An Analysis of an Inexpensive Memory Test
Solution

Ryan Pennucci, Ryan Jurasek, Wolfgang Hokenmaier, Lester Patrick, Jacob Bucci, Donald Labrecque and David Kinney

Green Mountain Semiconductor Inc.
Burlington, VT 05401
Email: rpennucci@ greenmountainsemi.com, rjurasek @ greenmountainsemi.com

Abstract—Multi-project wafers have lowered manufacturing
costs for semiconductor prototypes, yet test costs remain high,
presenting a barrier for innovation in the market. We present
and analyze a low-cost test strategy for memory devices.

Index Terms—low cost, memory

I. INTRODUCTION

Historically, startup semiconductor design companies have
been hampered by exorbitant cost barriers to enter into the
market. Both manufacturing and testing require significant
investment into specialized facilities and equipment. With
the emergence of independent foundries, prototype production
costs have been significantly lowered. In particular, multi-
project wafer services allow multiple customers to share the
costs of production by combining several dies for low-volume
parts onto each wafer. While this lowers the cost of production,
testing remains expensive.

In addition to the high cost of conventional test equipment,
specialized facility features are typically required, including
raised flooring, high voltage, pneumatic supplies and spe-
cialized cooling. In recent years, desktop test equipment has
reduced both the cost of equipment and required facilities [1].
These systems offer much of the performance of their full-
size counterparts, with lower cost and fewer required facilities.
Today, these systems can be rented or purchased used to
further reduce equipment costs. Nevertheless, equipment costs
may be significantly greater than manufacturing costs.

Beyond the high direct costs of equipment needed for test-
ing, investment is needed to develop test protocols. Generation
of test patterns for execution is a complex and time-consuming
process which requires an understanding of the device and its
failure modes to develop effective tests. Designing a built-in
self test (BIST) is still more complex, since a fault model must
be developed for the device before a circuit can be designed
to search for faults. In memory production, testing is further
complicated by the need for test algorithms to locate defects
and repair them using redundant features.

Although automatic testing is required for production at
scale, it may be an unnecessary burden for research or the
early stages of design verification. For such projects, the ability
to easily design experiments to characterize the device and to
rapidly iterate on these experiments is more valuable. It may

10 T T T T T

== Manufacturing cost
=== Analog/Mixed-signal test cost
= Digital test cost

T

Cost: Cents/10,000 transistors
=)

s W 3

10
1980

1985 1990 1995 2000 2005 2010 2015

Fig. 1. Semiconductor Manufacturing vs Test Cost [2]

be more effective to design a general-purpose BIST which
works with the available test equipment to execute tests and
to manually manage defect repairs.

In this paper, we present a low-cost solution to test ex-
perimental semiconductor memory designs, consisting of a
combination of circuit design elements, test equipment and
software features. Many of the techniques shown here are
not limited to memory testing, and may be adapted for
semiconductor prototype development in general. This solution
is configurable to allow for changing interface specifications
and design characteristics, while remaining simple and easy
to use. Many of the design elements are intended to have
value even after a more expensive high volume manufacturing
solution is implemented by reducing the resources needed to
test each chip.

A. Motivation

As a small company, Green Mountain Semiconductor, Inc.
(GMSi) has a limited testing budget. Although memory test
equipment is very powerful, our limited requirements for a
recent research project along with the high cost of such
equipment called for a different approach. To work within
our budget while still meeting our needs, we developed a

978-1-5386-6400-1/18/$31.00 © 2018 IEEE

test environment using general purpose instruments. This kept
the number of non-reusable components such as specialized
test fixtures to a minimum, while allowing adaptation to other
products and interfaces. Features that these instruments were
unable to provide were instead built into the prototype device
under test (DUT) itself.

B. Conventional Testing

Conventional memory test systems are complex and expen-
sive pieces of equipment [3]. They are designed to execute
test programs which can analyze all aspects of AC and DC
circuit operation which are required from the first silicon
design verification through production testing of wafers and
packaged devices. In order to operate at sufficiently high
speeds, these systems typically execute compiled programs to
generate vectors, although precomputed vectors may also be
used.

