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Abstract—Due to the development of cyber-physical systems for 
modernizing power grids, vulnerability assessment has become an 
emerging focus in power system security studies. With the increasing 
deployment of cyber-enabled technologies in power systems, modern 
power system is prevalently exposed to a wide gamut of cybersecurity 
threats. Thus, there is an urgent need to develop effective cyber risk 
management mechanisms to mitigate the growing cyberthreats. 
Recently cyber insurance is emerging as a promising financial 
instrument for cyber risk management of critical infrastructures 
such as power grids. In this paper, a new cyber-insurance design 
framework is proposed to hedge against the risk of massive monetary 
losses due to potential cyberthreats. Traditionally, insurance 
companies serve as third-party risk-bearers offering aggregate 
design of the insurance policy which may stipulate high premiums. 
However, unusual loss patterns may still lead to excess financial risk 
for insurance companies. In this paper, coalitional insurance is 
introduced as a promising alternative or supplement to the 
traditional insurance plans provided by insurance companies. Under 
the proposed cyber-insurance model, several transmission operators 
form an insurance coalition, where the coalitional premiums are 
derived considering system vulnerabilities and loss distributions. The 
indemnity which covers the loss of TOs complies with the budget 
sufficiency. Overall, this study proposes a novel coalitional platform 
based cyber-insurance design that estimates the insurance premiums 
via cybersecurity modeling and reliability implication analysis.    

Index Terms—Cyber-physical energy systems, cyber-insurance, 
cyber risk management, power system reliability, power system 
security, actuarial design, probabilistic methods.  

NOMENCLATURE 

A. Acronym 
ICTs           Information and Communication Technologies 
NERC        North American Electric Reliability Corporation 
NIST          National Institute of Standards and Technology 
CPSs          Cyber-Physical Systems 
SCADA     Supervisory Control And Data Acquisition 
DMs          Defense Mechanisms 
TTC           Time-To-Compromise 
TO             Transmission Operator 
LAN          Local Area Network 
BN             Bayesian Network 
BTTC        Bayesian Time-To-Compromise 
CVSS        Common Vulnerability Scoring System 
BCT          Beta Compromise Time 
SSG           Stackelberg Security Game 
DRA          Defense Resource Allocation 
MILP         Mixed Integer Linear Programming 

(T)VaR      (Tail)Value-at-Risk 
TCE           Tail Conditional Expectation 
ERW          Expected Reliability Worth  
DFS            Depth-First Search 
SMC           Sequential Monte Carlo 
L/HDC        Low/High Defense Coverage 
SDs             Standard Deviations 
CoVs          Coefficients of Variation 
RLC           Risk-Loading Coefficient 

B. Notation 
 𝑉                Set of the vulnerabilities 
 𝑇𝑏                Bayesian Time-To-Compromise 
 𝑡𝛽                Bayesian Compromise Time 
 𝑡∗                Compromise Time 
{𝐺, 𝐴, 𝐶, 𝑆}   Gate, Authentication, Countermeasure, Substation 
 {𝑡1, 𝑡2, 𝑡3}    Mean times of the BCT processes 
 {𝑃1, 𝑃2, 𝑃3}  Probabilities of the BCT processes 
 𝑣ℎ               A known or zero-day vulnerability 
 𝑐ℎ               Successful vulnerability exploitation of 𝑣ℎ 
 𝑝(𝑣ℎ)         Probability of exploiting 𝑣ℎ  
 𝑝(𝑣ℎ ∧ 𝑐ℎ) Probability that 𝑣ℎ is exploited by 𝑐ℎ 
 𝑝(𝑐ℎ|𝑣ℎ)    Conditional probability of successfully exploiting 𝑣ℎ 
 𝟏{∙}               True/false binary indicator of a conditional statement 
 𝑈(∙)            Uniform distribution 
 𝑁(∙)            Normal distribution 
 Φ(∙)            Cumulative Density Function of 𝑁(∙) 
 𝑠                  Skill factor of the intruder 
 |𝑣|               Number of known vulnerabilities of the component 
 𝜎                 Total number of vulnerabilities 
 𝑚(𝑠)           Number of available exploits 
 𝑓(𝑠)            Usable exploits  
 𝐸(𝑠, |𝑣|)      Number of estimated tries 
 𝑝(𝐷𝑀𝑤)      Strength of the DMs 
 𝐿𝑗                 An attack leaf     
 𝑝(𝐿𝑗)            Probability that 𝐿𝑗 is active  
 𝑝(𝐿𝑗⋀𝑒𝐷𝑀)   Probability that a set of DMs are attacked by 𝐿𝑗 
 𝜏𝑥                 Target substation x 
 𝛾𝑥                 Substation impact index of 𝜏𝑥 
 𝛼, 𝛽              Intruder and Defender  
 {𝑈𝛽,𝜏𝑥

𝒸 , 𝑈𝛽,𝜏𝑥
𝑢 , 𝑈𝛼,𝜏𝑥

𝒸 , 𝑈𝛼,𝜏𝑥
𝑢 }  Covered/uncovered payoffs of 𝛼, 𝛽 

 𝒞                  Defense coverage sequence 
 𝑝𝐷𝐶(𝜏𝑥)        Defense coverage of 𝜏𝑥 
 𝑟                   Correlation coefficient of the sampling copula 
 𝜆𝑥                 Random sampling applied 𝜏𝑥 
 𝑇𝑏,𝑥               BTTC of 𝜏𝑥 
𝑴 = {𝑀𝑞}     Defense resource budget vector 
 ℒ𝑞                 Monetary loss of TO q 
 𝜋(ℒ𝑞)           Premium of TO q 
 𝜑𝑞                 Occurrence probability of the loss event 
 𝛿𝑞,𝜍               Probability TO 𝑞 out of 𝜍 submits the claim 
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 Π𝑞                 Claim of TO q 
 𝛤𝑞                   Indemnity of TO q 
 ℂ𝑞                 Commitment of TO q 
 𝜌(ℒ𝑞)           RLC of TO q 
 Ω = {Ω}         Load loss event set 
 𝐾Ω                  Probability density kernel of loss event Ω 
 𝐷Ω                  Duration of loss event Ω 
 𝑊(𝐷Ω)           Cost mapping function of loss event Ω 

I. INTRODUCTION 
 HE looming cybersecurity issue on power grids due to the 

broad integration of ICTs has attracted extensive attention in 
recent years [1]. In response to the increasing cyber 

vulnerability, NERC has stipulated a series of cybersecurity 
standards [2], and NIST updated the framework for improving 
critical infrastructure cybersecurity in 2018 [3], respectively. To 
de-risk the integration of innovative ICTs in CPSs including 
electric power grids, much research effort has been dedicated to 
efficient cyber-vulnerability assessment. Ten et al. [4] integrated 
the cyber-physical information of substations into evaluating 
vulnerability of the SCADA systems. DMs for the vulnerabilities 
have been proposed to reduce the potential losses. Based on the 
attack cost, the power system vulnerability can be quantified by 
the security mechanisms [5]. With the vulnerability data, 
quantitative metrics could be developed to predict system 
compromises caused by random cyber adversaries. Probabilistic 
approaches can be applied in the security assessment of cyber-
physical systems. For example, attack graph is used as a 
hierarchical graphic tool for vulnerability assessment combining 
intrusion scenarios and corresponding DMs. Various attack graphs 
are proposed to examine the network hardening options, the 
dependency, and the network security [6]-[8].  

