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Abstract—This note corrects a few errors in the proof of the
main result of the paper “Provable Low Rank Phase Retrieval”.
The result itself has no change. This paper introduced an
alternating minimization solution, called AltMinLowRaP, for
solving the Low Rank Phase Retrieval (LRPR) problem: recover
an n x ¢ matrix X * of rank r from y;, := |Ax'z} |,k =1,2,...,¢
when the measurement matrices A; are mutually independent.
Here y; is an m length vector, Ay is an n x m matrix, and ’
denotes transpose.

This note corrects a few errors in the proof of the main
result of the paper “Provable Low Rank Phase Retrieval” [1].
The result itself has no change. We repeat below the problem
studied in [1], followed by summarizing the AltMin algorithm
to solve it and the guarantee for it from [1]. In Sec II, we
correct the proof errors.

I. SUMMARY OF THE ORIGINAL PAPER [1]

1) Low Rank PR (LRPR) problem: The goal is to recover
an n x q rank-r matrix X* := [z}, ®3,..., %}, ..., T;] from

Yik ‘= ‘<aikaxz>|7 { S [m}vk € [q]7 (l)

when all the a;;’s are iid standard (real-valued) Gaus-
sian vectors. By defining the m-length vector y; :=
Y16, Y2k, Ymi| and the n x m matrix A, =
[@1,k, @2 5 - - -, @ ], the above measurement model can also
be rewritten as yy, := |A'x}|, k=1,2,...,q. Here ' denotes
transpose, [m] := {1,2,...,m}, and |z| denotes element-wise
magnitude of a vector.

Let X* °¥° U*S*B* denote its reduced singular value
decomposition (SVD) so that U* € R"*", B* € R"™ 4,
and ¥* € R"™" is a diagonal matrix. We use o .., 00
to denote the maximum, minimum singular values of X* and
K =0} /ok. to denote the condition number of 3*. Finally,
we let

B* .= ¥*B*.

Right singular vectors’ Incoherence. Since we have do
not have global measurements of the entire matrix X*, in
order to correctly recover X * while needing m < n, we need
an assumption that allows for correct interpolation across the
rows. As explained in [1], incoherence of the right singular
vectors (henceforth referred to as “right incoherence”) suffices
for this purpose. In our notation, this means that we assume

r
bi||> < - 2
max |67 < 47 @

with ¢ > 1 being a constant. Clearly, this implies that
* % * r * r |'}(>k 2
I = 1B < ot = w3, 0 < L

3)

Algorithm 1 AltMin-LowRaP: Alt-Min for Phaseless Low
Rank Recovery

1: Parameters: T, Trw ¢, w.

2: Partition the my,4 measurements and design vectors for
each z;, into one set for initialization and 27" disjoint sets
for the main loop.

3: Set 7 as the largest index j for which A;(Yy)—A, (Yy) >
w where

1 q m

Yy = —§ § 2 ajpal,l
U mq £ - YikAik Qg {y?kﬁf’”?#ﬂ 1,}(; ik yzzk}
=1i=

4 U+ U° + top + singular vectors of Yy, defined above.
5:for t =0:7 do
bt « RWF({y\", U" A"}, Tryry) for each k =
1,2,---,q (RWF: Reshaped Wirtinger Flow or any
algorithm to solve standard PR).
7. &b < Ul foreach k=1,2,--- ,q.
8. C} + Phase (A,(CTH)’:?:@ foreach k =1,2,--- ,q.
9:  Get B! by QR decomp: B! & Ry B
10: Uttt —
AT
1. Get U'*! by QR decomp: Ut+1 & Ut+1RIH |
12: end for

. A (T+t
argming Y0, |Gy T~

2) Notation: We use ||.|| to denotes the (induced) lo-norm
and |.|| to denote the Frobenius norm. We use Lgtatement
to denote the indicator function; it takes the value one if
statement is true and is zero otherwise. A tall matrix with or-
thonormal columns is referred to as a “basis matrix”. For two
basis matrices U7, Us, we define the subspace error (distance)
as sin ©(Uy, Us) := |(I —U,U;)Us||. This measures the sine
of the largest principal angle between the two subspaces. For
real-valued vectors, the phase-invariant distance is computed
as dist(x*, &) = min(||lz* — &, ||[&* + &||). We reuse the
letters ¢, C to denote different numerical constants in each
use, with the convention C' > 1 and ¢ < 1.