These vectors access the rows and columns of very large
memory arrays, often across several devices in parallel. Com-
parators in the tester are programmed with expect data and
used to validate the behavior of each address. A map of passing
and failing addresses within the array is kept in storage known
as Catch-RAM. These systems often include redundancy repair
algorithms to allow spare elements to replace failing portions
of the array in order to increase the percentage of fault-free
devices. They are also used to obtain failure counts and bit
fail maps showing the distribution of failing addresses.

Testing large memory arrays takes a significant amount of
time. This test time can be effectively managed through high
device parallelism and total automation. Systems are typically
capable of a large number of complex memory patterns [4] to
be executed with minimal overhead in loading and unloading
software into the executable portion of the code.

While these systems are very flexible and can be configured
to test many different types of memory devices, the price
of new systems typically starts at several hundred thousand
dollars, and often runs into the several million dollar range.
In addition to the equipment itself, the installation demands
costly resources for electricity, clean pressurized air, vacuum
and sometimes liquid cooling or liquid nitrogen for the high
speed electronics, in order to maintain internal tester temper-
ature and humidity, as well as for parts and wafer handling.
Used systems also frequently face high maintenance costs for
diagnosis and replacement of defective system components.
Desktop test systems are available at lower cost and with fewer
required facilities, but these systems are still costly. These cost
and facility constraints are often a serious impediment for a
small company to overcome.

Beyond the cost of the systems and facilities themselves,
effort must be invested to produce test programs to evaluate
device performance. More complex devices may additionally
integrate a BIST to automate testing. In production-ready
devices, robust test programs or BIST circuits are used to
identify and correct defects using redundant structures. The
design of these tests is complex and requires substantial
development effort.

For research projects or design verification, test programs
of this complexity are less important. A wider range of pa-
rameters must be explored, necessitating many test programs.
The complexity of creating test programs makes it difficult to
quickly iterate on these programs.

C. GMSi’s Approach

The GMSi research project was designed to be tested
without using a traditional memory tester. Instead, a large
amount of functionality was built into the chip itself and
configured during testing. Because the chip integrates many
of the functions of a memory tester, low-cost, general-purpose
test equipment is able to take the place of expensive, dedicated
memory test equipment. A pattern generator supplies vector in-
puts, while a logic analyzer records inputs and outputs. Paired
with a programmable waveform generator acting as a clock,
programmable power supplies, and additional instruments, a
wide range of operating conditions can be produced to explore
many device characteristics.

All testing is performed against a Verilog model of the DUT.
The model is wrapped in a behavioral testbench to supply
its inputs. By capturing these inputs to serve as stimulus for
testing against hardware, a single testbench is able to serve
multiple purposes. When designing the test, the internal signals
of the model can be inspected. This information is helpful
both while designing the test and while diagnosing failures. In
addition, the testbench produces output in a customized format
which allows it to call out to the software controlling the test
instruments. The testbench is able to request that operating
conditions be changed or specific measurements be performed.

II. TESTING
A. Hardware Design

The purpose of GMSi’s effort was to explore a DRAM de-
sign that incorporates additional functionality into the memory
device itself. This functionality requires modifications to the
signal paths between the memory’s primary and secondary
sense amplifiers but does not depend on the memory array
itself. To simplify the prototype, the DRAM array was re-
moved, leaving the primary sense amplifiers intact. Data is
read and written on the sense amplifiers themselves, allowing
the remainder of the design to be tested while reducing the
cost, size and complexity of the prototype significantly.

Without a DRAM array, there is no need to periodically
refresh the data in memory in this prototype. Because con-
ventional logic analyzers and pattern generators have limited
sample memory, it is necessary to frequently pause the exe-
cution of long-running tests to transfer data. If memory must
be periodically refreshed, these pauses must occur between
complete test cycles. This limitation is also present in con-
ventional memory testers, so tests are commonly designed
with the memory limits of the tester in mind. Removing the
DRAM array eliminates the need altogether, allowing tests of
any length or complexity to be executed.

Without a conventional memory tester, many useful signal
characteristics could not be easily explored. To work around

—DZ

SEL

Fig. 2. Simplified adjustable pulse generator circuit

the limitations of the general-purpose instruments being used,
circuits were designed to create signals internally. A network
of scan chains and analog multiplexers allows the proto-
type to be dynamically reconfigured, adjusting signal timing,
reference voltages and circuit behavior at areas of interest.
Although inherently low-speed, the scan chains allow an
enormous number of configuration registers to be modified
during testing.

