

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. © 2020 Society for Industrial and Applied Mathematics
Vol. 49, No. 5, pp. STOC18-500–STOC18-539

NEARLY WORK-EFFICIENT PARALLEL ALGORITHM FOR
DIGRAPH REACHABILITY∗

JEREMY T. FINEMAN†

Abstract. One of the simplest problems on directed graphs is that of identifying the set of
vertices reachable from a designated source vertex. This problem can be solved easily sequentially
by performing a graph search, but efficient parallel algorithms have eluded researchers for decades.
For sparse high-diameter graphs in particular, there is no known work-efficient parallel algorithm
with nontrivial parallelism. This amounts to one of the most fundamental open questions in parallel
graph algorithms: Is there a parallel algorithm for digraph reachability with nearly linear work?
This article shows that the answer is yes, presenting a randomized parallel algorithm for digraph
reachability and related problems with expected work Õ(m) and span Õ(n2/3), and hence parallelism
Ω̃(m/n2/3) = Ω̃(n1/3), on any graph with n vertices and m arcs. This is the first parallel algorithm
having both nearly linear work and strongly sublinear span, i.e., span Õ(n1−ε) for any constant ε > 0.
The algorithm can be extended to produce a directed spanning tree, determine whether the graph
is acyclic, topologically sort the strongly connected components of the graph, or produce a directed
ear decomposition, all with work Õ(m) and span Õ(n2/3). The main technical contribution is an
efficient Monte Carlo algorithm that, through the addition of Õ(n) shortcuts, reduces the diameter
of the graph to Õ(n2/3) with high probability. While both sequential and parallel algorithms are
known with those combinatorial properties, even the sequential algorithms are not efficient, having
sequential runtime Ω(mnΩ(1)). This article presents a surprisingly simple sequential algorithm that
achieves the stated diameter reduction and runs in Õ(m) time. Parallelizing that algorithm yields
the main result, but doing so involves overcoming several other challenges.

Key words. parallel algorithms, randomized algorithms, graph search, reachability, shortcuts

AMS subject classifications. 68W10, 68W20, 05C85

DOI. 10.1137/18M1197850

1. Introduction. There are essentially no parallel algorithms known to have
provably good asymptotic guarantees for the most basic problems on general directed
graphs, especially when the graph is sparse. This paper yields several.

A good parallel algorithm should have polynomial parallelism and be (nearly)
work efficient. The work W (n) of a parallel algorithm on a size-n problem is the
total number of primitive operations performed. Ideally, the work of the parallel
algorithm should be similar to the best sequential running time T ∗(n) known for
the problem. An algorithm is work efficient if W (n) ∈ O(T ∗(n)) and nearly work
efficient if W (n) ∈ Õ(T ∗(n)) = O(T ∗(n) · poly(log n)), where Õ hides logarithmic
factors.1 (In a slight abuse of notation, Õ(1) is used to mean O(poly(log n)), where

∗Received by the editors July 2, 2018; accepted for publication (in revised form) September 29,
2020; published electronically October 22, 2020. An extended abstract appeared in the Proceedings
of the 50th ACM Symposium on Theory of Computing, 2018.

https://doi.org/10.1137/18M1197850
Funding: This work was supported in part by NSF grants CCF-1718700, CCF-1617727, and

CCF-1314633.
†Department of Computer Science, Georgetown University, Washington, D.C. 20057-1232 USA

(jfineman@cs.georgetown.edu).
1In addition to uncluttering the bounds, ignoring logarithmic factors is particularly convenient

when comparing parallel algorithms—the precise bounds depend on the specifics of the parallel
model, but the bounds typically only vary by logarithmic factors (see [11] for discussion)—allowing
us to focus on the high-level discussion.

STOC18-500

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/18M1197850
mailto:jfineman@cs.georgetown.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-501

Table 1
Comparison of parallel algorithms for single-source reachability. Two of the algorithms are

parameterized by ρ, 1 ≤ ρ ≤ n, which trades off work and span. M(n) is the work of the best
highly parallel n × n matrix multiplication, which is at least the current best sequential time of
O(n2.372869) [17].

Algorithm Work Span Nearly
work efficient?

of processors yielding
Õ(n/k) runtime

for m ∈ Θ(n)

Parallel BFS O(m) Õ(n) Yes N/A unless k = Õ(1)

Parallel TC Õ(M(n)) Õ(1) No
kM(n)
n

for k ≤ n

Spencer’s [20] Õ(m+ nρ2) Õ(n/ρ) if ρ = Õ(
√
m
n

) k3 for k ≤ n

UY [24]∗ Õ(mρ+ ρ4

n
) Õ(n/ρ) if ρ = Õ(1) k2 for k ≤ n2/3 †

This paper∗ Õ(m) Õ(n2/3) Yes k for k ≤ n1/3

∗The algorithm is randomized. Bounds are with high probability.
†For higher k, the dependence on k becomes worse and more complicated to state.

the n should be clear from the context.2) The span S(n), also called depth, of a
parallel algorithm is the length of the longest chain of sequential dependencies.3 By
Brent’s scheduling principle [2], such an algorithm can generally be scheduled to run
in O(W (n)/p) time on p ≤ W (n)/S(n) processors; adding more processors beyond
that point does not yield asymptotic speedup. The limit W (n)/S(n) is called the
parallelism of the algorithm; an algorithm is moderately parallel if the parallelism is
Ω(nε) for some constant ε > 0, and highly parallel if the span is Õ(1). The goal is
to achieve speedup with respect to the best sequential algorithm, which is why work
efficiency matters. A nearly work-efficient algorithm runs in Õ(T ∗(n)/p) time on
p ≤W (n)/S(n) processors, but inefficient algorithms may require enormous numbers
of processors to beat the sequential algorithm.

Remark. Aside from the context provided in this introduction and high-level
ideas, most of the paper does not require any specific knowledge of parallel algo-
rithms; the challenge lies in producing an algorithm with properties amenable to
parallelization. Most details of the parallelization are straightforward, so the parallel
model and realization are deferred to section 5.

Problem and history. Perhaps the most basic problem on directed graphs is the
single-source reachability problem: given a directed graph G = (V,E) and source
vertex s ∈ V , identify the set of vertices reachable by a directed path originating at
s. Throughout, let n = |V | be the number of vertices and m = |E| the number of
arcs, and for conciseness assume that m ∈ Ω(n). This problem has simple sequential
solutions: both breadth-first search (BFS) and depth-first search (DFS) solve the
problem in O(m) time. There are two natural parallel algorithms for the reachability
problem, which seem to be folklore. See Table 1 for a comparison. Parallel transitive
closure (TC) [11], which amounts to repeated squaring of the adjacency matrix, is
highly parallel but far from work efficient even for dense graphs. Parallel BFS is

2The standard definition for soft-O is that f(n) ∈ Õ(g(n)) if f(n) ∈ O(g(n) poly(log g(n))). This
paper uses f(n) ∈ Õ(g(n)) to mean f(n) ∈ O(g(n) poly(logn)), with the only relevant difference
being the meaning of Õ(1).

3Older PRAM (parallel random access machine) literature often characterizes algorithms by a
number of processors and parallel running time. Span here is generally equivalent to parallel time,
and work corresponds to the product of processors and time.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-502 JEREMY T. FINEMAN

similar to sequential BFS, except that arcs from each layer (vertices with the same
distance) are explored in parallel. Parallel BFS is work efficient (see, e.g., [16]), but
the span is proportional to the diameter, which is Θ(n) in the worst case. Both
algorithms fall short of our goals, but they are the state of the art.

The only other progress on general graphs is work/span tradeoffs. Ullman and
Yannakakis [24] raised the question over 25 years ago of whether it is possible to solve
digraph reachability with sublinear work without sacrificing work efficiency. Instead,
their algorithm [24], henceforth termed UY, and Spencer’s algorithm [20] exhibit
tradeoffs between work and span. Though not originally described in the same terms,
both algorithms can be parameterized by a value ρ, 1 ≤ ρ ≤ n. Table 1 summarizes
the performance bounds.4 For ρ = 1, both algorithms are a parallel BFS. As ρ
increases, the span decreases but the work increases. When ρ = n, both algorithms
converge to transitive closure via regular Θ(n3)-work matrix multiplication. They
differ for intermediate ρ. Spencer’s algorithm is deterministic and, for sufficiently
dense graphs, can be nearly work efficient with moderate parallelism. In contrast,
UY is randomized and never simultaneously work efficient and moderately parallel,
but it exhibits a better work/span tradeoff for sparse graphs.

Other work focuses on either restricted graph classes or sequential preprocessing.
Kao and Klein [12] give an algorithm for reachability on planar digraphs with Õ(n)
work and Õ(1) span. Klein [15] gives an algorithm that preprocesses the graph in
O(np) sequential time, where p ≥ 1 is a parameter; after the preprocessing, reacha-
bility can be solved in O(m/p) time on p processors.

1.1. Shortcut approach and contributions. The high-level approach is intu-
itive: (1) reduce the diameter of the graph through the addition of shortcuts, or arcs
whose addition does not change the transitive closure of the graph; (2) run parallel
BFS on the shortcut graph. UY [24] fits this general strategy (and parallel BFS and
transitive closure are extreme cases), but Spencer’s algorithm [20] does not.

The number of shortcuts added is of utmost importance because it corresponds
to the work performed during the BFS phase. Specifically if the BFS phase is to
complete with Õ(m) work, then the number of shortcuts must be limited to Õ(m).

To understand the limits of what could be achieved through this approach, ignore
for now the cost of computing the shortcuts. It is known that O(n) shortcuts are suf-
ficient to achieve Õ(

√
n) diameter—UY [24] with ρ =

√
n, for example, accomplishes

this task. Except for logarithmic factors, this is the best diameter reduction known
for general graphs using a linear number of shortcuts. (Better bounds are known
for, e.g., planar graphs [23].) Moreover, as Hesse [9] shows that there exists a family
of graphs that cannot have their diameter reduced below Θ(n1/17) without adding
Ω(mn1/17) shortcuts. In a recent breakthrough, Huang and Pettie [10] show a higher
diameter lower bound of Ω(n1/11) when limited to O(m) shortcuts.5 The main lesson
is that if a nearly work-efficient parallel algorithm for digraph reachability uses the
shortcut approach, then its span must be polynomial (specifically at least Ω̃(n1/11)).

The main technical challenge is to produce the shortcuts efficiently, which is a chal-
lenge even ignoring parallelism. There is no Õ(m)-time sequential algorithm known
to reduce every graph’s diameter to Õ(n1−ε) for any constant ε > 0. For contrast,
consider the most natural approach (similar to UY [24]): sample

√
n vertices, perform

4The work bound stated by Ullman and Yannakakis [24] is worse, for small ρ, than the bound
displayed in Table 1. The table shows the improved bound observed by Schudy [19].

5Closing the diameter gap between the n1/11 lower bound and
√
n upper bound is an interesting

open question, but it is not addressed by this paper.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-503

Algorithm 1: Sequential algorithm for shortcutting.

SeqSC1(G = (V,E))
1 if V = ∅ then return ∅
2 select a pivot x ∈ V uniformly at random
3 let R+ denote the set of vertices reachable from x
4 let R− denote the set of vertices that can reach x
5 S := {(x, v)|v ∈ R+} ∪ {(u, x)|u ∈ R−} // add shortcuts

6 VF := R+\R− ; VB := R−\R+ ; VU := V \(R+ ∪R−)
7 return S ∪ SeqSC1(G[VF]) ∪ SeqSC1(G[VB]) ∪ SeqSC1(G[VU])

a graph search from each, and add shortcuts between all pairs of sampled vertices that
are related to each other (constituting < n shortcuts). It is straightforward to prove
that the resulting diameter is O(

√
n log n) with high probability, but the running time

of the
√
n independent searches is O(m

√
n).

This paper has the following main contributions:
• (Section 3.) An Õ(m)-time sequential Monte Carlo algorithm that shortens

the diameter of any graph to O(n2/3), with high probability, through the
addition of Õ(n) shortcuts.

• (Sections 4 and 5.) A Monte Carlo parallel algorithm having Õ(m) work and
Õ(n2/3) span that shortens the diameter of any graph to O(n2/3 log n), with
high probability, through the addition of Õ(n) shortcuts.

• Applying the diameter reduction then parallel BFS yields a Las Vegas algo-
rithm for single-source reachability with Õ(m) work and Õ(n2/3) span, with
high probability.

• (Section 6.) An extension that finds a directed spanning tree, i.e., a tree rooted
at s containing all vertices reachable from s and using only arcs from G.

Applying existing reductions yields the following Las Vegas randomized parallel algo-
rithms, both with Õ(m) work and Õ(n2/3) span with high probability:

• An algorithm that identifies and sorts the strongly connected components of
the graph. (Use the new reachability algorithm in Schudy’s algorithm [19].)

• An algorithm that finds a directed ear decomposition of any strongly con-
nected graph. (Use the new directed spanning tree algorithm with Kao and
Klein’s algorithm [12].)

1.2. Algorithm and analysis overview. The sequential algorithm is simple
enough that the main subroutine is given immediately. (See also Algorithm 1.) The
algorithm is recursive. First select a random vertex x, called the pivot . Perform graph
searches forwards and backwards from x to identify subsets R+ and R−, respectively.
Add shortcuts from R− to x and from x to R+. The graph is next partitioned into four
subsets of vertices: (i) the vertices reachable in both directions, (ii) the vertices VF
reachable in the forward direction but not the backward direction, (iii) the vertices VB
reachable in the backward direction but not the forward direction, and (iv) the vertices
VU that are unreachable in either direction. Recurse on the subgraphs induced by
the three subsets VF , VB , and VU ; the vertices reached in both directions are ignored
because the shortcuts have already reduced the diameter of that subgraph to 2 hops.

Ignoring the addition of shortcuts, Algorithm 1 is essentially the divide-and-
conquer algorithm for topologically sorting the strongly connected components of
a graph described by Coppersmith et al. [4]. Their proof thus carries over to prove
that this algorithm runs in O(m log n) sequential time in expectation, but they do

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-504 JEREMY T. FINEMAN

not address the diameter problem.
What should be surprising is that Algorithm 1 reduces the graph’s diameter,

captured by the following lemma. The proof is not obvious and leverages new insights
and techniques.

Lemma 1.1. Let G = (V,E) be a directed graph, and consider any vertices u, v ∈
V such that there exists a directed path from u to v in G. Let S be the shortcuts
produced by an execution of Algorithm 1. Then with probability at least 1/2 (over
random choices in Algorithm 1), there exists a directed path from u to v in GS =
(V,E ∪ S) consisting of O(n2/3) arcs.

As a corollary (applying the union bound across at most n2 related pairs), the
union of shortcuts across Ω(log n) independent executions of Algorithm 1 is sufficient
to reduce the diameter of the graph to O(n2/3) with high probability. More precisely,
with 2 lg n+ k runs, the failure probability is at most 1/2k.

Unusual aspects and insight. The analysis focuses on shortcutting a particular
path. But unlike most divide-and-conquer analyses, the division step here does not
seem to affect progress. Partitioning a graph is good for reducing the problem size
(which is what Coppersmith et al. [4] leverage), but it is not good for preserving
paths—and once vertices fall in different subproblems, there can be no subsequent
shortcuts between them. This feature is likely why previous algorithms, such as
UY [24], perform independent searches on the original graph.

A key insight in the analysis is that the partitioning step also reduces by a constant
factor the number of vertices that could cause the path to split again later. In doing
so, the probability of splitting the path goes down, and hence the probability of
shortcutting it goes up. The end effect is that the path is likely to be significantly
shortcut before it is divided into too many pieces.

The proof of this filtering insight (Lemma 3.4) leverages antisymmetric relation-
ships between certain vertices. Interestingly, the lack of symmetry in directed graphs
is exactly the feature that makes good parallel algorithms for digraphs so elusive, but
here asymmetry is crucial to the proof.

Building a parallel algorithm. The main obstacle to parallelizing Algorithm 1 is
the graph searches employed to find R+ and R−. In fact, these searches are exactly
the single-source reachability problem that we want to solve. The obvious solution to
try is to instead limit the searches to a distance of Õ(n2/3), but unfortunately doing
so causes other problems. The parallel algorithm and the analysis are thus more
involved. Section 4 provides a sequential algorithm with distance-limited searches.
Given that, the parallel realization (discussed briefly in section 5) is straightforward.

2. Preliminaries. This section provides definitions, notation, and the main
probabilistic tools used throughout.

The subgraph of G = (V,E) induced by vertices V ′ ⊆ V is denoted by G[V ′].
If there is a directed path (possibly empty) from u to v in digraph G = (V,E),

then u precedes v and v succeeds u, denoted u � v. We say also that u can reach v
and that v can be reached by u. If u � v and/or v � u, then u and v are related ;
otherwise they are unrelated . The successors or forward reach of x is the set of
nodes R+(G, x) = {v|x � v}. The predecessors or backwards reach of x is the set
R−(G, x) = {u|u � x}.

A shortcut is any arc (u, v) such that u � v in G.

