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Abstract—In-memory computing is a propitious solution for
overcoming the memory bottleneck for future computer systems.
In this work, we present the testing and validation considerations
for a programmable artificial neural network (ANN) integrated
within a phase change memory (PCM) chip, featuring a Nor-
Flash compatible serial peripheral interface (SPI). In this paper,
we introduce our method for validating the circuit components
specific to the ANN application. In addition, high-density in-
memory multi-layer ANNs cannot be manufactured without
testing and repair of the memory array itself. Therefore, design
for testability (DFT) features commonly used in commodity or
embedded memory products must be maintained as well. The
combination of these two test/characterization steps alleviates the
need to test the actual inference functionality in hardware.

Index Terms—In-memory Computing, DFT, Scan Chain, PCM

I. INTRODUCTION

In the von Neumann architecture data must be sent back
and forth between the memory and the processor. Data move-
ment is very expensive in terms of bandwidth, energy and
latency and speed of data transfer can not catch up with the
increased rate of processor’s speeds. This problem has become
particularly critical in large deep learning neural networks,
where the amount of data movement is huge. To overcome
this increasing processor-memory performance gap, memory
system architectures should be organized in different ways to
make them more intelligent. One solution is referred to as in-
memory computing, which exploits the physical properties of
memory devices for both storing and processing [1]. The re-
search toward such a departure from classic processor-centric
von Neumann architecture has for some time focused on the
analog properties of the memory cells. Especially, memristor
arrays have received particular interest in the literature [2].
However, high power DACs/ADCs circuits along with non-
linear and variable conductance response make this approach
less than ideal [3]. On the contrary, digital in-memory com-
puting paradigms only use ON-state and OFF-state which are
are much more reliable than the intermediate values used in
analog frameworks.

With the anticipated high-volume production of hardware
neural networks in the near future, testing strategies specific
to hardware neural networks is a new topics that is largely
uninvestigated. The aim of this paper is twofold. Firstly, we
want to give an overview of the test and reliability consid-
erations of hardware implemented neural networks. Secondly,
we present the DFT approach based on partitioning a module-
based design for a fully functional and programmable Al chip

that is consistent with a wide variety of memory technologies.
To the best of our knowledge, this is the first work that
studies modular test consideration in a metamorphic chip. The
memory array used in this chip is a non-volatile phase change
memory (PCM) [4].

The paper is organized as follows. In Section II, we first
provide a brief introduction to neural networks and neuron
structure. Then, we go through our proposed architecture for
implementation of a neural network inside the memory chip.
Section III provides a review of current approaches toward
testing and verification of neuromorphic chips. In section IV,
we explain the design for test features of both the PCM array
and the neuron circuitry of the chip. In section V, we describe
how to verify the inference chip and how to program the
chip as an inference machine and finally in section VII, the
summary and future steps will be discussed.

II. SYSTEM OVERVIEW
A. Background

An ANN is made up of interconnected neurons and contains
an input layer, an output layer, and one or more hidden layers.
Fig. 1 shows a fully connected Multi-Layer Perceptron (MLP)
ANN and Fig. 2 represents the functionality of each node. The
node circuit is comprised of a multiply-accumulate (MAC)
unit and an activation function. Each input is multiplied by
a unique weight (w; through wy) and these products are
accumulated. Finally, the bias is added to the accumulated
result. Subsequently, the 32-bits accumulated values are passed
to an activation function (AF) in order to add non-linearity
to the network and also to re-scale the MAC output to 8-bit
integer representation. As it is presented in Fig. 1, a MLP
neural network can be realized as the connectivity between
neurons. In these types of neural networks, the basic operation
of a neuron is multiplication and accumulation, so the MAC
units can be reused to mimic a range of neural network
sizes and types by programming the connectivity between the
units. Furthermore, the activation function is executed as a re-
configurable look-up table, which adds extra flexibility to the
design.

B. System architecture

Fig. 3 illustrates a high level overview of the proposed
Al inference architecture. It consists of four interconnected
blocks: a non-volatile memory array, an inference control
circuit (ICC), node circuits, and a Layer Buffer (LB). All the
information of a neural network are written in the memory
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Fig. 2: A neuron of a NN

array. The ICC block decodes the ANN definition information
written in the array and accordingly, controls execution com-
mands to carry out the inference. The node circuit contains
MAC circuits and activation functions. The summary of im-
plementation of the inference phase of a neural network can
be described as follows:

1) At chip power-up, the ANN definition, which includes
weights, biases and connections, is written into the
array, so the ICC knows the commands and order of
their execution in addition to the address of all needed
weights, biases and AF data in the array.