These registers perform a wide range of functions. Using
adjustable delay and pulse generator circuits, they can shift
signal timing internally with sub-nanosecond precision. Using
analog multiplexers and transmission gates, they can select
reference voltages from reference circuits, voltage dividers or
external instruments. If supplied directly to logic, they can
radically change circuit behavior. The adjustable circuitry is
often very simple; figure 2 shows a simplified schematic of a
pulse generator circuit used in the prototype.

Although these registers and adjustable circuits occupy a
limited amount of space on the die, they are enormously
powerful for research. The additional flexibility they provide
results in a more robust prototype capable of adapting to
the variability of the fabrication process and offering more
insight into the design. Beyond simple adjustments, multiple
implementations of a circuit can be selected during testing
for evaluation. Highly configurable prototypes are valuable for
research, since they allow more information to be gathered
without additional fabrication costs.

A simple BIST was incorporated in the prototype, allowing
addresses and command sequences to be programmed at low
speed through one of the scan chains. The BIST can then
be executed at the maximum design target frequency, by
supplying an external high speed clock and asynchronous
start/stop commands from the low speed scan chain inputs.
Data outputs can be observed in real time with the appro-
priate test equipment or scanned out at low speed between
high speed BIST runs. This allows a complete at-speed test
characterization of internal memory functions with only one
external high speed clock generator. If necessary, a built-in
phase locked loop (PLL) could be utilized to operate beyond
the capabilities of the clock generator.

B. Verilog Model

The hardware testing process begins with a model of the
prototype written in Verilog. This model was automatically
generated from the prototype’s schematics, but several ar-
eas which could not be accurately netlisted required Verilog
behavioral models coded to represent their functionality. In
particular, analog blocks controlling signal timing and voltage
levels were replaced with fixed delays and constants. In
addition, some frequently-instantiated blocks were replaced
with simpler models to reduce simulation time.

Because the model is generated from schematics of the
prototype, its layout and signals are nearly identical to the
hardware itself. The internal signals of the model closely
match those of hardware, providing valuable visibility into the
prototype which would be inaccessible in a behavioral model
or the hardware itself. This visibility simplifies designing and
debugging tests and ensures that tests are performing the
expected operations.

The cost of this visibility is slower simulation times. Be-
havioral models offer significantly faster simulation times at
the cost of limited visibility within the model. Combining
both approaches provides the benefits of both: a behavioral
model provides the canonical behavior of the device, while a
netlisted model is used to explore deviations from the expected
behavior.

C. Test Design

The representative Verilog design model is wrapped in a
behavioral testbench which generates complex sequences of
inputs during simulation. The testbench uses only the pins
present on the chip itself, so the input sequences can be
replayed on the pins of the physical chip to reproduce the
simulation in hardware.

To simplify working with the model, a library of tasks and
predefined registers was developed. Common operations like
reading and writing from memory are performed through tasks
taking address and data parameters. To simplify configuration
during tests, the embedded configuration registers are visi-
ble as Verilog registers within the library. Changes to these
registers are collected and programmed automatically before
subsequent command tasks run. This simplifies the testbench
code significantly, allowing a few lines of Verilog to produce
thousands of cycles of inputs.

The testbench library generates output in a simple format
suitable for processing by other programs. Each clock cycle,
the library captures the state of all the model’s inputs and
outputs. Inputs and outputs that do not have meaningful values
are marked as such. As test modes are changed, these changes
are reported as well.

By capturing the outputs from the testbench, external soft-
ware is able to reproduce tests in hardware. This software
processes the input signals into a vector format that can be
loaded into the pattern generator and makes note of the outputs
and active configuration of the model. For functional testing,
after the pattern generator runs, outputs from the hardware are
captured from the logic analyzer. The outputs are compared,

and results are stored along with the active test modes for later
analysis. Other measurements may be taken instead, allowing
power consumption or signal levels and timings to be captured.

D. Equipment, Clients and Servers

By necessity, the programs responsible for running tests
are spread across a network, communicating by using a
client-server model. Communication with instruments occurs
across a wide range of interfaces with different requirements.
In particular, the large amounts of data transferred by the
pattern generator and logic analyzer necessitate high-speed
connections. Ethernet provides ample throughput for these
devices, while other interfaces would not.