Meanwhile, various quantitative security metrics have been 
proposed to measure the impact of cyberthreats. McQueen et al. 
[9] proposed TTC modeling based on the data of vulnerability and 
exploits. Zieger et al. [10] eliminated arbitrary values by modeling 
the distribution of the attackers’ proficiency. Given the 
vulnerability and skill level of an attacker, TTC quantifies various 
defense mechanisms against the long-term impact of risks and 
cyberattacks by predicting the time required to compromise a 
system. Zhang et al. [11] addressed the attacker’s aspect in 
reliability evaluation by assessing the cybersecurity using TTC 
derived from attack graphs. The k-Zero Day Safety metric 
estimates the number of unknown vulnerabilities required to 
compromise the network system [12]. To gauge the capability of 
CPS to recover from multiple system contingencies, resilience 
metrics were developed to integrate graph theory with the 
vulnerability scoring system in power grids [13].   

More recently, different from the emerging technological or 
regulatory solutions (e.g., grid hardening, attack-tolerant 
operational and planning strategies, and industry best practices), 
cyber-insurance is considered a promising financial instrument to 
enable efficient cyber risk management. For example, a holistic 
reliability assessment based cyber-insurance design has been 
demonstrated in [14]. Moreover, coalitional cyber-insurance has 
been proposed for the general network security, where a coalition 
is formed to distribute cyber risks among the cooperative 
organizations without transferring the risk to a third party [15]. As 
cyber-insurance for critical energy infrastructures is still an infant 
field so far, further exploration would be needed to effectively 
quantify the impacts of cyber vulnerability on the power supply 
reliability and their actuarial implications. 

The coalitional insurance [15] can be viewed as a variation of 
the mutual insurance considering individual characteristics.  While 
its core idea is similar to the mutual insurance design [16], 

coalitional insurance also concerns specific characteristics. More 
specifically, in determining the amount of contribution (premium) 
from each participant, mutual insurance relies on the statistical 
characteristic of the population while coalitional insurance 
emphasizes more on the individual characteristics. This paper 
presents a coalitional cyber-insurance design applied to cyber-
physical power systems. 

A. Contributions 
In this study, a novel cyber-insurance framework is proposed 

based on a coalition platform concept for the modern cyber-
physical power grids. To the best knowledge of authors, it is the 
first time that a coalitional cyber-insurance premium design is 
tailor-made for the power system networks. We design an actuarial 
premium principle that effectively reflects the security investment 
of TOs based on an integrated reliability and cyber-vulnerability 
analysis of power grids. The major contributions of this paper are 
listed as follows: 

• A novel coalitional cybersecurity-insurance framework for 
power systems is devised. The proposed framework performs 
reliability analysis accounting for the cyber vulnerability and 
estimates the premiums of TOs based on reliability worth analysis. 

• A new graphic security assessment approach is developed 
where cyber-vulnerability is estimated by considering all feasible 
nodal routes from the intruder’s perspective. It is critical to 
distribute the security-enhancing budget in each TO judiciously 
through proper defense resource allocation scheme.  

• A coalitional cyber-insurance design is proposed as an 
alternative or supplement to the conventional insurance 
administered by third-party insurers. In the proposed coalitional 
insurance model, TOs serve as both insurers and insureds.  

The remainder of this paper is organized as follows. A graphic 
model for performing integrated cybersecurity-reliability 
assessment is proposed in Section II. Section III presents a new 
coalitional cyber-insurance premium principle. Results of the case 
studies are discussed in Section IV. Concluding remarks are given 
in Section V. The Appendix is dedicated to deriving the security 
game and its equilibrium conditions discussed in Section II. 

B. Comparison with Related Work 
 To further highlight the contributions of this paper, a brief 
comparison is made with several related studies. Relations of these 
works are concisely described as follows. In [14], cyber-insurance 
model was established in light of the loss interdependence in 
reliability. This paper provides an alternative cyber insurance 
framework to [14] based on the concept of coalitional insurance 
platform in [15] and risk estimation in [10].  We propose a novel 
cyber-insurance design, and the associated premiums are 
reasonably estimated according to respective cybersecurity 
scenarios. Inspired by a unified framework of reliability and cyber 
vulnerability introduced in [11], together with security metrics 
from [9], [17], our holistic graphic model for cyber systems is 
tailored for mutual dependence of vulnerability across the 
operators. The comparison with related work described above is 
concisely tabulated in Table I. This paper should be considered 
one of the first endeavors in the development of coalitional cyber-
insurance for correlated power system operators. 
 

TABLE I COMPARISON WITH RELATED WORK 
 This work [14] [15] [11] [9],[10],[17] 
RA O O  O  
CPE O O    
CI O  O   
LI O O    
CSM O O  O O 
HGCM O     

* RA = Reliability Assessment, CPE = Cyber Premium Evaluation, CI = 
Coalitional Cyber-Insurance, LI = Loss Interdependence, CSM = Cyber-Security 
Metric, HGCM = Holistic Graphic Cyber Model.  

T 
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II. GRAPHIC MODEL FOR ASSESSING CYBERSECURITY 

A. Overview of the Cyber Model 
Referring to Fig. 1(a), the typical cyber-physical configuration 

in power systems includes a control center, generation, substations, 
and the SCADA system interconnected by LAN.  Here is a 
probable attack scenario. The potential intruder initiates a security 
game with the power system operator/defender by infiltrating the 
firewall. In this game, the intruder may profit from the ransoms 
paid by the defender. When the defender fails to pay the demanded 
ransom, the intruder who obtained the root privilege of the 
application servers in the SCADA system sends false commands 
to the relay to trip the breakers of the substations. As a result, the 
generation units and transmission lines are disconnected, causing 
load interruption and corresponding monetary loss of the TO. 

The cyber model includes vulnerability nodes connected by the 
networking links. The cyber model of network vulnerability can 
be represented by an attack graph of BN. BN is a probabilistic 
approach suited to estimate the combinational impact of the 
vulnerabilities and synthesize security metrics such as TTC [17], 
[18]. In cybersecurity assessment, attack graph is a stochastic 
modeling tool. The intruder targets on the root privilege to 
sabotage the server commanding a power system substation. To 
obtain the root privilege of the application server, the intruder 
needs to exploit n vulnerabilities. The vulnerability nodes are 
denoted by the ovals with colors corresponding to respective 
hierarchies. The connection provides a necessary link between two 
hosts through a vulnerability node. Privilege defines the allowable 
actions in the host. The intruder utilizes services to access the 
privilege via the connection. The intruder needs to meet three 
preconditions to complete a nodal vulnerability exploitation in the 
BN: Service (𝒮ℎ), Connection (𝒩ℎ), and Privilege (𝒫ℎ) which are 
assumed to be mutually independent.  

As shown in Definition 1, the BTTC can be formulated using 
the BN-based attack graph and  𝑡𝛽 of the respective vulnerability 
nodes. Denote 𝑐ℎ = 𝒮ℎ ∧𝒩ℎ ∧ 𝒫ℎ  at each vulnerability 𝑣ℎ . The 
probability of exploiting the known or zero-day vulnerability 𝑣ℎ 
is 𝑝(𝑣ℎ) . The conditional probability 𝑝(𝑐ℎ|𝑣ℎ)  is either 
determined by a random vulnerability that follows a uniform 
distribution or synthesized by a series of such vulnerabilities. The 
probability that the vulnerability 𝑣ℎ is exploited by the successful 
exploitation condition 𝑐ℎ is 𝑝(𝑣ℎ ∧ 𝑐ℎ), the product of  𝑝(𝑣ℎ) and 
𝑝(𝑐ℎ|𝑣ℎ). The BTTC is synthesized by further taking into account 
the BCT of all vulnerabilities from the intruder to the root 
privilege. 

