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Abstract—This note corrects a few errors in the proof of the
main result of the paper “Provable Low Rank Phase Retrieval”.
The result itself has no change. This paper introduced an
alternating minimization solution, called AltMinLowRaP, for
solving the Low Rank Phase Retrieval (LRPR) problem: recover
an n×q matrix X∗ of rank r from yk := |Ak

′x∗
k|, k = 1, 2, . . . , q

when the measurement matrices Ak are mutually independent.
Here yk is an m length vector, Ak is an n × m matrix, and ′

denotes transpose.

This note corrects a few errors in the proof of the main
result of the paper “Provable Low Rank Phase Retrieval” [1].
The result itself has no change. We repeat below the problem
studied in [1], followed by summarizing the AltMin algorithm
to solve it and the guarantee for it from [1]. In Sec II, we
correct the proof errors.

I. SUMMARY OF THE ORIGINAL PAPER [1]

1) Low Rank PR (LRPR) problem: The goal is to recover
an n× q rank-r matrix X∗ := [x∗

1,x
∗
2, . . . ,x

∗
k, . . . ,x

∗
q ] from

yik := |⟨aik,x
∗
k⟩|, i ∈ [m], k ∈ [q], (1)

when all the aik’s are iid standard (real-valued) Gaus-
sian vectors. By defining the m-length vector yk :=
[y1,k,y2,k, . . . ,ym,k]

′ and the n × m matrix Ak :=
[a1,k,a2,k, . . . ,am,k], the above measurement model can also
be rewritten as yk := |Ak

′x∗
k|, k = 1, 2, . . . , q. Here ′ denotes

transpose, [m] := {1, 2, . . . ,m}, and |z| denotes element-wise
magnitude of a vector.

Let X∗ SVD
= U∗Σ∗B∗ denote its reduced singular value

decomposition (SVD) so that U∗ ∈ Rn×r, B∗ ∈ Rr×q ,
and Σ∗ ∈ Rr×r is a diagonal matrix. We use σ∗

max, σ
∗
min

to denote the maximum, minimum singular values of X∗ and
κ = σ∗

max/σ
∗
min to denote the condition number of Σ∗. Finally,

we let
B̃∗ := Σ∗B∗.

Right singular vectors’ Incoherence. Since we have do
not have global measurements of the entire matrix X∗, in
order to correctly recover X∗ while needing m < n, we need
an assumption that allows for correct interpolation across the
rows. As explained in [1], incoherence of the right singular
vectors (henceforth referred to as “right incoherence”) suffices
for this purpose. In our notation, this means that we assume

max
k
∥b∗k∥2 ≤ µ2 r

q
, (2)

with µ ≥ 1 being a constant. Clearly, this implies that

∥x∗
k∥2 = ∥b̃∗k∥2 ≤ σ∗

max
2µ2 r

q
= κ2σ∗

min
2µ2 r

q
≤ κ2µ2 ∥X∗∥2F

q
(3)

Algorithm 1 AltMin-LowRaP: Alt-Min for Phaseless Low
Rank Recovery

1: Parameters: T , TRWF,t, ω.
2: Partition the mtot measurements and design vectors for

each x∗
k into one set for initialization and 2T disjoint sets

for the main loop.
3: Set r̂ as the largest index j for which λj(YU )−λn(YU ) ≥

ω where

YU =
1

mq

q∑
k=1

m∑
i=1

y2
ikaika

′
ik1{y2

ik≤9κ2µ2 1
mq

∑
ik y2

ik}

4: U0 ← Û0 ← top r̂ singular vectors of YU defined above.
5: for t = 0 : T do
6: b̂tk ← RWF({y(t)

k ,U t′A
(t)
k }, TRWF,t) for each k =

1, 2, · · · , q (RWF: Reshaped Wirtinger Flow or any
algorithm to solve standard PR).

7: x̂t
k ← U tb̂tk for each k = 1, 2, · · · , q.

8: Ĉk ← Phase
(
A

(T+t)
k

′x̂t
k

)
for each k = 1, 2, · · · , q .