2) When needed, the processor issues an inference com-
mand to the memory that contains the input data and the
identifier for selecting one ANN, in case several neural
networks are stored in the memory.

3) When the ICC has all the required information, the ICC
will start calculating the nodes’ outputs. The weights,
biases and the activation function definition are read
from the memory array to the node circuit via a read
command issued from the ICC. The intermediate data
at each layer is stored in the LB for use in the next
layers.

III. TESTING STRATEGIES IN NEUROMORPHIC COMPUTING

A major challenge with future technology scaling is the
growth of fault rates, including both permanent (hard errors)
and temporary faults (soft errors). Neural networks have some
degree of robustness against failure in the activation or weight
data. However, there are few works that have studied the extent
of fault tolerance in neural networks and its dependency on the
training algorithms or the structure of the network. It has been
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Fig. 3: Flow of implementation of a neural network inside
memory chip

shown that in a feed-forward neural network, as the single-bit-
failure rate increases to 20%, the average accuracy drops from
92.64% to 39.4% [5]. To solve hard failures in neuromorphic
computing, it has been suggested to detect the failed locations
in the memory array [5] or in the processing elements [6] and
to generate a failure map. Then, based on the failure map,
they set all the weights or activation in faulty places to zero.
But, in order to keep the accuracy, the network should be
re-trained based on the pruned connections. The conventional
method to deal with soft errors is ECC blocks, which has been
said adds about 10% to 20% power and space overhead to
the chip. However, in neuromorphic computing, ECCs might
have to be minimized or removed depending on the design of
the computing system. In addition, fault tolerance inherent in
neural networks can help to overcome the temporary errors
by designing very simple error correction circuits in the chip,
like implementation of parity bit error detection and setting
the erroneous data to zero. In case of a high error rate, if
this technique is not accompanied with compensating training
algorithms, it can cause a significant accuracy drop of the
network [7]. Here we provide a summary of a paper that has
introduced a technique to deal with soft errors in neuromorphic
computing. A low overhead error detection and correction
approach for multilayer artificial neural networks is proposed
in [8] by adding checker neurons to the network during
training. This work adds checker neurons to the hardware and
compares the checker output with sum of all neurons in a
hidden layer, if there is a mismatch, it issues an error flag. In
this case, the corresponding hidden layer is bypassed and the
network will be retrained without the faulty hidden layer.

IV. DFT METHODOLOGY IN THE PROPOSED
NEUROMRPHIC CHIP

In this section, first the testing and repair capability of
the PCM array as a stand-alone commodity memory chip,
will be discussed and subsequently, the developed methods
for post-silicon validation of ANN circuit components will be
presented.



A. Characterization and validation of memory array

PCM is a resistive memory technology that is based on
the transition between the crystalline and amorphous phases
of specific materials by the application of suitable electrical
pulses. Furthermore, the use of DFT methodology in the chip,
which allows flexibility in the control of many of the critical
timings and voltages, is discussed. PCM is a type of non-
volatile memory with some properties comparing favorably
to Flash Memory. Essentially, the PCM cell consists of a
chalcogenide layer (i.e. GST), a heater and a select transistor.
The structural state of the cell can change from a crystalline
phase with low resistance to an amorphous phase by applying
heat in the form of an electric pulse. The low resistance
crystalline state, also known as SET state, is used to identify
a cell with a logic value ‘1’, whereas the high resistance
amorphous state is known as RESET state where the logic
value it represents is a logic ‘0’. During the RESET operation,
which is the operation that logic 0’ is written to the cell, the
temperature of the device is increased a little above the melting
point and then suddenly quenched to cool it. The rate of
cooling and the RESET pulse width are critical parameters for
the development of the amorphous layer. Whereas during the
SET operation, which is the operation that logic ’1’ is written
to the cell, the temperature of the PCM cell is raised above
the crystallization temperature but lower than the melting
point, then cooled slightly slower to allow the formation of
a crystalline layer. The SET pulse width along with its rise
time and fall time are additional parameters that need to be
characterized [9]. In what follows, we discuss characterization
of these parameters and replacing defective cell arrays with the
redundant elements in our PCM design.