3) Algorithm and Guarantee: Algorithm 1 was introduced
and studied in [1] where we proved the following guarantee for
it. The guarantee itself is correct although, with our corrected
proof, it can be improved slightly.

Theorem 1.1 (Guarantee for AltMinLowRaP from [1]). Con-
sider Algorithm 1. Assume right singular vectors’ incoherence
holds. Set T := Clog(1/e), Trwr: = C(logr + logk +
t(log(0.7)/log(1 — ¢))), w = 1.30%,.%/q. Assume that, for
the initialization step and for each new update, we use a new



set of m measurements with m satisfying mq > Cx'?u* nrt

and m > C max(r,log q,logn). Then, with probability (w.p.)
at least 1 — Cn=19, the algorithm converges geometrically,
ie, after T = C'log(1/e) iterations,

sin@(U*,UT) <e,

and dist(2], z}) < €|z} for each k. The time complexity is
maqnrlog®(1/e).

With the corrected proof given below, we can actually
prove a marginally stronger result, we need only nr® total
samples for the AltMin iterations, but still need nr* for
initialization. Thus the total number of measurements per
column, my.¢, needed to obtain an e-accurate estimate needs
to satisfy mynrq > C,i,”nr?’(r + log(1/€)) and mype >
C max(r,log q,logn) log(1/e).

II. PROVING THE THEOREM: CORRECTIONS
A. Two main claims that prove Theorem 1.1

The proof for the subspace error bound is an immediate con-
sequence of the next two claims. The bound on dist(&y, <)
follows by Lemma 2.8 given below. The claim statements were
essentially correct in [1]. The error was in the proof of the
Claim 2.2.

Claim 2.1 (Rank estimation and Initialization of U™). Let
Uit = U° Pick a Sy < 0.25. Assume mq >
kK8utnr?/62... Then, w.p. at least 1 — 6n~'0, the rank is

correctly estimated and sin © (Uyyie, U*) < Sinit-

Claim 2.2 (Descent). At iteration t, assume that
sinOU*,UY) < 6 and 6, < Oy = c/re? If
mq > COxSu’nr® and m > Cmax(r,logn,logq)
then  wp. at least 1 — Cexp(—nr) — n719,
sin ©@(UL U*) < 0.785; == 641

Proof of Theorem. Claim 2.2 requires mq > Ck%u’nr3, m >

Cmax(r,logn,logq), and iy = c/rx?. By Claim 2.1, if
mq > Ck*2ptnrt, then sin ©(Uinie, U*) < Giniy = ¢/TK2.
Thus, combining these two claims, if, in each iteration, we
have mq > Crk'?pinr?, and m > Cmax(r,logn,logq),
then, w.p. > 1 — 10n~1, the estimates converge geometri-
cally, i.e., sin©O(UT,U*) < 0.778,3. Therefore, we need
T = C'log(1/e) iterations to achieve € accuracy. By Lemma
2.8, the other conclusions follow. O

B. Corrected Proof of Claim 2.2

The proof is an easy consequence of the next four lemmas.
In this section, we remove the superscripts ¢ or 77 except

where essential, e.g., we let a;;, := aEkTH and y;;, 1= yl(kTth)
when updating U, and we let a;; := ai,tC and y;; = yl(,?

when updating B. We should also remind the reader of the
following two points.

