
 1 

  
Abstract— As one of the national critical infrastructures, the 

water distribution system supports our daily life and economic 
growth, the failure of which may lead to catastrophic results. 
Besides the uncertainty from the system component failures, 
cyberattacks are vital to the secure system operation and have 
great impacts on the reliability of the water supply service. 
Malicious attackers may intrude into the supervisory control and 
data acquisition (SCADA) system of pump stations in the water 
distribution networks and interrupt the water supply to the 
customers. Cyber insurance is emerging as a promising financial 
tool in system risk management. In this paper, cyber insurance is 
proposed for the cyber risk management of the water distribution 
system. A semi-Markov process (SMP) model is devised to model 
the cyberattacks against pump stations in the water distribution 
system. Both the impacts of the independent cyber risks in the 
individual distribution network and the correlated cyber risks 
shared across different water distribution networks are evaluated 
and modeled. A sequential Monte Carlo Simulation (MCS) based 
algorithm is developed to evaluate the system loss. Cyber insurance 
premiums for the water distribution networks are designed based 
on the actuarial principles and potential system losses. Case studies 
are also performed on multiple representative water distribution 
networks, and the results demonstrate the validity of the proposed 
cyber insurance model.   

Index Terms—Cybersecurity, cyber insurance, premiums, 
water distribution system, reliability evaluation. 
 

I.  INTRODUCTION 
idespread applications of the information and 
communication technology (ICT) introduce higher risks 

on cybersecurity in modern cyber-physical systems. The real-
time monitoring and communication systems are commonly 
used in the regular operation of water systems. The systems 
control and data acquisition (SCADA) systems in the water 
systems are extensively applied to control the automated 
physical processes which are essential to the drinking water 
treatment and water distribution systems. It has become a 
standard for the operation of medium to large scale drinking 
water systems and even some small water utilities. With the 
improvement of operational efficiency, the vulnerabilities of the 
water system to malicious cyberattacks are increasing at the 
same time. A successful cyberattack on the water network can 
lead to very serious damage on both the supply side and demand 
side. Consequently, the SCADA system in the water 
distribution network has become the primary target of several 
cyberattacks in the past two decades [1][2]. According to the 
Water Sector Cybersecurity Brief for States [3] given by the 
U.S. Environmental Protection Agency (EPA), successful 
cyberattacks on the controls systems like the SCADA system in 
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the water network have significant impacts on the system 
performance, such as upsetting the treatment and conveyance 
processes by opening and closing valves, overriding alarms and 
disabling pumps or other equipment, deface the utility’s 
website, compromise the email system, install malicious 
programs like ransomware to disable the process control 
operations, etc. The cyberattacks to the critical infrastructures 
are becoming more serious in recent years and cybersecurity 
threats continue to grow across the water utilities. A recent 
example of cyberattack against the water sector is the City of 
Atlanta ransomware attack in 2018. The Atlanta Department of 
Watershed Management could not turn on the working 
computers for normal operation within one week, and Atlanta 
had to completely close its official water department website for 
two weeks after the cyberattack. This cyberattack takes several 
months to address and the approximate cost is up to 5 million 
dollars [4]. In 2016, the system of Lansing Board of Water & 
Light (BWL) was totally locked by the unidentified foreign 
hacker. The attacker demanded a $25,000 ransom to unlock the 
system. In addition, BWL had to pay the cyber forensics fee, 
clean and test hundreds of computers and replace the infected 
servers, which incurred the total cost to around $2.4 million 
dollars [5]. Another example of cybersecurity threats to the 
water utilities is that an American water authority was hacked 
between November 2016 and January 2017. According to the 
intelligence briefing on this cyberattack published by the 
Department of Homeland Security (DHS), after successfully 
intruding into the system, the cyberhackers took control of all 
the cellular routers in the water utility and stole valuable internet 
service for other uses, which cost the utility $45,000 in 
December and $53,000 in January respectively. Fortunately, the 
cyber intrusions did not damage the utility infrastructure and 
lead to any loss of the water service. Or else, more severe 
damage and system losses could have been caused by the 
cyberattacks.  

Cybersecurity is considered as one of the most critical factors 
that has a great impact on the reliable performance of the critical 
systems. Cyber attackers may compromise the major function 
of the water distribution networks in delivering clean water, 
pollute the environment, and eventually lead to financial and 
legal liabilities for the water utilities. The Executive order 
13636 Improving Critical Infrastructure Cybersecurity issued in 
2013 [6] pointed out the urgent need of a framework to provide 
a cost-effective approach to help the critical infrastructure 
owners and operators to reduce the overall cyber risks while 
maintaining the reliable system performance. Cyberattacks can 
bring potential threats to the water systems. Some existing 
studies on cybersecurity characterization have mostly 
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considered the cybersecurity from a qualitative perspective. So 
far, very few studies have considered the quantitative 
assessment of cybersecurity. Therefore, it is of great importance 
to evaluate the impacts of the cyberattacks on the water 
distribution network in a quantitative manner. From the systems 
analysis perspective, there are some similarities between the 
failures caused by accidental faults such as system components 
failures or human errors and the failures due to cyberattacks. 
Therefore, we can fully utilize the proposed model and available 
research in the literature about reliability analysis of critical 
infrastructures to develop cybersecurity quantification analysis. 

Reliable water supply is of critical importance to support the 
economic development and human life. Based on the 
predictions from report of [7] and [8], water supply will become 
one of the most serious national problems by 2025. With the 
increasing risks of substantial economic losses due to 
cyberattacks, additional tools to manage the cybersecurity risks 
are strongly urged. An integrated risk evaluation of the water 
system incorporating the impact of cyberattacks is very 
meaningful in enabling more informed decision making. One 
efficient way is to adopt the recently developed cyber insurance 
policies, which are the policies that provide coverage against the 
overall system losses from network related issues in 
cybersecurity. From the business perspective of cybersecurity, 
the visions of cyber-insurance as a risk management tool were 
formulated. Some existing studies have considered the cyber 
insurance as an effective tool for cyber risk management [9, 10, 
11]. The authors of [12] demonstrated the insurability of cyber 
risks. By analyzing the statistical properties of hundreds of 
cyber losses cases, it is proved that the cyber risks can be 
insured but a sustainable cyber insurance market is needed. A 
framework by considering the possible operating principles of 
insurance companies to quantitatively assess the overall cyber 
risks on critical infrastructures is developed in [13]. By applying 
the proposed approach, the optimal levels of investment for both 
cybersecurity and insurance can be formulated to minimize the 
cyber risks.  The authors of [14] analyzed the risk management 
strategies of companies when the risks are interdependent. The 
study shows how the interdependence of cyber risks reflects on 
the incentives to invest in security technologies and to buy 
insurance coverage. A new classification of correlation 
properties of cyber-risks based on a twin-tier approach was 
proposed in [15]. The study shows how the two-step risk arrival 
process for cyber risks can be incorporated in an economic 
model. A framework used to model the cyber insurance 
considering the information asymmetry between insurer and 
insured, the interdependent and correlated nature of cyber risks 
is studied in [16]. In [17], a new optimal insurance model is 
developed based on the traditional cyber-insurance model to 
assess the case where both the insurable and non-insurable risks 
exist. The studies in [18] indicate how the competitive cyber-
insurers would impact the overall network security and the 
welfare of the networked society. 