Paths and nonstandard notation. The analysis considers paths as well as the re-
lationships between paths and vertices. A path P = 〈v0, v1, . . . , v`〉 is denoted by the

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-505

sequence of its constituent vertices, with the arcs between consecutive pairs implied.
For convenience, an path may be empty. The length of the path, denoted length(P), is
the number of arcs. For given path P , length(P) = `. An empty path and a path com-
prising a single vertex both have length 0. Splitting a path P into k pieces means par-
titioning the path into k subpaths 〈v0, . . . , vi1〉 , 〈vi1+1, . . . , vi2〉 , . . . ,

〈
vik−1+1, . . . , v`

〉
,

where 0 ≤ i1 < · · · < ik−1 < `.
A vertex x and a path P can be compared in the following ways. The vertex x is

a bridge of P if x can reach and can be reached by vertices on the path, i.e., if there
exists vi, vj ∈ P such that vi � x and x � vj . Note that every vertex on the path
is a bridge. A vertex x is an ancestor of P if x can reach some vertex on the path,
but x cannot be reached by any vertex on the path. Similarly, x is a descendant of
P if x can be reached by some vertex on the path, but x cannot reach any vertex
on the path. The set of all bridges, ancestors, and descendants of P are denoted
Bridge(G,P), Anc(G,P), and Desc(G,P), respectively. Note that these sets are all
disjoint by definition. If a vertex x is a bridge, ancestor, or descendant of the path
P , then x and P are related . Otherwise, they are unrelated .

Tools. The analysis employs one relatively uncommon probabilistic tool—a spe-
cial case of Karp’s [13] probabilistic recurrence relations, restated next. (Although
there is a generalization [22] of Karp’s theorem designed specifically for analyzing
parallel algorithms, the simplest form seems to be the most suitable because constant
factors impact an exponent.) Roughly speaking, this theorem relates two processes:
(1) a random process where in each round the problem “size” (Φ in the theorem)
reduces by a constant factor in expectation, and (2) a deterministic process where the
problem size reduces by exactly that constant factor. The theorem says that if the
random process uses a few extra rounds, it is very likely to experience at least the
size reduction of the deterministic process.

Theorem 2.1 (restatement of special case of Theorem 1.36 in [13]). Consider a
random process of the following form. Let I denote the set of all problem instances,
and let I0 ∈ I denote the initial problem instance. In the rth round, the process makes
random choices and transforms the instance from Ir−1 to Ir (a random variable). Let
Φ : I → R be any function satisfying 0 ≤ Φ(Ir) ≤ Φ(Ir−1) for all relevant r ≥ 1 and
all feasible sequences I0, I1, I2, . . . of instance outcomes.

Suppose that there exists some constant p < 1 such that for all feasible sequences
instances E[Φ(Ir)|I0, I1, . . . , Ir−1] ≤ p ·Φ(Ir−1), and consider any integers k ≥ 0 and
w ≥ 0. Then Pr

{
Φ(Ik+w+2) > pk · Φ(I0)

}
≤ pw.

3. Sequential diameter reduction. This section focuses on proving the fol-
lowing theorem. The unmodified G is used to refer to subgraphs G = (V,E). When
the original input graph is intended, Ĝ is employed instead. Throughout, x denotes
the pivot, and the vertex sets VF (forward only), VB (backward only), and VU (unre-
lated) are used as setup in Algorithm 1.

Theorem 3.1. There exists a randomized sequential algorithm that takes as input
a directed graph Ĝ = (V̂ , Ê) and failure parameter γ ≥ 1 with the following guarantees,
where n =

∣∣V̂ ∣∣, m =
∣∣Ê∣∣, and without loss of generality m ≥ n/2: (1) the running time

6Karp states the theorem very differently. The process described here corresponds to his recur-
rence T (I) = a(Φ(I)) +T (h(I)), where a(x) = 0, x < d, and a(x) = 1, x ≥ d, for d = pk ·Φ(I0). This
recurrence counts the number of steps to reach the target size. (Note that d depends only on the ini-
tial instance and is constant in the recurrence.) The deterministic counterpart is τ(x) = a(x)+τ(px),
which has solution u(Φ(I0)) = dlog1/p(Φ(I0)/d)e ≤ k + 1.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-506 JEREMY T. FINEMAN

is O(γm log2 n), (2) the algorithm produces a size-O(γn log2 n) set S∗ of shortcuts,
and (3) with probability at least 1 − 1/nγ , the diameter of GS∗ = (V̂ , Ê ∪ S∗) is
O(n2/3).

As mentioned in section 1, the algorithm entails taking the union of shortcuts
from Θ(log n) runs of Algorithm 1. To make the running time worst case, there will
be one minor modification introduced later: namely, an extra base case to truncate
the recursion.

Subsections 3.1 and 3.2 set up the main ideas for proof of Lemma 1.1 but instead
prove a weaker distance bound of O(n1/ lg(8/3)) = O(n0.7067). Subsection 3.3 tightens
the distance bound to O(n2/3), thereby proving Lemma 1.1. It is worth emphasizing
that sections 3.2 and 3.3 use exactly the same algorithm—the only difference is the
details of the analysis. Finally, section 3.4 completes the proof of Theorem 3.1 by
analyzing the running time and number of shortcuts.

3.1. Setup of the analysis. Fix any simple path P̂ = 〈v0, . . . , v`〉 in the graph
up front. By partitioning the graph, each call to SeqSC1 also splits the path into
subpaths. The analysis tracks a collection of calls whose subgraphs contain subpaths
of P̂ .

More precisely, a path-relevant subproblem, denoted by pair (G,P), corresponds
to a call SeqSC1(G) and an associated nonempty subpath P of P̂ to shortcut. The
starting subproblem is (Ĝ, P̂). The path-relevant subproblems are the subproblems
for which G∩P̂ 6= ∅, except that the base case occurs when a subpath P is shortcut to
two hops—all recursive subproblems arising beyond that point are not path relevant.
The following lemma characterizes the path-relevant subproblems that arise when
executing the call SeqSC1(G) with associated path P .

It is worth emphasizing that the algorithm has no knowledge of the path P ;
associating the subpath with the subproblem is an analysis tool only.

Lemma 3.2. Let P = 〈v0, . . . , v`〉 be a nonempty path in G = (V,E), and consider
the effect of a single call SeqSC1(G) in Algorithm 1. The following are the outcomes
depending on pivot x:

1. (Base case.) If x is a bridge of P , then the shortcuts (v0, x) and (x, v`) are
created. There are no path-relevant subproblems.

2. If x and P are unrelated, then P is entirely contained in G[VU]; the one
path-relevant subproblem is thus (G[VU], P).

3. If x is an ancestor of P , then there exists some vk ∈ P such that P1 =
〈v0, . . . , vk−1〉 is fully contained in G[VU] and P2 = 〈vk, . . . , v`〉 is fully con-
tained in G[VF]. There are thus at most two path relevant subproblems: if P1

is nonempty, (G[VU], P1) is path relevant; if P2 is nonempty, (G[VF], P2) is
path relevant.

4. If x is a descendant of P , then there exists some vk ∈ P such that 〈v0, . . . , vk〉
is fully contained in G[VB] and 〈vk+1, . . . , v`〉 is fully contained in G[VU]. This
case gives rise to at most two path-relevant subproblems, as above.

Proof. The proof follows from the definitions. Consider, for example, the last
case, where x is a descendant of P . Here vk is the latest vertex on the path such that
vk � x. Then by transitivity, vi � vk � x for all i ≤ k. Thus, P1 is entirely contained
in VB . All vj with j > k are unrelated to x and hence in VU .

Cases 3 and 4 seem like bad cases because the number of path-relevant subprob-
lems, and hence unshortcut arcs in the final path, increases. Subsection 3.2 argues
that these cases do make progress.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-507

Algorithm 2: Algorithm corresponding to the flattened path-relevant tree.

PRAlg(G = (V,E), P = 〈v0, v1, . . . , v`〉)
1 select a pivot x ∈ V uniformly at random
2 while x is not related to P do
3 remove from G the vertices R−(G, x) ∪R+(G, x) and their incident arcs
4 select a pivot x ∈ V uniformly at random

5 R+ := R+(G, x)
6 R− := R−(G, x)
7 VF := R+\R− ; VB := R−\R+ ; VU := V \(R+ ∪R−)
8 if x is a bridge then return the shortcuts {(v0, x), (x, v`)}
9 else if x is an ancestor then

10 let vk be earliest vertex on P in VF
11 if k = 0 then return PRAlg(G[VF], P)

else return PRAlg(G[VU], 〈v0, . . . , vk−1〉) ∪ PRAlg(G[VF], 〈vk, . . . , v`〉)
12 else // x is a descendant

13 let vk−1 be the latest vertex on P in VB
14 if k − 1 = ` then return PRAlg(G[VB], P)

else return PRAlg(G[VB], 〈v0, . . . , vk−1〉) ∪ PRAlg(G[VU], 〈vk, . . . , v`〉)

The path-relevant subproblems that arise during the execution of the algorithm
induce a path-relevant subproblem tree, where each node s corresponds to a call of
SeqSC1 on some path-relevant subproblem s = (G,P).

It is convenient to instead consider the flattened path-relevant tree, where each
node corresponding to case 2 in Lemma 3.2 is merged with its only child. The reason
is that the analysis proceeds level by level in the tree being analyzed, and all progress
arguments rely on a random path-related vertex being selected. Algorithm 2 presents
an algorithmic view of the flattened path-relevant tree being analyzed. Here multiple
pivots are sampled until finally getting one that is related to the path, and at most two
recursive calls are made. In light of Lemma 3.2 it is not hard to see that Algorithm 2
is equivalent to a subexecution of Algorithm 1, with some shortcuts and subproblems
omitted. The analysis on the path length only leverages the shortcuts added in the
base case of bridges.

The analysis considers levels in the flattened path-relevant tree in aggregate. The
point is to later fit the analysis to Theorem 2.1. Specifically, the analysis consists of a
sequence of rounds, where the instance Ir in round r is the collection of subproblems
defined by the nodes at depth r in the flattened path-relevant tree. We have the
following lemma immediately. All that remains is bounding the remaining subpath
lengths (section 3.2).

Lemma 3.3. Consider any graph Ĝ = (V̂ , Ê) and any simple path P̂ from u to
v. Consider an execution of Algorithm 1. Let S be the shortcuts produced and let
{(G1, P1), . . . , (Gk, Pk)} denote the set of path-relevant subproblems at level/depth r
in the flattened path-relevant tree. Then there is a u-to-v path in GS = (V̂ , Ê ∪ S) of

length at most O(2r) +
∑k
i=1 length(Pi).

Proof. Let Li denote the set of paths associated with leaves in the tree at depth
i. Then a simple induction over levels proves that the set of paths {P1, . . . , Pk} ∪(⋃r−1

i=1 Li
)

constitutes a splitting (partition) of path P̂ . (To perform the inductive
step, apply Lemma 3.2 at each internal node.)

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-508 JEREMY T. FINEMAN

It remains to bound the path length in GS by positing a specific path: the con-
catenation of the shortcut paths for the leaves and the full unshortcut paths for the
remaining subproblems. Each concatenation adds 1 arc, each leaf’s path uses 2 short-
cuts, and each remaining nonleaf path Pi has length(Pi) arcs. Since the degree of each
node is at most 2 (Lemma 3.2), the number of leaves above level r is at most 2r−1,
and the number of internal nodes (concatenations) above level r is also at most 2r−1.
Adding everything together gives the bound.

3.2. Asymmetry leads to progress. This section proves that with probability
at least 1/2, the distance between u and v is at most O(n1/ log(8/3)). The main tools
are Theorem 2.1 and a proof that the number of path-related vertices decreases by
a constant fraction, on average, with each level in the flattened path-relevant tree.
More precisely, a vertex v is path active at level r if (1) v is part of some path-relevant
subproblem at level r in the flattened tree, and (2) v is related to the path in that
subproblem. The goal is to argue that the expected number of path-active vertices
decreases with each level.

Recall that each node in the flattened tree corresponds to sampling multiple
pivots until finally drawing a pivot x that is path related. The analysis focuses on the
path-related choice of x. Instead of reasoning about x as being drawn uniformly at
random from path-related vertices, instead consider the following equivalent process
for selecting x. First, toss a weighted coin to determine whether x is a bridge, ancestor,
or descendant. Second, choose the specific pivot vertex from within the selected set
uniformly at random.

The following lemma considers the effect of choosing x uniformly from all path
ancestors. Choosing from path descendants is symmetric.

Lemma 3.4. Consider any subproblem (G,P). Suppose that x is drawn uniformly
at random from Anc(G,P), let α = |Anc(G,P)|, and let α′ denote the number
of vertices in Anc(G,P) that remain path active after recursing. Then E[α′|x ∈
Anc(G,P)] < α/2.

Proof. Define the following binary relation over vertices in Anc(G,P): u preserves
u′ means that if the pivot were chosen to be x = u, then u′ would remain path
active. The relation is irreflexive by virtue of the fact that x ∈ (R−(G, x)∩R+(G, x))
and hence not contained in any subproblems. The goal is to prove that it is also
antisymmetric. Assuming the asymmetry, the total number of pairs satisfying the
preserves relation is at most

(
α
2

)
. The number of vertices preserved by x is denoted

by α′, and hence E[α′] ≤
(
α
2

)
/α = (α − 1)/2. It remains only to prove that the

preserves relation is antisymmetric.
Let P = 〈v0, v1, . . . , v`〉. Consider any ancestor u ∈ Anc(G,P) and let vk be the

earliest vertex in P such that u � vk. Similarly, consider any other ancestor vertex
u′ 6= u and let vk′ be its earliest related vertex in P .

The main claim is the following: u preserves u′ only if one of the following holds:
• u ≺ u′ and u′ 6≺ u, or
• u and u′ are unrelated and k′ < k.

This claim alone directly implies the antisymmetry. Specifically, if u and u′ are related,
then they can only preserve each other in one direction. If u and u′ are unrelated,
the inequality is strict, so preservation can also only be in at most one direction.

To prove the claim, consider the case that u is chosen as pivot, and let VB , VF , and
VU denote the backward, forward, and unrelated vertex sets, respectively, as defined
in Algorithm 1. For u to preserve u′, u′ must be active in its subproblem, i.e., u′

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-509

must be in a recursive subproblem that contains a subpath, and u′ must be related to
that subpath. Since u is an ancestor of the path, none of the paths falls in VB . Thus,
for u to preserve u′, at least one of the following must be true: (1) u′ ∈ VF , or (2)
u′ ∈ VU and u′ is related to P1. The first condition directly implies u ≺ u′. As for
the second, Lemma 3.2 states that P1 = 〈v0, . . . , vk−1〉 falls in VU , so u′ related to P1

implies k′ ≤ k − 1 < k.

Lemma 3.4 states that if an ancestor is selected as pivot, the number of path-
active ancestors decreases by half in expectation. The following lemma extends that
reduction to the total number of path-active vertices. The worst case is that the
number of ancestors equals the number of descendants, in which case the analysis is
tight (to within additive constants).

Lemma 3.5. Let η denote the total number of path-active vertices in some level-
(r − 1) subproblem (G,P), and let η′ be a random variable denoting the number of
those vertices that are path active at level r. Then E[η′] < (3/4)η.

Proof. The analysis considers the following steps, which may afford the adversary
more power. (1) To model any unrelated pivots (the while loop in Algorithm 2),
vertices and arcs may be removed adversarially. This step only reduces η further, so
the worst case is that it does not occur at all. (2) A path-related pivot is selected
uniformly at random, first by determining whether the pivot is an ancestor, bridge,
or descendant, then by choosing uniformly at random from that set. If a bridge is
selected, there are no path-related subproblems, so η′ = 0. Otherwise, filtering occurs
as per Lemma 3.4. This step is analyzed in more detail below.

At the start of step (2), let α, β, and δ denote the number of ancestors, bridges,
and descendants, respectively, of path P in G, with α + β + δ = η. Scaling by the
probabilities of selecting ancestors or descendants, we have

E[η′] =

(
α

η

)
E[η′|x ∈ Anc(G,P)] +

(
δ

η

)
· E[η′|x ∈ Desc(G,P)]

<

(
α

η

)
(α/2 + β + δ) +

(
δ

η

)
(α+ β + δ/2) (by Lemma 3.4)

=
(α+ δ)(α/2 + β + δ/2)

η
+
αδ

η

=
(η − β)(η + β)

2η
+

(
√
αδ)2

η
(η = α+ β + δ)

≤ η2

2η
+

((α+ δ)/2)2

η
(by AM-GM inequality)

≤ (3/4)η .

For subproblem s = (G,P), define φ(s) to be the number of path-active vertices
in s. Define Φ(Ir) =

∑
s∈Ir φ(s), where Ir is the collection of subproblems at level r

in the flattened tree. Then we have the following. Applying Theorem 2.1 then gives
the main lemma.

Corollary 3.6. For any feasible collection Ir−1 of subproblems at level r − 1,
we have E[Φ(Ir)|Ir−1] ≤ (3/4)Φ(Ir−1).

Proof. Lemma 3.5 states that for each s ∈ Ir−1, we have E[φ(s1) + φ(s2)] ≤
(3/4)φ(s), where s1 and s2 are random variables for the (at most) two path-relevant
subproblems of s. The claim follows by linearity of expectation over all s.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-510 JEREMY T. FINEMAN

Lemma 3.7. Let Ĝ = (V̂ , Ê) be a directed graph, and consider any vertices u, v ∈
V such that there exists a directed path from u to v in Ĝ. Let S be the shortcuts
produced by an execution of Algorithm 1 and let n =

∣∣V̂ ∣∣. Then with probability at

least 1/2, there exists a directed path from u to v in GS = (V̂ , Ê ∪ S) consisting of
O(n1/ lg(8/3)) arcs.