1) Because of this sample-splitting, (in each new iteration
for updating either U or B, we use a new independent
set of measurement matrices A, and measurements yyx),
we can assume that the a;;s used in the curent update
are independent of the previous estimates of U, or B
that appear in the update equation.

2) Without loss of generality, as explained in detail in
[1], and as also done in previous works on PR, in
all the proofs below, when considering dist(&, z*) we
assume that x* is replaced by x*sign({(&,x*)). With
this, dist(&, x*) = ||& — «*||.

Lemma 2.3. [same as that in [1]] We have

MainTerm
Omin (U*X*B*B’) — MainTerm

sin@(U™, U*) < 4)

where MainTerm :=

maxwes,, |Term1(W)| + maxwes,, |Term2(W)|

)

minwes,, Term3(W)

Terml(W) = Zbk’W’aikaik’U*(B*B’bk — B;:),
ik
Teer(W) = Z(cikéik — 1)(aik'ka)(aik’a:};),
ik
Term3(W) := Z(aik’ka)27
ik
Sy ={W e R"": |W|r =1}
and c;i;, €y, are the phases (signs) of a;i'x; and a;'&y.
Lemma 2.4 (minor correction from [1]). Under the conditions
of Theorem 1.1, and assuming that sin ©(U*,U) < &, with

0; < 0.1, wp. at least 1 —2 exp (nr(log 17) — C%Tmf) —n~10,

i > 0. —
min Term3(W) > 0.5(1 — e3)m
and

<1. .
nax Term3(W) < 1.5(1 + e3)m

The above lemma is the same as that in [1] except for
the use of €3 where §; was used earlier. The proof is also
essentially the same except for a minor change when applying
the concentration bound (Lemma 2.7 below): one needs to set
t = me3d, instead of ¢ = mdz.

Lemma 2.5 (correction from [1]). Under the conditions of

Theorem 1.1, and assuming that sin ©(U*,U) < 0, with 6y <
2

0.1, wp. at least 1 — 2exp (m’(log 17) — c42 ) —n~10,

K3u2r

Term1 < X" p.
V[I/%E}S)év erm1(W) < me16:|| X" || r

This lemma statement has the following change from [1]:
we now have €10; in the bound instead of J? and €? in the
probability expression instead of J2. There was an error in its
proof; we provide a corrected proof below.

Lemma 2.6 (correction from [1]). Under the conditions

of Theorem 1.1, and assuming sim©(U*,U) < §; with
2

0; < 0.1, w.p. at least 1 — 2exp (nr(log 17) — ch';T';q) -

2 exp (—ce%mq) —n~10,

max Term2(W) < m 1+ e3\/6; + 0| X ™| .

WeSw

This has the following change from [1]: we now have
V/8; + €3 instead of \/9; in the bound and €2 instead of &2



in the probability expression. The proof is almost the same,
the main change is in applying the concentration bound and in
a few steps after it. We provide a brief corrected proof below.

Proof of Claim 2.2. By Lemma 2.3 and using
the simple fact that ou(U*X*B*B’) >
Jmin(U*)Umin(E*)Jmin (B*)Jmin (B,) > Omin (2*) = O-r*nin’
MainTerm
neOU™, U < . 5
sin O/ U7 < o* . — MainTerm )

min

where MainTerm :=

then, w.p. at least 1 —n~1°, B is fi-incoherent with ji = Cry,
i.e, maxy ||bg|l < fiv/r/q.
Proof of Lemma 2.5. Recall that

W)=Y b/Wagai'pr.
ik

Term1(

where

pr:=U*B*B'b, —U*b; = X*B'b, — .

maxw esyy, [Terml(W)|+maxw c sy |Term2(w)| As shown while bounding Term1 in [1]!,

minw esy,, Term3(W)

Combining Lemmas 2.5, 2.6, 2.4, and using
(|1 X* || F < Vrok.., we conclude that, w.p.
2
at  least 1 —  2exp (m’(log 17) — ey