Some recent efforts have been made toward developing 
effective detection mechanisms against cyber-attacks launched 
on an operational water treatment plant in real-time [19], [20]. 
Various approaches have been proposed to study the cyber-
physical system security problem and summarized in [21]. For 
different cyber-physical systems, the physical configuration of 
the system is varying, but they do share some similar potential 
risks from the cybersecurity perspective. In [22], a framework 
is proposed to formulate how the cyber-physical attacks on 
water distribution network would affect the system hydraulic 
performance. A MATLAB toolbox named epanetCPA [23] was 
developed to help the researchers formulate different attack 

scenarios on the water system. The authors also pointed out that 
the system components in a water network such as sensors, 
PLC, and SCADA system are vulnerable to cyberattacks. In 
2019, the authors of [24] improved the epanetCPA toolbox by 
extending the capabilities of conducting pressure-driven 
simulations of the cyber-physical attacks on water distribution 
systems. The authors of [25] introduced a new cyber-physical 
stress testing platform named RISKNOUGHT, which allows 
users to simulate the water distribution systems as cyber-
physical systems. However, cyber insurance was rarely linked 
to the quantitative risk analysis of cybersecurity on water 
distribution system in the existing literature.  

The scope of this paper focuses on developing a quantitative 
risk management framework to incorporate cyber insurance for 
water distribution system owners and operators to manage the 
cyber risks. The major contributions of this paper are 
summarized as follows: 

• A modified semi-Markov process (SMP) model 
incorporating a stochastic cyber risk correlation model is 
proposed to evaluate the potential cybersecurity threats 
against the SCADA system in the water distribution 
network. Based on the proposed model, both the 
independent cyber risk within the individual water 
network and the correlated common cyber risks shared 
across different water networks can be considered and 
evaluated.  

• A Monte Carlo simulation (MCS) based quantitative risk 
assessment approach is developed to estimate the impact 
of malicious cyberattacks on water distribution system 
reliability. 

• A cyber-insurance framework including several actuarial 
insurance principles is built to manage the risks of water 
distribution systems considering the financial 
consequences of cybersecurity risks. 

The remainder of this paper is organized as follows. In 
Section II, an overview of the system reliability assessment is 
presented. In Section III, the reliability model of the water 
distribution system considering cyberattacks is described. In 
Section IV, how the cyber insurance premiums are calculated 
based on the actuarial principles is introduced. In Section V, 
case studies are performed to illustrate the effectiveness of the 
proposed model. Section VI draws the conclusion of the paper. 

 
II.  CYBER-INSURANCE FOR SYSTEM RISK MANAGEMENT 

Various probabilistic reliability evaluation algorithms have 
been developed [26] and applied to critical infrastructures [27]. 
When performing system-level reliability evaluation, a wide 
spectrum of factors may lead to a system failure. In most 
traditional reliability evaluation algorithms, only the physical 
N-1 or N-k contingencies of system components is considered. 
The physical component failures could be triggered and 
consequently lead to an overall system failure. However, for 
modern critical infrastructures, more factors or uncertainties 
such as cyberattacks should be taken into consideration when 
designing effective protection mechanisms to ensure reliable 
performance of the systems. Due to the wide deployment of ICT 
in the system operations of the critical infrastructure sectors, 
cybersecurity threats may have more significant impacts on the 
system performance than physical failures. Cyberattacks against 
the water system can not only affect the system individually but 
also interact with the physical failures to lead to more complex 
failures. More severe system faults in the related physical and 
cyber failures could be caused. Cyberattacks and physical 
failures may happen simultaneously to trigger more significant 
impacts on the overall system. This kind of combinational 
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failures could directly result in the interruption of water 
services. Therefore, in this paper the impact due to 
cybersecurity threats against the water distribution system is 
considered in performing the reliability assessment. 

When a successful cyber intrusion is performed on the control 
network of the system, the physical infrastructure could be 
directly affected [28]. For example, when certain critical 
components in the water supply network (e.g., pumps) are 
disabled by a cyberattack on the control system, the high 
interdependency between the cyber and physical portions of the 
modern water network could result in higher risks of system 
performance degradation or entire failure. Failures in the cyber 
infrastructure (e.g., the wrong control signals or false system 
information) could mislead the system operator to make 
uninformed decisions which may result in system failures. 
Abnormal operations of the physical components due to 
cyberattacks may increase the stress of the system operator as 
well, so that human errors are more likely to happen in such 
cases.  

According to existing studies [7, 8], it is predicted that the 
water supply will become a national problem within 5 to 6 years. 
Thus, it is of great importance to ensure a reliable and secure 
water distribution system in the presence of various 
uncertainties including the cybersecurity threats. Cyberattacks 
have become an increasingly severe threat so that cyber 
insurance policies are recently being developed in some 
industry sectors to cover the potential losses from a variety of 
cyber incidents, including data breaches, business interruption, 
network damage, etc. Cyber insurance policies can also provide 
incentives for security investments that reduce cyber risks [29]. 
In [30], the authors have traced the evolution of cyber-insurance 
from the traditional insurance policies to the early stage of the 
cyber-risk insurance policies. The authors of [31] summarized 
the available background knowledge about cyber insurance in 
the literature from both market and scientific perspectives, and 
then pointed out a series of possible directions for future studies 
on cyber insurance. The DHS National Protection and Programs 
Directorate (NPPD) has also become aware of the cyber 
insurance in its role in helping manage potential cybersecurity 
threats to the critical infrastructures [32]. However, through the 
findings from NPPD, it shows that the first-party cybersecurity 
insurance market is still nascent, particularly when it comes to 
coverage for cyber-related critical infrastructure loss. This is 
mainly due to the lack of actuarial data; aggregation concerns; 
and the unknowable nature of all potential cyber threat vectors. 
The authors of [33] pointed out the insurance market should 
incentivize the vendors to strengthen the security level of their 
products. Reference [34] shared the insight that a balanced mix 
of perspectives on threats, organizational approaches, and 
protective measures is essential to protect the critical 
infrastructures from potential cybersecurity threats. 