The proposed PCM array design is the first design to
combine 40nM front-end processing technology with the PCM
processing to create a non-volatile Serial Port CMOS memory.
The design is done with extensive use of DFT methodology,
which allows flexibility in the control of many of the critical
timings and voltages used internally. The primary DFT fea-
tures are accessed through test modes which are loaded into
the serial port of the scan chain using a special command
sequence. These Test Modes are targeted for several primary
areas such as:

1) Manufacturing Test

« Redundancy testing and implementation

« Optimization of the SET and RESET pulse shapes

« Optimization of the Sense Amplifier

2) Diagnostic Tests

e Test modes to view internal chip voltages and
waveforms through an external pad. These tests
modes can be performed by issuing SPI commands
utilizing the external PADs and by monitoring the
”SO” PAD.

Our programmable non-volatile PCM device includes a
memory array of addressable memory cells and multiple
redundant memory cells for replacing defective memory cells.
The core array is a 2-Mb tile with 1k wordlines and 2k bitlines.

In addition, six wordlines and 64 bitlines are used for redun-
dancy [4]. Before reading/writing data from/into the array,
the data passes through the redundancy substitution block.
The redundant memory circuit matches the addresses of the
defective rows or columns with redundant rows and columns
and subsequently routes the data to the redundant memory
cells instead of the defective memory cells. In addition, the
input data can be scanned into the redundancy block to verify
read commands and redundancy modules. Developing new
PCM materials and devices requires characterizing a variety
of parameters including characteristics of SET/RESET pulses.
The design also provides test modes to optimize the amplitude
and the shape of SET/RESET pulses that forced through the
cell to heat the material (Fig. 4).
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Fig. 4: SET/RESET optimization parameters during the man-
ufacturing test

Furthermore, sense amplifier design is equipped with test
modes to control the reference resistor to cope with the
variations of the PCM device SET/RESET resistance values.

B. Al computation circuit test

To provide the design with flexibility and observability
characteristics, a scan chain is developed to monitor the
signals inside a node circuit (Fig. 5). In scan chain testing
methodology, the sequential logic circuits are divided into a
series of combinational logic blocks. This approach provides
controllability of inputs and observability of outputs of the
combinational logic blocks [10]. The test vectors are fed into
the chip through the “SI” input pin. In what follows, the test
sequence of the LB and all the computation units of a neuron
(Fig. 5) will be discussed and then the whole online scan test
is summarized.
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Fig. 5: Scan chain of a neuron (node circuit)

LB test: The LB is an array of latches that holds the
intermediate neuron activation values during each layer of
inference. It supports 8-bit parallel write and serial read.
During loading test vectors, the test modes for the scan in



data should be chosen appropriately such that the data from
scan in will be written into the LB. Then, the data from the
scan chain is written into the LB. By issuing a read command
the LB contents can be scanned out bit by bit. A block diagram
of the online scan testing of the LB is presented in Fig. 6.
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Fig. 6: Block diagram of on-line scan chain testing of the LB
The timing diagram of the required sequence of scan chain
commands for the LB verification is shown in Fig. 7.

LB WRITE

24— 115 clock cycles- —

ack 1 [ ”H .

n_/n
BCLK g 1 n_/n
st [ load TM WRLB
CCLK 1 1
()
LB READ
ACLK [T /N
BCLK [ n n_/n
s load TM / RDLB
CCLK [ !
LB_ACLK _
LB_BCLK

(b)

Fig. 7: Timing diagram of sequence of the on-line scan chain
testing of the LB (a) Timing diagram of writing into LB from
SI (b) Timing diagram of reading contents of layer buffer