 
Definition 1: Bayesian Time-To-Compromise of the Substations  
 

𝑇𝑏 =
∑ 𝑡𝛽(𝑣ℎ)𝑝(𝑣ℎ⋀𝑐ℎ)𝑣ℎ∈𝑉

𝑝(𝑐ℎ)
                    (1-A)  

Subject to:               

𝑡𝛽(𝑣ℎ) = {
𝑡𝛽(|𝑣|), 𝑣ℎ ∉ 𝑆  (𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 2)

𝑡𝛽(𝐶𝑠), 𝑣ℎ ∈ 𝑆  (𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 3)
        (1-B) 

𝑝(𝑣ℎ) =
𝐶𝑉𝑆𝑆

10
∗ 𝑈(0,1)                      (1-C) 

      𝑝(𝑐ℎ|𝑣ℎ) = {
𝑈(0.8,1) ∗ 𝟏{𝑐ℎ=𝑇}, ℎ = 1

𝑝(𝑐ℎ|𝑣ℎ ∧ (𝑣1 ∨. . .∨ 𝑣ℎ−1)), 𝑛 ≥ ℎ ≥ 2
     (1-D) 

 
𝑝(𝑣ℎ ∧ 𝑐ℎ) = 𝑝(𝑣ℎ) ∗ 𝑝(𝑐ℎ|𝑣ℎ)               (1-E) 
𝑝(𝑐ℎ) = ∑ 𝑝(𝑐ℎ|𝑣𝑙)𝑝(𝑣𝑙)

𝑛
𝑙=1                  (1-F)                                      

           
The BTTC evaluates the capability of respective substations to 
resist against the network adversary.  

As shown in Fig. 1(b), to disrupt the substation operation, the 
intruder 𝐼𝑑  Intruder(0) needs to compromise a series of 
vulnerability nodes 𝑉 = {𝐺, 𝐴, 𝐶, 𝑆}  to obtain the root privilege 
root(3):  Gate node (G), Authentication node (A), Countermeasure 
node (C), Substation node (S). 

Feasible attack sequences are: 
A1. Within a TO 𝐼𝑑 → 𝐺𝑎 → 𝐴𝑎,𝑘 → 𝐶𝑎,𝑚 → 𝑆𝑥   
A2. Across different TOs 𝐼𝑑 → 𝐺𝑏 → 𝐴𝑏,𝑟 → 𝐶𝑏→𝑎 → 𝐶𝑎,𝑚 → 𝑆𝑥     
 CVSS comprises base score, temporal score, and environmental 
score that take a wide range of attack factors into account, 
including confidentiality, integrity, availability, attack 
complexity, privileges required, and exploit code maturity [19]. 
Services are designated with respective scores in CVSS, which is 
an open-access vulnerability evaluation system. For instance, file 
transfer protocol (ftp), remote shell service (rsh), and database 
server (DB), together with the anomaly of buffer overflow (bof), 
are implemented in the vulnerability nodes 𝑉. Interested readers 
are referred to [11], [13] for more detailed descriptions. 

B. Exploitation of Cyber-Vulnerability 
Referring to Fig. 2, define 𝑡∗  as the average time that the 

intruder spends in successfully exploiting the vulnerability. In [9], 
𝑡∗  was decomposed into three mutually exclusive stochastic 
processes whose mean times and probabilities are {𝑡1, 𝑡2, 𝑡3} and  
{𝑃1, 𝑃2, 𝑃3}, respectively.  

 
Fig. 1. (a) Graph-based cyber-physical model considering network vulnerabilities. (b) Schematic BN-based attack graph for the cyber-vulnerability in the SCADA 
systems. 
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Fig. 2. Block diagram of the processes estimating Beta Compromise Time 
(Definition 2). 
 

In Process 1, at least one exploit (readily exploitable 
vulnerability) is available to the intruder. Process 2 indicates at 
least one vulnerability is identified, while no exploit is available 
to the intruder. In Process 3, the intruder searches new 
vulnerability since no vulnerability can be exploited or identified 
by the intruder. One of the processes is active only when the other 
two are inactive. Note that the unidentified vulnerabilities may 
include, but not be limited to, eavesdropping a legitimate 
password through social engineering, obtaining a stolen password 
from an insider, and any coordination between the insider and the 
intruder.  

In Definition 2, when calculating the stochastic metrics of these 
processes, a few variables should be taken into consideration:  |𝑣| 
is the number of known vulnerabilities of the component; 𝑚 is the 
number of available exploits; 𝜎  is the total number of 
vulnerabilities; 𝑠 ∈ [0,1]  is the skill level factor; and 𝐸  is the 
number of estimated tries, with auxiliary variables 𝑢 and 𝜉. 𝐸 is 
redefined in [10] to be a monotonically decreasing function with 
|𝑣|. The rationale for  𝐸 is that less estimated tries are needed 
given more vulnerabilities.  

Ultimately, various degrees of the skill level 𝑠 curve-fitted by a 
Beta distribution are accounted for. The Beta Compromise Time 
(BCT) 𝑡𝛽  over the distribution in exploiting the vulnerability is 
calculated with (𝜀, 𝜃) = (1.5,2.0)  according to [10]. Interested 
readers are referred to [9] and [10] regarding the selection of other 
constants. Since the cyber model preserves the flexibility for TOs 
to stipulate defense mechanisms, BCTs of the countermeasure 
nodes are estimated in a different fashion, with details to be 
discussed in the next subsection. 

C. Modeling of the Countermeasure Nodes 
 The attack tree in Fig. 3 describes the attacks based on the 
combinational event sets of countermeasure nodes that may result 
in substation failure [6], [11]. The defense mechanisms DM1-
DM8 are the frontmost entries that safeguard the substations. In 
Definition 3, the defense coverage 𝑝𝐷𝐶(𝐶𝑠)  is the manageable 
resilience at each countermeasure node 𝐶𝑠. The relative strength 
of the DM is 𝑝(𝐷𝑀𝑤), where 𝜂  is the number of levels of the 
countermeasure, 𝜒  is the normalizing constant, and 𝑝𝑢  is the 
randomness adjustment following a uniform distribution. 
Following this design, 𝑝(𝐷𝑀𝑤)  lies in [0,1]  and manifests 𝜂 
discrete levels of defense strengths against the cyber adversary. 
 
Definition 2: Beta Compromise Time Estimation (except 
Countermeasure Nodes) 

𝑡𝛽(|𝑣|) = ∫ 𝑡∗(|𝑣|, 𝑠, 𝜎) ∗ 𝐵𝑒𝑡𝑎𝜀,𝜃(𝑠)𝑑𝑠
1

0
      (2-A) 

 
Subject to: 

𝑡∗ = 𝑡1𝑃1 + 𝑡2𝑃2 + 𝑡3𝑃3                    (2-B) 

                              {
𝑃1 = 1 − 𝑒

−|𝑣|∗
𝑚(𝑠)

𝜎

𝑃2 = (1 − 𝑃1)(1 − 𝑢)
𝑃3 = 1 − 𝑃1 − 𝑃2

                            (2-C) 

                            {

𝑡1 = 1

𝑡2 = 5.8𝐸(𝑠, |𝑣|)

𝑡3 = (
1

𝑓(𝑠)
− 0.5)30.42 + 5.8

                 (2-D) 

{
 
 

 
 

𝑚(𝑠) = 83 ∗ 3.54𝑠/2.7 − 82 

𝑓(𝑠) = 0.145 ∗ 2.62𝑠+0.07 − 0.1

𝑢 = (1 − 𝑓(𝑠))
|𝑣|

𝑓̅ = 𝑓(𝑠) ∗ |𝑣|

              (2-E) 

{
  
 

  
 

𝐸(𝑠, |𝑣|) = 𝐸1(𝑠, |𝑣|) + 𝐸2(𝑠, |𝑣|)

𝐸1(𝑠, |𝑣|) = 𝜉(⌊𝑓⌋̅, |𝑣|) ∗ (⌈𝑓⌉̅ − 𝑓)̅

𝐸2(𝑠, |𝑣|) = 𝜉(⌈𝑓⌉̅, |𝑣|) ∗ (1 − ⌈𝑓⌉̅ + 𝑓)̅

𝜉(𝑏, |𝑣|) =
𝑏

|𝑣|
+

𝑏(|𝑣|−𝑏)!

|𝑣|!
𝜉̅

𝜉̅ = ∑ [
𝑡(|𝑣|−𝑡+1)!