Due to the increasing deployment of information and 
communication technologies (ICTs), the water system 
infrastructure is exposed to more potential cyberthreats than 
before. The attackers may gain access to the critical monitoring 
and control systems through cyber intrusions. Then they may 
directly send fabricated operation commands to the critical 
system components. These behaviors may eventually impact the 
overall performance and reliability of the water distribution 
system. The development of cyber insurance, with its strong 
reliance on risk metrics, can be an efficient tool for promoting 
the development of cyber risk guidelines and better manage the 
increasing cyber risks. This paper aims to model and analyze 
the impact of cyberattacks on the water distribution systems 

quantitatively and develop suitable cyber insurance premiums 
based on insured’s level of reliability and self-protection. 

 
III.  RELIABILITY MODEL OF WATER DISTRIBUTION SYSTEM 

CONSIDERING CYBERATTACKS 
Modern water distribution systems are highly dependent on 

the information systems to ensure their performance and 
functions. The Supervisory control and data acquisition 
(SCADA) system can largely help the water utility operators to 
monitor and control the distribution process that may be 
distributed across several remote sites. However, the SCADA 
systems in the water distribution network are vulnerable to 
potential cyberattacks. A successful cyberattack on the water 
distribution system can lead to severe consequences. The most 
direct consequence is the system failures that may result in 
immediate loss of water service. The overall loss of a water 
distribution system can be evaluated and quantified by the 
amount of the loss of water service and the duration of the fault 
event in the system from the reliability perspective. In order to 
take the potential cybersecurity threats into consideration, both 
the independent and correlated cyber risks are modeled in this 
section. And a high-fidelity hydraulic flow-based reliability 
evaluation procedure is proposed to quantify the overall system 
loss of the water network under malicious cyberattacks. 

   
Fig. 1. An Example of SCADA Architecture in Water Distribution System 

 
Fig. 1 illustrates an example of the cyber structure of SCADA 

system in the water distribution network, which is used to 
control and monitor the distribution of the water. The control 
center and the geographically distributed pump stations are 
connected through a complex wide area network (WAN). The 
operators in the control center monitor the statuses of the field 
devices and send out operation commands. From the intruder’s 
perspective, he/she may launch cyberattacks on either the 
control center or the distributed pump stations in the network. 
Once the attacker successfully intrudes into the control network, 
various malicious actions can be possibly done, such as shutting 
down pumps, sending out false operation commands, and 
interrupting the information systems. All these malicious 
actions will possibly result in serious system failures.  

 
A. Cyberattack Model 

The SCADA systems are among the primary targets of 
potential cyberattacks on the critical infrastructures. Even if a 
high-level defense strategy is deployed, it is still possible for the 
attacker to intrude into the SCADA system if some critical 
vulnerabilities of the system are exploited, and significant losses 
would be caused by the attack. In this study, a successful cyber 
intrusion means the attacker gains the control of pump stations 
in the water distribution network, which will consequently lead 
to the undesired loss of water service. The Lockheed Martin 
researchers have applied the concept of kill chain to define the 
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Cyber Kill Chain (CKC) in [2]. The CKC models the life cycle 
of an intrusion process with several steps. The CKC model 
focuses on the analysis from the attacker's perspective, as the 
attackers need a series of malicious activities to compromise the 
final target, and the attackers will adjust each step based on the 
success or failure of the previous step. On the contrary, the SMP 
model [35] is utilized in this paper to formulate the process of 
cyberattacks on the water system, which focuses on the 
interactions between the cyberattack and the defense of the 
system, and captures the stochastic characteristics of the 
cybersecurity performance of the system under the attacks. With 
the implementation of more advanced intrusion tolerance 
techniques, the SCADA system in critical infrastructures is 
more resilient to cyberattacks. The SMP model can sufficiently 
formulate the dynamics between the cyberattack and the 
response of the system, especially when the SCADA system has 
gained some degree of intrusion tolerant capability. Define SMP 
𝑋 = {𝑋(𝑡);  𝑡 ≥ 0}  consisting of a stochastic process with 
discrete state space S. The transition rate in the process is only 
relevant to the current state, and the state transitions are 
determined by the transition probability matrix. After 
identifying the absorbing states in the SMP model, the mean 
sojourn time of the transient states can be measured and the 
mean time to compromise can be further estimated. 

In this study, two types of attack scenarios are considered that 
may occur in the SCADA system of the water distribution 
network: normal attack and penetration attack [36]. For the 
normal attack scenario, the intrusion processes are less 
advanced when compared to the penetration attack, and the 
impacts are limited within the pump station level network, 
which means that the normal attacks can only intrude into the 
human-machine interface of the pump station, and a successful 
normal attack can only affect the attacked pump station. If the 
attacker has successfully intruded into one pump station, the 
assaulted pumps in the pump station will be shut down. 
Meanwhile, there is no impact on other pump stations that have 
not been attacked. The penetration attack is one of the Advanced 
Persistent Threats (APT) attacks, which requires more intrusion 
processes and it is more difficult to be detected. In the 
penetration attack scenario, the attackers are assumed to launch 
cyberattacks on the control center in the water distribution 
network. When the control center is compromised, the attacker 
can send malicious control demands to any pump stations in the 
water distribution system, such as shutting down any pumps on 
their choice. In brief, a successful penetration attack could result 
in serious system-level failures.  In this study the attacker is 
assumed to shut down only one pump station when the 
penetration cyber intrusion succeeds, and the target of 
penetration attack is chosen based on a criticality analysis. This 
means we assume that the attackers have gained some 
knowledge of system reliability and will choose to control the 
most critical pump station in the distribution network. 