2 exp (nr(log 17) — e~ cgma ) — 2exp (—ce3mgq) —n~10,

K2u2r

(61 + 1+ €3V §t + 62)
0.5 5tf Omax-
. (1 - 63)

In order to show that the RHS of (5) is less than §;1 := 0.76;,
it suffices to bound MainTerm by cé;:o};,, with ¢ = 0.4.
To obtain MainTerm < 0.49;07 . , we can pick €3 = 0.1,

MainTerm < C

min?
€1 = c/\JTk, €2 = c/rr? and & < c/rk? Since we
assumed &; < nit, the bound on §; is ensured if we

set dinit = c/rk%. With these choices of ¢;’s and dinit,
if mg > Cnr?/e2 = Cnr3, mq > Cnr?/e3 = Cnr?,
mq > Cnr/es = Cnr3, and 6 = c/rk?%, then w.p.
1 —n"19 —dexp(—cnr), sinOU™, U*) < 0.76;. O

C. Corrected proofs of Lemma 2.5 and Lemma 2.6

The proof uses the following concentration bound for sums
of products of sub-Gaussian random variables [2].

Lemma 2.7 ( [2]). Let {X;,Y:} be sub-Gaussian random
variables with sub-Gaussian norm Kx, and Ky, respectively
and with E[X,Y;] = 0. Assume that for different i, {X;,Y;}
are mutually independent. Then Pr{|}", X;Y;| > t}

< 2exp (—c min (

t? t
> Ki,iK)z,i > max; |Kx,; Ky, |

We also need the following two lemmas which were correct
in the original paper [1].
Lemma 2.8 (Recovery of l;,*;’s). Let gy, := U’z At iteration
t, assume that sin ©O(U*,U) < 6;. Pick a 0, < 1. If m > C'r,
and if we set Trwpy = C'logd,/log(1—c), then, w.p. at least
1 —2qexp (—cégm), the following bounds hold:

g — bil| <Co b | = Coraci ]
|G = Bllr <C6:||B*|| r = Co[| X7

&k — i || <(C + 1)ée [z | (6)

for each k = 1,2,--- ,q. Here C = \/1+ 6y + 1. Thus, if
m > Cmax(r,logn,logq)/2, then the above bounds hold
w.p. at least 1 —n =10,

Lemma 2.9 (Incoherence of B). Pick a 6, < 0.1 and assume
that m > C max(r, logn, log q) /6. At iteration t, assume that
sin®(U*,U) < §; with §; < 025 . If B* is p-incoherent,

E [Term1(W)] = 0.

The main error in [1] was in bounding ||px| and || P|r
where P := [p1, P2, ..., Pq]. We provide the corrected bounds

next. Using X = UB, BY RyzB, BB' = I,
XB'b, = URgBB'b;, = URgb, = Ub;, = @,
Thus,
pr = (X*— X + X)B'b;, — x,
= (X* — X)B'by + (& — )
Using Lemma 2.8,

sl < @, — &l + | X = X|| |B]] [1bx]
< Cbil|lail| + 11X = X |l[|bx ]
< Co10 a7 + C| X = X[ by
Writing X* — X =UU +I-UU)(X* — X), using
Lemma 2.8, X UB, and G = U'X*,
IX* - X|| = UG- B)+ (I -UU)X"|
< |G - B|| + &|B"|
< |G = BllF + 6107y
< OO X7 [|p + 6t0max < C0l| X" r

The last inequality used o7, < || X*||F. Thus,

1Px ]| < CO(omax + [| X7 || ) max({|by]], [[ox )
< 6| X[ max([[b [, [1bx 1) (7
Next we bound || P||r. Observe that
P :=[p1,ps,...,ps = X*(B'B —1I).