9: Get Bt by QR decomp: B̂t QR
= Rt

BB
t.

10: Û t+1 ← argminŨ
∑q

k=1 ∥Ĉky
(T+t)
k −

A
(T+t)
k

′Ũbtk∥2.
11: Get U t+1 by QR decomp: Û t+1 QR

= U t+1Rt+1
U .

12: end for

2) Notation: We use ∥.∥ to denotes the (induced) l2-norm
and ∥.∥F to denote the Frobenius norm. We use 1statement

to denote the indicator function; it takes the value one if
statement is true and is zero otherwise. A tall matrix with or-
thonormal columns is referred to as a “basis matrix”. For two
basis matrices U1,U2, we define the subspace error (distance)
as sinΘ(U1,U2) := ∥(I−U1U

′
1)U2∥. This measures the sine

of the largest principal angle between the two subspaces. For
real-valued vectors, the phase-invariant distance is computed
as dist(x∗, x̂) = min(∥x∗ − x̂∥, ∥x∗ + x̂∥). We reuse the
letters c, C to denote different numerical constants in each
use, with the convention C ≥ 1 and c < 1.

3) Algorithm and Guarantee: Algorithm 1 was introduced
and studied in [1] where we proved the following guarantee for
it. The guarantee itself is correct although, with our corrected
proof, it can be improved slightly.

Theorem 1.1 (Guarantee for AltMinLowRaP from [1]). Con-
sider Algorithm 1. Assume right singular vectors’ incoherence
holds. Set T := C log(1/ϵ), TRWF,t = C(log r + log κ +
t(log(0.7)/ log(1 − c))), ω = 1.3σ∗

min
2/q. Assume that, for

the initialization step and for each new update, we use a new
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set of m measurements with m satisfying mq ≥ Cκ12µ4 nr4

and m ≥ Cmax(r, log q, log n). Then, with probability (w.p.)
at least 1 − Cn−10, the algorithm converges geometrically,
i.e., after T = C log(1/ϵ) iterations,

sinΘ(U∗,UT ) ≤ ϵ,

and dist(x̂T
k ,x

∗
k) ≤ ϵ∥x∗

k∥ for each k. The time complexity is
mqnr log2(1/ϵ).

With the corrected proof given below, we can actually
prove a marginally stronger result, we need only nr3 total
samples for the AltMin iterations, but still need nr4 for
initialization. Thus the total number of measurements per
column, mtot, needed to obtain an ϵ-accurate estimate needs
to satisfy mtotq ≥ Cκ,µnr

3(r + log(1/ϵ)) and mtot ≥
Cmax(r, log q, log n) log(1/ϵ).

II. PROVING THE THEOREM: CORRECTIONS

A. Two main claims that prove Theorem 1.1

The proof for the subspace error bound is an immediate con-
sequence of the next two claims. The bound on dist(x̂k,x

∗
k)

follows by Lemma 2.8 given below. The claim statements were
essentially correct in [1]. The error was in the proof of the
Claim 2.2.

Claim 2.1 (Rank estimation and Initialization of U∗). Let
Uinit = Û0. Pick a δinit < 0.25. Assume mq ≥
κ8µ4nr2/δ2init. Then, w.p. at least 1 − 6n−10, the rank is
correctly estimated and sinΘ(Uinit,U

∗) ≤ δinit.

Claim 2.2 (Descent). At iteration t, assume that
sinΘ(U∗,U t) ≤ δt and δt ≤ δinit = c/rκ2. If
mq ≥ Cκ6µ2nr3 and m ≥ Cmax(r, log n, log q)
then w.p. at least 1 − C exp(−nr) − n−10,
sinΘ(U t+1,U∗) ≤ 0.7δt := δt+1.