The SMP model for the normal attack is illustrated in Fig. 2. 
The initial state of the normal attack scenario is the good state 
G, which indicates that the system is operated in the normal 
condition. In most cases, defense strategies will be deployed to 
detect and block the cyberattacks against the SCADA system. 
Once the defense strategies fail to fully cover the SCADA 
system and vulnerabilities of the system are exposed, the system 
is not in a secure situation anymore, and the state of the system 
in the SMP model will transit from good state to the intrusion 
process. The procedure of transition from state V to state A 
implies the intrusion process to SCADA system. The vulnerable 
state V indicates that the vulnerabilities of the SCADA system 
are found by the attacker. After that, the host state H will be 

reached if the attacker successfully exploited at least one 
vulnerability of the SCADA system and the attacker is able to 
acquire the host privilege of the system. Then the active attack 
state A is reached when the targeted device is exploited by the 
attacker who can then launch the attack on the destination 
device. During the intrusion process, if the cyber intrusion 
attempt is successfully detected and the defensive mechanism is 
triggered, the system can be brought back to the good state G. 
The state of system will transit from state A to masked 
compromised state MC when the SCADA system is able to 
provide normal service under the attack with proper protection 
strategy. Then the state of system will be brought back to good 
state G later when the attack is cleared. Or else, the state of 
system goes to the triage state TR if the cyber intrusion is not 
able to be masked. In this state, all the defense strategies and 
protection mechanisms will be applied to reduce the overall loss 
that may be caused by the attack. Then the diagnostic and 
recovery strategies will be generated to track the cyberattack 
location and recover the SCADA system from the abnormal 
situation in the failed secure state FS. If the type of attack is 
accurately identified and corresponding protection mechanism 
can deal with the current situation, the system will be restored 
in a short period and eventually come back to the good state. 
However, in the worst-case scenario, the state of the system 
reaches the failed state F, which means the applied defense 
strategies and protection mechanisms lose efficacy, and the 
cyberattack is successfully launched which will lead to 
significant damage on the water distribution system.  

 
Fig. 2. SMP Model of Normal Attack on SCADA System 

 
The SMP model of the penetration attack is presented in Fig. 

3. When compared to the pump station level network, the 
system-level control cantor generally deploys more 
comprehensive defense strategies and protection mechanisms. 
Consequently, it will take more effort to launch a successful 
cyberattack, and more advanced intrusion technologies are 
needed from the attacker side. However, more severe damage 
may be caused if the attacker manages to penetrate the control 
center of the water distribution network. To control the whole 
network, the attacker should acquire the privileges of all the 
servers in the SCADA network. Thus, after exploiting the 
potential vulnerabilities of the SCADA system in state H, the 
attacker would try to connect all the servers in the SCADA 
network. If the attacker has successfully connected all the 
servers, the state of the system in the SMP model will transit to 
the connection state C. After that, the state of system shifts to 
the network state N when the privileges of all the connected 
servers are acquired by the attacker. Then the state of the system 
is brought to the attack state A when the targeted devices are 
exploited by the attacker. 
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Fig. 3. SMP Model of Penetration Attack on SCADA System 

 To evaluate the impact of cyberattacks on the reliability of 
the water distribution systems, one critical issue is the frequency 
of successful cyberattacks on the SCADA system. Thus, the 
measurement of the MTTC in the SMP model of the SCADA 
system is needed for the reliability evaluation. In the SMP 
model, the MTTC estimates the mean time that the state of the 
system become the failed or security-compromised states, 
which are considered as the absorbing states. For the SMP 
models of two types of cyberattacks, the good state and other 
states in the intrusion process are transient states, the remaining 
states are absorbing states in the model. For the normal attack, 
the set of transient states is represented as 𝑆𝑇𝑁 =
{𝐺, 𝑉, 𝐻, 𝐴, 𝑇𝑅} , while the set of absorbing states is 𝑆𝐴𝑁 =
{𝑀𝐶, 𝐹𝑆, 𝐹} . For the penetration attack, the set of transient 
states is denoted as 𝑆𝑇𝑃 = {𝐺, 𝑉, 𝐻, 𝐶, 𝑁, 𝐴, 𝑇𝑅} , and the 
absorbing state space is denoted as 𝑆𝐴𝑃 = {𝑀𝐶, 𝐹𝑆, 𝐹}. Thus, 
the two types of attack scenarios share the same absorbing state 
space which can be combined as 𝑆𝐴 = {𝑀𝐶, 𝐹𝑆, 𝐹} . For the 
absorbing SMP models of the two attack scenarios, 𝑄𝐾𝑁  and 
𝑄𝐾𝑃  represent the Markov kernel of normal attack and 
penetration attack respectively and are given as follows.  

𝑄𝐾𝑁 =

[
 
 
 
 
𝑃𝐺 𝑃𝑣 0 0 0 0 0 0
𝑃𝑉𝐺 0 𝑃𝐻 0 0 0 0 0
𝑃𝐻𝐺 0 0 𝑃𝐴 0 0 0 0
0 0 0 0 𝑃𝑇𝑅 𝑃𝑀𝐶 0 0
0 0 0 0 0 0 𝑃𝐹𝑆 𝑃𝐹]

 
 
 
 

       (1) 

 
 

𝑄𝐾𝑃 =

[
 
 
 
 
 
 
𝑃𝐺 𝑃𝑣 0 0 0 0 0 0 0 0
𝑃𝑉𝐺 0 𝑃𝐻 0 0 0 0 0 0 0
𝑃𝐻𝐺 0 0 𝑃𝐶 0 0 0 0 0 0
𝑃𝐶𝐺 0 0 0 𝑃𝑁 0 0 0 0 0
𝑃𝑁𝐺 0 0 0 0 𝑃𝐴 0 0 0 0
0 0 0 0 0 0 𝑃𝑇𝑅 𝑃𝑀𝐶 0 0
0 0 0 0 0 0 0 0 𝑃𝐹𝑆 𝑃𝐹]

 
 
 
 
 
 

  (2) 

 
In this study, the concept of mean time to compromise 

(MTTC) is applied to reflect the cybersecurity of the system. 
MTTC is commonly used when evaluating the cybersecurity 
level of a system. The MTTC of successful normal attack or 
penetration attack is represented as  

𝑀𝑇𝑇𝐶 =  ∑ 𝑣𝑖𝑇𝑖

𝑖 ∈ 𝑆𝑇𝑁 𝑜𝑟 𝑆𝑇𝑃 

                              (3) 

where 𝑇𝑖  is the mean sojourn time of state 𝑖 , and 𝑣𝑖  is the 
average number of times that state 𝑖  is visited before the 
absorbing states are reached.  

