
An Analysis of an Inexpensive Memory Test
Solution

Ryan Pennucci, Ryan Jurasek, Wolfgang Hokenmaier, Lester Patrick, Jacob Bucci, Donald Labrecque and David Kinney
Green Mountain Semiconductor Inc.

Burlington, VT 05401

Email: rpennucci@greenmountainsemi.com, rjurasek@greenmountainsemi.com

Abstract—Multi-project wafers have lowered manufacturing
costs for semiconductor prototypes, yet test costs remain high,
presenting a barrier for innovation in the market. We present
and analyze a low-cost test strategy for memory devices.

Index Terms—low cost, memory

I. INTRODUCTION

Historically, startup semiconductor design companies have

been hampered by exorbitant cost barriers to enter into the

market. Both manufacturing and testing require significant

investment into specialized facilities and equipment. With

the emergence of independent foundries, prototype production

costs have been significantly lowered. In particular, multi-

project wafer services allow multiple customers to share the

costs of production by combining several dies for low-volume

parts onto each wafer. While this lowers the cost of production,

testing remains expensive.

In addition to the high cost of conventional test equipment,

specialized facility features are typically required, including

raised flooring, high voltage, pneumatic supplies and spe-

cialized cooling. In recent years, desktop test equipment has

reduced both the cost of equipment and required facilities [1].

These systems offer much of the performance of their full-

size counterparts, with lower cost and fewer required facilities.

Today, these systems can be rented or purchased used to

further reduce equipment costs. Nevertheless, equipment costs

may be significantly greater than manufacturing costs.

Beyond the high direct costs of equipment needed for test-

ing, investment is needed to develop test protocols. Generation

of test patterns for execution is a complex and time-consuming

process which requires an understanding of the device and its

failure modes to develop effective tests. Designing a built-in

self test (BIST) is still more complex, since a fault model must

be developed for the device before a circuit can be designed

to search for faults. In memory production, testing is further

complicated by the need for test algorithms to locate defects

and repair them using redundant features.

Although automatic testing is required for production at

scale, it may be an unnecessary burden for research or the

early stages of design verification. For such projects, the ability

to easily design experiments to characterize the device and to

rapidly iterate on these experiments is more valuable. It may

Fig. 1. Semiconductor Manufacturing vs Test Cost [2]

be more effective to design a general-purpose BIST which

works with the available test equipment to execute tests and

to manually manage defect repairs.

In this paper, we present a low-cost solution to test ex-

perimental semiconductor memory designs, consisting of a

combination of circuit design elements, test equipment and

software features. Many of the techniques shown here are

not limited to memory testing, and may be adapted for

semiconductor prototype development in general. This solution

is configurable to allow for changing interface specifications

and design characteristics, while remaining simple and easy

to use. Many of the design elements are intended to have

value even after a more expensive high volume manufacturing

solution is implemented by reducing the resources needed to

test each chip.

A. Motivation

As a small company, Green Mountain Semiconductor, Inc.

(GMSi) has a limited testing budget. Although memory test

equipment is very powerful, our limited requirements for a

recent research project along with the high cost of such

equipment called for a different approach. To work within

our budget while still meeting our needs, we developed a

978-1-5386-6400-1/18/$31.00 © 2018 IEEE

test environment using general purpose instruments. This kept

the number of non-reusable components such as specialized

test fixtures to a minimum, while allowing adaptation to other

products and interfaces. Features that these instruments were

unable to provide were instead built into the prototype device

under test (DUT) itself.

B. Conventional Testing

Conventional memory test systems are complex and expen-

sive pieces of equipment [3]. They are designed to execute

test programs which can analyze all aspects of AC and DC

circuit operation which are required from the first silicon

design verification through production testing of wafers and

packaged devices. In order to operate at sufficiently high

speeds, these systems typically execute compiled programs to

generate vectors, although precomputed vectors may also be

used.

These vectors access the rows and columns of very large

memory arrays, often across several devices in parallel. Com-

parators in the tester are programmed with expect data and

used to validate the behavior of each address. A map of passing

and failing addresses within the array is kept in storage known

as Catch-RAM. These systems often include redundancy repair

algorithms to allow spare elements to replace failing portions

of the array in order to increase the percentage of fault-free

devices. They are also used to obtain failure counts and bit

fail maps showing the distribution of failing addresses.