(|𝑣|−𝑏−𝑡+1)!(|𝑣|−𝑡+1)
]

|𝑣|−𝑏+1
𝑡=2

         (2-F)            

 

 
Fig. 3. (a) Description of the (b) attack tree of the countermeasure nodes including 
defense mechanisms against attack leaves resulting in failure goal (Definition 3). 
 

Define 𝑒𝐷𝑀 as the exploits of the DMs. Since DMs are mutually 
independent, the probability that all/one of a set of DMs are 
attacked by a local attack leaf 𝐿𝑗 . Specifically, logical AND 𝐿𝑗 
triggered is conservatively activated by the most robust DM. 
Logical OR 𝐿𝑗  triggered is aggressively activated by the most 
vulnerable DM. The countermeasure node 𝐶𝑠 is compromised if 
either of the failure goals (𝐹1, 𝐹2) is activated by all the preceding 
attack leaves {𝐿𝑗}.                             
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Definition 3: Beta Compromise Time of Countermeasure Nodes 
 

𝑡𝛽(𝐶𝑠) = min(𝑡𝛽,𝐹1, 𝑡𝛽,𝐹2)                   (3-A)  
Subject to: 

{
𝑡𝛽,𝐹1 = 𝑡𝛽,𝐿3 + 𝑡𝛽,𝐿4

𝑡𝛽,𝐹2 = 𝑡𝛽,𝐿1 + 𝑡𝛽,𝐿2 + 𝑡𝛽,𝐿5
                  (3-B)                                         

𝑡𝛽,𝐿𝑗 =
𝑡𝛽(𝑣𝑗)𝑝(𝐿𝑗⋀𝑒𝐷𝑀)

𝑝(𝐿𝑗)
                         (3-C) 

𝑝(𝐷𝑀𝑤) = 𝜒 ∗ ⌈𝜂 ∗ 𝑝𝐷𝐶(𝐶𝑠)⌉ + 𝑝𝑢              (3-D) 

{
𝑝𝐴𝑁𝐷(𝐿𝑗⋀𝑒𝐷𝑀) = ∏ 𝑝(𝐷𝑀𝑤)𝑤

𝑝𝑂𝑅(𝐿𝑗⋀𝑒𝐷𝑀) = 1 − ∏ [1 − 𝑝(𝐷𝑀𝑤)]𝑤
          (3-E) 

                          {
 𝑝𝐴𝑁𝐷(𝐿𝑗) = max

𝑤
{𝑝(𝐷𝑀𝑤)}

𝑝𝑂𝑅(𝐿𝑗) = min
𝑤
{𝑝(𝐷𝑀𝑤)}

                       (3-F)                                                                                                                      

 
In the following subsection, the algorithm for allocating the 

defense resources on the countermeasure nodes will be introduced.   
D. Physical Model and Defense Resource Allocation 

Applications of the game theory vary from reducing the 
variation of the local network load profile [20], managing the 
inter-grid energy exchange [21] to bargaining energy prices [22], 
among many others. Game-theoretic algorithms have been applied 
to distribute the security resources or alleviate possible load 
curtailments based on the cyber-physical network connection 
subject to cyberattack intrusion [23]. SSG is a hierarchical 
approach to arrange the security resources. Marginal strategy 
representation of the SSG can relieve the computational burden 
for the defense resource allocation [24].  

Compact-form SSG algorithms have been developed to 
facilitate protection of the targets subject to attacks. Each TO 
conducts its own DRA optimization. In a two-player compact 
SSG, rival agents carry out strategies sequentially. The defender 
specifies its strategy preceding the best strategy selected by the 
intruder. Either player in the game can be an exact one entity or a 
group of entities. In the target set {𝜏𝑥}, a target substation 𝜏𝑥 in 
service is either covered or uncovered by the defender. The 
respective payoff values are the expected values calculated based 
on the payoffs of covered and uncovered attacks, {𝑈𝛼,𝜏𝑥

𝒸 , 𝑈𝛼,𝜏𝑥
𝑢 } for 

the intruder 𝛼, and {𝑈𝛽,𝜏𝑥
𝒸 , 𝑈𝛽,𝜏𝑥

𝑢 } for the defender 𝛽. The payoffs 
can be assigned according to the criticality of the substation or the 
substation load. The defense coverage investment on the 
respective countermeasure nodes corresponding to the target 
substations can be allocated up to the defense resource budget M 
that quantifies the security sparsity against the potential 
cybersecurity hazards experienced by the respective TOs.   

Optimization 1 achieves optimal DRA by maximizing the 
defender’s payoff [25] in each of the TOs. Benefitting from the 
MILP formulation, DRA via Optimization 1 can be completed in 
polynomial time. TO operators can invest defense resource 
coverage 𝒞 = {𝑝𝐷𝐶(𝜏𝑥)}  to individual substations based on the 
available security budget and the rank of criticality.  
E. State Duration Sampling 

The BTTC 𝑇𝑏 quantifies the duration in which individual 
substations would be compromised. To emulate the randomness 
of the cyberattacks, the exponential variate for each substation 𝜏𝑥 
is generated through a simple logarithmic operation.  𝑇𝑏,𝑥  has 
exponential sample 𝑇̂𝑏,𝑥. Substituting into cumulative distribution 
function of the standard normal distribution Φ, a set of uniform 
variates can be obtained. In this paper, 𝜆  sampled from the 
uniform distribution is replaced by a sample extracted from a 
correlated set {𝜆𝑥}, with correlation coefficient 𝑟.  The same set 
produces the correlated loss pattern in the respective TOs.  

 

Optimization 1: DRA via Maximal Defender Payoff  
Input: 𝑈𝛽,𝜏𝑥

𝒸 , 𝑈𝛽,𝜏𝑥
𝑢 , 𝑈𝛼,𝜏𝑥

𝒸 , 𝑈𝛼,𝜏𝑥
𝑢 , M 

Output:  {𝑝𝐷𝐶(𝜏𝑥)} 
/* 𝑴 = {𝑀𝑞} */ 

max𝑑                                          (4-A) 
Subject to: 

𝑎𝜏𝑥 ∈ {0,1}                                     (4-B) 
∑ 𝑎𝜏𝑥𝜏𝑥

= 1                                     (4-C) 
𝑝𝐷𝐶 ∈ [0,1]                                     (4-D) 

∑ 𝑝𝐷𝐶(𝜏𝑥)𝜏𝑥 ≤ 𝑀𝑞                                 (4-E) 
𝑑 − 𝑈𝛽(𝒞, 𝜏𝑥) ≤ (1 − 𝑎𝜏𝑥)𝑍                      (4-F) 
0 ≤ 𝑘 − 𝑈𝛼(𝒞, 𝜏𝑥) ≤ (1 − 𝑎𝜏𝑥)𝑍               (4-G) 

where 𝑑 ≥ 𝑈𝛽(𝒞, 𝜏𝑥), ∀𝜏𝑥 and 𝑍 is an arbitrarily large number.  
 