The visit count element 𝑣𝑖 is formulated as 
𝑣𝑖 = 𝑝𝑖 + ∑ 𝑣𝑗𝑝𝑗𝑖

𝑗 ∈ 𝑆𝑇𝑁 𝑜𝑟 𝑆𝑇𝑃

                             (4) 

where 𝑝𝑗𝑖 is the transition probability from state j to state i in 
the SMP model, and 𝑝𝑖  is the probability that the initial state of 
the SMP is state 𝑖. For any transition probability in the SMP 
model, it should follow the following constraint: 

∑ 𝑝𝑖𝑗 = 1,

𝑗∈𝑆𝐴∪𝑆𝑇𝑁 𝑜𝑟 𝑆𝐴∪𝑆𝑇𝑃

   𝑖 ∈ 𝑆𝑇𝑁 𝑜𝑟 𝑆𝑇𝑃              (5) 

 
Then the visit count elements 𝑣𝑖  for normal attack can be 

derived and calculated as  
            𝑉𝐺 =

1

𝑃𝑉𝑃𝐻𝑃𝐴(1−𝑃𝑀𝐶)
      ,     𝑉𝑉 =

1

𝑃𝐻𝑃𝐴(1−𝑃𝑀𝐶)
   

𝑉𝐻 =
1

𝑃𝐴(1−𝑃𝑀𝐶)
          ,            𝑉𝐴 =

1

1−𝑃𝑀𝐶
                   (6) 

𝑉𝑇𝑅 =
𝑃𝑇𝑅

 1 − 𝑃𝑀𝐶

 

Similarly, the visit count elements 𝑣𝑖 for each states of the 
penetration attack are represented as follows:  
  𝑉𝐺 =

1

𝑃𝑉𝑃𝐻𝑃𝐶𝑃𝑁𝑃𝐴(1−𝑃𝑀𝐶)
     ,     𝑉𝑉 =

1

𝑃𝐻𝑃𝐶𝑃𝑁𝑃𝐴(1−𝑃𝑀𝐶)
 

𝑉𝐻 =
1

𝑃𝐶𝑃𝑁𝑃𝐴(1−𝑃𝑀𝐶)
        ,           𝑉𝐶 =

1

𝑃𝑁𝑃𝐴(1−𝑃𝑀𝐶)
             (7) 

  𝑉𝑁 =
1

𝑃𝐴(1−𝑃𝑀𝐶)
 ,      𝑉𝐴 =

1

1−𝑃𝑀𝐶
  ,     𝑉𝑇𝑅 =

𝑃𝑇𝑅

 1−𝑃𝑀𝐶
 

With the formulation from (3) to (6), the MTTC of both attack 
scenarios can be calculated. Based on the equations given 
above, increasing any sojourn time of any transient states will 
directly increase the MTTC of the SCADA system. By applying 
the described SMP model, the two cyberattack scenarios on the 
SCADA system of water distribution network can be simulated. 

  
B. Correlations of Cyber Risks 

Effective management of the cybersecurity risk of critical 
infrastructures is still a challenging task. One major reason is 
that the cybersecurity threats are not independent for each 
individual water distribution network, though water utilities 
usually have physically isolated distribution networks. Due to 
the significant homogeneity and the presence of dependencies 
in the operation systems and software across different water 
utilities, their cyber risks are highly correlated. For example, a 
vulnerability may arise in the operation software in the control 
system of a water distribution network. When the same 
operation software stack is installed on another distribution 
network, the software vulnerability is shared among them. 
These shared vulnerabilities can lead to correlated cyber risks 
of multiple water networks and result in greater loss. What’s 
more, the information technology infrastructure of various 
water utilities is dominated by a few similar technologies that 
may also leave these utilities with the same potential 
vulnerabilities, which means although the water utilities are not 
physically connected to each other, they may share correlated 
common cyber risks. This kind of cyber risk correlations across 
various water utilities cannot be modeled through the traditional 
algorithm of risk analysis. Consequently, a stochastic model is 
highly needed to identify and formulate the correlation among 
different water distribution networks due to the similar potential 
cyber risks they shared. 

The Markov kernel and the sojourn time in the absorbing 
SMP model mentioned in subsection III-A can be used to 
develop a stochastic model that takes both the independent and 
correlated cyber risks into account. The Markov kernel and the 
sojourn time in the SMP model can reflect the SCADA system 
statuses under cyberattacks. Therefore, for the purpose of 
developing a stochastic model, the Markov kernel and mean 
sojourn time in this study are set to be stochastic variables 
instead of constants, which is different from the common SMP 
model. For each individual water utility in the distribution 
systems, the transition probabilities of the Markov kernel and 
the mean sojourn time of each transient state are modified and 
formulated as follows. 
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              𝑝𝑖𝑗
𝑁 = 𝑝̂𝑖𝑗

𝑁𝑢 + 𝑝̂𝑖𝑗 (1 − 𝑢) ,   𝑖 ∈ 𝑆𝑇𝑁 𝑜𝑟 𝑆𝑇𝑃 ,           
  𝑗 ∈ 𝑆𝐴 ∪ 𝑆𝑇𝑁 𝑜𝑟 𝑆𝐴 ∪ 𝑆𝑇𝑃                             (8) 

𝑇𝑖
𝑁 = 𝑇̂𝑖

𝑁𝑢 + 𝑇̂𝑖 (1 − 𝑢),      𝑖 ∈ 𝑆𝑇𝑁 𝑜𝑟 𝑆𝑇𝑃          (9) 
where 𝑝̂𝑖𝑗

𝑁  indicates the stochastic transition probabilities of a 
water utility under the independent cybersecurity threats; 𝑝̂𝑖𝑗   is 
the stochastic transition probabilities of the water utility under 
the common cyber risks – both 𝑝̂𝑖𝑗

𝑁  and 𝑝̂𝑖𝑗  are assumed to 
follow the Beta distributions; 𝑇̂𝑖

𝑁 and 𝑇̂𝑖  are stochastic mean 
sojourn time of transient state 𝑖  under the independent and 
correlated common cyber risks respectively. They are assumed 
to follow the Gaussian distributions. 𝑢 is a stochastic variable 
that follows a Bernoulli distribution 𝑢~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜍), where 𝜍 
is the mean value of the Bernoulli distribution. It is used to 
represent the degree of cyber correlation across different water 
utilities in the stochastic model. When 𝜍 = 1, it indicates that all 
the water utilities are totally independent with each other. Each 
individual water utility in the distribution network only has 
independent cyber risks, and they don’t share any common 
cyber risks. When 𝜍 = 0, it is the completely opposite case, 
which means the water utilities are largely dependent on each 
other, similar potential vulnerabilities and common cyber risks 
are shared across various water utilities in the distribution 
network. When 𝜍 = 0.5, it is the most common case, which 
means the dependence across the water utilities is not that 
strong, but they do share some common cyber risks.  
 