Testing large memory arrays takes a significant amount of

time. This test time can be effectively managed through high

device parallelism and total automation. Systems are typically

capable of a large number of complex memory patterns [4] to

be executed with minimal overhead in loading and unloading

software into the executable portion of the code.

While these systems are very flexible and can be configured

to test many different types of memory devices, the price

of new systems typically starts at several hundred thousand

dollars, and often runs into the several million dollar range.

In addition to the equipment itself, the installation demands

costly resources for electricity, clean pressurized air, vacuum

and sometimes liquid cooling or liquid nitrogen for the high

speed electronics, in order to maintain internal tester temper-

ature and humidity, as well as for parts and wafer handling.

Used systems also frequently face high maintenance costs for

diagnosis and replacement of defective system components.

Desktop test systems are available at lower cost and with fewer

required facilities, but these systems are still costly. These cost

and facility constraints are often a serious impediment for a

small company to overcome.

Beyond the cost of the systems and facilities themselves,

effort must be invested to produce test programs to evaluate

device performance. More complex devices may additionally

integrate a BIST to automate testing. In production-ready

devices, robust test programs or BIST circuits are used to

identify and correct defects using redundant structures. The

design of these tests is complex and requires substantial

development effort.

For research projects or design verification, test programs

of this complexity are less important. A wider range of pa-

rameters must be explored, necessitating many test programs.

The complexity of creating test programs makes it difficult to

quickly iterate on these programs.

C. GMSi’s Approach

The GMSi research project was designed to be tested

without using a traditional memory tester. Instead, a large

amount of functionality was built into the chip itself and

configured during testing. Because the chip integrates many

of the functions of a memory tester, low-cost, general-purpose

test equipment is able to take the place of expensive, dedicated

memory test equipment. A pattern generator supplies vector in-

puts, while a logic analyzer records inputs and outputs. Paired

with a programmable waveform generator acting as a clock,

programmable power supplies, and additional instruments, a

wide range of operating conditions can be produced to explore

many device characteristics.

All testing is performed against a Verilog model of the DUT.

The model is wrapped in a behavioral testbench to supply

its inputs. By capturing these inputs to serve as stimulus for

testing against hardware, a single testbench is able to serve

multiple purposes. When designing the test, the internal signals

of the model can be inspected. This information is helpful

both while designing the test and while diagnosing failures. In

addition, the testbench produces output in a customized format

which allows it to call out to the software controlling the test

instruments. The testbench is able to request that operating

conditions be changed or specific measurements be performed.

II. TESTING

A. Hardware Design

The purpose of GMSi’s effort was to explore a DRAM de-

sign that incorporates additional functionality into the memory

device itself. This functionality requires modifications to the

signal paths between the memory’s primary and secondary

sense amplifiers but does not depend on the memory array

itself. To simplify the prototype, the DRAM array was re-

moved, leaving the primary sense amplifiers intact. Data is

read and written on the sense amplifiers themselves, allowing

the remainder of the design to be tested while reducing the

cost, size and complexity of the prototype significantly.

Without a DRAM array, there is no need to periodically

refresh the data in memory in this prototype. Because con-

ventional logic analyzers and pattern generators have limited

sample memory, it is necessary to frequently pause the exe-

cution of long-running tests to transfer data. If memory must

be periodically refreshed, these pauses must occur between

complete test cycles. This limitation is also present in con-

ventional memory testers, so tests are commonly designed

with the memory limits of the tester in mind. Removing the

DRAM array eliminates the need altogether, allowing tests of

any length or complexity to be executed.

Without a conventional memory tester, many useful signal

characteristics could not be easily explored. To work around

expertise and extensive simulation are necessary in these

considerations.

A critical component of any design is documentation. It is

especially important where adjustments are made by loading

registers on scan chains. Each scan chain can contain a large

number of registers, so the position of each register in the chain

may be difficult to establish. Keeping documentation of scan

chain connectivity is necessary for testing to be performed.

In addition, it is helpful to document simulation results to

provide a starting point for hardware testing. While having

a wide range of adjustments available allows more thorough

testing, each available adjustment is another variable that must

be considered when configuring the hardware. Simulation data

is invaluable in determining the physical meaning of each ad-

justment setting and in establishing a reasonable configuration

during testing.