Algorithm 1: BTTC State Duration Sampling  
Input: 𝑃𝐿,𝑥, 𝑃𝐿,𝑡𝑜𝑡𝑎𝑙, 𝜇𝑣, 𝑈𝛽,𝜏𝑥

𝒸 , 𝑈𝛽,𝜏𝑥
𝑢 , 𝑈𝛼,𝜏𝑥

𝒸 , 𝑈𝛼,𝜏𝑥
𝑢 , M, r 

Output:  𝑇̂𝑏,𝑥                                            
 /*Assign the defense coverage using the security game*/ 
1: FOREACH TO q 
2:  FOREACH target substation x 
3:   Compute Substation Impact Index 𝛾𝑥 using (5)   
4:   Compute the defender’s and intruder’s payoffs: 
5:    𝑈𝛽(𝒞, 𝜏𝑥) ← 𝛾𝑥{𝑝𝐷𝐶(𝜏𝑥)𝑈𝛽,𝜏𝑥

𝒸 + (1 − 𝑝𝐷𝐶(𝜏𝑥))𝑈𝛽,𝜏𝑥
𝑢 }      

6:    𝑈𝛼(𝒞, 𝜏𝑥) ← 𝛾𝑥{𝑝𝐷𝐶(𝜏𝑥)𝑈𝛼,𝜏𝑥
𝒸 + (1 − 𝑝𝐷𝐶(𝜏𝑥))𝑈𝛼,𝜏𝑥

𝑢 }     
7:  END 
8:  Designate 𝒞 = {𝑝𝐷𝐶(𝜏𝑥)} using Optimization 1. 
9: END 
/*Estimate Beta Compromise Time*/ 
10: Evaluate 𝑡𝛽(|𝑣|) using Definition 2 
11: Evaluate 𝑡𝛽(𝐶𝑠) using Definition 3 
/*Sample the stochastic state duration for each target substation*/ 
12: FOREACH TO q 
13:   𝑁𝑐𝑞 ← 𝑟𝑁𝑡 + √1 − 𝑟

2𝑁𝑛𝑞  
/*𝑁𝑡, 𝑁𝑛1, . . . , 𝑁𝑛𝑦~𝑁(0,1), 𝑟 ∈ [0,1] */ 
14: END 
/*Generate correlated set {𝜆𝑥} of uniform distribution*/ 
/*Generate state duration sampling 𝑇̂𝑏,𝑥*/ 
15: FOREACH target substation x 
16:   𝜆𝑥 ← Φ(𝑁𝑥) 
17:       Calculate 𝑇𝑏,𝑥 using Definition 1   
18:   𝑇̂𝑏,𝑥  ← −𝑇𝑏,𝑥 ln 𝜆𝑥 
19: END 
 

Algorithm 1 summarizes the procedure of state duration 
sampling by evaluating the BTTC over cyber vulnerabilities. To 
indicate the load criticality of the substation 𝜏𝑥 , a substation 
impact index is devised as a weighting coefficient: 

𝛾𝑥 = (1 +
𝑃𝐿,𝑥

𝑃𝐿,𝑡𝑜𝑡𝑎𝑙
)𝜇𝑣                             (5) 

where 𝑃𝐿,𝑥 is the load at the substation 𝜏𝑥, 𝑃𝐿,𝑡𝑜𝑡𝑎𝑙 is the total load 
in the system, and 𝜇𝑣 is the number of adjacent substations.  
 

Following Optimization 1, BCT of the vulnerability nodes can 
be synthesized into BTTCs according to Definitions 2,3. BTTCs 
serve as the mean values in state duration sampling.  

 
Optimization 2: Reliability Load Curtailment Estimation  
 

min {∑ 𝑲𝒙𝑥 }𝜈                                (6-A)  
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Subject to: 

𝑩𝜽 + 𝑮 + 𝑲𝒙 = 𝑫𝒄𝒂𝒑                      (6-B) 
|𝑭| ≤ 𝑭𝒄𝒂𝒑                                       (6-C) 

𝟎 ≤ 𝑲𝒙 ≤ 𝑫𝒄𝒂𝒑                            (6-D) 
𝟎 ≤ 𝑮 ≤ 𝐸𝑁(𝝉𝒙) ∗ 𝑮𝒄𝒂𝒑                    (6-E) 
𝐸𝑁(𝝉𝒙) = 𝟏{𝜈∈𝑻̂𝒃,𝒙}                           (6-F) 

 
where 
 
𝑲𝒙            Load curtailment vector (MW) 
𝜈               Time step of the reliability assessment 
𝑩              Substation susceptance vector 
𝜽              Vector of the substation voltage angles (rad)  
𝑮              Vector of the available generation (MW) 
𝑮𝒄𝒂𝒑         Generation capacity vector (MW) 
𝑫𝒄𝒂𝒑         Load capacity vector (MW) 
𝑭               Transmission power flow vector (MW) 
𝑭𝒄𝒂𝒑            Thermal limit vector of the transmission lines (MW) 
𝐸𝑁(𝝉𝒙)     Enabling function of the substations 
𝟏{∙}            True/false binary indicator of a conditional statement 
∗                Element-wise product operator 

 

F. Reliability Assessment 
Based on the respective strengths against cyberattacks, a 

stochastic 𝑇̂𝑏,𝑥 sampled in Algorithm 1 is assigned to individual 
substations, determining the online generation capacity. 
Specifically, if the intruder compromises the root privilege of the 
substation server, a false tripping command is assumed to be sent 
to the substation relays, leading to generation offline. For further 
clarification, Optimization 2 is used to explain the minimization of 
aggregate substation load loss ∑ 𝑲𝒙𝑥  subject to cybersecurity 
threats in each observed time step 𝜈. In each substation server, an 
enabling function 𝐸𝑁(∙)  is implemented to set the upper bound 
𝐸𝑁(𝝉𝒙) ∗ 𝑮𝒄𝒂𝒑 of the generation 𝑮 by checking whether the time 
step 𝜈 lies in the interval defined by 𝑇̂𝑏,𝑥, returning 1 if true and 0 
otherwise. In addition, the feasible load curtailment 𝑲𝒙 and the 
power flow must never exceed the load capacity 𝑫𝒄𝒂𝒑  and the 
transmission thermal limit 𝑭𝒄𝒂𝒑, respectively.  

Finally, the equality constraint of energy conservation between 
generation supply and load demand should be met at all time. In 
the following section, the cyber-insurance premium devised for 
different TOs and the indemnity mechanism will be presented.                                       

III. DESIGN OF CYBER-INSURANCE PREMIUM 
Cyber-insurance is envisioned as a promising financial 

instrument for the TOs against unpredictable losses. The cyber 
insurance is in place as a safety net for the power system operators 
who could otherwise suffer unpredictable monetary losses due to 
blackouts or load interruption induced by consequential 
cyberattacks. To incorporate the financial impact of cyberattacks 
on the economically related entities, it is essential for the premium 
package to encompass the statistics across the insured entities. 
However, implementing cyber insurance is difficult in practice 
due to a relatively small insured pool with large indemnities. Thus, 
novel insurance principles customized for the cyber-insurance are 
proposed to resolve the dilemma. A desirable cyber insurance 
design should allow sufficient total premiums to substantially, if 
not completely, cover all claims and fairly distribute premiums 
among the insureds. 