C. Hydraulic Analysis Integrated Model 

For the hydraulic analysis in the proposed model, a powerful 
software tool called EPANET is incorporated to perform the 
reliability evaluation of the water distribution network. 
EPANET is a widely used software for water flow analysis. It 
can be adopted to analyze the water flow within a period 
consisting of multiple time steps. In this study, a hydraulic flow-
based reliability evaluation considering the component failures 
due to cyberattacks is performed, and the statuses of system 
components in the distribution system are simulated in the 
corresponding procedure. 

The method used to solve the flow continuity and head loss 
equations is termed the ‘Gradient Method’, which is developed 
by Pilat and Todini [37]. A hybrid node-loop approach will be 
employed to simulate the hydraulic state of the pipe network. 
The detailed formulation of this method is given in [37]. When 
applying the Gradient method, initial flow values should be set 
for all the pipes in the network – these values may violate the 
flow continuity constraints at the first iteration. But after 
running several iterations, the new nodal heads can be 
determined by solving the following matrix equation: 

                                         𝑨𝑯 = 𝑭                                            (10) 
where A is an N-dimensional Jacobian matrix, H is an N by one 
vector of the unknown nodal heads, and F is an N by one vector 
of the right-hand side terms. 

The diagonal elements and off-diagonal terms of the 
Jacobian matrix are given by 

                                  𝐴𝑖𝑗 = ∑ 𝑝𝑖𝑗𝑗                                   (11) 
                                  𝐴𝑖𝑗 = −𝑝𝑖𝑗                                     (12) 

where 𝑝𝑖𝑗  represents the inverse derivative of the head loss 
between two points with respect to the flows going through the 
pipeline. For pipes, 

                        𝑝𝑖𝑗 =
1

𝑛𝑟|𝑄𝑖𝑗|
𝑛−1

+2𝑚|𝑄𝑖𝑗|
                           (13) 

For pumps, it is given by 
𝑝𝑖𝑗 =

1

𝑛𝜔2𝑟(
𝑄𝑖𝑗

𝜔
)
𝑛−1                                   (14) 

The MCS method is employed to sample the system states. 
For each sampled system state, the hydraulic simulator 
EPANET is integrated for performing the water flow analysis. 
The performance of the water distribution system is mainly 
dictated by the pressure. Insufficient pressure may lead to water 
demand losses. For each node, the water that is supplied can be 
obtained based on the pressure, which is expressed as [38] 

 𝐷𝑎𝑖 = {
𝐷𝑟𝑖                       if 𝑃𝑐𝑖 ≥ 𝑃𝑚𝑖𝑛

𝐷𝑟𝑖
√𝑃𝑐𝑖

√𝑃𝑚𝑖𝑛
          if 𝑃𝑐𝑖 < 𝑃𝑚𝑖𝑛

 (15) 

where Dai is the actual amount of water supplied to the node; Dri 
is the water demand required at each load point; Pci is the 
calculated pressure at each node point; and 𝑃𝑚𝑖𝑛  is the threshold 
pressure within the system.  

If the threshold pressure cannot be satisfied at any load point, 
the loss of water demand can be calculated based on (16): 

 𝐷𝑙𝑜𝑠𝑠𝑖 = (1 −
√𝑃𝑐𝑖

√𝑃𝑚𝑖𝑛
)𝐷𝑟𝑖                             (16) 

D.  Modeling of System Loss 
The reliability assessment of the water distribution system is 

performed based on the Monte Carlo simulation (MCS) 
considering the cyberattacks against pump stations in the water 
distribution networks. The proposed algorithm can be used to 
determine the amount of the loss of water service and the 
duration of each failure event in the system. The simulation 
procedure is depicted in Fig. 4 and the detailed process are 
described as follows. 
1) Model the reliability of all physical components in the 

system, which are composed of the pumps, pipes, and water 
demands at each junction. The physical reliability of the 
pumps and pipes are modeled by the parameters including 
MTTF and MTTR. The sequential MCS is performed to 
randomly sample physical failures of system components. 
If there is any physical failure, hydraulic analysis is 
conducted to evaluate the physical system state to 
determine the loss of water service during the failure event. 

2) Model the cyberattacks against the system. The MTTCs of 
two attack scenarios are determined based on the proposed 
SMP considering both the independent and correlated 
cyber risks. The attack target is the SCADA system in the 
water distribution network. When the SMP model of any 
pump station enters the failed secure state FS or failure state 
F, the failures of pump stations will occur for the attack 
scenario. 

3) Check whether a successful cyberattack occurs. If so, 
update the statuses of pumps which are affected by the 
cyberattacks. For example, when one pump station is 
successfully attacked, its status will be changed to the down 
status. Then the simulation goes back to step 2. 

4) If the stopping criterion is not satisfied, go to step 2). In this 
paper, the time interval of the simulation process is set to 
be one hour and the hourly resolution based MCS is 
performed for 1,000 years, which turns out to be sufficient 
to achieve the MCS convergence and derive the reliability 
indices needed for insurance premium calculation. 

5) Calculate the final reliability indices and overall system 
loss. 

 
To evaluate the overall system loss due to cyberattacks, the 

monetary loss of the water distribution system caused by 
cyberattacks is estimated by applying the concept of annual 
interruption cost (AIC) [26], which is commonly used to 
estimate the reliability worth. Based on the amount of the loss 
of water service and the duration of all the failure events, the 
overall expected system loss due to cybersecurity threats K is 
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obtained by removing the AIC caused by physical contingencies 
from the AIC considering the interruptions due to both physical 
failures and cyberattacks: 

K = ∑ 𝐿𝑖 ∙ 𝑑𝑖 ∙ 𝜀

𝑁

𝑖=1

− ∑ 𝐿𝑗 ∙ 𝑑𝑖 ∙ 𝜀

𝑀

𝑗=1

                 (17) 

where K is the total annual system loss caused by cyberattacks; 
𝐿𝑖 and 𝐿𝑗 are the amounts of losses of water service considering 
cyberattacks and without considering cyberattacks respectively; 
𝑑𝑖  and 𝑑𝑗  are the durations of failure events considering 
cyberattacks and without considering cyberattacks respectively; 
and 𝜀  is the reliability worth coefficient of the system 
interruptions. The first term in (24) ∑ 𝐿𝑖 ∙ 𝑑𝑖 ∙ 𝜀𝑁

𝑖=1  is the overall 
system loss considering both physical failures and cyberattacks, 
and the second term ∑ 𝐿𝑗 ∙ 𝑑𝑖 ∙ 𝜀𝑀

𝑗=1  is the system loss due to 
system component failures without considering cyberattacks.  
 