C. Software

Conventional memory testers are designed to execute tests

very quickly to minimize test time during production. General-

purpose instruments may execute tests much more slowly than

dedicated test equipment, so the software controlling them

needs to be designed with the limitations of the instruments in

mind and optimized to allow rapid test execution. A significant

amount of vector data must be generated and transferred to

execute tests. Speeding up the handling of this data is the

most significant target for optimization.

To execute a test in hardware, a simulation must be run, its

output must be processed into stimulus and finally the instru-

ments must replay the stimulus. If these steps are performed

serially, it will take a long time to set up each test. Pipelining

the process hides much of this start-up time. If stimulus is

generated on-the-fly as the simulation runs, hardware testing

can begin almost immediately. The disadvantage of pipelining

is that the Verilog simulator may become a bottleneck if the

instruments outpace it, keeping the instruments busy longer

than necessary and preventing other tests from being executed.

Transmitting large chunks of vector data across the network

may take a significant amount of time. While many mod-

ern instruments are often equipped with Ethernet, USB, or

other high-speed ports, these ports are not ubiquitous. Older

instruments may have very slow ports, or may require slow

external adapters. On these devices, data transmission may

cause significant delays. These delays can be masked by

transmitting vectors before they are needed, at the expense

of more complex communication protocols.

Between each chunk of vector data, the logic analyzer’s

sample memory must be captured and new vectors must be

loaded into the pattern generator’s memory. Both operations

take a significant amount of time. Arranging for the two

operations to take place simultaneously significantly reduces

the time required between chunks, providing a large benefit

to overall execution speed. However, the software required to

manage this parallel execution is necessarily complex.

In a networked test system, the protocols used for commu-

nication are important. Although a simple, command-oriented

protocol is simple to implement to control a single instrument

over the network, it quickly becomes burdensome as multi-

ple instruments are added. In such a protocol, a controlling

program issues simple commands to servers responsible for

managing instruments and waits for the completion of a

command. Such a protocol is natural to implement, since

software libraries for controlling instruments provide low-level

commands for each function of the instruments. Exposing

these commands over the network is simple, but is necessar-

ily slow. Executing multiple commands in parallel requires

additional synchronization and this synchronization quickly

becomes unmanageably complex.

A protocol which gives servers more autonomy makes

parallel execution more manageable, but is complex to im-

plement. In such a protocol, individual commands are not

sent. Instead, one or more fixed execution pipelines are used.

For example, a pipeline might consist of receiving vector

data for a pattern generator, running the pattern generator and

collecting outputs using a logic analyzer and responding with

the logic analyzer’s recorded outputs. The server manages this

pipeline itself, simplifying the client’s view of how tests are

executed. However, this makes it difficult to synchronize other

instruments or add new execution modes.

A more complex protocol which treats the execution of a test

as a series of events offers advantages over other protocols.

The client does not need any knowledge of the commands

that will be executed. Instead, it translates the execution of

the test into a series of events with associated sequencing

information and other related data. The servers controlling

each instrument can then track the progression of events and

execute the necessary commands at the appropriate moment.

This eliminates the need for explicit synchronization in the

client and allows all instruments to be managed in parallel.

Although the protocol is complex to implement, the remainder

of the software is dramatically simpler, inherently parallel

and easy to extend with additional instruments and modes of

execution.

General-purpose instruments allow a variety of data to be

captured and this data is useful for research. The format used

to store results in the database needs to be flexible in order to

take full advantage of the instruments. It also needs to be easily

extensible to allow additional instruments or test designs to be

added. Such a format will necessarily be more complex than

a spreadsheet-like layout with columns for each parameter.

Although they require more effort to work with, relational

databases are a natural choice for storing the wide range of

data acquired through testing.

Whether simple file formats or complex database schema

are used, analysis of test results will need access to the

stored results. File-based spreadsheet formats like CSV and

database formats like SQLite are relatively easy to work

with, but managing the files can be cumbersome. Full-featured

database servers like MySQL simplify managing the result

data while keeping it simple to access. Software libraries are

widely available to communicate with database servers from

within applications like R, allowing powerful analysis to be

performed easily.