To this end, two risk measures, VaR and TVaR, are introduced 
below. Specifically, VaR measures the riskiness of a portfolio 
through percentile, which is defined as follows: 

                 𝑉𝑎𝑅𝜛(ℒ) = inf{ℓ: 𝑃(ℒ > ℓ) ≤ 𝜛}, 𝜛 ∈ (0,1).     (7) 
TVaR measures the riskiness of a portfolio through the average of 
the worst 100𝜛% scenarios. It is defined as follows:  

 𝑇𝑉𝑎𝑅𝜛(ℒ) =
1

𝜛
 ∫ 𝑉𝑎𝑅𝑝 (ℒ)𝑑𝑝
𝜛

0
               (8) 

Intuitively, TVaR is the average of all the possible values of ℒ that 
are greater than VaR, so it is greater than VaR. In other 
words,  𝑇𝑉𝑎𝑅𝜛(ℒ) >  𝑉𝑎𝑅𝜛(ℒ) , and TVaR is a more 
conservative risk measure than VaR. 

Denote the total losses by ℒ∗ = ∑ ℒ𝑞𝑞 . Using the risk measure 
TVaR, the total premium can be evaluated as: 

𝑇𝑉𝑎𝑅𝜛(ℒ
∗) =

1

𝜛
 ∫ 𝑉𝑎𝑅𝑝 (ℒ

∗)𝑑𝑝
𝜛

0
, ∀ 𝑝 ≤ 𝜛     (9) 

After the total premium is determined, individual premiums can 
be allocated to the individual TOs. With the total premium 
𝑇𝑉𝑎𝑅𝜛(ℒ

∗), the insolvency (which is the probability that the total 
losses exceed the total premium) is controlled at the level lower 
than 𝜛. 

A TCE premium design 𝜋1 [14] to allocate 𝑇𝑉𝑎𝑅𝜛(ℒ∗) based 
on individual contributions to the total TVaR, is defined as: 

𝜋1(ℒ𝑞) = 𝐸[ℒ𝑞|ℒ
∗ > 𝑉𝑎𝑅𝜛(ℒ

∗)]                (10) 
when is ℒ∗ continuous, it can be easily shown that ∑ 𝜋1(ℒ𝑞)𝑞 =

𝑇𝑉𝑎𝑅𝜛(ℒ
∗) . Although 𝜋1  is advantageous in controlling 

insolvency risk, it results in a high premium to indemnity ratio 
which thus jeopardizes its practicability. The coalitional platform 
among the TOs can be introduced as a probable alternative to 
resolve the dilemma. No third-party insurer is involved in the 
coalition, as each TO who opts to participate in the coalition is 
both the insurer and the insured [15]. 

A coalitional premium 𝜋2 can be defined as follows: 
𝜋2(ℒ𝑞) = 𝜑𝑞 ∑ 𝛿𝑞,𝑘𝜓(Π𝑞 + (𝑘 − 1)Π̅−𝑞)

𝑦−1
𝑘=1       (11) 

where y is the number of TOs in the coalition; 𝜑𝑞 is the occurrence 
probability of the loss event which is a ratio of the number of time 
steps with loss occurrence to the total sampled time duration in the 
reliability assessment; 𝛿𝑞,𝜍  is the probability that the TO 𝑞 among 
𝜍 TOs submits the claim; Π𝑞  is the claim of TO 𝑞; and Π̅−𝑞 =
(∑ Π𝑘
𝑦
𝑘=1 )−Π𝑞

𝑦−1
 is the average of all the claims except for that of TO 

𝑞.The coalitional premium differs in each claim scenario. 𝜍 is the 
number of TOs which submit their claims. When 𝜍  is larger, 
payments toward claims from other TOs weigh more in the 
individual premiums. 

Define the indemnity as 𝛤𝑞 = Π𝑞 + (𝜍 − 1)Π̅−𝑞  and 
commitment as ℂ𝑞 of the TO 𝑞, respectively. The scaling function 
𝜓(∗)  in 𝜋2(ℒ𝑞)   ensures the indemnity sum ∑ 𝛤𝑞𝑞∈𝜎   never 
exceeds the commitment sum ∑ ℂ𝑞𝑞∈(𝑦−𝜎) : 

𝛤𝑞
𝜓
= 𝜓(𝛤𝑞) = {

𝛤𝑞 , 𝑤ℎ𝑒𝑛 ∑ 𝛤𝑞𝑞∈𝜎 ≤ ∑ ℂ𝑞𝑞∈(𝑦−𝜎)

∑ ℂ𝑞𝑞∈(𝑦−𝜎)

∑ 𝛤𝑞𝑞∈𝜎
𝛤𝑞 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (12) 

where ∑ 𝛤𝑞𝑞∈𝜎 ≤ ∑ ℂ𝑞𝑞∈(𝑦−𝜎)  ensures the budget sufficiency. 
Taking advantage of the abundant loss reimbursement to the 

potential claims in the TCE premium, the coalitional premium 
estimates the respective commitment values of TOs by the TCE 
premiums, and the claims are set to be the respective expected 
losses in TOs: 

ℂ𝑞 = 𝜋1(ℒ𝑞),  Π𝑞 = 𝐸[ℒ𝑞]                       (13) 
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Fig. 4. Flowchart of the proposed reliability-based cyber-insurance model 
considering cyber vulnerability, comprising (I) Cybersecurity-reliability 
assessment framework, and (II) Cyber-insurance premium estimation. 

 
The notion of using 𝜋1  as the commitments of 𝜋2  is that 𝜋2 

based on a crowdfunding model serves as a remedy of 𝜋1 which 
deeply penalizes the TOs with heavy-tailed loss distributions. 𝜋2 
allows respective TOs to submit the commitments and claims to 
the coalition.  The very motivation of the coalitional premium 
application is to encourage the risk aversion by reduced premiums 
for all. The fairness of 𝜋2 is justified by the even distribution of 
the premiums. In some cases, the indemnities of some TOs may 
even be allowed to exceed the premiums without violating the 
budget sufficiency practice, which will be discussed in the case 
studies. Despite offering reduced premiums, 𝜋2  is cautiously 
tailored so that the indemnity sum can never exceed the 
commitment sum, in which the individual indemnities would 
simply be scaled down by the ratio of the foregoing sums.  

To achieve budget sufficiency, the indemnity formed by the 
claims filed by a group of TOs should never exceed the total 
commitment of other TOs in the coalition. Note that multiple sets 
of coalition which satisfy the budget sufficiency may exist. 
Selection of the coalition is on the discretion of participating TOs. 
As a rule of thumb, more affordable premiums are desirable so 
long as it can still cover the claims from the TOs. In other words, 
the coalition with the lowest total premium is selected.  

Fig. 4 depicts the proposed coalitional cyber-insurance model. 
Stochastic evaluation of the BTTC, state duration sampling, and 
reliability assessment are shown. Application of the load loss 
statistics from reliability assessment to cyber-insurance premium 
computation is introduced. Further details are given in the 
following. 

(I) cybersecurity-reliability assessment framework 
introduced in Section II.  The CPS under study is constructed 
based on the graph-based cyber model of the SCADA system and 
the sectionalized physical power system configuration. BTTCs of 
the substations are composed of BCTs of the cyber nodes 
synthesized by the Bayesian Network of the vulnerability analysis  
(Definition 2) and BCTs of the game-inspired DRA optimization 
(Definition 3, Optimization 1). With a novel state duration 
sampling method using the correlated copula of TOs generated 
using Algorithm 1, reliability-assessment-oriented DC-OPF is 
conducted to obtain temporal load curtailment statistics of the TOs.  
(II) cyber-insurance premium estimation presented in Section 
III. Developed to handle the load loss statistics of TOs, cyber-
insurance premiums are computed by a novel coalitional premium 
design which takes the interdependence of TOs and the fairness 
and affordability of the premiums into account. The effectiveness 
of the proposed cybersecurity assessment framework and the merit 
of the proposed premium settings in various degrees of TOs’ 
interdependence will be validated in the following section. 