Proof of Theorem. Claim 2.2 requires mq ≥ Cκ6µ2nr3, m ≥
Cmax(r, log n, log q), and δinit = c/rκ2. By Claim 2.1, if
mq ≥ Cκ12µ4nr4, then sinΘ(Uinit,U

∗) ≤ δinit = c/rκ2.
Thus, combining these two claims, if, in each iteration, we

have mq ≥ Cκ12µ4nr4, and m ≥ Cmax(r, log n, log q),
then, w.p. ≥ 1 − 10n−10, the estimates converge geometri-
cally, i.e., sinΘ(UT ,U∗) ≤ 0.7T δinit. Therefore, we need
T = C log(1/ϵ) iterations to achieve ϵ accuracy. By Lemma
2.8, the other conclusions follow.

B. Corrected Proof of Claim 2.2

The proof is an easy consequence of the next four lemmas.
In this section, we remove the superscripts t or T+t except
where essential, e.g., we let aik := a

(T+t)
ik and yik := y

(T+t)
ik

when updating U , and we let aik := a
(t)
ik and yik := y

(t)
ik

when updating B. We should also remind the reader of the
following two points.

1) Because of this sample-splitting, (in each new iteration
for updating either U or B, we use a new independent
set of measurement matrices Ak and measurements yk),
we can assume that the aiks used in the curent update
are independent of the previous estimates of U , or B
that appear in the update equation.

2) Without loss of generality, as explained in detail in
[1], and as also done in previous works on PR, in
all the proofs below, when considering dist(x̂,x∗) we
assume that x∗ is replaced by x∗sign(⟨x̂,x∗⟩). With
this, dist(x̂,x∗) = ∥x̂− x∗∥.

Lemma 2.3. [same as that in [1]] We have

sinΘ(U t+1,U∗) ≤ MainTerm

σmin(U∗Σ∗B∗B′)−MainTerm
(4)

where MainTerm :=

maxW∈SW
|Term1(W )|+maxW∈SW

|Term2(W )|
minW∈SW

Term3(W )
,

Term1(W ) :=
∑
ik

bk
′W ′aikaik

′U∗(B̃∗B′bk − b̃∗k),

Term2(W ) :=
∑
ik

(cikĉik − 1)(aik
′Wbk)(aik

′x∗
k),

Term3(W ) :=
∑
ik

(aik
′Wbk)

2,

SW := {W ∈ Rn×r : ∥W ∥F = 1}

and cik, ĉik are the phases (signs) of aik
′x∗

k and aik
′x̂k.

Lemma 2.4 (minor correction from [1]). Under the conditions
of Theorem 1.1, and assuming that sinΘ(U∗,U) ≤ δt, with
δt < 0.1, w.p. at least 1−2 exp

(
nr(log 17)− c

ϵ23mq
µ̂2r

)
−n−10,

min
W∈SW

Term3(W ) ≥ 0.5(1− ϵ3)m

and

max
W∈SW

Term3(W ) ≤ 1.5(1 + ϵ3)m.

The above lemma is the same as that in [1] except for
the use of ϵ3 where δt was used earlier. The proof is also
essentially the same except for a minor change when applying
the concentration bound (Lemma 2.7 below): one needs to set
t = mϵ3δt instead of t = mδ2t .

Lemma 2.5 (correction from [1]). Under the conditions of
Theorem 1.1, and assuming that sinΘ(U∗,U) ≤ δt, with δt <

0.1, w.p. at least 1− 2 exp
(
nr(log 17)− c

ϵ21mq
κ3µ2r

)
− n−10.

max
W∈SW

Term1(W ) ≤ mϵ1δt∥X∗∥F .

This lemma statement has the following change from [1]:
we now have ϵ1δt in the bound instead of δ2t and ϵ21 in the
probability expression instead of δ2t . There was an error in its
proof; we provide a corrected proof below.

Lemma 2.6 (correction from [1]). Under the conditions
of Theorem 1.1, and assuming sinΘ(U∗,U) ≤ δt with
δt < 0.1, w.p. at least 1 − 2 exp

(
nr(log 17)− c

ϵ23mq
µ̂2r

)
−

2 exp
(
−cϵ22mq

)
− n−10,

max
W∈SW

Term2(W ) ≤ m
√
1 + ϵ3

√
δt + ϵ2δt∥X∗∥F .