Proof. Choose an arbitrary simple path P̂ from u to v in Ĝ. At most every
vertex is path active, so Φ(I0) ≤ n. By Theorem 2.1 with Corollary 3.6, we have
Pr {Φ(Ir+5) > (3/4)rn} < 1/2. Observe that Φ(Ir+5) is at least the number of bridge
nodes that are still active in round r+5, and each node on an active subpath is a bridge
node. Thus, by Lemma 3.3, running the algorithm to level r + 5 is enough to yield a
shortcut path length of at most O(2r) + Φ(Ir+5) ≤ O(2r) + (3/4)rn, with probability
at least 1/2. Setting both terms equal and solving for r gives r = log8/3 n. Thus,

with probability at least 1/2, the shortcut path has length O(2r) = O(2log8/3 n) =
O(n1/ lg(8/3)).

3.3. A tighter path-length bound (Lemma 1.1). This section tightens the
path-length bound to O(n2/3), thereby proving Lemma 1.1.

The main difference compared to section 3.2 is a better potential function as-
sociated with subproblems. The 3/4 bound reduction in the number of path-active
vertices, as stated in Lemma 3.5, is indeed tight in the worst case. But the worst
case only occurs when the number of ancestors is equal to the number of descendants.
When there is imbalance between the two, the reduction is better. Consider, for ex-
ample, the extreme that there are no descendants—then the number of path-active
vertices reduces by 1/2 according to Lemma 3.4.

It turns out that leveraging the numbers of ancestors α, bridges β, and descen-
dants δ is useful, but there is no requirement that the potential merely take the sum
of these three terms as in Lemma 3.5. In general, the potential function may be any
function of the terms. In particular, this section defines a potential function φ on
subproblems as follows:

(3.1) φ(s) =

{
0 if s is not path-relevant,

ψ(α, β, δ) otherwise,

where α = |Anc(G,P)|, β = |Bridge(G,P)|, δ = |Desc(G,P)|, and ψ is a function
that obeys certain properties defined next.

Definition 3.8. Let ψ : R≥0 × R≥0 × R≥0 → R≥0 be any function mapping
three nonnegative real numbers to a nonnegative real number. The function ψ is well-
behaved if the following apply:

(i) (Converting bridges to ancestors/descendants only helps.) ψ(α + k1, β, δ +
k2) ≤ ψ(α, β + k1 + k2, δ) for all k1, k2 ≥ 0.

(ii) (Bridges are a lower bound.) ψ(α, β, δ) ≥ β.
(iii) (Monotonicity.) ψ(α′, β′, δ′) ≤ ψ(α, β, δ) for all α′ ≤ α, β′ ≤ β, and δ′ ≤ δ.
(iv) (Partitionable.) For β1 > 0 and β2 > 0 (both strictly positive), ψ(α1, β1, δ1)+

ψ(α2, β2, δ2) ≤ ψ(α1 + α2, β1 + β2, δ1 + δ2).
(v) (Concavity.) Treating β and δ as constant, the resulting univariate function

with respect to variable α is concave. Similarly, treating α and β as constant,
the function on δ is concave.

A well-behaved function ψ is said to be c-reducing, for constant 0 < c < 1, if the

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-511

following holds for all η = α+ β + δ > 0:

(α/η) · ψ(α/2, β, δ) + (δ/η) · ψ(α, β, δ/2) ≤ c · ψ(α, β, δ) .

Finally, a well-behaved function ψ has σ-overhead, for σ ≥ 1, if ψ(α, β, δ) ≤ σ · η.

The function ψ(α, β, δ) = α+β+δ is well-behaved with overhead 1. As Lemma 3.5
shows, it is also (3/4)-reducing. The goal of this section is to first extend the analysis
to any c-reducing well-behaved function, and then to show that there exists a function
with c < 3/4.

Lemma 3.9. Suppose that there exists a c-reducing well-behaved ψ, and define φ
as in (3.1). Consider any path-relevant subproblem s = (G,P), and let s1 and s2

be random variables denoting any child path-relevant subproblems. Then E[φ(s1) +
φ(s2)] ≤ c · φ(s).

Proof. The outline of the proof is the same as that of Lemma 3.5. (1) Allow the
adversary to arbitrarily remove any vertices or arcs. By Definition 3.8(iii), removing
path-related vertices only reduces the potential. By Definition 3.8(i), removing rela-
tionships that thereby convert a bridge to an ancestor or descendant also can only
reduce the potential. (2) A path-related pivot is selected uniformly at random, first by
determining whether the pivot is an ancestor, bridge, or descendant, then by choosing
uniformly from that set. If a bridge is selected, there are no path-related subprob-
lems, so the resulting potential is 0. Otherwise, consider the expected reduction to
the number of path-active ancestors or descendants and the impact this reduction
has on the potential. This step is analyzed in more detail below. (3) Adversarially
partition the path-active vertices across up to two path-relevant subproblems. To be
path-relevant, there must be at least one vertex on the path and hence at least one
bridge. Thus Definition 3.8(iv) can be applied, and any partitioning only reduces the
potential further.

The remainder of the proof thus focuses on step (2). When the path-related pivot
is selected, let A = Anc(G,P) and α = |A|, let B = Bridge(G,P) and β = |B|, and
let D = Desc(G,P) and δ = |D|. Let η = α + β + δ. Let α′, β′, and δ′ be random
variables denoting the number of vertices in A, B, and D, respectively, that are also
path-active in any child subproblems. Note that as defined, α′ (and similarly δ′) does
not include any former bridges that become ancestors (or descendants)—those are all
counted in β′.

E[ψ(α′, β′, δ′)]

=

(
α

η

)
E[ψ(α′, β′, δ′)|x ∈ A] +

(
δ

η

)
E[ψ(α′, β′, δ′)|x ∈ D]

≤
(
α

η

)
E [ψ(α′, β, δ)|x ∈ A] +

(
δ

η

)
E[ψ(α, β, δ′)|x ∈ D]

(by Definitions 3.8(iii) and 3.8(i))

≤
(
α

η

)
ψ(E[α′], β, δ) +

(
δ

η

)
ψ(α, β,E[δ′])

(by concavity, i.e., Definition 3.8(v), and Jensen’s inequality)

≤
(
α

η

)
ψ(α/2, β, δ) +

(
δ

η

)
ψ(α, β, δ/2) (by Lemma 3.4 and Definition 3.8(iii))

≤ c · ψ(α, β, δ) (by definition of c-reducing).

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-512 JEREMY T. FINEMAN

To complete the proof, as already noted φ(s1) + φ(s2) ≤ ψ(α′, β′, δ′) by Defini-
tions 3.8(iv) and 3.8(i).

As before, define Φ(Ir) =
∑
s∈Ir φ(s), where Ir is the collection of subproblems

at level r in the flattened tree. Linearity of expectation yields the following.

Corollary 3.10. Suppose that there exists a c-reducing well-behaved function ψ.
Then, given any collection Ir−1 of subproblems, E[Φ(Ir)|Ir−1] ≤ c · Φ(Ir−1).

The following lemma, analogous to Lemma 3.7, completes the argument. Note
that the c-reducing function ψ is used only in the analysis, so exhibiting a better
function automatically strengthens the bound.

Lemma 3.11. Suppose that there exists some c-reducing well-behaved function ψ,
for constant c, with overhead σ.

Let Ĝ = (V̂ , Ê) be a directed graph, and consider any vertices u, v ∈ V such that
there exists a directed path from u to v in Ĝ. Let S be the shortcuts produced by an
execution of Algorithm 1 and let n =

∣∣V̂ ∣∣. Then with probability at least 1/2, there

exists a directed path from u to v in GS = (V̂ , Ê ∪ S) consisting of O((σn)1/ lg(2/c))
arcs.

Proof. The proof is similar to that of Lemma 3.7. Choose an arbitrary simple
path P̂ from u to v in Ĝ. Let Ir be the collection of path-relevant subproblems at
level r in the flattened tree. At most every vertex is path active, so α + β + δ ≤ n.
Since the function has overhead σ, it follows that Φ(I0) = ψ(α, β, δ) ≤ σn.

Let r′ = r + logc(1/2) + 2 = r + Θ(1). By Theorem 2.1 and Corollary 3.10,
Pr {Φ(Ir′) > crσn} < 1/2. That is, with probability ≥ 1/2, crσn > Φ(Ir′) =∑
s=(G,P)∈Ir′

φ(s) ≥
∑
s=(G,P)∈Ir′

|Bridge(G,P)|, where the last inequality follows

from Definition 3.8(ii).
Thus, by Lemma 3.3, running the algorithm to level r′ is enough to yield a shortcut

path of length at most O(2r
′
) + Φ(Ir′) ≤ O(2r) + crσn with probability at least 1/2.

Setting both terms equal and solving for r gives r = log2/c(σn). Substituting back,

with probability at least 1/2, the path length is O((σn)1/ lg(2/c)).

3.3.1. A better c-reducing function, and proof of Lemma 1.1. The main
idea of the potential is to capture any local imbalance between ancestors and descen-
dants. A good choice of function is

ψ(α, β, δ) =
√

(α+ β)(δ + β) ,

which captures imbalance through a geometric mean. The inclusion of β in both the
α and β terms is primarily meant to capture both the constraint that converting a
bridge to an ancestor/descendant does not increase the potential, and the constraint
that ψ(α, β, δ) ≥ β.

The remaining goal is to show that the function is a well-behaved, (1/
√

2)-
reducing function with overhead 1. As long as that is true, Lemma 3.11 directly
implies Lemma 1.1, because 1/ lg(2/(1/

√
2)) = 2/3.

Lemma 3.12. The function ψ(α, β, δ) =
√

(α+ β)(δ + β) is a well-behaved func-
tion.

Proof. Most of the requirements of being well-behaved are trivial. The only dif-

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-513

ficult component is proving Definition 3.8(iv), i.e., that for β1 > 0 and β2 > 0,√
(α1 + β1)(δ1 + β1) +

√
(α2 + β2)(δ2 + β2)

≤
√

(α1 + α2 + β1 + β2)(δ1 + δ2 + β1 + β2) .

Let yi = αi + βi for i ∈ {1, 2}, and let y = y1 + y2. Similarly let zi = δi + βi and
z = z1 + z2. The assumption that β > 0 implies that both y > 0 and z > 0. The
proof focuses on the more general statement that for all y = y1 + y2 and z = z1 + z2,√
y1z1 +

√
y2z2 ≤

√
yz.

Let εy = y1/y and εz = z1/z. It suffices to show for all 0 ≤ εy, εz ≤ 1 that
√
εyy · εzz +

√
(1− εy)y · (1− εz)z ≤

√
yz, or equivalently (dividing both sides by

√
yz) that

√
εyεz +

√
(1− εy)(1− εz) ≤ 1. Fix any εy (adversarially), treating

√
εy

and
√

1− εy as constants. The expression is then maximized by setting εz = εy, so
√
εyεz +

√
(1− εy)(1− εz) ≤ εy + (1− εy) = 1, which completes the proof.

Lemma 3.13. The function ψ(α, β, δ) =
√

(α+ β)(δ + β) is a (1/
√

2)-reducing,
well-behaved function with overhead 1.

Proof. Let η = α + β + δ. That ψ is well-behaved is given by Lemma 3.12.
Moreover, it has overhead 1 because

√
(α+ β)(δ + β) ≤ η. The remainder fo-

cuses on showing that for all η > 0, α
η

√
(α/2 + β)(δ + β) + δ

η

√
(α+ β)(δ/2 + β) ≤

1√
2

√
(α+ β)(δ + β).

Focus on one term at a time. The other term is symmetric. We have(
α

η

)√
(α/2 + β)(δ + β) =

(
α

η

)√
(1/2)

(
1 +

β

α+ β

)
(α+ β) (δ + β)

=

(√
(α+ β)(δ + β)√

2

)
α
√

1 + β
α+β

η

≤

(√
(α+ β)(δ + β)√

2

)
α
(

1 + β
2(α+β)

)
η

(because
√

1 + x ≤ 1 + x/2 for x ≥ 0)

≤

(√
(α+ β)(δ + β)√

2

)
α+ β/2

η
.

Adding both terms together, (α + β/2)/η + (δ + β/2)/η = η/η = 1, so we have that
their sum is at most 1/

√
2 ·
√

(α+ β)(δ + β), as desired.
Though not necessary for the lemma, we close the proof by observing that the

inequality α
η

√
(α/2 + β)(δ + β)+ δ

η

√
(α+ β)(δ/2 + β) ≤ 1√

2

√
(α+ β)(δ + β) is tight.

Consider β = 1 and α = δ ≈ η/2 in the limit that η approaches infinity. As η increases,
β’s impact on the expression decreases. We are thus left with 1

2

√
(α/2)δ+ 1

2

√
α(δ/2) ≈

1√
2

√
αδ

3.4. Runtime and number of shortcuts. This section completes the proof
of Theorem 3.1 by analyzing the running time and number of shortcuts added. As
stated, however, the running time of Algorithm 1 is not worst case, so it does not
meet the promise of a Monte Carlo algorithm.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-514 JEREMY T. FINEMAN

Algorithm 3: Modified sequential algorithm for shortcutting.

SeqSC2(G = (V,E))
1 if the recursion depth is lg n then return ∅
2 S := ∅
3 while V 6= ∅ do
4 select a vertex x ∈ V uniformly at random
5 R+ := R+(G, x)
6 R− := R−(G, x)
7 S := S ∪ {(x, v)|v ∈ R+} ∪ {(u, x)|u ∈ R−} // shortcuts

8 VF := R+\R− ; VB := R−\R+ ; VU := V \(R+ ∪R−)
9 S := S ∪ SeqSC2(G[VF]) ∪ SeqSC2(G[VB])

10 G := G[VU]

11 return S

This section instead analyzes Algorithm 3. Algorithm 3 is obtained from Algo-
rithm 1 by replacing one of the recursive calls (specifically SeqSC1(G[VU])) with a
loop. There is also a new base case after lg n levels of recursion to make the bounds
worst case, where (as always) n here refers to the number of vertices in the original
graph Ĝ. Aside from this one change, Algorithms 1 and 3 are equivalent.

The following lemma indicates that the main lemmas on path length (for example,
Lemma 3.11) still hold even with the truncated execution. More precisely, proof of
those lemmas relies only on the execution reaching a depth much less than lg n in the
flattened path-relevant tree.

Lemma 3.14. Consider an execution of Algorithm 1 and the corresponding flat-
tened path-relevant tree of Algorithm 2. When mapped to an execution of Algorithm 3
with the same random choices, the first lg n − 1 levels of the flattened tree all have
recursion depth less than lg n in Algorithm 3.

Proof. The flattened tree only merges some of the calls corresponding to G[VU].
Algorithm 3 merges all such nodes, which can only reduce the depth of nodes fur-
ther.

The next lemmas bound the number of shortcuts and running time.

Lemma 3.15. Consider a graph Ĝ = (V̂ , Ê), and let n =
∣∣V̂ ∣∣. Each execution of

Algorithm 3 creates O(n log n) shortcuts.

Proof. Consider a call to SeqSC2(G) onG = (V,E). Each shortcut added removes
a vertex: if, e.g., (x, v) is created, then either v ∈ VB or v ∈ VF , both of whose sets
are removed from G at the end of the iteration. Thus, there can be at most 2 |V |
shortcut arcs added.

There are potentially many recursive subproblems, but by the same argument
they are all disjoint subgraphs. Thus, the total number of arcs added at each level
of recursion is O(n). There are O(lg n) levels by construction, which completes the
proof.

Lemma 3.16. Consider a graph Ĝ = (V̂ , Ê), and let n =
∣∣V̂ ∣∣ and m =

∣∣Ê∣∣.
Algorithm 3 can be implemented to run in O(m log n) time.

Proof. The proof is similar to that of Lemma 3.15, getting O(m) total time at
each level of recursion, assuming that the call SeqSC2(G) can be made to run in
O(|V | + |E|) time. Given a pivot x ∈ V , it is straightforward to implement each

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-515

search, and to build the induced subgraphs, to run in time O(a) where a is the
number of arcs explored. Each arc is only explored by one search in each direction, so
the total number of arcs visited is O(|E|). Finally, sampling vertices can be achieved
by randomly permuting the vertices up front, iterating over that list, and checking
whether the vertex has already been visited by a search. This takes a total of O(|V |)
time.

Proof of Theorem 3.1. The full algorithm consists of (2+γ) lg n independent runs
of Algorithm 3. For each related pair u � v, each run has probability ≥ 1/2 of
reducing the distance between those vertices to O(n2/3) by Lemma 1.1. Thus, the
probability that all runs fail is at most 1/2(2+γ) lgn = 1/(n2nγ). Since there are at
most n2 related pairs, a union bound across runs gives a failure probability of 1/nγ

for the overall diameter. The running time and number of shortcuts are obtained by
multiplying the bounds from Lemmas 3.15 and 3.16 by the Θ(γ log n) runs.

