
Design and Testing Considerations of an

In-Memory AI Chip

Marcia Golmohamadi, Ryan Jurasek, Wolfgang Hokenmaier, Don Labrecque, Ruoyo Zhi, Bret Dale,

Nibir Islam, Dave Kinney, Angela Johnson

Abstract—In-memory computing is a propitious solution for
overcoming the memory bottleneck for future computer systems.
In this work, we present the testing and validation considerations
for a programmable artificial neural network (ANN) integrated
within a phase change memory (PCM) chip, featuring a Nor-
Flash compatible serial peripheral interface (SPI). In this paper,
we introduce our method for validating the circuit components
specific to the ANN application. In addition, high-density in-
memory multi-layer ANNs cannot be manufactured without
testing and repair of the memory array itself. Therefore, design
for testability (DFT) features commonly used in commodity or
embedded memory products must be maintained as well. The
combination of these two test/characterization steps alleviates the
need to test the actual inference functionality in hardware.

Index Terms—In-memory Computing, DFT, Scan Chain, PCM

I. INTRODUCTION

In the von Neumann architecture data must be sent back

and forth between the memory and the processor. Data move-

ment is very expensive in terms of bandwidth, energy and

latency and speed of data transfer can not catch up with the

increased rate of processor’s speeds. This problem has become

particularly critical in large deep learning neural networks,

where the amount of data movement is huge. To overcome

this increasing processor-memory performance gap, memory

system architectures should be organized in different ways to

make them more intelligent. One solution is referred to as in-

memory computing, which exploits the physical properties of

memory devices for both storing and processing [1]. The re-

search toward such a departure from classic processor-centric

von Neumann architecture has for some time focused on the

analog properties of the memory cells. Especially, memristor

arrays have received particular interest in the literature [2].

However, high power DACs/ADCs circuits along with non-

linear and variable conductance response make this approach

less than ideal [3]. On the contrary, digital in-memory com-

puting paradigms only use ON-state and OFF-state which are

are much more reliable than the intermediate values used in

analog frameworks.

With the anticipated high-volume production of hardware

neural networks in the near future, testing strategies specific

to hardware neural networks is a new topics that is largely

uninvestigated. The aim of this paper is twofold. Firstly, we

want to give an overview of the test and reliability consid-

erations of hardware implemented neural networks. Secondly,

we present the DFT approach based on partitioning a module-

based design for a fully functional and programmable AI chip

that is consistent with a wide variety of memory technologies.

To the best of our knowledge, this is the first work that

studies modular test consideration in a metamorphic chip. The

memory array used in this chip is a non-volatile phase change

memory (PCM) [4].

The paper is organized as follows. In Section II, we first

provide a brief introduction to neural networks and neuron

structure. Then, we go through our proposed architecture for

implementation of a neural network inside the memory chip.

Section III provides a review of current approaches toward

testing and verification of neuromorphic chips. In section IV,

we explain the design for test features of both the PCM array

and the neuron circuitry of the chip. In section V, we describe

how to verify the inference chip and how to program the

chip as an inference machine and finally in section VII, the

summary and future steps will be discussed.

II. SYSTEM OVERVIEW

A. Background

An ANN is made up of interconnected neurons and contains

an input layer, an output layer, and one or more hidden layers.

Fig. 1 shows a fully connected Multi-Layer Perceptron (MLP)

ANN and Fig. 2 represents the functionality of each node. The

node circuit is comprised of a multiply-accumulate (MAC)

unit and an activation function. Each input is multiplied by

a unique weight (w1 through wN ) and these products are

accumulated. Finally, the bias is added to the accumulated

result. Subsequently, the 32-bits accumulated values are passed

to an activation function (AF) in order to add non-linearity

to the network and also to re-scale the MAC output to 8-bit

integer representation. As it is presented in Fig. 1, a MLP

neural network can be realized as the connectivity between

neurons. In these types of neural networks, the basic operation

of a neuron is multiplication and accumulation, so the MAC

units can be reused to mimic a range of neural network

sizes and types by programming the connectivity between the

units. Furthermore, the activation function is executed as a re-

configurable look-up table, which adds extra flexibility to the

design.