This has the following change from [1]: we now have√
δt + ϵ2 instead of

√
δt in the bound and ϵ22 instead of δ2t
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in the probability expression. The proof is almost the same,
the main change is in applying the concentration bound and in
a few steps after it. We provide a brief corrected proof below.

Proof of Claim 2.2. By Lemma 2.3 and using
the simple fact that σmin(U

∗Σ∗B∗B′) ≥
σmin(U

∗)σmin(Σ
∗)σmin(B

∗)σmin(B
′) ≥ σmin(Σ

∗) = σ∗
min,

sinΘ(U t+1,U∗) ≤ MainTerm

σ∗
min −MainTerm

. (5)

where MainTerm :=
maxW∈SW

|Term1(W )|+maxW∈SW
|Term2(W )|

minW∈SW
Term3(W ) .

Combining Lemmas 2.5, 2.6, 2.4, and using
∥X∗∥F ≤

√
rσ∗

max, we conclude that, w.p.
at least 1 − 2 exp

(
nr(log 17)− c

ϵ21mq
κ3µ2r

)
−

2 exp
(
nr(log 17)− c

ϵ23mq
κ2µ2r

)
− 2 exp

(
−cϵ22mq

)
− n−10,

MainTerm ≤ C
(ϵ1 +

√
1 + ϵ3

√
δt + ϵ2)

0.5(1− ϵ3)
δt
√
rσ∗

max.

In order to show that the RHS of (5) is less than δt+1 := 0.7δt,
it suffices to bound MainTerm by cδtσ

∗
min with c = 0.4.

To obtain MainTerm ≤ 0.4δtσ
∗
min, we can pick ϵ3 = 0.1,

ϵ1 = c/
√
rκ, ϵ2 = c/rκ2, and δt ≤ c/rκ2. Since we

assumed δt ≤ δinit, the bound on δt is ensured if we
set δinit = c/rκ2. With these choices of ϵj’s and δinit,
if mq ≥ Cnr2/ϵ21 = Cnr3, mq ≥ Cnr2/ϵ23 = Cnr2,
mq ≥ Cnr/ϵ22 = Cnr3, and δinit = c/rκ2, then w.p.
1− n−10 − 4 exp(−cnr), sinΘ(U t+1,U∗) ≤ 0.7δt.

C. Corrected proofs of Lemma 2.5 and Lemma 2.6

The proof uses the following concentration bound for sums
of products of sub-Gaussian random variables [2].

Lemma 2.7 ( [2]). Let {Xi, Yi} be sub-Gaussian random
variables with sub-Gaussian norm KXi

and KYi
respectively

and with E[XiYi] = 0. Assume that for different i, {Xi, Yi}
are mutually independent. Then Pr {|

∑
i XiYi| ≥ t}

≤ 2 exp

(
−cmin

(
t2∑

i K
2
Xi

K2
Yi

, t
maxi |KXi

KYi
|

))
.

We also need the following two lemmas which were correct
in the original paper [1].

Lemma 2.8 (Recovery of b̃∗k’s). Let gk := U ′x∗
k. At iteration

t, assume that sinΘ(U∗,U) ≤ δt. Pick a δb < 1. If m ≥ Cr,
and if we set TRWF,t = C log δt/ log(1−c), then, w.p. at least
1− 2q exp

(
−cδ2bm

)
, the following bounds hold:

∥gk − b̂k∥≤Cδt∥b̃∗k∥ = Cδt∥x∗
k∥,

∥G− B̂∥F≤Cδt∥B̃∗∥F = Cδt∥X∗∥F ,
∥x̂k − x∗

k∥≤(C + 1)δt∥x∗
k∥ (6)

for each k = 1, 2, · · · , q. Here C =
√
1 + δb + 1. Thus, if

m ≥ Cmax(r, log n, log q)/δ2b , then the above bounds hold
w.p. at least 1− n−10.