Perform the MCS based reliability analysis 
without considering cyberattacks

Run the hydraulic analysis to determine  the amount of 
loss of water service and record failure event duration

Perform the MCS based reliability 
analysis considering the cyberattacks

Any failure states?

Load the reliability parameters of all 
physical components in the network

Yes

Required sampling states reached?

Calculate the final reliability 
indices and overall system loss

No

Any failure states?

Yes

Model the parameters in the SMP of cyberattacks 

No

Run the hydraulic analysis to determine  the amount of 
loss of water service and record failure event duration

No

Yes

 
 

Fig. 4. Flowchart of Reliability Evaluation Considering Cybersecurity 
 

IV.  CYBER INSURANCE PRINCIPLES AND PREMIUM 
CALCULATION 

Cyber insurance is a risk management technique via which 
network users’ risks can be transferred to an insurance company 
in return for the insurance premium. With the increasing cyber 
security risk of critical infrastructures, and in combination with 
the need for compliance with recently enforced corporate 
regulation, the demand for cyber insurance has significantly 
increased. While the critical infrastructures are becoming more 
and more dependent on their networked operation systems, 
more potential vulnerabilities are exposed to the cyberattacks 
than before. The cyber attackers could get access to the 
monitoring and control system through cyber intrusions. When 

a successful cyber intrusion is executed, the malicious attacker 
would be able to send fabricated operation commands to critical 
components, which could directly lead to a serious system 
failure. With the development of cyber insurance policies and 
its strong reliance on risk metrics, cyber insurance is promising 
to become an efficient tool for critical system owners and 
operators to manage the increasing cyber risks. 

 More recently, cyber-insurance policies have become more 
comprehensive as the insurers have developed a better 
understanding of the cyber risk landscape. Cyber insurance 
becomes a powerful tool to align the market incentives to 
improve the cybersecurity. With the improvement of cyber-
insurance, the supporters believe that cyber-insurers would have 
a better estimation of the overall cybersecurity threats by 
covering various types of risks. As a result, it would entail the 
design of cyber-insurance contracts that would place 
appropriate amounts of self-defense liability on the clients, and 
consequently make the critical infrastructures more robust 
against cyberattacks. From the insurer’s perspective, cyber 
insurance represents an opportunity since there is a growing 
demand to protect the core components in the system, such as 
network infrastructure and control system. If the insurance 
companies could accurately quantify the cyber-risks and 
propose attractive premiums, this opportunity can be translated 
into considerable profits. However, if the insurance company 
fails to precisely quantify the cyber risks, it may suffer 
significant losses. Quantifying cyber-risks for the purpose of 
insurance pricing is still a challenging task since cyberthreats 
are difficult to be addressed comprehensively and risk 
landscapes change frequently.  

The expected value premium principle is commonly used in 
premium calculations. Under this principle, the premium for a 
risk X can be formulated as 𝜋(𝑋) = (1 + 𝜌)𝐸[𝑋], where 𝜌 is 
called the safe loading coefficient. This safe loading coefficient 
should be carefully determined to ensure the total premium 
collected by the insurer is sufficient to cover all the potential 
losses, especially when the pool is relatively large. Most 
existing premium principles including the expected value 
premium principle are developed based on the assumption that 
the individual risks are independent. However, this assumption 
is violated in the case of cyber-insurance. As explained in the 
previous section, cyber risks across different water distribution 
networks are not independent. Therefore, it is necessary to 
develop new premium principles which consider the correlated 
cyber risks among different water distribution networks. 

In order to control the insolvency risk, that is, the risk that the 
total loss would exceed the total premium, the total premium in 
this study is determined based on the VaR or TVaR of the total 
system loss, and then allocated to the individual water utilities. 
Value at risk (VaR) is a statistic that is widely used to quantify 
the level of financial risk within a firm, portfolio or position 
over a specific time frame. VaR can be applied to measure and 
control the level of risk exposure. One can apply VaR 
calculations to specific positions or whole portfolios or to 
measure firm-wide risk exposure. Let 𝑋𝑖 , 𝑖 = 1, 2, … , 𝑛 
represent the potential losses from different water utilities, then 
the total loss is represented as 𝑙𝑜𝑠𝑠 = ∑ 𝑋𝑖

𝑛
𝑖 . The total premium 

can be calculated as follows. 

𝑃1 = 𝑉𝑎𝑅𝛼(𝑙𝑜𝑠𝑠) = 𝑉𝑎𝑅𝛼 (∑ 𝑋𝑖

𝑛

𝑖=1

)               (18) 

where 𝛼 ∈ (0,1) represents the confidence level and is set to be 
close to 1.  
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Tail Value at Risk (TVaR) is another widely used risk 
measure in insurance area [39]. When compared to VaR, TVaR 
is a more conservative way to quantify the premiums. The 
premiums based on TVaR can be formulated by 

𝑃2 = 𝑇𝑉𝑎𝑅𝛼(𝑙𝑜𝑠𝑠) =
1

𝛼
∫ 𝑉𝑎𝑅𝑝(𝑙𝑜𝑠𝑠)𝑑𝑝

1

1−𝛼

             (19) 

By applying the TVaR principle, the premium is higher than 
the premium calculated based on the VaR principle at the same 
confidence level, which means the probability that the overall 
system loss exceeds the collected premiums is lower. 
Mathematically, based on the VaR premium principle, the 
probability that the system loss will exceed the collected 
premiums is equal to 1- 𝛼 , that is 𝑃𝑟(𝑙𝑜𝑠𝑠 > 𝑃1) = 1 − 𝛼 . 
While for the TVaR principle, the probability that the overall 
system loss exceeds the total premium is 𝑃𝑟(𝑙𝑜𝑠𝑠 > 𝑃2) ≤ 1 −
𝛼. 

The total premium could be determined based on either the 
VaR principle or TVaR principle. After that the total premium 
needs to be allocated to each utility with regard to its risk level. 
Two principles are proposed to respectively allocate the total 
premiums defined in (20) and (21) to the individual utilities as 
follows. 