The MAC blocks are the core computation units of our
proposed neuromorphic chip design. There are 4 MAC blocks
on the chip that allow executions of four neurons simultane-
ously. The multiplication and accumulation procedure begins
with reading 32-bit array data. This data gets divided into
4 MAC. To perform the multiplication of 8-bit array data
and 8-bit LB data, LATCH-MULT signal is generated 8 times
during reading 8-bits from the LB serially. Then, this product
gets accumulated with the previous product results. To test
MAC modules, values of the LB registers should be scanned
in as described above. Then, test modes should be set such
that one of the MAC inputs is fed from the scan chain data
instead of the array and the other input flows from the LB
to MAC blocks. This mode allows the MAC block to be
tested individually, independent of the memory array data.
In addition, there are a couple of test modes that represent
different combinations of input and weight data (i.e. (a) signed
input data multiplied with signed weight data, (b) signed input
data multiplied with unsigned weight data, (c) unsigned input

data multiplied with unsigned weight data, (c) unsigned input
data multiplied with unsigned weight data and (d) unsigned
input data multiplied with signed weight data). It should be
noted that for testing each MAC block, there is a unique test
mode. Subsequently, multiply and accumulate commands will
be sent to MAC. Finally, by reading the result off-chip, the
MAC output can be monitored. The control lines of MAC scan
chain are presented in Fig. 8. The sequence for testing MAC
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Fig. 8: Block diagram of on-line scan chain testing of MAC.

functionality can be summarized as follows:

1) Write data into the LB

2) Set Test modes such that scan chain data is chosen over
memory array data for feeding into MAC

3) Reset Multipliers and Accumulators

4) Scan in LATCH-Mult command

5) Scan in Latch-ACC command

6) Read 32-bits out of Accumulator

7) Repeat this sequence for all MACs and also for all
different modes of multiplication

The next block in executing a neuron in a neural network is
the activation function (AF). In modern deep neural networks,
there are many AFs that have been developed over the years.
The proper choice for AFs can improve the learning of the pat-
terns in data. However, there is no rule of thumb for choosing
the best activation function The research toward finding more
efficient AFs is still in progress. For example, for a while
“sigmoid” and “tanh” were the only activation functions used
in neural networks. But due to several problems like vanishing
gradient and slow convergence, other variations of these two
AFs were introduced. Rectified linear units (ReLU) gained
popularity due to its simplicity, providing better performance
and higher convergence rate. ReLU is the most widely used
AF in current architectures, especially CNN models. But the
ReLU sometimes causes some neurons to be dead, thereby
slowing down learning. To resolve the dead neuron issues,
the leaky ReLU was proposed, which introduces some small
negative slope in the negative side of input, to keep the weight
updates active during the entire propagation process. Except
for the leaky ReLU, there are three more variants of the ReL.U.
These variants have added a little more complexity to regular
ReLU function to improve its performance. Exponential linear
units (ELU) and "SWISH” are two other types of AF that
have been introduced after ReLU. In short, there are so many
types of AFs in current neural network architectures, and it
is very likely that new functions will be introduced in the
future. So, designing the AF block as a programmable look-




up table (LUT) that is able to keep up with all these changes,
makes much more sense [11]. The proposed AF design is
capable of achieving any monotonic activation function by
programming different register values into it. To program the
activation function, a specific test mode has to be first loaded
and then all the LUT register values can be scanned in through
the scan chain input to the AF. After all the AF register
values are loaded, the test mode has to be switched back to
the normal operation so that the values are preserved in the
registers in the AF. During the normal operations, the values
can be scanned in into the AF block and be scanned out to test
the its functionality. The AF is a flow through device, where
the output instantly reflects the changes of the input without
other control signals. To test the AF, we built a testbench that
traverses from the smallest AF register value to the largest
register value as input to AF, and then compares the output
with the simulation result.

V. AI CHIP VERIFICATION

During execution of ANNs in the hardware, a suitable
number format should be chosen so that both accuracy and
cost conditions are met. For successful implementation of
deep neural networks on resource constrained devices, we
have moved to a network with 8-bit integer-only arithmetic
[12], [13]. To program the chip, the NN model should first
be trained. We used TensorFlow, which is a Google machine
learning framework, to train our model. Since training with
low precision numbers is challenging due to the gradient
computations during the back-propagation phase, the training
is done using a 32-bit floating point. To achieve more accuracy
for the quantized inference model, quantization-aware training
can be performed using TensorFlow-lite [12]. To implement
the inference framework in our hardware, the network should
be quantized into 8-bit integers. The design has the flexibility
to accommodate either symmetric or asymmetric quantization
methods, as none of them have proved to be better than the
other [14]. It has been verified that reducing the inference
model sizes from 32-bit to 8-bit will result in minimal accu-
racy losses [12]. Our simulated quantized inference scheme,
which is consistent with the computation flow in the proposed
hardware model showed a drop of less than 2% accuracy for
an image recognition task using MNIST dataset in comparison
with floating point inference model results.