Embracing a networked model makes testing much more
convenient. It allows tests to be designed and written at
an engineer’s workstation, simulated on a high-performance
compute server, streamed to the test equipment in the lab
area for execution, recorded on a database server and finally
analyzed from software running on the engineer’s workstation.

Two server programs manage all the equipment required to
run each test. The power supplies, source meters and clock
generator are managed over General Purpose Interface Bus
(GPIB) by a server running on a workstation in the lab area.
This server accepts low-level commands that are passed to the
test equipment. These commands include simple operations
like changing power supply voltages, reference voltages and
clock frequencies, as well more complex commands like
measuring power.

A second server runs on a Tektronix mainframe with a
logic analyzer, pattern generator and oscilloscope installed.
Rather than accepting individual commands, it provides fixed
execution pipelines which stream stimulus data in and response
data out. Several additional operating modes are available,
including looped patterns for measuring power consumption
during complex operations.

A client program is responsible for setting up the entire test
process. It launches the simulation, processes the simulation’s
output to configure test equipment and synchronizes configura-
tion changes between the two servers. As it receives response
data, it finds the associated metadata, then stores the stimulus,
expected and actual response, and metadata describing the test
in an external database for later retrieval.

Storing results in a database is convenient. The results are
available to a variety of tools and stored in a consistent format,
making automated analysis possible. Since each test is run
against both a model and hardware, the results from both
are stored side-by-side for comparison. Since libraries for
communicating with database servers are available for most
scripting languages, a wide range of software can be used for
analysis.

III. DESIGN CONSIDERATIONS

Designing a test environment requires forethought. First
and foremost, the testing environment must be able to tho-
roughly measure all parameters of interest on the device. These
requirements will determine which instruments and internal

TEST AREA
LA &
CLIENT PAT GEN DUT
i
g
E | Power :
w SUPPLIES :
& SOURCE ||
METER .
SQL HOST :
SRV CPU -
—1 GEN .

Fig. 3. Block diagram of test setup including test equipment, SQL server and
client connection

test modes are required and will affect the design of the
environment as a whole.

A. Instruments

The characteristics of the instruments in use have a large
effect on the capability of the test system as a whole. In-
struments’ maximum operating frequencies may limit high-
frequency testing, which may be partially overcome using
integrated circuit elements. Pattern generators and logic ana-
lyzers have limited memory and can transfer data at a limited
rate. The maximum rate at which tests can execute is largely
defined by these characteristics. Although enhanced triggering
in the logic analyzer and more complex programs for the
pattern generator can be used to overcome this limitation, these
features may not be available to external software.

B. Hardware

In production, a device needs a limited amount of ad-
justability to compensate for variations in the production
process. During the research and design verification phases, it
is helpful to have a much wider range of adjustments available
for experimentation. Designing a range of simple, adjustable
circuits allows this to be realized.

A variety of adjustable circuits can be constructed. If signal
timing is to be handled internally, delay circuits and pulse gen-
eration circuits are valuable. For amplifiers and other analog
elements, adjustable voltage references are helpful. In addition,
exposing reference voltages on one or more pins using analog
multiplexers allows the reference to be precisely varied by
external instruments rather than requiring large amounts of
circuitry.

Using adjustable circuits where adjustment is not needed
increases the size and complexity of the design and compli-
cates simulation and testing by adding additional variables.
Therefore, their use should be carefully considered. Engineer

expertise and extensive simulation are necessary in these
considerations.

A critical component of any design is documentation. It is
especially important where adjustments are made by loading
registers on scan chains. Each scan chain can contain a large
number of registers, so the position of each register in the chain
may be difficult to establish. Keeping documentation of scan
chain connectivity is necessary for testing to be performed.

In addition, it is helpful to document simulation results to
provide a starting point for hardware testing. While having
a wide range of adjustments available allows more thorough
testing, each available adjustment is another variable that must
be considered when configuring the hardware. Simulation data
is invaluable in determining the physical meaning of each ad-
justment setting and in establishing a reasonable configuration
during testing.

