to 2.4um). 10366 pixels
are labelled and each is assigned to one of 16 classes. Here
we will test both the flag model and the Grassmann model
on the task of visualizing sets of data sets.

For a chosen dimension k (note that £ = Zf:_ll n; for
FL(ni,n9,--+ ,nq)), we assemble 30 n X k matrices X;
from each class (so there are p = 60 data matrices in total).
Each data matrix consists of k¥ 200 x 1 data vectors which
belong to one of the two classes. Then for each matrix X,
a compact SVD is applied to obtain an SVD/PCA basis,
hence each data point (subspace) is represented by a 220 x k
orthonormal matrix U; where UZ-EiViT = X;. The distance
between SVD bases, assumed as representatives for points
on a given flag manifold, can then be computed to obtain
a p x p distance matrix. We use this distance matrix to
embed these flags as points in Euclidean space via Multi-
Dimensional Scaling (MDS). The first two coordinates of
the optimal Euclidean configuration are selected for visual-
ization in R2. Figure 5 illustrates the Euclidean embedding
configurations for fixed subspace dimension £ = 5 with
various ambient dimensions using both the Grassmannian
geodesic distance and flag distance. The ambient space is
selected to be the n spectral bands with highest responses
for n = 100,10,5. It is observed in the first two rows
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that both Grassmannian and flag geodesic distance provide
a good separation with relatively large ambient dimension at
n = 220 and 100. When the ambient dimension is reduced
to n = 10, the third row of Figure 5 shows that the flag dis-
tance MDS embedding separates two classes in R? while
the Grassmannian MDS embedding shows heavy overlap-
ping. Figure 6 shows the eigenvalues corresponding to the
MDS embedding using flag distance on F'L(2,3,5) (left)
and Gr(5, 10) (right). As we can see, the largest eigenvalue
on the left panel is dominating which also suggests that
flag MDS configurations are separable in lower dimension,
which we don’t observe in the Grassmannian MDS eigen-
values plot. Figure 7 shows, for fixed ambient dimension
n = 220, how sets of data sets are pulled apart by increas-
ing the dimension in the flag structure. From top left, we
observe that the embedding of data points on F'L(1,219) to
IR? live on a circle and are not separable. As we increase the
flag structure dimension, the corresponding MDS configu-
rations start to show more separation and for F'L(1,4,215),
the embedding of two classes is linearly separable.

In Figure 8, we select 6 Dbands (bands:
3,29,42,61,65,158) and use 20 pixels within the same
class to form a data matrix of size 6 x 30. Each class
consists of 20 such short and wide matrices and each matrix
is represented by its 6-by-6 SVD basis and assumed to be
representatives for points on F'L(2,2,2). The pairwise
distance is computed to obtain MDS configurations on R2.
It is observed that the MDS embeddings of 3 classes are
separable in low dimensional space with only 6 bands.

FL(2,3,5) Gr(5,10)

eigenvalue
eigenvalue

index ’ index

Figure 6: Eigenvalues of MDS for FL(2,3,5) and
Gr(5,10) in descending order.

5. Conclusion

We have proposed a geometric framework for comparing
distances between nested subspaces, i.e., points on a flag
manifold. This approach exploits a mathematical frame-
work that enables the data analyst to gain insight into the
way the data resides in its ambient space, both in terms of
dimension and distribution. This approach is suitable for
the analysis of wide data matrices, e.g., where the number
of data features is less than the number of points and for
data sets consisting of a mixture of classes.

We have presented the theoretical foundation for com-
puting geodesic distances between two points on a flag man-
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Figure 7: Configuration of points on various flag manifolds
embedded in Euclidean space.
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Figure 8: Configuration of points on F'L(2, 2, 2) embedded
in R? for 3 classes.

ifold. The theory lends itself naturally to numerical algo-
rithms for computing the distance as well as the set of points
along the shortest path between the two points. This formu-
lation allows one to move a set of nested subspaces into
another set of nested subspaces along the shortest path that
respects the intrinsic geometry. These tools provide a mech-
anism to leverage angles between subspaces where the pre-
vious formalism on the Grassmannian may fail.

The flag geodesic algorithms have been demonstrated
on mixed MNIST data sets and on the Indian Pines hyper-
spectral data set where the number of hyperspectral features
(each corresponding to a frequency band) and flag structure
are varied. In particular, we focus on the transition from
tall to wide matrices. We see that the geodesic distance on
the flag manifold is able to separate the data for visualiza-
tion in two dimensions in a setting where the Grassmannian
framework failed to do so.
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