To program the chip, the complete neural network definition
is transferred to the memory chip and stored in the memory
array. A protocol is defined to store the network information
in a consecutive manner. This protocol only needs the start
address to fully execute a deep neural network. It currently
allows for up to 1024 neurons per layer and up to 1024 inputs
per neuron, with no limit on the amount of layers. For a non-
volatile memory such as PCM this needs to be performed only
once for a given solution, whereas a volatile memory will need
to be initialized after each complete power-down. This design
is also capable of providing sparsity in deep neural networks,
which is a compression technique for the reduction of the
model size [14].

TABLE I: Impact of drpout and a simple ECC on robustness
of a feedforward NN

NN architecture FF-2 w/o ECC | FF-2 w ECC
BER = 0, w/o dropout 88% 88%
BER = 0.01, w/o dropout 71% 85%
BER = 0.001, w/o dropout 86% 88%
BER = 0, w 0.4 dropout 87% 87%
BER = 0.01, w 0.4 dropout 79% 85%
BER = 0.001, w 0.4 dropout 86% 87%

VI. FUTURE WORK

Still there are a number of different ways that the work
in this paper could be extended. These proposed paths for
future research can be classified as follows. To explore training
algorithms that are more robust to faults in the hardware.
These fault can be memory faults or processing units faults.
By estimating the error rate in both memory array and in
the processing units, some appropriate training algorithms can
be used to moderate the fault effects. Specifically, Droput,
which is a regularization technique that has developed to solve
over-fitting problems in the training process and randomly
removes some connections or weights, can be applied during
the training. We are going to set the dropout rate based on the
knowledge about the possible error rate in our hardware and
study its impact on the fault tolerance of different network
structures. Another viable path for extending this work is
to incorporate a simple parity based ECC technique in our
design to concurrently detect the soft errors and minimize their
impact on the neural network performance. The soft errors are
caused by transients like power-supply voltage spikes, thermal
effects, and man made static. These errors are called soft
because they do not damage the physical function of a cell
for ever. In this simple on-chip ECC method single errors
can be detected and instead of correcting the faulty bits, the
neural network parameters (weights and biases) with faulty
bit can be set to zero. In the following several neural network
models have been examined to explore the effects of dropout
and parameter nulling on the accuracy of the neural networks
with faulty parameters. Table I summarizes the comparison of
robustness a FF-NN with and without ECC against faulty bits.
To evaluate the effect of faulty bits on the NN accuracy, the
trained parameters have been contaminated with errors having
the rate of 0.01 and 0.001. The Fashion-MNIST database is
used for this paper. It includes 60000 training images and
10000 test images of size 28 x 28. The 3-layer FF-NN is
trained and quantized using a TensorFlow Lite framework.
In addition, the effects of dropout regularizer technique on
the robustness of NN has been studied. Based on the results
presented in Table I, the improvement brought by the error
detection and mitigation method during inference is more
significant than dropout technique. However, impacts of the
dropout on the performance of distorted NN is noticeable. For
instance, adding BER of 0.01 to the parameters reduces the
accuracy from 88% to 71%. This issue can be mitigated by
implementing of the dropout with during the training phase, as
the accuracy of 79% has been achieved in this case. It should



be notified that this improvement has been achieved only by a
small change in the training method without adding any time
and space overhead to the hardware.

VII. CONCLUSION

In this work, we have introduced hardware development of
a fully digital in-memory inference Al design inside a PCM
chip and the DFT methodology to characterize, program and
verify the chip. We also have provided an overview of the
challenges faced by hardware implemented neural networks
in terms of reliability and test. The provided DFT features in
chip allow traditional testing and repair of the memory array,
while also giving access to the added functional blocks of the
ANN for validation and performance evaluation. Furthermore,
The components for the system level integration including a
protocol to store and execute the network topology in memory
and programming of the artificial neural network have been
presented.
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