IV. DISADVANTAGES

A. Low-Volume

Some elements of this approach are focused on low-volume

prototype testing, such as the utilization of low-resource/low-

speed logic analyzers for pattern generation. This is not

meant to replace the high-performance instruments used in

production for maximum throughput. However, many elements

of this solution such as on-chip high-accuracy timing and

voltage variations are reusable for product manufacturing and

can reduce the amount of resources needed per chip, for higher

parallelism in testing.

B. Software Development

Operating numerous instruments manually to perform tests

is impractical. For an arrangement like this to work, automa-

tion is necessary. This means that before testing can begin, a

significant amount of software must be written to tie the in-

struments and simulation software together into a cohesive test

system. This software quickly becomes complex in order to

handle communication between instruments across a network,

which is not typically part of standard test development.

C. Simulation Dependence

Using simulation software to generate vectors for testing

has several drawbacks. Although Verilog simulations can

execute far faster than SPICE simulations, using simulations

to generate expected outputs limits testing throughput. Testing

software can reduce the effects of this by beginning hardware

testing while the simulation is still running, but simulation

speed is a dominant factor in how quickly tests can execute.

Alternatively, if the runtime for stimulus generation is of

concern, a simpler model can be used to create stimulus and

expect data. While this model is similar to a memory tester’s

approach of coding expect data and relying on engineers’

understanding of the specification, it will allow a high speed

test code compilation.

A more significant problem with simulation is that the

model itself must be correct. Although automated schematic

netlisting tools may accurately reproduce a schematic in Ver-

ilog, they may not accurately capture its behavior. This is par-

ticularly challenging when analog behavior is intended. Timing

information may not be available to the Verilog simulator,

preventing it from correctly modeling gate delays. Verilog’s

rudimentary drive strength model may cause some circuits to

behave incorrectly. While Verilog-A allows for analog circuits

to be modeled, designing these models may be more time-

consuming than producing a behavioral model. When using

netlisted models, care must be taken to ensure that the Verilog

model of the design behaves correctly.

V. ADVANTAGES

A. Testing Against the Model

Typically, a behavioral model of the design is created early

in the design process. This model defines the correct behavior

which the simulated design and hardware must conform to.

By using it to generate expected data, it is possible to test

hardware directly against the model, with no opportunity for

misinterpretation or error.

B. Cost

Using general-purpose test equipment that is readily avail-

able on the secondary market significantly reduces testing

costs. For prototypes designed for low-frequency operation,

less expensive, less capable equipment can be used. Because

general-purpose equipment is inherently reusable, it will re-

main useful after the conclusion of testing.

Conversely, conventional memory test equipment loses its

value rapidly. As newer, faster testers become available, the

older, slower testers quickly depreciate in value. If state-of-

the-art memory is to be designed, testers from past generations

may be too slow to be of use.

C. Flexibility

Using independent test equipment as part of a platform

interconnected with software is very flexible. As additional

equipment is needed, it can be plugged into the network and

used. Since the protocols used for communication can be

modified as needed, they can be expanded to accommodate

the new equipment.

D. Convenience

For research, being able to easily write tests and quickly ex-

ecute them is invaluable. Tests are written entirely in Verilog,

which is a comfortable language to use when working with

digital logic. A wide range of tools can work with Verilog to

make debugging tests and test failures much simpler. This test

setup takes advantage of these benefits to make the hardware

very easy to work with.

VI. CONCLUSION

The approach outlined avoids the drawbacks of traditional

memory testing. By avoiding the need for comprehensive BIST

circuitry, development times are reduced and by replacing

conventional memory testers with low-cost, general-purpose

instruments, testing costs are significantly reduced. Using

simple circuit additions and readily available test equipment,

a test system can be constructed to meet the unique demands

of novel memory design research. For small companies on a

very limited budget, practical approaches to testing open the

doors to innovation.

REFERENCES

[1] Article, Rick Nelson, 09/01/04 https://www.edn.com/design/test-and-
measurement/4378511/Tabletop-testers-From-prototype-to-production-

[2] International Technology Roadmap for Semiconductors (ITRS) 2009
http://www.itrs.net/Links/2009ITRS/Home2009.htm

[3] Article, Jeff Dorsch, 10/18/17 https://semiengineering.com/challenges-
and-opportunities-in-memory-test

[4] Georgi Nedeltchev Gaydadjiev, “Testing of Modern Semiconductor
Memory Structures”, Sep. 25, 2007 Delft.