 
Fig. 5. IEEE Reliability Test system 96 (RTS-96) [26] and associated TOs. 

IV. CASE STUDIES AND DISCUSSION 

A. Settings of the simulation 
In case studies, the physical impact of cyberattacks is reflected 

by the load losses in reliability assessment. The crucial 
interdependence of cyber and physical aspects lies in the server of 
the SCADA system. If the root privilege of this server is obtained 
by the intruder, then malicious commands may be sent to trip 
protection relays and cause generation off-line, resulting in 
physical load losses. 

The effectiveness is examined by case studies of defense 
resource allocation with tight and abundant budgets. The security 
budget 𝑚  only suffices to partially cover substations. For 
example, 20% security budget is sufficient to cover one-fifth of 
the substations. In the scenarios of LDC and HDC, the 
corresponding available security budgets are set to be 20% and 
80%, respectively.  

A case study for validating the proposed coalitional cyber-
insurance framework is performed based on the IEEE Reliability 
Test System (RTS-96). One-line diagram of the sectionalized 
RTS-96 is illustrated in Fig. 5, with details listed in [26]. The test 
system is divided into 3 areas including 7 TOs connected by 6 
inter-area lines. No TO operates across the areas. In Area 1, TOs 
1-2 are located. TOs 3-5 are situated in Area 2, and TOs 6-7 are 
located at Area 3. Peak load capacities are also shown in Fig. 5.  

The proposed cyber model can be viewed as an attack net whose 
branches can be extracted as respective attack graphs of the 
substations.  
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Fig. 6. Hierarchical vulnerability nodes of the cyber model in IEEE RTS-96. 

 

 
Fig. 7. Load loss correlation matrices of the TOs (a) at LDC (b) at HDC varied with 
correlated copulas. 
 
The cyber model of the SCADA system developed for the IEEE 
RTS-96 is shown in Fig. 6, with all feasible routes identified by a 
DFS algorithm [27]. Case studies are conducted using the SMC 
method sampling over 500 years with hourly time steps, where 
expected values of reliability worth are: 

 
     𝐸𝑅𝑊 = 𝐸[ℒ] = ∑ 𝐾ΩΩ 𝑊(𝐷Ω) ($/𝑦𝑟)            (14)   

 
Fig. 7 shows the load correlation matrices. We would like to 

observe the Pearson correlation between each of the two TOs. 
Note that the diagonal entries are always 1’s, which do not carry 
information. When 𝑟 = 0, the correlation entries are mostly close 
to 0 with those belonging to TOs in the same area having slightly 
higher values, representing the impact induced by physical 
connection. As  𝑟 increases to 0.5, the correlations range around 
0.35. At LDC, the correlations can go as high as 0.78. In general, 
each TO at HDC has slightly higher correlation values than the 
same TO at LDC. The effectiveness of the copula is thus validated.  

Figs. 8 and 9 illustrate the expected reliability worth, Standard 
Deviations SDs, and CoVs subject to LDC and HDC. CoV is a 
dimensionless ratio of the SD to the expected value. The 
effectiveness of DMs is validated by the fact that the expected  

 
Fig. 8. Expected Values (M$), Standard Deviations (M$) and Coefficients of 
Variation of monetary loss in the TOs at LDC. 
 

 
Fig. 9. Expected Values (M$), SDs (M$) and CoVs of monetary loss in the TOs at 
HDC. 
losses of TOs monotonically decrease as the available security 
budget increases. 

The trend that the expected losses increase with the correlation 
can also be observed. Since SDs are close to the expected losses, 
CoVs remain flat across the TOs within the range of [0.86 1.18]. 
With the obtained monetary loss statistics, the insurance premium 
can be calculated accordingly. In the next subsection, premium 
estimation according to the insurance principle will be 
demonstrated and discussed. We would like to find if the 
premiums which sample the tail risks capture the same trend as 
demonstrated by the loss expectation.  
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TABLE II ACTUARIAL INSURANCE PREMIUMS (M$) OF THE TOS AT LDC 
𝑟 = 0 TO1 TO2 TO3 TO4 TO5 TO6 TO7 
𝜋1 45.4 16.1 18.5 22.8 14.8 41.8 14.7 
𝜌1 2.09 2.35 2.54 2.79 2.29 2.35 2.65 
𝜋2 13.1 9.51 9.55 9.66 9.43 12.2 9.07 
𝜌2 -0.11 0.98 0.83 0.61 1.10 -0.03 1.26 

𝑟 = 0.5 TO1 TO2 TO3 TO4 TO5 TO6 TO7 
𝜋1 49.5 17.1 22.5 20.4 15.1 41.6 17.2 
𝜌1 2.26 2.47 3.01 2.35 2.31 2.10 3.14 
𝜋2 14.3 10.5 10.4 11.0 10.5 13.8 9.79 
𝜌2 -0.06 1.13 0.85 0.80 1.30 0.03 1.36 

𝑟 = 1 TO1 TO2 TO3 TO4 TO5 TO6 TO7 
𝜋1 50.0 17.4 21.1 26.4 16.8 44.9 17.4 
𝜌1 2.14 2.43 2.60 3.15 2.59 2.33 2.72 
𝜋2 14.7 10.7 10.8 10.6 10.4 13.7 10.3 
𝜌2 -0.07 1.11 0.85 0.67 1.23 0.02 1.21 

 

B. Estimation of the Premium Design 
In the cyber-insurance framework, respective premiums of TOs 

estimated by marginal statistics of the loss distribution. Due to the 
interconnection of power grids across the TOs, the premiums 
should be allocated by synthesizing loss distribution across the 
TOs. A major motivation for the TOs to engage in the cyber-
insurance is to alleviate the unexpected losses resulting from the 
cybersecurity threats.  

The premiums are designed to account for the strength and peak  
load capacity varied by TOs. Although the premium design 𝜋1 
(TCE Premium) guarantees the loss coverage, the estimated 
premiums are remarkably higher than the expected losses. The low 
cost-effectiveness may discourage the TOs from participation.  

 To alleviate the financial burden of TOs, a novel premium 
package 𝜋2 (termed Coalitional Premium) is designed using the 
crowdfunding concept. In this subsection, 𝜋1  and 𝜋2  are 
estimated according to the same set of loss distributions of TOs. 
Given a potential loss ℒ𝑞 , RLC 𝜌  that further highlights the 
affordability of the premium relative to the risk expectation is 
defined as follows: 

𝜌(ℒ𝑞) = 𝜋(ℒ𝑞)/𝛤𝑞
𝜓
− 1                    (15) 

where 𝜌(ℒ𝑞) > 0, ∀𝑞  guarantees the budget sufficiency. While 
positive RLC provides some margin to cushion against 
uncertainty, we will show majority of the participating entities 
provide safety-net margins to cover outliers with negative RLC 
according to the proposed insurance principle. To provide a viable 
insurance product, the RLC in the market is usually set relatively 
low.  

The premiums collected from TOs is used as the budget for 
indemnities. In Table II, 𝜌1 ranges from 2.09 to 3.15. Higher 𝜌1 is 
caused by heavy tails of the loss distribution. On the contrary, 𝜌2 
is dispersed in [-0.11 1.36], mostly without exceeding 1. Note that 
a few TOs with slightly negative RLCs (TO1 and TO6) are 
tolerable for the coalition which gains remarkably wider positive 
margins from the premiums of other TOs. In other words, the total 
coalitional premium still suffices to cover the claimed total 
potential losses given the insurance pool. In addition, 𝜋2  also 
distributes the risks more uniformly than 𝜋1, making the coalition 
a compelling insurance model. In Table III, premiums are reduced 
at HDC, and 𝜋2 still serves as a more affordable option, with 𝜌2 
being lower than 1.70.  