Lemma 2.9 (Incoherence of B). Pick a δb < 0.1 and assume
that m ≥ Cmax(r, log n, log q)/δ2b . At iteration t, assume that
sinΘ(U∗,U) ≤ δt with δt ≤ 0.25

C
√
rκ

. If B∗ is µ-incoherent,

then, w.p. at least 1−n−10, B is µ̂-incoherent with µ̂ = Cκµ,
i.e., maxk ∥bk∥ ≤ µ̂

√
r/q.

Proof of Lemma 2.5. Recall that

Term1(W ) =
∑
ik

bk
′W ′aikaik

′pk.

where

pk := U∗B̃∗B′bk −U∗b̃∗k = X∗B′bk − x∗
k.

As shown while bounding Term1 in [1]1,

E [Term1(W )] = 0.

The main error in [1] was in bounding ∥pk∥ and ∥P ∥F
where P := [p1,p2, . . . ,pq]. We provide the corrected bounds
next. Using X̂ = UB̂, B̂

QR
= RBB, BB′ = I ,

X̂B′bk = URBBB′bk = URBbk = Ub̂k = x̂k.

Thus,

pk = (X∗ − X̂ + X̂)B′bk − x∗
k

= (X∗ − X̂)B′bk + (x̂k − x∗
k)

Using Lemma 2.8,

∥pk∥ ≤ ∥x∗
k − x̂k∥+ ∥X∗ − X̂∥ ∥B∥ ∥bk∥

≤ Cδt∥x∗
k∥+ ∥X∗ − X̂∥∥bk∥

≤ Cδtσ
∗
max∥b∗k∥+ C∥X∗ − X̂∥∥bk∥.

Writing X∗ − X̂ = (UU ′ + (I − UU ′))(X∗ − X̂), using
Lemma 2.8, X̂ = UB̂, and G = U ′X∗,

∥X∗ − X̂∥ = ∥U(G− B̂) + (I −UU ′)X∗∥
≤ ∥G− B̂∥+ δt∥B∗∥
≤ ∥G− B̂∥F + δtσ

∗
max

≤ Cδt∥X∗∥F + δtσ
∗
max ≤ Cδt∥X∗∥F

The last inequality used σ∗
max ≤ ∥X∗∥F . Thus,

∥pk∥ ≤ Cδt(σ
∗
max + ∥X∗∥F )max(∥b∗k∥, ∥bk∥)

≤ Cδt∥X∗∥F max(∥b∗k∥, ∥bk∥) (7)

Next we bound ∥P ∥F . Observe that

P := [p1,p2, . . . ,pq] = X∗(B′B − I).

To bound this, we add and subtract X̂ = UB̂ = URBB from
X∗ and use the facts that B(B′B−I) = 0 and ∥BB′−I∥ ≤
2 (by triangle inequality and ∥B∥ = 1). This gives

∥P ∥F = ∥(X∗ − X̂ + X̂)(B′B − I)∥F
= ∥(X∗ − X̂)(B′B − I)∥F
≤ 2∥X∗ − X̂∥F ≤ Cδt∥X∗∥F (8)

We now use above bounds to apply the concentration bound
Lemma 2.7. Let Xik = a′

ikWbk and Yik = a′
ikpk. Both are

sub-Gaussian with KXik
= ∥Wbk∥ ≤ ∥W ∥F ∥bk∥ ≤ ∥bk∥,

1E[Term1(W )] = E[trace(Term1(W )] =
E[trace(W ′ ∑

ik aikaik
′pkbk

′)] = mtrace(W ′ ∑
k pkbk

′)]. Since
BB′ = I ,

∑
k pkbk

′ = X∗B′BB′ −X∗B′ = 0.
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and KYik
≤ ∥pk∥. Also, using Lemma 2.9, bk’s are incoherent

w.p. at least 1− 2q exp(r log(17)− δ2bm) ≥ 1− n−10 if m ≥
Cmax(r, log n, log q)/δ2b , i.e.,

∥bk∥2 ≤ µ̂2r/q = Cκ2µ2r/q.