B. System architecture

Fig. 3 illustrates a high level overview of the proposed

AI inference architecture. It consists of four interconnected

blocks: a non-volatile memory array, an inference control

circuit (ICC), node circuits, and a Layer Buffer (LB). All the

information of a neural network are written in the memory









up table (LUT) that is able to keep up with all these changes,

makes much more sense [11]. The proposed AF design is

capable of achieving any monotonic activation function by

programming different register values into it. To program the

activation function, a specific test mode has to be first loaded

and then all the LUT register values can be scanned in through

the scan chain input to the AF. After all the AF register

values are loaded, the test mode has to be switched back to

the normal operation so that the values are preserved in the

registers in the AF. During the normal operations, the values

can be scanned in into the AF block and be scanned out to test

the its functionality. The AF is a flow through device, where

the output instantly reflects the changes of the input without

other control signals. To test the AF, we built a testbench that

traverses from the smallest AF register value to the largest

register value as input to AF, and then compares the output

with the simulation result.

V. AI CHIP VERIFICATION

During execution of ANNs in the hardware, a suitable

number format should be chosen so that both accuracy and

cost conditions are met. For successful implementation of

deep neural networks on resource constrained devices, we

have moved to a network with 8-bit integer-only arithmetic

[12], [13]. To program the chip, the NN model should first

be trained. We used TensorFlow, which is a Google machine

learning framework, to train our model. Since training with

low precision numbers is challenging due to the gradient

computations during the back-propagation phase, the training

is done using a 32-bit floating point. To achieve more accuracy

for the quantized inference model, quantization-aware training

can be performed using TensorFlow-lite [12]. To implement

the inference framework in our hardware, the network should

be quantized into 8-bit integers. The design has the flexibility

to accommodate either symmetric or asymmetric quantization

methods, as none of them have proved to be better than the

other [14]. It has been verified that reducing the inference

model sizes from 32-bit to 8-bit will result in minimal accu-

racy losses [12]. Our simulated quantized inference scheme,

which is consistent with the computation flow in the proposed

hardware model showed a drop of less than 2% accuracy for

an image recognition task using MNIST dataset in comparison

with floating point inference model results.

To program the chip, the complete neural network definition

is transferred to the memory chip and stored in the memory

array. A protocol is defined to store the network information

in a consecutive manner. This protocol only needs the start

address to fully execute a deep neural network. It currently

allows for up to 1024 neurons per layer and up to 1024 inputs

per neuron, with no limit on the amount of layers. For a non-

volatile memory such as PCM this needs to be performed only

once for a given solution, whereas a volatile memory will need

to be initialized after each complete power-down. This design

is also capable of providing sparsity in deep neural networks,

which is a compression technique for the reduction of the

model size [14].

TABLE I: Impact of drpout and a simple ECC on robustness

of a feedforward NN

NN architecture FF-2 w/o ECC FF-2 w ECC

BER = 0, w/o dropout 88% 88%
BER = 0.01, w/o dropout 71% 85%

BER = 0.001, w/o dropout 86% 88%
BER = 0, w 0.4 dropout 87% 87%

BER = 0.01, w 0.4 dropout 79% 85%
BER = 0.001, w 0.4 dropout 86% 87%

VI. FUTURE WORK

Still there are a number of different ways that the work

in this paper could be extended. These proposed paths for

future research can be classified as follows. To explore training

algorithms that are more robust to faults in the hardware.

These fault can be memory faults or processing units faults.

By estimating the error rate in both memory array and in

the processing units, some appropriate training algorithms can

be used to moderate the fault effects. Specifically, Droput,

which is a regularization technique that has developed to solve

over-fitting problems in the training process and randomly

removes some connections or weights, can be applied during

the training. We are going to set the dropout rate based on the

knowledge about the possible error rate in our hardware and

study its impact on the fault tolerance of different network

structures. Another viable path for extending this work is

to incorporate a simple parity based ECC technique in our

design to concurrently detect the soft errors and minimize their

impact on the neural network performance. The soft errors are

caused by transients like power-supply voltage spikes, thermal

effects, and man made static. These errors are called soft

because they do not damage the physical function of a cell

for ever. In this simple on-chip ECC method single errors

can be detected and instead of correcting the faulty bits, the

neural network parameters (weights and biases) with faulty

bit can be set to zero. In the following several neural network

models have been examined to explore the effects of dropout

and parameter nulling on the accuracy of the neural networks

with faulty parameters. Table I summarizes the comparison of

robustness a FF-NN with and without ECC against faulty bits.