The commitment term ℂ𝑞 can be flexibly replaced so long as 
the budget sufficiency still holds. The pattern of 𝜌2 agrees with the 
more uniformly distributed 𝜋2  across the TOs. While 𝜋1 
guarantees the monetary coverage of the losses by substantial 
margins at the cost of affordability, 𝜋2  proposed in this paper 
imposes lower financial threshold and fair premium distribution 
for the TOs. 𝜋1 is more advantageous for thin tail distributions, 
while 𝜋2  is more cost-effective in high risk uncertainty. The 
tradeoff between the two premium designs can be made based on 
the preference of individual practitioners.  

TABLE III ACTUARIAL INSURANCE PREMIUMS (M$) OF THE TOS AT HDC 
𝑟 = 0 TO1 TO2 TO3 TO4 TO5 TO6 TO7 
𝜋1 32.7 10.9 16.4 18.7 8.43 35.1 13.5 
𝜌1 2.46 2.35 3.18 2.75 2.12 2.63 3.08 
𝜋2 9.37 7.22 7.09 7.65 7.12 9.36 6.92 
𝜌2 -0.01 1.21 0.80 0.53 1.64 -0.03 1.09 

𝑟 = 0.5 TO1 TO2 TO3 TO4 TO5 TO6 TO7 
𝜋1 37.1 11.2 17.8 21.3 10.5 35.2 14.5 
𝜌1 2.37 2.41 3.42 2.66 2.79 2.26 3.20 
𝜋2 10.6 7.82 7.59 8.58 7.45 10.6 7.49 
𝜌2 -0.04 1.37 0.88 0.47 1.69 -0.02 1.17 

𝑟 = 1 TO1 TO2 TO3 TO4 TO5 TO6 TO7 
𝜋1 38.9 12.4 18.9 26.1 11.1 37.9 15.1 
𝜌1 2.50 2.55 3.44 3.00 2.68 2.34 2.84 
𝜋2 11.0 8.23 8.04 9.06 8.01 11.1 8.24 
𝜌2 -0.01 1.36 0.89 0.38 1.65 -0.02 1.09 

V. CONCLUSION 
In this paper, a coalitional cyber-insurance framework is 

proposed based on power system reliability assessment accounting 
for cyber-vulnerability. Different from the TCE premium that 
conservatively ensures loss coverage of the TOs, the coalitional 
premium is designed to alleviate the RLC across the TOs 
especially at high defense coverage. Also, the proposed coalitional 
cyber-insurance design does not involve the third-party insurer. In 
addition, a graphic intrusion model is proposed to encompass the 
interdependence of network vulnerabilities and synthesize the 
stochastic cybersecurity metric based on the intrusion routes. 

As shown in the case studies, a higher defense level is 
incentivized by the reduced premiums according to the proposed 
actuarial principle. This paper is an attempt to establish an 
innovative cyber-insurance design incorporating integrated long-
term reliability-vulnerability assessment for power grids. Possible 
future work on this research topic includes insurance package 
design customized to the needs of individual TOs. Since 
dependence among the TOs is always one crucial factor when 
calculating the insurance premiums, the dependence factors of 
cyber risks may be separately estimated to further improve the 
fairness of the premium design. 

APPENDIX 

DETAILED DERIVATION OF THE SSG OPTIMIZATION 
In Section II-D, the SSG-based defense resource distribution 

mechanism is carried out in the planning stage to fortify the 
resilience of countermeasures within the respective TOs against 
the cyber adversary. The defense coverage at each target 
substation is allocated exactly at the maximum payoffs of both the 
defender and intruder are reached. Derivation of the SSG 
optimization is further elaborated as follows.  

Optimization 1 is essentially a bi-level optimization problem: a 
defender’s problem embedded with an intruder’s subproblem 
where the intruder’s payoff is maximized. In this optimization, the 
defender specifies strategies before the intruder. The bi-level 
optimization is paired up as one using Karush-Kuhn-Tucker 
(KKT) conditions. The subproblem, given 𝒞  assigned by the 
defender, can be devised for achieving maximal intruder’s payoff: 

max∑ 𝑎𝜏𝑥𝜏𝑥
𝑈𝛼(𝒞, 𝜏𝑥)                       (16-A) 

Subject to: 
𝑎𝜏𝑥 ∈ {0,1}                                     (16-B) 
∑ 𝑎𝜏𝑥𝜏𝑥

= 1                                     (16-C) 
The problem that accounts for maximal defender’s payoff 

subject to maximal intruder’s payoff is formulated as follows: 
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max∑ 𝑎𝜏𝑥𝜏𝑥

𝑈𝛽(𝒞, 𝜏𝑥)                        (17-A) 
Subject to: 

𝑎𝜏𝑥 ∈ {0,1}                                   (17-B) 
∑ 𝑎𝜏𝑥𝜏𝑥 = 1                                   (17-C) 
𝑝𝐷𝐶 ∈ [0,1]                                   (17-D) 

∑ 𝑝𝐷𝐶(𝜏𝑥)𝜏𝑥 ≤ 𝑀𝑞                               (17-E) 
𝑎𝜏𝑥(𝑘 − 𝑈𝛼(𝒞, 𝜏𝑥)) = 0                       (17-F) 

In the bi-level optimization problem (17), the subproblem’s 
objective (16-A) is incorporated as a complementary slackness 
condition (17-F) of the problem to ensure both objectives of the 
problem and subproblem can be met simultaneously. For the ease 
of implementation, expression (17-F) is further replaced with the 
following inequality constraints:                  

0 ≤ 𝑘 − 𝑈𝛼(𝒞, 𝜏𝑥) ≤ (1 − 𝑎𝜏𝑥)𝑍           (17-G) 
The optimization problem (17) is a tedious Mixed Integer 

Quadratic Programming (MIQP) problem which involves a 
bilinear objective. To further simplify the problem, the problem 
can be reformulated into a MILP problem by replacing the 
objective (17-A) with the following objective bounded by 
inequality constraints: 

max𝑑                                   (18-A) 
                                 (17-B) - (17-E), (17-G) 

𝑑 − 𝑈𝛽(𝒞, 𝜏𝑥) ≤ (1 − 𝑎𝜏𝑥)𝑍               (18-B) 
which is exactly Optimization 1.  
  Remark 1: The Stackelberg equilibrium for the intruder and the 
defender is guaranteed by the bi-level structure which maximizes 
payoffs of both the intruder and defender in Optimization 1:  

𝑑 = ∑ 𝑎𝜏𝑥𝜏𝑥 𝑈𝛽(𝒞, 𝜏𝑥) ≥ ∑ 𝑎𝜏𝑥
∗

𝜏𝑥 𝑈𝛽(𝒞
∗, 𝜏𝑥)     (19-A) 

𝑘 = ∑ 𝑎𝜏𝑥𝜏𝑥 𝑈𝛼(𝒞, 𝜏𝑥) ≥ ∑ 𝑎𝜏𝑥
∗

𝜏𝑥 𝑈𝛼(𝒞
∗, 𝜏𝑥)     (19-B) 

∀𝒞∗ ≠ 𝒞, ∀𝑎𝜏𝑥
∗ ≠ 𝑎𝜏𝑥 . 

Remark 2: Mixed strategy Nash equilibrium between the 
intruder and the defender can be achieved iff 𝑈𝛽(𝒞, 𝜏𝑥) =
−𝑈𝛼(𝒞, 𝜏𝑥), ∀𝜏𝑥; that is, when the SSG is a zero-sum game. 
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