To bound this, we add and subtract X=UB=UR B from
X* and use the facts that B(B'B—1) =0and | BB'—1I|| <
2 (by triangle inequality and ||B|| = 1). This gives

IP|r=I(X"~ X+ X)(B'B—~1D)|r
= [(X* = X)(B'B-1I)||r
<2|X* - X|p < C8|| X" p (®)

We now use above bounds to apply the concentration bound
Lemma 2.7. Let X;;, = al, Wby, and Yj;, = a), pi. Both are
sub-Gaussian with Kx,, = |[Wbi| < ||[W| rllbkll < ||bkll,

IE[Term1(W)] =
Eftrace(W' >, airai'prby’)] =
BB' =1 3%, pxby' = X*B'BB’

E[trace(Term1(W)] =
mtrace(W’ >, prbi’)]. Since
—X*B’'=0.



and Ky,, < ||pkl||- Also, using Lemma 2.9, by’s are incoherent
w.p. at least 1 — 2gexp(rlog(17) — d2m) > 1 —n=1%if m >
C max(r,logn,log q) /52, i.e.,

b < 4°r/q = Cr*1’r/q.

Thus, using this and right singular vectors’ incoherence, with
above probability,

max([|b;|1%, [bx[*) < Ck*u?r/q

Applying Lemma 2.7 with ¢ = me;d;|| X *||r, and using the
above bounds on ||pg ||, || P||r and max(||b}||?, [|bk ),

2 m?er o7 || X %
Y K%, KT, mmaxy [[br]|? 32 [kl
__me7 | XH|E mget
- maxy, b2 PlIF T k2

t _ med | X*|r
max, |[by ||| px ||
> ¢ m€1(5t||X*HF

~ 0| X || F maxy, max([|by ||, [|bx|)
maqe;

max;g KXMKY“C

K2u2r
Thus,
2
* mge;
Pr{|Term1(W)| < me16¢|| X *||r} > 1 — exp (—0M>
Now we just need to extend our bound for all W € Syy. This

part is standard and exactly the same as the argument given
in the original paper [1] O

Proof of Lemma 2.6. By Cauchy-Schwarz,

Term2(W) := > (eéir — 1)(au Why)(an'z})
ik

< Z |air’ Wby |? Z lcik€Cir — 1‘2|aik,5’7;§-|2
ik ik
9

We can bound the first term using Lemma 2.4. Consider
the second term. Since c;; = sign(a;’xz)) and &; =
sign(ai'®y), clearly (cipépp —1)? = (4)14e,, 2¢,,. ) Define

12
Qi = ez - (ai'Tk)

Then we need to bound Y, 4Q?%. In the Term2 bound proof
given in [1], we showed that, as long as the bound of Lemma
2.8 holds,

SEQu] < Oma} | X"
ik

(10)

To bound )., 4ka, the next step is to apply the concen-
tration bound. This part is almost the same as that in [1]
with the difference being the choice of ¢: we need to pick
t = mesd?| X+

As shown in [1] (taken from proof of Theorem 1 of [3]),
Cik, # €, implies that (aik'm,”;)z < (ai'(z} — a“:k))Q. Thus,

* ~ 2 * ~ 2
Qir < Lieyreny (air' () — 21))” < (an'(z} — 21))"

Hence it is a sub-exponential r.v., or equivalently it is a product
of sub-Gaussian r.v.s /@, and we can apply Lemma 2.7
with Ky, = Ky, = |(z} — &)|. Applying Lemma 2.8,
and simplifying the exponent terms, we can conclude that,
conditioned on the event that the bounds of Lemma 2.8 hold,

Pr{| 2 Qik — i ElQir]| > mead? || X3}

< 2exp (—ce3mq/K*p?). (11)
10

The event of Lemma 2.8 holds wp. 1 — n~ as
long as the lower bound on m holds. Thus, combin-
ing (9), Lemma 2.4, (11) and (10), and union bound if

m > Cmax(r,logn,logq)/é62, w.p. at least 1 — n=19 —
2 exp (nr — ce%% —2exp | —ce3 K’;’fz ,

max Term2(W) < Cmv/1+ e3v/0; + €26|| X || 7.

wWeSw
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