C. Software

Conventional memory testers are designed to execute tests
very quickly to minimize test time during production. General-
purpose instruments may execute tests much more slowly than
dedicated test equipment, so the software controlling them
needs to be designed with the limitations of the instruments in
mind and optimized to allow rapid test execution. A significant
amount of vector data must be generated and transferred to
execute tests. Speeding up the handling of this data is the
most significant target for optimization.

To execute a test in hardware, a simulation must be run, its
output must be processed into stimulus and finally the instru-
ments must replay the stimulus. If these steps are performed
serially, it will take a long time to set up each test. Pipelining
the process hides much of this start-up time. If stimulus is
generated on-the-fly as the simulation runs, hardware testing
can begin almost immediately. The disadvantage of pipelining
is that the Verilog simulator may become a bottleneck if the
instruments outpace it, keeping the instruments busy longer
than necessary and preventing other tests from being executed.

Transmitting large chunks of vector data across the network
may take a significant amount of time. While many mod-
ern instruments are often equipped with Ethernet, USB, or
other high-speed ports, these ports are not ubiquitous. Older
instruments may have very slow ports, or may require slow
external adapters. On these devices, data transmission may
cause significant delays. These delays can be masked by
transmitting vectors before they are needed, at the expense
of more complex communication protocols.

Between each chunk of vector data, the logic analyzer’s
sample memory must be captured and new vectors must be
loaded into the pattern generator’s memory. Both operations
take a significant amount of time. Arranging for the two
operations to take place simultaneously significantly reduces
the time required between chunks, providing a large benefit
to overall execution speed. However, the software required to
manage this parallel execution is necessarily complex.

In a networked test system, the protocols used for commu-
nication are important. Although a simple, command-oriented

protocol is simple to implement to control a single instrument
over the network, it quickly becomes burdensome as multi-
ple instruments are added. In such a protocol, a controlling
program issues simple commands to servers responsible for
managing instruments and waits for the completion of a
command. Such a protocol is natural to implement, since
software libraries for controlling instruments provide low-level
commands for each function of the instruments. Exposing
these commands over the network is simple, but is necessar-
ily slow. Executing multiple commands in parallel requires
additional synchronization and this synchronization quickly
becomes unmanageably complex.

A protocol which gives servers more autonomy makes
parallel execution more manageable, but is complex to im-
plement. In such a protocol, individual commands are not
sent. Instead, one or more fixed execution pipelines are used.
For example, a pipeline might consist of receiving vector
data for a pattern generator, running the pattern generator and
collecting outputs using a logic analyzer and responding with
the logic analyzer’s recorded outputs. The server manages this
pipeline itself, simplifying the client’s view of how tests are
executed. However, this makes it difficult to synchronize other
instruments or add new execution modes.

A more complex protocol which treats the execution of a test
as a series of events offers advantages over other protocols.
The client does not need any knowledge of the commands
that will be executed. Instead, it translates the execution of
the test into a series of events with associated sequencing
information and other related data. The servers controlling
each instrument can then track the progression of events and
execute the necessary commands at the appropriate moment.
This eliminates the need for explicit synchronization in the
client and allows all instruments to be managed in parallel.
Although the protocol is complex to implement, the remainder
of the software is dramatically simpler, inherently parallel
and easy to extend with additional instruments and modes of
execution.

General-purpose instruments allow a variety of data to be
captured and this data is useful for research. The format used
to store results in the database needs to be flexible in order to
take full advantage of the instruments. It also needs to be easily
extensible to allow additional instruments or test designs to be
added. Such a format will necessarily be more complex than
a spreadsheet-like layout with columns for each parameter.
Although they require more effort to work with, relational
databases are a natural choice for storing the wide range of
data acquired through testing.

Whether simple file formats or complex database schema
are used, analysis of test results will need access to the
stored results. File-based spreadsheet formats like CSV and
database formats like SQLite are relatively easy to work
with, but managing the files can be cumbersome. Full-featured
database servers like MySQL simplify managing the result
data while keeping it simple to access. Software libraries are
widely available to communicate with database servers from
within applications like R, allowing powerful analysis to be

performed easily.