Thus, using this and right singular vectors’ incoherence, with
above probability,

max(∥b∗k∥2, ∥bk∥2) ≤ Cκ2µ2r/q

Applying Lemma 2.7 with t = mϵ1δt∥X∗∥F , and using the
above bounds on ∥pk∥, ∥P ∥F and max(∥b∗k∥2, ∥bk∥2),

t2∑
ik K

2
Xik

K2
Yik

≥ m2ϵ21δ
2
t ∥X∗∥2F

mmaxk ∥bk∥2
∑

k ∥pk∥2

=
mϵ21δ

2
t ∥X∗∥2F

maxk ∥bk∥2∥P ∥2F
≥ c

mqϵ21
κ2µ2 r

,

t

maxik KXik
KYik

=
mϵ1δt∥X∗∥F
maxk ∥bk∥∥pk∥

≥ c
mϵ1δt∥X∗∥F

δt∥X∗∥F maxk max(∥b∗k∥, ∥bk∥)

≥ c
mqϵ1
κ2µ2r

Thus,

Pr{|Term1(W )| ≤ mϵ1δt∥X∗∥F } ≥ 1− exp

(
−c mqϵ21

κ2µ2r

)
Now we just need to extend our bound for all W ∈ SW . This
part is standard and exactly the same as the argument given
in the original paper [1]

Proof of Lemma 2.6. By Cauchy-Schwarz,

Term2(W ) :=
∑
ik

(cikĉik − 1)(aik
′Wbk)(aik

′x∗
k)

≤
√∑

ik

|aik
′Wbk|2

√∑
ik

|cikĉik − 1|2|aik
′x∗

k|2

(9)

We can bound the first term using Lemma 2.4. Consider
the second term. Since cik = sign(aik

′x∗
k) and ĉik =

sign(aik
′x̂k), clearly (cikĉik − 1)2 = (4)1{cik ̸=ĉik}. Define

Qik := 1{cik ̸=ĉik} · (aik
′x∗

k)
2

Then we need to bound
∑

ik 4Q
2
ik. In the Term2 bound proof

given in [1], we showed that, as long as the bound of Lemma
2.8 holds, ∑

ik

E[Qik] ≤ Cmδ3t ∥X∗∥2F . (10)

To bound
∑

ik 4Q
2
ik, the next step is to apply the concen-

tration bound. This part is almost the same as that in [1]
with the difference being the choice of t: we need to pick
t = mϵ2δ

2
t ∥X∗∥2F .

As shown in [1] (taken from proof of Theorem 1 of [3]),
cik ̸= ĉik implies that (aik

′x∗
k)

2 ≤ (aik
′(x∗

k − x̂k))
2. Thus,

Qik ≤ 1{cik ̸=ĉik} (aik
′(x∗

k − x̂k))
2 ≤ (aik

′(x∗
k − x̂k))

2
.

Hence it is a sub-exponential r.v., or equivalently it is a product
of sub-Gaussian r.v.’s

√
Qik and we can apply Lemma 2.7

with KXik
= KYik

= ∥(x∗
k − x̂k)∥. Applying Lemma 2.8,

and simplifying the exponent terms, we can conclude that,
conditioned on the event that the bounds of Lemma 2.8 hold,

Pr
{
|
∑

ik Qik −
∑

ik E[Qik]| ≥ mϵ2δ
2
t ∥X∗∥2F

}
≤ 2 exp

(
−cϵ22mq/κ2µ2

)
. (11)

The event of Lemma 2.8 holds w.p. 1 − n−10 as
long as the lower bound on m holds. Thus, combin-
ing (9), Lemma 2.4, (11) and (10), and union bound if
m ≥ Cmax(r, log n, log q)/δ2b , w.p. at least 1 − n−10 −
2 exp

(
nr − cϵ23

mq
µ̂2r

)
− 2 exp

(
−cϵ22

mq
κ2µ2

)
,

max
W∈SW

Term2(W ) ≤ Cm
√
1 + ϵ3

√
δt + ϵ2δt∥X∗∥F .
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