To evaluate the effect of faulty bits on the NN accuracy, the

trained parameters have been contaminated with errors having

the rate of 0.01 and 0.001. The Fashion-MNIST database is

used for this paper. It includes 60000 training images and

10000 test images of size 28 × 28. The 3-layer FF-NN is

trained and quantized using a TensorFlow Lite framework.

In addition, the effects of dropout regularizer technique on

the robustness of NN has been studied. Based on the results

presented in Table I, the improvement brought by the error

detection and mitigation method during inference is more

significant than dropout technique. However, impacts of the

dropout on the performance of distorted NN is noticeable. For

instance, adding BER of 0.01 to the parameters reduces the

accuracy from 88% to 71%. This issue can be mitigated by

implementing of the dropout with during the training phase, as

the accuracy of 79% has been achieved in this case. It should



be notified that this improvement has been achieved only by a

small change in the training method without adding any time

and space overhead to the hardware.

VII. CONCLUSION

In this work, we have introduced hardware development of

a fully digital in-memory inference AI design inside a PCM

chip and the DFT methodology to characterize, program and

verify the chip. We also have provided an overview of the

challenges faced by hardware implemented neural networks

in terms of reliability and test. The provided DFT features in

chip allow traditional testing and repair of the memory array,

while also giving access to the added functional blocks of the

ANN for validation and performance evaluation. Furthermore,

The components for the system level integration including a

protocol to store and execute the network topology in memory

and programming of the artificial neural network have been

presented.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-

tional Science Foundation under Phase II project, Grant No.

1831151.

REFERENCES

[1] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive
switching devices,” Nature Electronics, vol. 1, no. 6, pp. 333–343, 2018.

[2] I. Giannopoulos, A. Sebastian, M. Le Gallo, V. Jonnalagadda, M. Sousa,
M. Boon, and E. Eleftheriou, “8-bit precision in-memory multiplication
with projected phase-change memory,” in 2018 IEEE International

Electron Devices Meeting (IEDM). IEEE, 2018, pp. 27–7.

[3] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[4] W. Hokenmaier, D. Labrecque, R. Jurasek, V. Butler, C. Scoville, A. Wil-
ley, S. Loeffler, Y. Li, and S. Sharma, “A 90nm 32-mb phase change
memory with flash spi compatibility,” in 2014 IEEE 6th International

Memory Workshop (IMW). IEEE, 2014, pp. 1–4.

[5] C. Liu, M. Hu, J. P. Strachan, and H. Li, “Rescuing memristor-based
neuromorphic design with high defects,” in 2017 54th ACM/EDAC/IEEE

Design Automation Conference (DAC). IEEE, 2017, pp. 1–6.

[6] J. J. Zhang, T. Gu, K. Basu, and S. Garg, “Analyzing and mitigating
the impact of permanent faults on a systolic array based neural network
accelerator,” in 2018 IEEE 36th VLSI Test Symposium (VTS). IEEE,
2018, pp. 1–6.

[7] M. Qin, C. Sun, and D. Vucinic, “Improving robustness of neural
networks against bit flipping errors during inference,” Journal of Image

and Graphics, vol. 6, no. 2, 2018.

[8] S. Pandey, S. Banerjee, and A. Chatterjee, “Error resilient neuromorphic
networks using checker neurons,” in 2018 IEEE 24th International

Symposium on On-Line Testing And Robust System Design (IOLTS).
IEEE, 2018, pp. 135–138.

[9] M. G. Mohammad, “Fault model and test procedure for phase change
memory,” IET computers & digital techniques, vol. 5, no. 4, pp. 263–
270, 2011.

[10] H. Al-Asaad and P. Moore, “Non-concurrent on-line testing via scan
chains,” in 2006 IEEE Autotestcon. IEEE, 2006, pp. 683–689.

[11] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation
functions: Comparison of trends in practice and research for deep
learning,” arXiv preprint arXiv:1811.03378, 2018.

[12] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[13] M. Imani, M. Samragh, Y. Kim, S. Gupta, F. Koushanfar, and T. Rosing,
“Rapidnn: In-memory deep neural network acceleration framework,”
arXiv preprint arXiv:1806.05794, 2018.

[14] N. S. Sohoni, C. R. Aberger, M. Leszczynski, J. Zhang, and C. Ré,
“Low-memory neural network training: A technical report,” arXiv

preprint arXiv:1904.10631, 2019.