4. An algorithm with distance-limited searches. This section presents a
modified algorithm that is more amenable to being parallelized. For now, this algo-
rithm can be viewed as a sequential algorithm—discussion of the parallel realization
is deferred to section 5. The main ideas are guided by certain sequential bottlenecks.
As in section 3, Ĝ = (V̂ , Ê) and n =

∣∣V̂ ∣∣ are used only to refer to the original graph.
There are two main obstacles to parallelizing Algorithm 3, but the first is more

serious. Finding the set R−(G, x) or R+(G, x) entails a graph search, which can have
linear span in a high-diameter graph. The solution for this problem is to modify the
algorithm to use a D-limited BFS , returning only the vertices within D hops of the
source x, but doing so introduces some other difficulties. This section thus focuses
on modifying the algorithm to work with distance-limited searches for appropriate
distance D.

The second obstacle is best exhibited by the loop in Algorithm 3. If there are
no arcs in the graph, for example, the loop requires Ω(n) iterations. The solution is
to perform multiple pivots in parallel, but in a controlled way that does not sacrifice
much performance. This second obstacle is commonly addressed in parallel algo-
rithms. Most related, Schudy [19] and Blelloch et al. [1] also use multiple pivots to
parallelize the divide-and-conquer algorithm for strongly connected components [4],
which is itself structurally identical to Algorithm 1. (Their algorithms, however, as-
sume reachability as a black box; they do not address the first challenge.)

The full algorithm is given in pseudocode as Algorithm 5. Subsection 4.1 walks
through the ideas incrementally, guided by rough intuitions behind the analysis. The
key performance lemmas, analogous to Lemma 1.1, are the following. The first lemma
states that the resulting path is short enough; the second lemma bounds performance
in number of shortcuts, total work performed, and maximum distance searched.

Lemma 4.1. Let Ĝ = (V̂ , Ê) be a directed graph, let n =
∣∣V̂ ∣∣, let m =

∣∣Ê∣∣,
and assume without loss of generality that m ≥ n/2. There exist settings of D =
Θ(n2/3 log n) and other constant parameters in Algorithm 5 such that the following
holds.

Consider a directed u-to-v path P̂ with length(P̂) ≤ D. Let S be the shortcuts
produced by an execution of Algorithm 5 on Ĝ. Then with probability at least 7/10,
there exists a path from u to v in GS = (V̂ , Ê ∪ S) having length at most D/2.

Lemma 4.2. Let Ĝ = (V̂ , Ê) be a directed graph, let n =
∣∣V̂ ∣∣, let m =

∣∣Ê∣∣,
and assume without loss of generality that m ≥ n/2. There exist settings of constant

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-516 JEREMY T. FINEMAN

parameters in Algorithm 5, consistent with the settings in Lemma 4.1, such that the
following holds.

Consider an execution of Algorithm 5 on Ĝ and let S be the shortcuts produced.
Then with probability at least 9/10, (1) the number of shortcuts produced is |S| =
O(n log2 n), (2) the total number of vertices and arcs visited by searches is O(m log2 n),
and (3) the maximum distance used for any search is O(n2/3 log12.5 n).

By a union bound, with at least constant probability, Lemmas 4.1 and 4.2 both
enter the success cases. Thus, using multiple runs of Algorithm 5 (see section 4.2),
aborting each run immediately if the work or shortcut bound of Lemma 4.2 is violated,
yields the following.

Theorem 4.3. There exists a randomized algorithm that takes as input a directed
graph Ĝ = (V̂ , Ê) and uses distance-limited searches with the following guarantees.
Let n =

∣∣V̂ ∣∣, m =
∣∣Ê∣∣, and without loss of generality m ≥ n/2. Let γ ≥ 1 be

a parameter controlling failure probability. Then (1) the maximum distance used for
any search is O(n2/3 log12.5 n); (2) the algorithm produces a size-O(γn log4 n) set S∗ of
shortcuts; (3) the total number of vertices and arcs visited by searches is O(γm log4 n+
γ2n log8 n), and the searches dominate the overall number of primitive operations
performed; and (4) with failure probability at most 1/nγ , the diameter of GS∗ is
O(n2/3 log n),

The remainder of this section is organized as follows. Subsection 4.1 describes
the main subroutine, namely, Algorithm 5. Subsection 4.2 extends the algorithm to
perform multiple passes, thereby obtaining Theorem 4.3. Lemma 4.12 and subsec-
tion 4.9 capture the bulk of the analysis, proving Lemma 4.1. Subsection 4.10 finishes
the proof of Lemma 4.2 by analyzing the number of shortcuts and work performed.

Updated notation. If there exists a path of length at most d from u to v, then
u �d v. If u �d v or v �d u, then u and v are d-related . All other notation and
definitions in section 2 that depend on � (i.e., successors, predecessors, ancestors,
descendants, bridges) are augmented with the term “d-limited” and a subscript d
to indicate that the � in the definition should be replaced by �d. For example,
R+
d (G, x) = {v|x �d v} denotes the d-limited successors of x.

4.1. The algorithm. Algorithm 4 gives an overview of the algorithm, with
details omitted. Full pseudocode with more details is provided in Algorithm 5.

Algorithm 4 is presented with a recursive structure analogous to Algorithm 1,
except that multiple pivots are considered in a single call. To capture the details
(Algorithm 5) about pivot sets, however, it is more convenient to express the algorithm
by a loop as in Algorithm 3.

The algorithm includes several key features, including distance-limited searches,
duplicated fringe vertices, random search distances, and multiple pivots. Each of the
features is explained incrementally and in more detail next, thinking in terms of the
sequential algorithm as the starting point. The multiple pivots are the last feature
added, so the reader should ignore the j’s in the subscripts until that point.

Distance-limited searches. Recall that the goal is to replace the searches
R+(G, x) in Algorithm 3 with D-limited searches for some D = Õ(n2/3). The good
news is that it is still possible to show progress on the number of ancestors, analogous
to Lemma 3.4. Informally, if the pivot is chosen randomly from a D-limited ancestor,
then the number of D-limited ancestors drops by 1/2 in expectation.

The bad news is that when partitioning the graph with D-limited searches, a

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-517

Algorithm 4: Outline of the distance-limited algorithm.

ParOverview(G = (V,E))
1 Select a group X of random pivots.
2 Choose a random distance to search.
3 Core vertices. Perform distance-limited forward and backward “core” searches

in G from each pivot xj ∈ X.
Add shortcuts between each pivot and the vertices found in its searches.
The searches partition the vertex set into the following 2 |X|+ 1 subsets:

• For each j, VB,j denotes the vertices (i) not reached by any core searches
from earlier pivots, and (ii) reached by only the backward search from xj .

• For each j, VF,j denotes the vertices (i) not reached by any core searches
from earlier pivots, and (ii) reached by only the forward search from xj .

• VU denotes vertices not reached by any core searches.
4 Fringe vertices. Extend each search to a slightly larger distance, again adding

shortcuts from/to any vertices reached.
For each pivot xj , F

−
j denotes the “fringe vertices” reached by xj ’s extended back-

ward search but not the core backward search. Similarly, F+
j denotes the vertices

newly discovered by the extended forwarded search.
5 foreach xj ∈ X do
6 recurse on ParOverview(G[VB,j ∪ F−j]) and ParOverview(G[VF,j ∪ F+

j])

7 recurse on ParOverview(G[VU])

particular path may be shattered into far more than two pieces (contrary to Lemma 3.2
with unlimited searches), and as such the O(2r) term of Lemma 3.3 does not readily
apply. For example, consider a path P = 〈v0, v1, . . . , v`〉 and single ancestor pivot x.
It is possible to construct a graph such that x �D vk for even k, but x 6�D vk for
odd k. Thus, all the even vertices on P would be in VF , and all the odd vertices
would be in VU , splitting the path into Θ(`) pieces. This splitting violates the general
assumption that each path-relevant subproblem contains a single subpath to shortcut.
In contrast, when the search is not D-limited, x � vj implies x � vj for all k ≥ j.

Fringe vertices and core vertices. The solution is to extend the search a
little further and duplicate vertices. That is, start with a distance of dD for some
d = Õ(1). Any vertices reached this way are called core vertices, and they are treated
similarly to reached vertices in Algorithm 3. Then extend the search a little further,
to a distance of (d+ 1)D. Vertices discovered in the extended search are called fringe
vertices, denoted by F+ and F− in the code. The graph is partitioned according to
the core searches as before, but the fringe vertices and incident arcs are duplicated
and included in two subproblems. Specifically, the three subproblems are now G[VU],
G[VB∪F−], and G[VF ∪F+], where VU , VB , and VF are defined as before with respect
to core searches.

The addition of fringe vertices fixes the path-splitting problem, giving an analogue
of Lemma 3.2, at least for paths of length ` ≤ D. Consider again the bad example
where x �dD vk if and only if k is even. All of the even vertices are core vertices,
but now all of the odd vertices are fringe vertices. Thus, the entire path is indeed
contained in the subgraph G[VF ∪ F+].

Random distances. Unfortunately, duplicating fringe vertices introduces an-
other problem—path-related fringe vertices can be active in multiple subproblems.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-518 JEREMY T. FINEMAN

Specifically, it is not hard to construct examples such that for a given pivot (i) al-
most all of the path-related vertices are fringe vertices, and (ii) most of those vertices
are active in two path-relevant subproblems. As such, the potential φ of a subprob-
lem could increase dramatically when recursing, destroying the progress arguments of
section 3.

The solution is to select d (for search distance dD) randomly from a range of
NL − 1 consecutive values for some NL = Õ(1) to be chosen later. (Read NL as
“number of layers.”) Any vertices in the fringe for distance dD are in the core for
distances d′D, d′ > d. Thus, on average, only an O(1/NL) fraction of vertices are on
the fringe. For large enough NL, the addition of these fringe vertices does not impact
φ(s) much.

Decreasing distances. The progress arguments on the potential of active ver-
tices shall now be with respect to a particular distance. As such, it is important that
distances searched never increase. The distance d is always selected from an interval
of size NL − 1 possibilities, but at some offset depending on recursion depth and,
in the more precise Algorithm 5, the iteration number. (The larger the depths, the
smaller the offset.)

Specifically, for any particular iteration of the for loop in Algorithm 5, the distance
multiplier d is selected from some range {dmin, dmin + 1, . . . , dmax}, with dmax = dmin+
NL − 1. The offset dmin decreases by NL with each iteration, so there is no overlap
between consecutive intervals. The offset decreases to the next multiple of NkNL
when recursing, where Nk is an upper bound on the number of iterations needed.7

More precisely, let h be the number of levels of recursion yet to perform, and i the
iteration number. Then dmin = 1 + hNkNL − iNL.

As long as h = Õ(1), Nk = Õ(1), and NL = Õ(1), the maximum distance searched
is Õ(D) = Õ(n2/3), as desired.

Searches from multiple pivots. In addition to being more parallelizable,
searching from multiple pivots is also necessary to keep the maximum number of
iterations Nk small. These details are expressed only with respect to Algorithm 5,
not the overview.

For each recursive call to ParSC, pivots are chosen as follows. Before performing
any iterations, randomly permute the vertices and mark all vertices as live; being live
indicates that the vertex is still in the graph that remains in the current iteration.
Next, partition the sequence into groups X1, X2, . . . , X2k, for some value k discussed
below. For the ith iteration, the pivots selected are those vertices in group Xi that are
still live. At the end of each iteration, mark any vertices no longer in the remaining
graph (i.e., those reached by any core searches) as dead.

There are three important features in the sizing of the subsequences Xi, each
important to some aspect of the analysis. (1) There should not be too many groups,
as the maximum number Nk ≥ 2k of groups impacts the maximum search distance.
(2) The group sizes should be no more than geometrically increasing, i.e., |Xi+1| / |Xi|
should be upper bounded by a constant. This feature is the standard one, and it en-
sures that each vertex is not reached by too many searches in a single iteration. (3) The
size ofXi should be small relative to the total number of remaining pivots. Specifically,
whenever |Xi| > 1, |Xi| /

∑2k
j=i+1Xj should be upper bounded by some small value.

7The larger decrease is not strictly necessary; decreasing the offset by NL when recursing would
also suffice. The larger decrease was chosen just so dmin could be expressed in closed form by level
of recursion and iteration within that recursive call.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-519

Algorithm 5: Shortcutting algorithm with distance-limited searches.

ParSC(G = (V,E))
/* Here n =

∣∣V̂ ∣∣ denotes the size of the original graph, which is

constant with respect to this algorithm. Similarly the values

επ, Nk, NL, and D are also constants, to be set later. */

1 Let h = lg n− depth, where depth is the current recursion depth
2 if h = 0 then return ∅
3 S := ∅
4 randomly permute V , giving a sequence X of all vertices. Mark each xj ∈ X live
5 split X into subsequences X1, X1, . . . , X2k, with |Xi| = |X2k−i+1| = b(1 + επ)ic for

i < k and |Xk| , |Xk+1| ≤ b(1 + επ)kc
6 for i := 1 to 2k do
7 dmin = 1 + hNkNL − iNL // offset

dmax = dmin +NL − 1
8 choose random d ∈ {dmin, dmin + 1, . . . , dmax − 1}
9 foreach live xj ∈ Xi do

10 R−j := R−dD(G, xj)

R+
j := R+

dD(G, xj) // core vertices

11 F−j := R−(d+1)D(G, xj)\R−j ;

F+
j := R+

(d+1)D(G, xj)\R+
j // fringe vertices

12 S := S ∪
{

(xj , v)|v ∈ R+
j ∪ F

+
j

}
∪
{

(u, xj)|u ∈ R−j ∪ F
−
j

}
// add shortcuts

13 append a tag of j to all vertices in R+
j ∪R

−
j

14 foreach live xj ∈ Xi do
15 remove vertices with tag < j from R+

j , R−j // first core search wins

16 VF,j := R+
j \R

−
j ; VB,j := R−j \R

+
j

17 S := S ∪ ParSC(G[VF,j ∪ F+
j], h− 1) ∪ ParSC(G[VB,j ∪ F−j], h− 1)

// include fringe

18 mark all vertices in
⋃
j(R

+
j ∪R

−
j) as dead in X

19 VU := V \
⋃
j(R

+
j ∪R

−
j)

20 G := G[VU]

21 return S

To satisfy all three of these features, the group sizes are specified with respect
to parameter επ (π for permutation), to be chosen later. Roughly speaking, the
first k groups have sizes geometrically increasing by (1 + επ), and the remaining k
groups have sizes geometrically decreasing by (1 + επ). More precisely, for i < k,
|Xi| = |X2k−i+1| = b(1 + επ)ic. For the middle two groups, the size is upper bounded

by b(1 + επ)kc. The value k is the smallest value such that 2
∑k
i=1b(1 + επ)ic ≥ |V |.

4.2. Full diameter-reduction algorithm and proof of Theorem 4.3. Like
the algorithm in section 3, achieving diameter reduction with high probability re-
quires multiple passes of Algorithm 5. But now more passes are necessary. The full
algorithm, shown in Algorithm 6, is as follows. Perform Θ(log n) iterations. In each
iteration, perform Θ(γ log n) independent executions of Algorithm 5 on the current

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-520 JEREMY T. FINEMAN

Algorithm 6: Diameter reduction with distance-limited searches.

ParDiam(Ĝ = (V̂ , Ê, γ))
/* The value γ ≥ 1 controls failure probability. */

1 G′ = (V ′, E′) := Ĝ
2 for i := 1 to Θ(log n) do
3 foreach j ∈ {1, 2, . . . ,Θ(γ log n)} do
4 Sj := ParSC(G′, lg n), aborting if number of shortcuts or work exceeds

Lemma 4.2

5 E′ := E′ ∪
(⋃

j Sj

)
// add more arcs to G′

6 return G′

graph. Add to the graph all of the shortcuts produced thus far, and continue to the
next iteration on the updated graph.

The main reason for the extra passes of Algorithm 5 is that, due to the Õ(D)-
limited searches, the analysis only considers paths of length D. The distance D is
chosen to be large enough so that each iteration is enough to reduce the length of the
path to D/2, with high probability, but a longer path needs to be subdivided.

Proof of Theorem 4.3, assuming Lemmas 4.1 and 4.2. Consider any two
vertices u ≺ v ∈ V . Let ∆i denote the length of the shortest path from u to v in
the graph after iteration i of the outer loop of Algorithm 6. The main claim is that
with probability at least 1 − 1/n2+γ , for all i we have ∆i ≤ D · max

{
n/(D2i), 1

}
.

For i = Ω(log n), i.e., when the main procedure returns, this reduces to ∆i ≤ D.
Finally, taking a union bound across up to n2 pairs u, v, the diameter bound is met
with failure probability 1/nγ .

The proof is by induction on i. For i = 0, the length of the shortest path is
at most n, so ∆0 ≤ n = D · n/(D20). For the inductive step (going from itera-
tion i to i + 1), consider the shortest path P from u to v in the current graph. If
length(P) ≤ D, then the path is already short enough. Otherwise, subdivide the path
into at most (n/(D2i)) subpaths, each of length at most D. Consider each subpath.
By Lemma 4.1, a single execution of Algorithm 5 shortens the subpath’s length to
D/2 with constant probability. Thus, for failure probability 1/n4+γ can be achieved
by repeating for 4 lg n + γ lg n runs. Taking a union bound over all < n subpaths
gives failure probability for this iteration of at most 1/n3+γ . If no failure occurs,
concatenating the subpaths yields a path of length (D/2) · n/(D2i) = n/(2i+1), as
desired.