IV. DISADVANTAGES
A. Low-Volume

Some elements of this approach are focused on low-volume
prototype testing, such as the utilization of low-resource/low-
speed logic analyzers for pattern generation. This is not
meant to replace the high-performance instruments used in
production for maximum throughput. However, many elements
of this solution such as on-chip high-accuracy timing and
voltage variations are reusable for product manufacturing and
can reduce the amount of resources needed per chip, for higher
parallelism in testing.

B. Software Development

Operating numerous instruments manually to perform tests
is impractical. For an arrangement like this to work, automa-
tion is necessary. This means that before testing can begin, a
significant amount of software must be written to tie the in-
struments and simulation software together into a cohesive test
system. This software quickly becomes complex in order to
handle communication between instruments across a network,
which is not typically part of standard test development.

C. Simulation Dependence

Using simulation software to generate vectors for testing
has several drawbacks. Although Verilog simulations can
execute far faster than SPICE simulations, using simulations
to generate expected outputs limits testing throughput. Testing
software can reduce the effects of this by beginning hardware
testing while the simulation is still running, but simulation
speed is a dominant factor in how quickly tests can execute.

Alternatively, if the runtime for stimulus generation is of
concern, a simpler model can be used to create stimulus and
expect data. While this model is similar to a memory tester’s
approach of coding expect data and relying on engineers’
understanding of the specification, it will allow a high speed
test code compilation.

A more significant problem with simulation is that the
model itself must be correct. Although automated schematic
netlisting tools may accurately reproduce a schematic in Ver-
ilog, they may not accurately capture its behavior. This is par-
ticularly challenging when analog behavior is intended. Timing
information may not be available to the Verilog simulator,
preventing it from correctly modeling gate delays. Verilog’s
rudimentary drive strength model may cause some circuits to
behave incorrectly. While Verilog-A allows for analog circuits
to be modeled, designing these models may be more time-
consuming than producing a behavioral model. When using
netlisted models, care must be taken to ensure that the Verilog
model of the design behaves correctly.

V. ADVANTAGES

A. Testing Against the Model

Typically, a behavioral model of the design is created early
in the design process. This model defines the correct behavior

which the simulated design and hardware must conform to.
By using it to generate expected data, it is possible to test
hardware directly against the model, with no opportunity for
misinterpretation or error.

B. Cost

Using general-purpose test equipment that is readily avail-
able on the secondary market significantly reduces testing
costs. For prototypes designed for low-frequency operation,
less expensive, less capable equipment can be used. Because
general-purpose equipment is inherently reusable, it will re-
main useful after the conclusion of testing.

Conversely, conventional memory test equipment loses its
value rapidly. As newer, faster testers become available, the
older, slower testers quickly depreciate in value. If state-of-
the-art memory is to be designed, testers from past generations
may be too slow to be of use.

C. Flexibility

Using independent test equipment as part of a platform
interconnected with software is very flexible. As additional
equipment is needed, it can be plugged into the network and
used. Since the protocols used for communication can be
modified as needed, they can be expanded to accommodate
the new equipment.

D. Convenience

For research, being able to easily write tests and quickly ex-
ecute them is invaluable. Tests are written entirely in Verilog,
which is a comfortable language to use when working with
digital logic. A wide range of tools can work with Verilog to
make debugging tests and test failures much simpler. This test
setup takes advantage of these benefits to make the hardware
very easy to work with.

VI. CONCLUSION

The approach outlined avoids the drawbacks of traditional
memory testing. By avoiding the need for comprehensive BIST
circuitry, development times are reduced and by replacing
conventional memory testers with low-cost, general-purpose
instruments, testing costs are significantly reduced. Using
simple circuit additions and readily available test equipment,
a test system can be constructed to meet the unique demands
of novel memory design research. For small companies on a
very limited budget, practical approaches to testing open the
doors to innovation.

REFERENCES

[1] Article, Rick Nelson, 09/01/04 https://www.edn.com/design/test-and-
measurement/4378511/Tabletop-testers-From-prototype-to-production-

[2] International Technology Roadmap for Semiconductors (ITRS) 2009
http://www.itrs.net/Links/2009ITRS/Home2009.htm

[3] Article, Jeff Dorsch, 10/18/17 https://semiengineering.com/challenges-
and-opportunities-in-memory-test

[4] Georgi Nedeltchev Gaydadjiev, “Testing of Modern Semiconductor
Memory Structures”, Sep. 25, 2007 Delft.