Taking a union bound for failures across all Θ(log n) iterations of the outer loop,
the failure probability overall for this pair is at most 1/n2+γ .

The search distance follows directly from Lemma 4.2. The number of shortcuts
follows from Lemma 4.2 by multiplying by the number of Θ(γ log n) runs. As for
the bound on total number of arcs visited, observe that the graph size is at most
Ê + O(γn log4 n) at the end. Thus, by Lemma 4.2, each run of Algorithm 5 visits
O((m+γn log4 n)(log2 n)) = O(m log2 n+γn log6 n) arcs. Multiplying by Θ(γ log2 n)
runs completes the proof.

4.3. Notation and shorthand. It is often convenient to refer to iterations of
the loop in Algorithm 5. During iteration i, quite a bit happens: some pivots are
processed, some searches are performed, some induced subgraphs are built, etc., and

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-521

the claims throughout refer to those objects. Defining every term concretely in every
lemma statement or proof gets tedious and unwieldy. Instead, this paper adopts
some notational conventions consistent with the pseudocode in Algorithm 5, using
the variables to implicitly adopt the meaning of the code.

Concretely, for iteration i on graph G = (V,E), the following notation is used with
the same meaning as the pseudocode: h, Xi meaning the group of pivots; dmin and
dmax meaning the appropriate minimum and maximum distance for that iteration;
and d indicating the specific random distance chosen. Moreover, for each xj ∈ Xi,
whenever the notation R+

j , R−j , F+
j , F−j , VF,j , or VB,j appears, they should also be

interpreted to have the meaning laid out in the pseudocode.
The minimum and maximum distances dmin and dmax, respectively, of the itera-

tion are also useful for characterizing vertex relationships as follows.

Definition 4.4. Consider any iteration i of Algorithm 5. To unclutter the no-
tation, �min is used as a shorthand for �dminD, where dmin = 1 + hNkNL − iNL.
Similarly, �max is a shorthand for �dmaxD.

• Vertices u and v are never related if u 6�max v and v 6�max u.
• Vertices u and v are partly related if u �max v or v �max u.
• Vertices u and v are fully related if u �min v or v �min u. If u and v are

fully related, then they are also partly related.
When comparing a vertex v and a path P , the same terms apply in the natural way.
Specifically, if v is fully related to at least one vertex in P , then v and P are fully
related. Similarly, if v is partly related to at least one vertex in P , then v and P are
partly related. They are never related if all vertices in P are never related to v.

4.4. Setup and the path-relevant tree. The definition of path-relevant sub-
problems and the path-relevant tree differ slightly from section 3.1 to account for the
key differences in the algorithm. But the initial choices here are analogous.

A path-relevant subproblem, denoted by the pair (G,P), corresponds to an itera-
tion of the for loop in Algorithm 5 (matching the recursion in Algorithm 4); G denotes
the graph at the start of the iteration, and P is a nonempty subpath to shorten.

The following lemma, analogous to Lemma 3.2, considers the effect of an iteration
on the path-relevant subproblems. Unlike Lemma 3.2, there may be more than two
path-relevant subproblems.

Lemma 4.5. Let P = 〈v0, . . . , v`〉 be a nonempty path in G = (V,E) with ` ≤ D
and consider the effect of a single iteration of the for loop in Algorithm 5. The
following are the outcomes depending on group of pivots Xi and random distance d:

1. (Base case.) If Xi contains a live dD-limited bridge of P , then the shortcuts
(v0, x) and (x, v`) are created. There are no path-relevant subproblems.

2. If none of the live pivots in Xi is dD-related to P , then P is entirely con-
tained in G[VU]; the one path-relevant subproblem is thus (G[VU], P), the next
iteration.

3. Suppose that k of the live pivots in Xi are dD-related to P but that none
of them is a bridge. Let x1, . . . , xk denote these pivots. Then P can be
partitioned into k subpaths P0, P1, . . . , Pk (listed in no particular order) such
that (i) P0 is fully contained in G[VU], and (ii) each Pj is fully contained in
either G[VF,j ∪ F+

j] or G[VB,j ∪ F−j]. It follows that (G,P) gives rise to at
most k + 1 path-relevant subproblems.

Proof. (Case 1.) Suppose that some dD-related bridge xj is selected. Then by
definition there exist vertices va, vb ∈ P such that va �dD xj �dD vb. Since the path

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-522 JEREMY T. FINEMAN

has length at most D, it follows that v0 �(d+1)D xj �(d+1)D v`. Since v0 and v` are
within the fringe search distance, and shortcuts are added to all served vertices, the
claimed shortcuts are added.

(Case 2.) None of the vertices is dD-related to P . Then none of the vertices in
P is removed from VU .

(Case 3.) Consider the dD-related pivots in rank order and the effect of processing
each subsequent pivot, where P0 is updated as each pivot is incorporated. Initially,
P0 = P . For the inductive step, suppose that the claim is true for the first j − 1
related pivots.

Consider the jth pivot xj . First, observe that because the searches are prioritized
in pivot order, earlier core and fringe neighborhoods are unaffected by xj . Thus, the
only change due to this pivot is to P0.

Let P0 = 〈va, . . . , vc〉 be the subpath just before processing pivot xj . Suppose
that xj is a dD-limited ancestor. (The case for a descendant is symmetric.) Then
there exists an earliest vertex vb on P such that xj �dD vb. Since vb is the earliest
such vertex, and xj is not a bridge, no vertex on P before vb is in a core search from
xj . It follows that the prefix 〈va, . . . , vb′−1〉 of P0, where b′ = min {b, c}, remains
in VU after processing xj . Since P has length ` ≤ D, xj can reach all vertices on
〈vb, vb+1, . . . , v`〉 by a (d+ 1)D-limited search. It follows that the suffix 〈vb′′ , . . . , vc〉
of P0, where b′′ = max {a, b}, is fully contained in G[VF,j ∪ F+

j].

As in section 3, the bulk of the analysis is with respect to the flattened path-
relevant tree. The big question is when nodes should be flattened.

The most natural choice—flatten when case 2 applies—turns out not to work.
The issue is the interaction between the two types of random choices. For some
components of the analysis, it is convenient to leverage the fact that pivots are chosen
uniformly at random. For other components, it is convenient to leverage the uniformly
random distances. Conditioning on the assumption that a search from a pivot actually
reaches the path at the chosen distance, however, biases those distributions in ways
that are difficult to quantify.

Instead, interpret the random processes surrounding an iteration as follows:
1. First, reveal only how many live pivots xj ∈ Xi are partly related to the

path. Flatten any iterations in which all pivots are either dead or never path
related. An equivalent algorithm view is to repeatedly process groups until
finally reaching an Xi that contains at least one partly path-related pivot.
Pessimistically charge for the path being split into k + 1 path-relevant sub-
problems, where k is the number of partly path-related pivots.

2. Next, reveal the pivots. This step is enough to bound the progress on potential
with respect to core nodes.

3. Finally, reveal the random distance and bound the impact of fringe nodes.
The following lemma, analogous to Lemma 3.3, follows immediately.

Lemma 4.6. Consider any graph Ĝ = (V̂ , Ê) and any path P̂ : u v with
length(P) ≤ D. Let n =

∣∣V̂ ∣∣. Next consider an execution of Algorithm 5, and let S
denote the set of shortcuts produced by the execution.

Choose any level r ≤ lg n to analyze. Let I0, I1, . . . , Ir denote the collection of
path-relevant subproblems at the first r levels in the flattened tree. Let φ(s) be any
function on subproblems s = (G,P) satisfying φ(s) ≥ length(P), and let Φ(Ir) =∑
s∈Ir φ(s). Then there is a u-to-v path in GS = (V̂ , Ê ∪ S) of length at most

O(
∑r
j=0 |Ij |+ Φ(Ir)).

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-523

Proof. A simple induction over levels shows that all vertices on path P̂ belong to
either a subpath in Ir, or to a subpath at level < r that has been shortcut to 2 hops.
There thus exists a path that consists of the concatenation of any 2-hop bypasses with
any subpaths that survive to level r in the tree.

Unlike Lemma 3.3, where the number of subproblems at level r is O(2r) in the
worst case, here the total number of subproblems is also a random variable. As such,
we must prove not only that the potential Φ reduces sufficiently fast (section 4.8), but
also that the number of subproblems is small (section 4.6).

4.5. Bounds on number of vertices searched. Because the algorithm now
searches from multiple pivots, vertices can be reached by multiple searches in a single
path-relevant subproblem. These overlapping searches impact the size of the flattened
path-relevant tree (Lemma 4.6), the number of fringe vertices, and the overall work
performed. This section proves bounds that help to limit the negative impact of these
effects.

The main observation is that with high probability each surviving vertex does not
have too large a dmaxD-related neighborhood. As such, no vertex is reached by very
many searches. To avoid any dependencies introduced by the fact that the analysis
only focuses on iterations that include at least one partly path-related pivot, the
failure case is lifted to the following definition. The full performance theorem must
also include the impact of a failure occurring anywhere.

Definition 4.7. Consider a call to ParSC(G = (V,E)) and iteration i within

the call. Let y =
∑i−1
i′=1 |Xi′ | denote the number of candidate pivots processed before

iteration i begins. Let Gi = (Vi, Ei) be the subgraph remaining at the start of the ith
iteration. Let τ = |V | lnn/y, where n =

∣∣V̂ ∣∣ is the size the full graph.
A γ-neighborhood failure for iteration i is said to occur if there exists a v ∈ Vi

such that
∣∣R−dmaxD

(Gi, v)
∣∣ > γτ or

∣∣R+
dmaxD

(Gi, v)
∣∣ > γτ .

The notion of neighborhood failures is used purely to drive the key lemmas of this
section, each of which is conditioned on no neighborhood failures. The probability of
such a failure occurring is bounded at the end of the section.

The next lemma says that, with high probability, no vertex is reached by more
than O(log n) searches. This lemma is used to bound the total work performed as
well as the number of fringe vertices.

Lemma 4.8. Consider any iteration i, suppose that there is no γ-neighborhood
failure for i, and let Xi be the random set of pivots selected in iteration i. Suppose
also that επ ≤ 1 and γ ≥ 1.

Then with failure probability 1/nΘ(γ), no vertex is dmaxD-related to more than
O(γ log n) live pivots in Xi.

Proof. Use G = (V,E) to refer to the graph at the beginning of the call, before
the first iteration of the loop. Let y be the number of pivots considered before the
iteration in question, and let v be a vertex to analyze. By choice of επ, |Xi| ≤ 3y.
(It can only be this large due to roundoff.) By assumption, v has O(γ |V | log n/y)
dmaxD-limited predecessors and successors at the start of the iteration.

There are two cases. If y > |V | /8, then O(γ |V | log n/y) = O(γ log n). Searching
from every remaining vertex would thus only result in O(γ log n) searches reaching v.

If y ≤ |V | /8, then y + |Xi| ≤ |V | /2. For every pivot position xj ∈ Xi, there are
thus at least |V | /2 options to draw from. So we have Pr {xj live and xj �dD v} =
O(γ |V | log n/(y |V |)) = O(γ log n/y) = O(γ log n/ |Xi|), where the last step follows

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-524 JEREMY T. FINEMAN

from |Xi| ≤ 3y. Applying a Chernoff bound across all |Xi| pivot positions, the number
of searches that reach v is O(γ log n) with failure probability 1/nΩ(γ). To complete
the proof, take a union bound across all v.

Fringe searches. The next lemma bounds the number of fringe vertices and arcs
explored in a single iteration i. Note that a particular vertex may be a fringe vertex
for multiple searches. The lemma counts the total number of times that each vertex
appears on the fringe. Similarly, arcs may be explored by multiple fringe searches,
but just once per search. (An arc (u, v) is explored by xj ’s fringe search if either u or
v is a fringe vertex.)

The impact of fringe searches is important in two places. To bound progress with
respect to potential, we care only about fringe vertices that are also path related. To
bound total work, we care about all fringe vertices. The sets V ′ and E′ model in the
lemma captures both of these options.

Lemma 4.9. Consider an iteration i and NL ≥ 2. Assume that no γ-neighborhood
failure has occurred for iteration i for large enough choice of constant γ. Let V ′ and
E′ denote any subset of vertices and arcs, respectively, that remain in the graph at
the start of iteration i.

Suppose that distance multiplier d is chosen uniformly at random from NL−1 op-
tions. Then the total number of fringe vertices from V ′ is O(|V ′| log n/NL) in expecta-
tion. Similarly, the total number of arcs explored by fringe searches is O(|E′| log n/NL)
in expectation.

Proof. By Lemma 4.8, with high probability each vertex in V ′ is dmaxD-related
to at most O(log n) pivots and hence reached by at most O(log n) searches. A failure

event can only increase the expectation by an additive Pr {failure}·
∣∣V̂ ∣∣2 ≤ (1/nγ)n2 �

log n for appropriate choice of constant γ in the high-probability bound. For the
remainder, fix any (adversarial) set of pivots subject to the constraint that at most
O(log n) of them are dmaxD-related to each vertex in V ′.

Consider any v ∈ V ′ and pivot xj . Let Y vj be an indicator random variable for
the event that v is on xj ’s fringe, where Y vj = 0 if xj and v are never related. For

a partly related xj , v is only on the fringe at one distance, so Pr
{
Y vj
}
≤ 1/(NL −

1) ≤ 2/NL. The total number of times v is on the fringe is thus E[
∑
xj∈Xi

Y vj] =

O(log n) ·(2/NL) = O(log n/NL). Summing across all v gives E[
∑
v∈V ′

∑
xj∈Xi

Y vj] =

O(|V ′| log n/NL).
The same argument applies to arcs, observing that the arc is explored whenever

its endpoints are at the right distance.

Number of subproblems. The following is used to bound the expected fanout of
nodes in the flattened path-relevant tree.

Lemma 4.10. Consider any path-relevant subproblem (iteration i), and suppose
that no γ-neighborhood failure occurs for i.

Let z denote the number of partly path-related pivots selected in this iteration.
Then E[z|z ≥ 1] ≤ 1 +O(επ log n).

Proof. Let G = (V,E) denote the graph before the first iteration of the loop in
the containing call. By assumption, v has O(γ |V | log n/y) dD-limited predecessors
and successors, where y is the number of pivots processed before this iteration.

Since z ≤ |Xi|, the claim is trivial for |Xi| = 1. Suppose for the remainder that
|Xi| > 1. Consider the suffix X ′i of pivots following the first partly path-related pivot.
All pivots before that one may be chosen adversarially.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-525

Let y′ = |V | − y − |Xi| denote the number of pivots to process strictly after this
iteration. A key observation is that, except for the first and last Θ(1/επ) iterations
(for which |Xi| = 1), |Xi| = O(y′επ) and symmetrically |Xi| = O(yεπ). The same
bounds also apply to |X ′i|.

If y > |V | /8, then O(γ |V | log n/y) = O(log n), meaning that v has only O(log n)
dD-limited predecessors or ancestors remaining in total. In expectation, X ′i includes
at most a X ′i/(X

′
i+y

′) ≤ X ′i/y′ = O(επ) fraction of them. Thus, the expected number
of partly path related pivots in X ′i is O(επ log n).

If y ≤ |V | /8, let Yj be an indicator random variable for the event that xj �dD
v. Since there are Ω(|V |) pivots to choose from, Pr {Yj} = O(|V | log n/(y |V |)) =
O(log n/y). It follows that E[

∑
xj∈X′i

Yj] = |X ′i| ·O(log n/y) = O(επ log n).

Finally, the following lemma bounds the probability of a γ-neighborhood failure
occurring.

Lemma 4.11. Consider a call ParSC(G = (V,E)). The probability of any γ-
neighborhood failure occurring during this call is at most nγ−3

Proof. Fix an iteration i and vertex v ∈ V to analyze up front. Let y, Gi, and τ
be as defined in Definition 4.7. The proof focuses on bounding the probability that
v survives to the ith iteration and

∣∣R−dmaxD
(Gi, v)

∣∣ > γτ . Specifically, we shall show
that the failure probability for v at iteration i is at most 1/nγ . Taking a union bound
across both direction, n vertices, and ≤ n iterations completes the proof.

All searches before iteration i have distance larger than dmaxD. Moreover, arcs
are not added to the graph of the next iteration, so the number of dmaxD-limited
predecessors of v can only decrease or stay the same with each iteration. Thus, if v is
to end with more than γτ live predecessors, then more than γτ of the vertices from
the initial set R−dmaxD

(G, v) of predecessors must remain live throughout. The goal is
thus to bound the probability that this event can occur without knocking v out of Vi.

For y < γ lnn, the claim is vacuous (γτ ≥ γ(|V | lnn)/(γ lnn) = |V | in this case).
Suppose instead that y ≥ γ lnn. Let x1, x2, . . . , xy denote the sequence of pivots
chosen before iteration i begins. Consider selecting each of them at random in turn.
For each xj , there are at most |V | remaining choices. While the number of dmaxD-
limited predecessors is above threshold, we thus have Pr {xj live and xj �dmaxD v} ≥
γτ/ |V | = γ lnn/y. If any such pivot is selected, v would be included in a core
search and thus not in Vi. The probability that no such pivot is selected is at most∏y
j=1 Pr {xj dead or xj 6�dmaxD v} ≤ (1− γ lnn/y)y ≤ 1/eγ lnn = 1/nγ .

4.6. Number of nodes in the flattened tree. We are now ready to bound
the number of nodes in the flattened tree.

Lemma 4.12. Consider any graph Ĝ = (V̂ , Ê) and any path P̂ : u v with
length(P) ≤ D. Let n =

∣∣V̂ ∣∣. Consider an execution of Algorithm 5 with parameter

επ ≤ 1/ lg3 n. Let r ≤ lg n be any level to analyze and assume that no γ-neighborhood
failure occurs in these first r levels.

Let I0, I1, . . . , Ir denote the collection of path-relevant subproblems in the first r
levels of the flattened tree. With failure probability at most 1/10,

∑r
j=0 |Ij | = O(2r).

Proof. Consider a particular level j. The goal is to show that with failure proba-
bility at most 1/(10 lg n), we have |Ij+1| ≤ 2(1 +O(1/ log n)) |Ij |. By a union bound,
the probability that a failure occurs at any level is thus at most 1/10, and as long as
no failure occurs, the total number of subproblems is (2(1+O(1/ log n)))r = O(2r) for
r = O(log n). The remainder focuses on bounding the relative sizes between two levels.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-526 JEREMY T. FINEMAN

Consider Ij and number the subproblems 1, 2, . . . , q. Let zt be random variables
denoting the number of partly path-related pivots selected in the tth subproblem, and
let z′t = zt − 1. By Lemma 4.5, each pivot incurs one additional subproblem. Thus,
the number of subproblems at level j + 1 is at most

∑q
t=1(1 + zt) =

∑q
t=1(2 + z′t) =

2q +
∑q
t=1 z

′
t. Let Z =

∑q
t=1 z

′
t, meaning that the number of subproblems is 2q + Z.

Note that q is not a random variable, but Z is. By Lemma 4.10, E[Z] = O(qεπ log n) =
O(q/ log2 n). By Markov’s inequality, Pr {Z ≥ 10 lg n · E[Z]} ≤ 1/(10 lg n). Thus,
with failure probability at most 1/(10 lg n), the number of nodes in the next row is
at most 2q + 10 lg n ·O(q/ log2 n) = 2q(1 +O(1/ log n)).

4.7. The new potential. Incorporating distance-limited searches into the algo-
rithm impacts the potential function on active vertices in several ways. This section
defines the new potential, outlines the main issues, and proves some properties about
the potential function. The next section analyzes the progress with respect to the
potential.

First, due to distance-limited searches, the definition of a vertex being path active
is updated with respect to being partly related. That is, a vertex v is path active at
some level r in the flattened tree if (1) v is part of some path-relevant subproblem at
level r, and (2) v is partly related to the path in that subproblem.

As before, the goal is to show that for each problem, the child subproblems have
potential that is a constant factor smaller in expectation. As long as the potential is
well-behaved (in particular, satisfying Definition 3.8(iv)), the fact that there may be
more than two subproblems does not change much. In fact, the analysis only leverages
progress made by the first partly path-related pivot x.

Balancing fully and partly path-related pivots. The biggest challenge is
the aforementioned interaction between the two types of random choices, distance
and pivot. To bound the impact of fringe nodes, we shall apply Lemma 4.9, which
requires that the distance be selected uniformly at random.

To disentangle the issues, instead of arguing progress with respect to partly path-
related vertices, the goal is to argue progress with respect to fully path-related vertices.
Because distances reduce with each successive subproblem, only the fully path-related
vertices are active in the next subproblem.

At a high level, the argument is as follows. Start from the assumption that x
is partly path related, with the distance still unknown. Next, reveal whether x is
fully path related or merely partly path related. If x is fully path related, apply the
c-reducing potential function with respect to fully path related vertices. If x is merely
partly path related, apply a different argument.

In slightly more detail. Let α, β, and δ denote the number of partly path-related
ancestors, bridges, and descendants, respectively. Let ᾱ, β̄, and δ̄ denote the fully
path-related numbers. Let p = (ᾱ + β̄ + δ̄)/(α + β + δ). The main idea is that if p
is small (most are fully related), then it is likely to select a fully path-related pivot.
In this case, one can leverage the c-reducing potential function with respect to the
number of fully path-related vertices. If on the other hand p is large (most are not
fully related), then significant progress should be made automatically as the search
distance reduces.

This logic gives rise to an additional requirement on the function ψ.

Definition 4.13. 〈α, β, δ〉 is said to be reducible to
〈
ᾱ, β̄, δ̄

〉
if there exist k1 ≥ 0

and k2 ≥ 0 such that β̄ + k1 + k2 ≤ β, ᾱ ≤ α+ k1, and δ̄ ≤ δ + k2.
Interpreted as the number of ancestors, bridges, and descendants in a subproblem,

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-527

being reducible means that the latter counts can be formed by removing vertices or
relationships between vertices.

Definition 4.14. Let ψ : R≥0×R≥0×R≥0 → R≥0 be any c-reducing well-behaved
function. Then ψ is balanced if for all 〈α, β, δ〉 reducible to

〈
ᾱ, β̄, δ̄

〉
,

p · c · ψ(ᾱ, β̄, δ̄) + (1− p)ψ(ᾱ, β̄, δ̄) ≤ c · ψ(α, β, δ) ,

where p = (ᾱ+ β̄ + δ̄)/(α+ β + δ).

This condition is relatively easy to prove for ψ(α, β, δ) = α+ β+ δ, which is only
(3/4)-reducing. It is harder to prove for the more involved functions.

Impact of fringe nodes. If using the linear function ψ(α, β, δ) = α + β + δ,
then Lemma 4.9 also directly implies a bound on the impact of fringe nodes on the
potential. In particular, the expected number of path-active nodes increases by an
additive O((α + β + δ)/NL). For NL = Ω(log n), this additive increase becomes a
multiplicative (1+O(1/ log n)), which is negligible when considered for only lg n levels.

Bounding the impact that fringe nodes have on more complex ψ is much more
difficult as the number of fringe nodes added does not easily relate to the change in ψ.

Instead, the remainder of the analysis adopts the following function:

(4.1) ψ(α, β, δ) =
√

(α+ β)(δ + β) · Cφ + (α+ β + δ) ,

where Cφ = Θ(log3/2 n). The advantage of adding the linear term is that it makes it
easier to bound the impact of fringe nodes. But as we have seen, a linear function is
only (3/4)-reducing. As such, the nonlinear term is weighted significantly higher so
that local imbalance can still be leveraged.

4.7.1. Proving properties for the new potential. The remainder of the
section focuses on proving the key properties about the updated potential function.
These proofs are all purely algebraic.

Lemma 4.15. The function ψ from (4.1) is a well-behaved function with overhead
O(Cφ).

Proof. The function consists of two terms added together. Each is well-behaved,
so their sum is as well.

As for the overhead, ψ(α, β, δ) = Cφ
√

(α+ β)(δ + β)+α+β+δ ≤ 2Cφ(α+β+δ).

Lemma 4.16. For Cφ = Θ(log3/2 n), the function ψ from (4.1) is c-reducing for
c = (1/

√
2)(1 +O(1/ log n)).

Proof. Let ψ1(α, β, δ) =
√

(α+ β)(δ + β) and ψ2(α, β, δ) = η = α+ β+ δ. Thus,
ψ(α, β, δ) = Cφ · ψ1(α, β, δ) + ψ2(α, β, δ).

As shown in Lemma 3.5, ψ2 is (3/4)-reducing. As shown in Lemma 3.13, ψ1 is
(1/
√

2)-reducing.
The remainder of the proof focuses on balancing the two terms. Without loss of

generality by symmetry, assume α ≥ δ. There are two cases.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-528 JEREMY T. FINEMAN

Case 1: δ ≤ α/C2/3
φ . In this case, ψ2 decreases significantly due to imbalance. In

particular, we have

(α/η)ψ2(α/2, β, δ) + (δ/η)ψ2(α, β, δ/2)

= (α/η)(α/2 + β + δ) + (δ/η)(α+ β + δ)

= (α/η)(α/2 + β + δ) + (δ/η)(η)

≤ α(α+ β) + αβ

2η
+ 2δ

≤ η2

2η
+
αβ

2η
+

2α

C
2/3
φ

≤ η/2 +
((α+ β)/2)2

2η
+

2η

C
2/3
φ

(by AM-GM inequality)

≤ η/2 + η/8 + 2η/C
2/3
φ

< η/
√

2 +O(η/ log n)

= ψ(α, β, δ)(1/
√

2)(1 +O(1/ log n)) .

The first term decreases faster (down to 1/
√

2). Since each term is at worst (1/
√

2)(1+
O(1/ log n))-reducing, the sum is as well.

Case 2: δ > α/C
2/3
φ . In this case, ψ1 dominates by so much that it does not

matter that ψ2 decreases at all. Specifically, we have

ψ1(α, β, δ) =
√

(α+ β)(δ + β)

>

√
(α+ β)(α/C

2/3
φ + β)

≥
√

(α+ β)(α+ β)/C
2/3
φ

= (α+ β)/C
1/3
φ

≥ η/(2C1/3
φ) because δ ≤ α =⇒ δ ≤ η/2 .

It follows that Cφψ1(α, β, δ) ≥ C
2/3
φ η/2 = Ω(η log n), or equivalently that η =

O(Cφψ1(α, β, δ)/ log n). The ψ1 term decreases by 1/
√

2 by Lemma 3.13. The overall
final value adding the two terms together is thus at most Cφ · ψ1(α, β, δ)(1/

√
2 +

O(1/ log n)) = Cφ · ψ1(α, β, δ)(1/
√

2)(1 +O(1/ log n)).

Lemma 4.17. The function ψ from (4.1) is balanced.

Proof. Adopt the notation from Definition 4.14.
First, let us assume that ψ satisfies

(4.2) ψ(ᾱ, β̄, δ̄) ≤ √p · ψ(α, β, δ) for all 〈α, β, δ〉 reducible to
〈
ᾱ, β̄, δ̄

〉
.

This fact will be proved at the end.
Substituting in the above assumption, we have p ·c ·ψ(ᾱ, β̄, δ̄)+(1−p)ψ(ᾱ, β̄, δ̄) ≤

pc
√
p ·ψ(α, β, δ) + (1− p)√p ·ψ(α, β, δ) =

√
p(pc− p+ 1)ψ(α, β, δ). The claim follows

as long as
√
p(pc − p + 1) ≤ c. To see that it is, fix c and observe how p changes.

For c = 2/3, the expression on the left is maximized at p = 1, solving to exactly
c. As c increases, the maximum of the function shifts even further to the right,

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-529

meaning that the expression is still maximized (for p ∈ [0, 1]) when at p = 1. Finally,
1/
√

2(1 +O(1/ log n)) ≥ 2/3, meaning that this logic applies.
The remainder of the proof focuses on (4.2). Define η = α+β+δ and η̄ = ᾱ+β̄+δ̄.

Consider ψ(α, β, δ) = Cφ · ψ1(α, β, δ) + ψ2(α, β, δ), and bound each term separately.
Showing that η̄ = ψ2(ᾱ, β̄, δ̄) ≤ √p · ψ2(α, β, δ) =

√
pη is trivial—by definition,

η̄ = pη ≤ √pη for p ≤ 1
To bound ψ1, consider the following. The fraction p dictates how much α, β,

and/or δ must be reduced by in total. The worst case for the desired inequality is to
perform the required reduction in a way that keeps ψ1(ᾱ, β̄, δ̄) maximized. Without
loss of generality, suppose α ≤ δ. Then ψ1(ᾱ, β̄, δ̄) is maximized when ᾱ and δ̄ are kept
as large and as balanced as possible, so δ should be reduced first. If p(δ+β) > (α+β),
then only δ should be reduced, giving δ̄ + β̄ ≤ p(δ + β). The potential thus becomes

ψ1(ᾱ, β̄, δ̄) =
√

(ᾱ+ β̄)(δ̄ + β̄) ≤
√

(α+ β)(p(δ + β)) =
√
p · ψ1(α, β, δ). If p is

smaller, then consider two phases p1 and p2 with p = p1p2 and p1 = (α+ β)/(δ + β).
During the first, the potential is maximized as above, leaving ψ1(ᾱ, β̄, δ̄) =

√
p · φ1

as above. For the second phase, α = δ, so the best choice to keep the expression
maximized is to balance the reductions from both counts simultaneously. During this
regime, ψ1(ᾱ, β̄, δ̄) =

√
(ᾱ+ β̄)(δ̄ + β̄) ≤

√
p2(α+ β)p2(δ + β) = p2ψ1(α, β, δ). Mul-

tiplying the two together gives a maximum value of p2
√
p1 ·φ1 ≤

√
p1p2 ·φ1(α, β, δ).

Finally, the next lemma considers the impact of adding arbitrary vertices (specif-
ically fringe vertices) to a subproblem. This lemma is the main reason for including
the linear term in the updated potential. To transform the additive overhead to
a multiplicative one, the bound suggests choosing a value of NL of at least NL =

Ω(C
7/3
φ log n) = Ω(log9/2 n).

Lemma 4.18. For f1, f2, f3 ≥ 0 and f = f1 + f2 + f3, the function ψ from (4.1)
satisfies

ψ(α+ f1, β + f2, δ + f3) ≤ (1 +O(1/ log n)) · ψ(α, β, δ) + 3fC
7/3
φ .

Proof. The expression is maximized for f2 = f . Let η = α + β + δ. Let ψ1 =√
(α+ β)(δ + β), so ψ(α, β, δ) = Cφ · ψ1 + η. As a similar shorthand, let ψf1 =√
(α+ β + f1 + f2)(δ + β + f2 + f3) ≤

√
(α+ β + f)(δ + β + f).

Let y = α+ β and z = δ + β, and without loss of generality suppose that y ≤ z.
Consider the ψ1 term first. We have ψf1 ≤

√
(y + f)(z + f) ≤ √yz+

√
yf + zf + f ≤

ψ1 +
√

2fz + f . There are three cases.

Case 1: 2f ≤ z/C
10/3
φ . Then

√
2zf ≤

√
z2/C

10/3
φ = z/C

5/3
φ ≤ η/C

5/3
φ . Putting

everything together gives

ψf = ψf1Cφ + η + f ≤ (ψ1 + η/C
5/3
φ + f)Cφ + η + f

= ψ(α, β, δ) + η/C
2/3
φ + f(Cφ + 1)

≤ ψ(α, β, δ) · (1 + 1/C
2/3
φ) + 2fCφ = ψ(α, β, δ)(1 +O(1/ log n)) + 2fCφ.

Case 2: 2f > z/C
10/3
φ . Then

√
2fz ≤

√
(2f)(2fC

10/3
φ) = 2fC

5/3
φ . Putting

everything together gives

φf = φf1Cφ + η + f ≤ (φ1 + 2fC
5/3
φ + f)Cφ + η + f

= φ+ 2fC
7/3
φ + fCφ + f ≤ φ+ 3fC

7/3
φ for Cφ ≥ 2.

Taking the larger of the two cases for each term proves the claim.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-530 JEREMY T. FINEMAN

4.8. Progress on path-active vertices. This section analyzes the progress
with respect to potential. The goal is to argue that after (2/3) lg n+ o(log n) rounds
(or levels in the tree), the number of active vertices drops below D/2 with constant
probability (or, conversely, to choose D so that this statement is true).

All progress arguments are made with respect to the first partly path-related
pivot x selected. Nevertheless, multiple pivots must be considered with respect to the
impact of fringe nodes.

Fringe vertices. To separate the analysis of the fringe nodes from the analysis of
core nodes, it is convenient to track the provenance of vertices and consider fringe
vertices at the end. To that end, a path-active vertex v is said to be core activated by
the execution of a specific subproblem if (1) v is still path active in a child subproblem,
and (2) v was not added to that child as a fringe vertex. For example, if v is path
active in some subproblem G[VF,j ∪ F+

j], but v ∈ F+
j , then v is not considered core

activated.
Since fringe vertices are only added to the forward/backward subproblems, an

active vertex in the unrelated subproblem is always core activated.
Finally, observe that each additional pivot can only reduce the number of core-

activated vertices further by knocking out vertices that would have otherwise been
active in the unrelated subproblem.

Lemma 4.19. Consider any subproblem (G,P). Let A = AncdminD(G,P) be the
fully related ancestors of path P . The following is true for any search distance dD ≥
dminD.

Let x be the first fully related pivot selected in the current iteration, and suppose
that x is drawn uniformly at random from A. Let α = |A| and let α′ denote the total
number of core-activated vertices in A. Then E[α′] < α/2.

Proof. The proof is similar to that of Lemma 3.4, except that a subset of vertices
is considered, and all relationships are with respect to �dD instead of �. As before,
the goal is to show that the preserves relation is antisymmetric for all u, v ∈ A.

Note that it is possible for u ∈ A to be a dD-limited bridge. (It is not a bridge at
distance dminD, but it could be a bridge at greater distances.) By Lemma 4.5, this
case would lead to α′ = 0 as there are no path-relevant subproblems.

Consider any pair of vertices u, v ∈ A such that u preserves v. The logic follows the
proof of Lemma 3.4 with the same two cases, summarized briefly here. If u �dD v,
then v cannot preserve u. If u and v are dD-unrelated, then consider the earliest
vertices va with u �dD va and vb with v �dD vb on the path. For u to preserve v, it
must be that b < a, so v cannot also preserve u.

The next lemma pulls together the various properties of the potential to argue
that expected reduction on φ(s) is still almost as good as previously.

Lemma 4.20. Consider any path-relevant subproblem s = (G,P). Suppose that
no neighborhood failure occurs for this iteration. Let s1, s2, . . . be random variables
denoting its child subproblems in the flattened path-relevant tree, and suppose NL ≥
C3
φ log n = Ω(log5.5 n). Then E[φ(s1) + φ(s2) + · · ·] ≤ (φ(s)/

√
2)(1 +O(1/ log n)).

Proof. Let i denote the iteration during which at least one pivot xj that is partly
related to the path P is selected. For any earlier iterations, the potential can only
decrease according to Definition 3.8. Let α = |AncdmaxD(G,P)| denote the number
of partly path-related vertices in the graph G at the start of the iteration. Define β
and δ similarly for bridges and descendants, respectively. Let ᾱ = |AncdminD(G,P)|
denote the number of fully path-related ancestors at the start. Similarly for β̄ and δ̄.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-531

If at least one of the pivots is a bridge, there are no path-relevant subproblems
(Lemma 4.5) and the potential is 0. Suppose for the remainder that the first pivot
has not yet been revealed, but all subsequent pivots are not bridges.

Consider the pivots and corresponding partition steps in order, as in Lemma 4.5.
Let s1 denote the recursive subproblem generated by the first pivot, and let s1,U

denote the nonrecursive subproblem corresponding to vertices not found by the core
searches. The second pivot partitions s1,U into recursive problem s2 and remainder
s2,U . The third pivot partitions s2,U , and so on. For k pivots, the subproblems are
s1, s2, . . . , sr, sk+1, where sk+1 = sk,U .

The goal is to bound E[
∑k+1
i=1 φ(si)] given that there is at least one partly path-

related pivot. For each of the subproblems, let ᾱi, β̄i, and δ̄i denote the number of
fully path-related vertices that are core activated, i.e., part of core searches. Only the
fully related vertices need be considered as these are the only ones that can be active
at the next level. Also consider the result ᾱ1,U , β̄1,U , and δ̄1,U of the first search,
and let ᾱ′ = ᾱ1 + ᾱ1,U be the number of ancestors core activated by just the first
pivot. (Similarly for bridges and descendants.) Finally, let fi denote the number of

path-active fringe nodes added, and let f =
∑r+1
i=1 fi. We bound

∑
i φ(si) as follows:

k+1∑
i=1

φ(si) ≤ φ(s1) +

k+1∑
i=2

(φ1(si) + φ2(si))

≤ ψ(ᾱ1, β̄1 + f1, δ̄1) +

k+1∑
i=2

ψ(ᾱi, β̄i + fi, δ̄i) by Definition 3.8(i)

≤ ψ(ᾱ1, β̄1 + f1, δ̄1) + ψ

(
ᾱ1,U , β̄1,U +

k+1∑
i=2

fi, δ̄1,U

)
by Definition 3.8(iv)

≤ ψ(ᾱ′, β̄′ + f, δ̄′) by Definition 3.8(iv)

≤ (1 +O(1/ log n)) · ψ(ᾱ′, β̄′, δ̄′) + 3fC
7/3
φ by Lemma 4.18.

Note that at this point, no expectations have been applied yet; all manipulations thus
far are just algebra on the random variables.

The next step is to bound E[ψ(ᾱ′, β̄′, δ̄′)], i.e., the expected potential including
just the impact of nodes core activated by the first pivot. There are two cases,
depending on how the pivot is classified. Let p = (ᾱ + β̄ + δ̄)/(α + β + δ) be the
fraction of partly path-related vertices that are fully related. Let R be the event that
the pivot is fully related. If R does not occur, then we simply assume that all fully
path-related vertices survive. Then

E[ψ(ᾱ′, β̄′, δ̄′)] = Pr {R} · E[ψ(ᾱ′, β̄′, δ̄′)|R] + (1− Pr {R})E[ψ(ᾱ′, β̄′, δ̄′)|¬R]

≤ p · E[ψ(ᾱ′, β̄′, δ̄′)|R] + (1− p) · ψ(ᾱ, β̄, δ̄)

≤ p ·
((

ᾱ

ᾱ+ β̄ + δ̄

)
E[ψ(ᾱ′, β̄′, δ̄′)|x ∈ AncdminD(G,P)]

+

(
δ̄

ᾱ+ β̄ + δ̄

)
E[ψ(ᾱ′, β̄′, δ̄′)|x ∈ DescdminD(G,P)]

)
+ (1− p) · ψ(ᾱ, β̄, δ̄)

≤ p · c · ψ(ᾱ, β̄, δ̄) + (1− p) · ψ(ᾱ, β̄, δ̄) (*)

≤ c · ψ(α, β, δ) = c · φ(s) by balance (Lemma 4.17),

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-532 JEREMY T. FINEMAN

where (*) follows by the same algebraic manipulations, for a well-behaved c-reducing
function, as Lemma 3.9.

Substituting back in the bound bound for E[ψ(ᾱ′, β̄′, δ̄′)], we have

E

[
k+1∑
i=1

φ(si)

]
≤ (1 +O(1/ log n)) · E[ψ(ᾱ′, β̄′, δ̄′)] + 3C

7/3
φ E[f]

≤ c · (1 +O(1/ log n)) · φ(s) + 3C
7/3
φ E[f]

≤ c · (1 +O(1/ log n)) · φ(s) + 3C
7/3
φ O((α+ β + δ) log n/NL)

(Lemma 4.9)

≤ c · (1 +O(1/ log n)) · φ(s) +O(1/ log n)(α+ β + δ)

≤ c · (1 +O(1/ log n) · φ(s) (φ(s) ≥ α+ β + δ)

≤ (1/
√

2)(1 +O(1/ log n))2 · φ(s) (Lemma 4.16)

= (φ(s)/
√

2)(1 +O(1/ log n)).

4.9. Analyzing the layers in the tree and proving Lemma 4.1. Define
the total potential Φ of a level as follows:

Φ(Ir) = (1 + cΦ/ lg n)lgn−r
∑
s∈Ir

φ(s) ,

where Ir is the collection of subproblems corresponding to level r in the flattened tree
and cΦ is a constant to be set later.

Corollary 4.21. Suppose Cφ = Θ(lg1.5 n) and NL = Ω(lg5.5 n) Then there ex-
ists a large enough constant cΦ such that E[Φ(Ir)|Ir−1] ≤ Φ(Ir−1)/

√
2.

Proof. Choose cΦ large enough so that 1 + cΦ/ lg n is greater than the 1 +
O(1/ log n)) term in Lemma 4.20. The claim then follows from linearity of expec-
tation over subproblems.

The real purpose of the extra (1 + cΦ/ lg n)lgn−r factor is to offset any potential
increases to the subproblem potentials φ. With an unlucky number of active fringe
vertices, it is possible that Φ increase when going from one row to the next. Such an
increase, called a fringe failure, would preclude the application of Theorem 2.1. The
next lemma shows that fringe failures are unlikely.

Lemma 4.22. There exist constants cΦ and cL such that, for Cφ = Θ(lg1.5 n) and
NL ≥ cLC3

φ lg2 n = Ω(log6.5 n), Pr {Φ(Ir+1) > Φ(Ir)} ≤ 1/(10 lg n).

Proof. Even if all active vertices are preserved, well-behavedness implies that the
subproblem potentials

∑
s φ(s) cannot increase without the addition of fringe nodes.

The active fringe nodes themselves have two contributions (see Lemma 4.18): a multi-

plicative (1+O(1/ log n)) overhead, and an additive 3C
7/3
φ f . The former does not de-

pend on the number of fringe nodes, so choose cΦ/ lg n to be, say, twice as large as the
O(1/ log n) term. Thus for Φ to increase would require that the total contribution from
f fringe nodes exceed f ≥ cΦ/(2 lg n)

∑
s∈Ir φ(s). For large enough NL, the expected

number of fringe nodes is E[f]=O(
∑
s∈Ir φ(s) log n/NL) ≤

∑
s∈Ir φ(s)/(cL3C3

φ log n),

giving an expected potential contribution of
∑
s∈Ir φ(s)/(cL log2 n). For large enough

cL, this expectation is at most cΦ/(20 lg2 n)
∑
s∈Ir φ(s). Reaching the target threshold

would require there to be 10 lg n times the expectation, which occurs with probability
at most 1/(10 lg n) by Markov’s inequality.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-533

To prevent Φ from increasing at all, instead define Φ′ to be equal to Φ, except
that it drops to 0 when a fringe failure occurs. It follows that (1) Φ′ never increases,
and (2) E[Φ′(Ir+1|Ir)] ≤ E[Φ(Ir+1|Ir)]. Theorem 2.1 can now be applied.

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. LetD = Θ(n2/3 log n), Cφ = Θ(log3/2 n), NL = Θ(log6.5 n),
and επ = O(1/ log3 n), to be consistent with previous lemmas.

The starting value of Φ′(I0) ≤ (1 + cΦ/ lg n)lgn(Cφ + 1)n = O(n log3/2 n). For
large enough constant w, Theorem 2.1 bounds the probability that the potential stays
too high as Pr

{
Φ′(Ir+w) > (1/

√
2)rO(n lg3/2 n)

}
< 1/10. Then for r = (2/3) lg n +

lg lg(n)+Θ(1), this expression reduces to Pr
{

Φ′(Ir+w) > cn2/3 lg n
}
< 1/10 for some

constant c.
If a fringe failure occurs, the bound on Φ′ is meaningless. The probability of a

fringe failure is at most the union bound over r < lg n levels of the failure probability
1/(10 lg n) from Lemma 4.22, which reduces to 1/10. If neither of these failures occurs,
the bound on Φ′ implies a bound on active unshortcut subpaths, as all path vertices
counted as bridges towards Φ′. Thus, with failure probability 1/4, the total length of
all subpaths in path-relevant subproblems in level (r + 2) is at most O(n2/3 lg n).

Finally, consider the concatenations and shortcut leaves via Lemma 4.12. With
failure probability 1/10, the total shortcut length is thus O(n2/3 lg n). Choose D to
be a constant factor larger than the constant hidden inside the big-O.

4.10. Proof of Lemma 4.2. This section proves bounds on the number of
shortcuts and overall work performed. The main goal is to show that, with probability
at least 9/10, the number of vertices (and hence shortcuts) and arcs visited by searches
is consistent with Lemma 4.1. Thus, with probability at least 1/2, Lemmas 4.1 and 4.2
both hold.

The settings used are D = Θ(n2/3 log n), Cφ = Θ(log1.5 n), NL = Θ(log6.5 n),
επ = Θ(1/ log3 n), and Nk = Θ(log4 n), as dictated by constraints offered in previous
lemmas. The maximum search distance is immediate: it is at most hDNkNL =
O(log n · n2/3 log n · log4 n · log6.5 n) = O(n2/3 log12.5 n).

Consider each level of recursion in Algorithm 5. Lemma 4.8 holds with high
probability, so assume that it holds for every node at every iteration. Consider any
vertex in the iteration in which it is visited by a core search. By assumption of
Lemma 4.8, the vertex, and hence its incident arcs, is visited by at most O(log n)
searches.

The number of vertices (and hence arcs) may increase with each level in the tree
due to fringe searches. The final step of the proof is to argue that the total size of all
subproblems in the final level of recursion is O(n) vertices and O(m) arcs, and hence
the total cost of all levels is O(n log2 n) vertices and O(m log2 n) arcs.

By Lemma 4.9 with NL = log6.5 n, the number of vertices and arcs increases
with each level of recursion by at most an additive O(n′/ log2 n) and O(m′/ log2 n)
in expectation, where n′ and m′ are the current numbers at that level. Thus, by
Markov’s inequality, with probability at most 1/(10 lg n), the increases is not more
than a multiplicative 1 + O(1/ log n). Since there are lg n levels of recursion, this
results in probability at most 1/10 of exceeding a total of n(1+O(1/ log n))lgn = O(n)
vertices and m(1 +O(1/ log n))lgn = O(m) arcs.

5. Parallel version. This section briefly discusses the parallel version of Algo-
rithms 5 and 6. This section assumes the reader is comfortable enough with parallel
algorithms to infer the details and instead focuses only on the interesting issues.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-534 JEREMY T. FINEMAN

The main results are as follows.

Theorem 5.1. There exists a randomized parallel algorithm taking as input a
directed graph Ĝ = (V̂ , Ê) with the following guarantees. Let n =

∣∣V̂ ∣∣, let m =
∣∣Ê∣∣,

and without loss of generality assume m ≥ n/2. Then (1) the algorithm produces
a size-O(n log4 n) set S∗ of shortcuts; (2) the algorithm has O(m log6 n + n log10 n)
work; (3) the algorithm has O(n2/3 log19.5 n) span; and (4) with high probability, the
diameter of GS∗ = (V̂ , Ê ∪ S∗) is O(n2/3 log n).

Corollary 5.2. There exists a randomized concurrent-read exclusive-write (CREW)

parallel algorithm for digraph reachability that has O(m log6 n + n log10 n) work and
O(n2/3 log19.5 n) span, both with high probability.

Proof. Perform the diameter reduction algorithm, then run a standard parallel
BFS but limited to O(n2/3 log n) hops. The work and span of the diameter reduction
dominates. If the BFS completes in the prescribed number of rounds, the algorithm
terminates. Otherwise, keep repeating the diameter reduction and BFS until success-
ful.

Model. This paper adopts the now de facto standard work-span model [5], also
called work-time [11] or work-depth model, which abstracts low-level details of the
machine such as the number of processors or how parallel tasks are scheduled. The
work-span model allows algorithms to be expressed through the inclusion of parallel
loops, i.e., a parallel foreach. A parallel foreach indicates that each task corresponding
to a loop iteration may execute in parallel, and that all parallel tasks must complete
before continuing to the next step after the loop. It is generally straightforward to
map algorithms from the work-span model to a PRAM model; see, e.g., [11, 14]. Like
the asynchronous PRAM model [7], the work-span model requires that algorithmic
correctness not be tied to any assumptions about how tasks are scheduled beyond the
explicit ordering imposed by the loops. That is to say, it should not be assumed that
the instructions across iterations execute in lock step.

The work of an algorithm is the same as the sequential running time in a RAM
model (replacing all parallel loops by sequential loops). When multiple tasks are
combined through a parallel loop, the combined span is the maximum of the span of
the individual subproblems, plus the span of the loop itself. There are several variants
to the work-span model. In a binary-forking model such as [5], the span of a k-way loop
is Θ(lg k). Much of the literature on parallel algorithms, however, adopts an unlimited-
forking model , where the span of launching k parallel tasks adds O(1) to the span.
Since many of the subroutines employed are analyzed in the latter model, this paper
adopts the unlimited-forking model. PRAM algorithms, for example, correspond to
an unlimited forking model. Both models only differ by logarithmic factors in the
span.

The algorithm is a concurrent-read exclusive-write (CREW) algorithm. CREW
means that multiple parallel tasks may read the same data, but they may not write
to the same location.8

Performing concurrent searches. The key subroutine in Algorithm 5 is the
dD-limited searches to find, e.g., R+

j . One might simply replace the foreach loops
with parallel loops, but the question is how the bookkeeping should be performed.

8CREW is usually a restriction applied to the PRAM [6, 8, 18] machine model, e.g., a CREW
PRAM. In contrast, the work-span model is an algorithmic cost model, not a machine model. This
paper proposes lifting the CREW qualifier to the work-span level rather than the PRAM level.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-535

Ordinarily, a BFS keeps track of already-visited vertices either by annotating vertices
in the graph directly or, equivalently, by keeping an extra array indexed by vertex. A
natural way to perform multiple searches in parallel using a CREW algorithm would
thus be to duplicate the bookkeeping efforts for each parallel search, but doing so
would increase the work dramatically just to copy the graph or initialize the arrays.

The key property that allows an efficient parallel realization is Lemma 4.8—with
high probability, no vertex is visited by more than O(log n) parallel searches. The
algorithm may assume that this is the case and just abort by returning immediately
if a vertex gets visited too many times.

The main goal is to support the following for each call to ParSC.

Lemma 5.3. Consider an iteration i in call to ParSC on graph G = (V,E). Let me

be the total number of arcs traversed by searches, counting an arc for each search that
reaches it. There exists an algorithm implementing the iteration having O(me log2 n+
|Xi| log n) work and O(n2/3 log13.5) span.

The remainder of the section is devoted to exhibiting an algorithm that proves
Lemma 5.3, focusing only on the core search. Extending to fringe searches is not
much harder.

The set of searches from Xi (in one direction) are grouped together as a single
modified BFS. Rather than marking a vertex with a single bit indicating whether
it has been discovered, a vertex is tagged with a list of IDs of the pivots that have
reached it. Every time this list of IDs changes, the vertex may be re-added to the
frontier and all of its outgoing arcs explored again. Since a vertex is not visited too
many times, the overhead is not too high.

In more detail, the algorithm is as follows. At the start of the call to ParSC,
initialize Θ(log n) space for each vertex to record the ID tags, initially all null. Use
an array to store the frontier vertices along with the ID of the pivot from which this
search originated; a vertex may appear in the frontier multiple times from different
pivots. Save all frontiers so as to identify all vertices reached by the searches at the
end and also to record all new shortcuts.

To start a set of searches from |Xi|, copy all live pivots xj to the frontier array
and associate with each pivot its own ID as the search originator. Also update each
pivot’s tag list to include itself.

Each round of the BFS operates as follows. For each vertex in the frontier in
parallel, identify the number of outgoing arcs. Next, perform parallel prefix sums so
that each arc has a distinct index in the next frontier array. For each arc (u, v) in
parallel, let xj be the associated pivot ID. Check whether v’s ID set includes xj ; this
check can be performed in O(log n) sequential time (both work and span) by scanning
through v’s tag list. If xj is not present, record v and xj in (u, v)’s slot in the next
frontier; otherwise record null.

At this point, a vertex may appear many times in the frontier list, even from
a single search. Sort the frontier list by vertex (high priority) and pivot ID (lower
priority). Remove duplicate entries with a compaction pass. Now each vertex appears
at most once for each search, so O(log n) times in total. For each slot j in the next
frontier in parallel, let v be the vertex stored there. Check whether this is the first
slot for vertex v, i.e., if j − 1 stores a different vertex. If so, scan through the next
O(log n) slots (sequentially), and for each entry of v append the pivot tag to v’s tag
list.

Repeat this process for the number of rounds dictated by the distance dD for
the core searches. When the searches complete, sort the arrays of all vertices reached

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-536 JEREMY T. FINEMAN

by core searches. For each vertex v in core searches, in parallel, identify the lowest
ID pivot reaching v. Again use parallel prefix sums and then copy the lowest-ID
occurrence of v to a new array for the recursive searches. Finally, sort the new array
by pivot ID so that all vertices in the same induced subgraph are adjacent. Building
the induced subgraphs for recursive calls can again be accomplished with arc counting,
prefix sums, and sorting.

Updating G[VU]. One could build G[VU] explicitly, but doing so would require
processing the full graph. The goal expressed by Lemma 5.3 is to have work propor-
tional to the number of arcs reached, but G[VU] could be much larger. Instead, simply
mark vertices in V as dead when they have been reached by a core search. Augment
the search to ignore dead vertices.

Completing the proof of Lemma 5.3. The basic subroutines used in each round
such as prefix sums, compaction, etc., can all be performed in linear work and O(log n)
span (see, e.g., [11]). Scanning the list of tags also requires O(log n) work per arc on
the frontier and O(log n) span as it is performed sequentially. Using Cole’s merge
sort [3], the cost of a sort is O(log n) work per element sorted and O(log n) span.
Multiplying the search distance by O(log n) thus gives the overall span bound. Since
each arc may be reached by O(log n) searches, the bound is O(log2 n) work per arc
visited.

Aborting Algorithm 5. To make the work (and shortcut) bound deterministic,
Algorithm 6 needs the ability to abort any runs of Algorithm 5 that exceed the target
work bound. (Exceeding the shortcut bound can be handled by simply discarding the
result—a true abort is not necessary there.)

Unfortunately, the proof of Lemma 4.2 examines the work in aggregate across
levels in the recursion tree. It is not clear how to make local abort decisions. One
natural alternative is to augment the algorithm to check the elapsed time, and to
return immediately if some threshold has been reached. Technically, however, this
solution violates the work-span model as the target time bound would depend both
on how efficiently the program is scheduled and on the number of processors employed.

There is a solution in the work-span model: logically implement the recursive
steps of the algorithm as a BFS. That is, maintain an array of subproblems, initially
just ParSC(Ĝ, lg n). To implement a level of recursion, perform prefix sums to add
up the total number of vertices across all subproblems, and give each vertex (pivot)
a specific slot in which to put its recursive subproblem. Instead of launching the
recursive subproblems immediately, simply record them in the appropriate slot. When
all subproblems at this level of recursion complete, launch all problems at the next
level (in parallel).

The work bound can only be exceeded if the total number of arcs in the next set
of subproblems grows too large. This number can be counted with a parallel reduce
after each level of recursion completes. None of these steps increases the work or span
asymptotically.

Proof of Theorem 5.1. The diameter and shortcut bounds are taken directly
from Theorem 4.3. Multiplying the cost per arc of Lemma 5.3 with the number of
arcs searched in Theorem 4.3 gives the work bound. Shortcuts can be gathered and
larger graphs built for each iteration of Algorithm 6 by sorting, but that is dominated
by the other work performed.

The span bound is obtained by multiplying the maximum search distance of
O(n2/3 log12.5 n) by the O(log n) span per BFS round, the Nk = O(log4 n) iterations

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-537

in a call, the O(log n) levels of recursion in a run of Algorithm 5, and the O(log n)
iterations of the outer loop of Algorithm 6. Note that the inner loop of Algorithm 6
can be implemented in parallel. Altogether, that gives O(n2/3 log19.5 n) span.

6. Building a directed spanning tree. This section discusses how to augment
the algorithm to produce a directed spanning tree. It is not immediately obvious how
to do so even for the sequential algorithm of section 3. To illustrate the issues, consider
the following graph: s→ u→ v � w. If w is selected as a pivot first, then a shortcut
(s, w) is added, and a BFS from s in the shortcut graph may discover the following
path: s w → v. Simply splicing in the path corresponding to the shortcut would
result in s → u → v → w → v, which is no longer a simple path. The goal is to
do this splicing, but in a way that avoids repeated vertices. The situation is slightly
more challenging in the case of Algorithm 6 because the arcs that are shortcut could
themselves be shortcuts, but the result is just that several iterations are needed.

The algorithm for building the directed spanning tree is a postprocessing step
performed after the full execution of Algorithm 6. The algorithm references the BFS
trees used to build shortcuts, however, so all BFS trees need to be saved as Algorithm 6
executes. Each shortcut must also be augmented with a reference to the BFS tree that
produced it. The forward-search BFS trees are directed out from the root, whereas
the backward-search BFS trees are directed towards the root. In this way, the BFS
trees correspond to arcs in some graph.

Let G0, G1, . . . , Gk=Θ(logn), where G0 = Ĝ, denote the sequence of graphs built
after each iteration of the outer loop of Algorithm 6. Running BFS on the resulting
graph Gk yields a directed spanning tree Tk in Gk. This section describes how to
transform a directed spanning tree Ti in graph Gi to a directed spanning tree Ti−1 in
Gi−1. Iterating Θ(log n) times gives a spanning tree in the original graph.

Start each iteration by labeling every vertex v in the tree with label low(v) = 0
and high(v), where high(v) is v’s distance from the root in Ti. This step can be
accomplished in linear work and logarithmic span using the Euler-tour method [21].

For the next step, the shortcuts in both directions are treated differently. The
goal is to essentially splice in the paths, which results in vertices appearing multiple
times. This multiplicity will be resolved afterwards.

For each vertex u ∈ Ti in parallel, traverse all forward-search BFS trees created
in iteration i and rooted at u. Label those vertices v with high(v) = high(u), and
low(v) is v’s depth (or distance from u) in the tree. Note that these labelings should
be performed on the BFS trees themselves, not on Ti or Gi, as each vertex may belong
to multiple trees and may otherwise be labeled multiple times concurrently.9

For the backward direction, consider all arcs (u, v) in Ti in parallel. If (u, v) is a
shortcut on a backward-search BFS tree rooted at v, traverse the path from u to v in
the BFS tree and label each vertex w on the path by high(w) = high(u). Also label
low(w) with w’s distance from u on the path.

Finally, sort all arcs (u, v) in the collection of BFS trees traversed in the above
process, as well as the arcs in Ti that also exist in Gi−1, by three values: v’s ID (most
significant), high(u), and low(u) (least significant). For each arc (u, v) in the sorted
list in parallel, if (u, v) is the first arc directed toward v according to the sorted order,
then include the arc (u, v) in Ti−1.

9The Euler-tour technique could be applied to each tree, but a parallel BFS is sufficient here as
the trees have depth O(n2/3 log4/3 n) by construction; the work and span would be at most the work
and span of constructing the tree in the first place.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC18-538 JEREMY T. FINEMAN

Proof of correctness is by induction over i, in decreasing order. The base case is
trivial: Tk is a directed spanning tree of Gk. The following lemma proves the inductive
step; namely, that given a directed spanning tree Ti for Gi, the algorithm correctly
produces a directed spanning tree Ti−1 for Gi−1.

Lemma 6.1. Suppose that Ti is a directed spanning tree for Gi rooted at vertex s.
Then the algorithm produces a directed spanning tree Ti−1 rooted at s for the graph
Gi−1.

Proof. Since only arcs present in Gi−1 are considered in the last step of the
algorithm, Ti−1 is a subgraph of Gi−1. It is not obvious, however, that it is a tree,
nor is it obvious that it spans.

The first step is to show that every vertex, except s, has an incoming arc in Ti−1.
Consider a vertex v and its incoming arc (u, v) in Ti. If (u, v) is present in Gi−1 as
well, then it is in consideration the last step, so v must select an arc. If (u, v) is
a shortcut, then it corresponds to some path in a BFS tree. All arcs in that path,
and specifically the arc directed toward v, are also in consideration. Thus, v has an
incoming arc.

For each vertex, let the final label be the lowest label associated with any of its
copies. If all arcs go from lower label to higher label, then there are no cycles. To
prove this is the case, the claim is that every copy of each vertex other than the source
(and in particular the lowest-label copy) has an incoming arc from a vertex with a
lower label. Since the minimum incoming arc is the one used, that would imply that
all arcs are from lower to higher label.

To prove the claim, consider a copy of vertex v. There are three cases. If v is in a
forward-search BFS tree and not the root, then v has depth (and hence low(v) label)
one higher than its parent in the tree. If v is in a backward-search path and not the
source, the same argument holds.

Otherwise, v’s label is the same as in Ti. In Ti, v’s incoming arc (u, v) satisfies
high(u) < high(v) by construction. If (u, v) is in Gi−1, then this arc satisfies the
claim. Otherwise, v is the nonroot of a BFS tree with a strictly lower high value, and
hence one of the first two cases applies.

7. Conclusions. This work makes the first major progress toward work-efficient
parallel algorithms for directed graphs, but it also exposes several new questions.
First, can the performance be improved? Shaving logarithmic factors would be nice,
but doing so seems premature—it is quite likely that Õ(n2/3) is not the final answer.
I would conjecture that an n1/2+o(1)-diameter reduction is possible using a more
sophisticated algorithm based on the one presented herein.

Is true work efficiency, i.e., O(m) work, possible for the diameter-reduction prob-
lem? Achieving that would require first producing an O(m)-time sequential algorithm
for the problem.

Hesse’s lower bound provides a lower bound on work-efficient diameter reduction,
but that is not a general lower bound on digraph reachability. Can digraph reachabil-
ity be improved by relaxing the shortcutting requirements, perhaps by adopting some
ideas from Spencer’s algorithm? Are there good general lower bounds for work/span
tradeoffs of these algorithms?

Finally, can the algorithm be extended to solve unweighted shortest paths? Solv-
ing the exact problem is likely difficult, but even an approximate solution would be
progress.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL DIGRAPH REACHABILITY STOC18-539

REFERENCES

[1] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun, Parallelism in randomized incremental al-
gorithms, in Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures, 2016, pp. 467–478, https://doi.org/10.1145/2935764.2935766.

[2] R. P. Brent, The parallel evaluation of general arithmetic expressions, J. ACM, 21 (1974),
pp. 201–206.

[3] R. Cole, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770–785, https://doi.org/10.
1137/0217049.

[4] D. Coppersmith, L. Fleischer, B. Hendrickson, and A. Pinar, A Divide-and-Conquer
Algorithm for Identifying Strongly Connected Components, Tech. Report RC23744, IBM
Research, 2005.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd ed., MIT Press, Cambridge, MA, 2001.

[6] S. Fortune and J. Wyllie, Parallelism in random access machines, in Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, 1978, pp. 114–118, https://doi.
org/10.1145/800133.804339.

[7] P. B. Gibbons, A more practical pram model, in Proceedings of the 1st Annual ACM Sym-
posium on Parallel Algorithms and Architectures, 1989, pp. 158–168, https://doi.org/10.
1145/72935.72953.

[8] L. M. Goldschlager, A unified approach to models of synchronous parallel machines, in
Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, 1978, pp. 89–
94, https://doi.org/10.1145/800133.804336.

[9] W. Hesse, Directed graphs requiring large numbers of shortcuts, in Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2003, pp. 665–669,
http://dl.acm.org/citation.cfm?id=644108.644216.

[10] S.-E. Huang and S. Pettie, Lower bounds on sparse spanners, emulators, and diameter-
reducing shortcuts, in the 16th Scandinavian Symposium and Workshops on Algorithm
Theory, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, pp. 26:1–26:12, https:
//doi.org/10.4230/LIPIcs.SWAT.2018.26.

[11] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.
[12] M.-Y. Kao and P. N. Klein, Towards overcoming the transitive-closure bottleneck: Efficient

parallel algorithms for planar digraphs, in Proceedings of the Twenty-Second Annual ACM
Symposium on Theory of Computing, 1990, pp. 181–192, https://doi.org/10.1145/100216.
100237.

[13] R. M. Karp, Probabilistic recurrence relations, J. ACM, 41 (1994), pp. 1136–1150, https:
//doi.org/10.1145/195613.195632.

[14] R. M. Karp and V. Ramachandran, A Survey of Parallel Algorithms for Shared-Memory
Machines, Tech. Report UCB/CSD-88-408, EECS Department, University of California,
Berkeley, 1988, http://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/5865.html.

[15] P. N. Klein, Parallelism, preprocessing, and reachability: A hybrid algorithm for directed
graphs, J. Algorithms, 14 (1993), pp. 331–343, https://doi.org/10.1006/jagm.1993.1017.

[16] P. N. Klein and S. Subramanian, A randomized parallel algorithm for single-source shortest
paths, J. Algorithms, 25 (1997), pp. 205–220, https://doi.org/10.1006/jagm.1997.0888.

[17] F. Le Gall, Powers of tensors and fast matrix multiplication, in Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation, 2014, pp. 296–303,
https://doi.org/10.1145/2608628.2608664.

[18] W. J. Savitch and M. J. Stimson, Time bounded random access machines with parallel
processing, J. ACM, 26 (1979), pp. 103–118, https://doi.org/10.1145/322108.322119.

[19] W. Schudy, Finding strongly connected components in parallel using O(log2 n) reachability
queries, in Proceedings of the 20th Annual Symposium on Parallelism in Algorithms and
Architectures, 2008, pp. 146–151, https://doi.org/10.1145/1378533.1378560.

[20] T. H. Spencer, Time-work tradeoffs for parallel algorithms, J. ACM, 44 (1997), pp. 742–778,
https://doi.org/10.1145/265910.265923.

[21] R. E. Tarjan and U. Vishkin, Finding biconnected components and computing tree functions
in logarithmic parallel time, in Proceedings of the 25th Annual Symposium on Foundations
of Computer Science, 1984, pp. 12–20, https://doi.org/10.1109/SFCS.1984.715896.

[22] J. Tassarotti, Probabilistic Recurrence Relations for Work and Span of Parallel Algorithms,
preprint, https://arxiv.org/abs/1704.02061, 2017.

[23] M. Thorup, On shortcutting digraphs, in Graph-Theoretic Concepts in Computer Science,
E. W. Mayr, ed., Springer, 1993, pp. 205–211.

[24] J. D. Ullman and M. Yannakakis, High-probability parallel transitive-closure algorithms,
SIAM J. Comput., 20 (1991), pp. 100–125, https://doi.org/10.1137/0220006.

D
ow

nl
oa

de
d

12
/2

7/
21

 to
 1

41
.1

61
.9

1.
14

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1145/2935764.2935766
https://doi.org/10.1137/0217049
https://doi.org/10.1137/0217049
https://doi.org/10.1145/800133.804339
https://doi.org/10.1145/800133.804339
https://doi.org/10.1145/72935.72953
https://doi.org/10.1145/72935.72953
https://doi.org/10.1145/800133.804336
http://dl.acm.org/citation.cfm?id=644108.644216
https://doi.org/10.4230/LIPIcs.SWAT.2018.26
https://doi.org/10.4230/LIPIcs.SWAT.2018.26
https://doi.org/10.1145/100216.100237
https://doi.org/10.1145/100216.100237
https://doi.org/10.1145/195613.195632
https://doi.org/10.1145/195613.195632
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/5865.html
https://doi.org/10.1006/jagm.1993.1017
https://doi.org/10.1006/jagm.1997.0888
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/322108.322119
https://doi.org/10.1145/1378533.1378560
https://doi.org/10.1145/265910.265923
https://doi.org/10.1109/SFCS.1984.715896
https://arxiv.org/abs/1704.02061
https://doi.org/10.1137/0220006

	Introduction
	Shortcut approach and contributions
	Algorithm and analysis overview

	Preliminaries
	Sequential diameter reduction
	Setup of the analysis
	Asymmetry leads to progress
	A tighter path-length bound (seqmain)
	A better c-reducing function, and proof of seqmain

	Runtime and number of shortcuts

	An algorithm with distance-limited searches
	The algorithm
	Full diameter-reduction algorithm and proof of parfull
	Notation and shorthand
	Setup and the path-relevant tree
	Bounds on number of vertices searched
	Number of nodes in the flattened tree
	The new potential
	Proving properties for the new potential

	Progress on path-active vertices
	Analyzing the layers in the tree and proving parmainlength
	Proof of parmainwork

	Parallel version
	Building a directed spanning tree
	Conclusions
	References