𝜋1(𝑋𝑖) = 𝐸[𝑋𝑖] +
𝑉𝑎𝑅𝛼(𝑋𝑖

′)

∑ 𝑉𝑎𝑅𝛼(𝑋𝑖
′)𝑛

𝑖=1

𝑉𝑎𝑅𝛼(𝑙𝑜𝑠𝑠′)             (20) 

𝜋2(𝑋𝑖) = 𝐸[𝑋𝑖] +
𝑇𝑉𝑎𝑅𝛼(𝑋𝑖

′)

∑ 𝑇𝑉𝑎𝑅𝛼(𝑋𝑖
′)𝑛

𝑖=1

𝑇𝑉𝑎𝑅𝛼(𝑙𝑜𝑠𝑠′)       (21) 

where 𝑋𝑖
′ = 𝑋𝑖 − 𝐸[𝑋𝑖] indicates the centralized version of risk 

𝑋𝑖 for all  𝑖=1, 2, …, n, and similarly, 𝑙𝑜𝑠𝑠′ = ∑ (𝑋𝑖 − 𝐸[𝑋𝑖])
𝑛
1  

is the centralized total loss for all  𝑖=1, 2, …, n. It is obvious to 
see that 

∑𝜋1(𝑋𝑖) =

𝑛

𝑖=1

𝑉𝑎𝑅𝛼(𝑙𝑜𝑠𝑠) = 𝑃1                         (22) 

∑𝜋2(𝑋𝑖) =

𝑛

𝑖=1

𝑇𝑉𝑎𝑅𝛼(𝑙𝑜𝑠𝑠) = 𝑃2                        (23) 

Another way to allocate the total TVaR premium is based on 
the individual contributions to the TVaR of the total risk. It is a 
modification of the original TVaR premium principle. The 
premium for each water utility can be calculated as follows: 

𝜋3(𝑋𝑖) = 𝐸 [ 𝑋𝑖 |∑ 𝑋𝑖

𝑛

𝑖=1

> 𝑉𝑎𝑅𝛼 (∑𝑋𝑖

𝑛

𝑖=1

)]           (24) 

For the premium calculation, 𝜋2  and 𝜋3  present different 
ways to allocate the total TVaR premium. In this sense, the 
numerical outcomes based on 𝜋2  and 𝜋3  should be relatively 
close. Generally, 𝜋2 premiums are relatively easier to calculate, 
while 𝜋3 is anticipated to possess better theoretical properties.  
 

V.  CASE STUDY 
Generally, for most water utilities, the water distribution 

networks they own are physically isolated from each other. 
Industrial control systems (ICS) are commonly used in the 
operation of water system. However, due to the significant 
similarity in the operation systems and software across different 
water utilities, the potential cyber risks are highly correlated for 
water utilities. Due to the high correlation between ICS system 
and information system and the uniform standard of ICS [40], 
the SCADA systems in the water distribution network are facing 
not only the independent cyber risks but also the common cyber 
risks [41]. The similar vulnerabilities they share could result in 

correlated cyber risks of multiple water networks and lead to 
significant system loss. In this sense, although the water utilities 
are not physically connected to each other, they may share 
correlated common cyber risks.  

Case studies will be presented in this section to illustrate the 
application of the proposed insurance scheme and premium 
principle on different water utilities. Case studies are performed 
on four representative water distribution networks. Each water 
distribution network is assumed to be owned and operated by a 
single water utility.  

For the four independent water distribution networks, there 
are 1, 2, 3, 4 pump stations in networks 1, 2, 3, 4, respectively. 
And the overall system sizes of the distribution networks from 
1 to 4 are in an ascending order. The detailed information about 
each test distribution work is given as follows. Network 1 
comprises 40 pipes, 35 junctions and 1 tank, with a total nodal 
demand of 322.78 gpm (or 169.65 MG) per year. Network 2 
comprises 117 pipes, 92 junctions, 2 pumps, 2 reservoirs and 3 
tanks, with a total nodal demand of 3,052.11 gpm (or 1,604.19 
MG) per year. Network N1 and N2 are built and given by 
EPANET in the test system files. In order to demonstrate the 
efficiency of the proposed scheme, two larger test networks N3 
and N4 are developed with EPANET and deployed in the case 
study. Network 3 comprises 121 pipes, 95 junctions and 3 pump 
stations, with a total nodal demand of 4125.84 gpm (or 2168.54 
MG) per year. And Network 4 is the largest system which 
comprises 154 pipes, 107 junctions, 4 pumps, 2 reservoirs and 
3 tanks, with a total nodal demand of 5036.37 gpm (or 2647.12 
MG) per year. Some of the junction points in the test water 
distribution networks have specified water demands, but some 
junction points do not have water demands. The monetary loss 
of the water distribution system due to the malicious 
cyberattacks is evaluated based on the annual interruption.  The 
threshold pressure Pmin is set to be 40 psi in the case studies. 

 All the distribution networks are assumed to be physically 
independent with each other and totally isolated from other 
water grids. The water demand and parameters are kept constant 
in the simulation period. The topological diagrams of the tested 
water distribution networks are given in Fig. 5. 

 

 
Fig. 5. Test Water Distribution Networks 
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In this paper, the parameter settings of the sojourn time and 
transition probabilities of each state in the SMP model are 
presented in Table I.  

TABLE I 
PARAMETERS SETTING OF THE TWO CYBERATTACK SCENARIOS 

Parameters Normal Attack Penetration Attack 
𝑻𝑮 25 days 30 days 
𝑻𝒗 5 days 15 days 
𝑻𝑯 1 day 1 day 
𝑻𝑪  2 days 
𝑻𝑵  1 day 
𝑻𝑨 2 days 4 days 
𝑻𝑻𝑹 0.5 day 0.5 day 
𝑷𝑽 1 1 
𝑷𝑯 0.5 0.4 
𝑷𝑪  0.4 
𝑷𝑵  0.4 
𝑷𝑨 0.5 0.5 
𝑷𝑴𝑪 0.2 0.3 
𝑷𝑻𝑹 0.8 0.7 
𝑷𝑭𝑺 0.4 0.3 
𝑷𝑭 0.6 0.7 

Based on the formulation described in previous sections, the 
proposed approach is tested on the four water distribution 
networks under three different cases, where 𝜍 = 1, 𝜍 =
0.5, and 𝜍 =  0 , respectively. The value of 𝜍  indicates the 
degree of correlation between cyber risks of the water 
distribution networks. The expected values of the system annual 
loss for the three different scenarios and corresponding standard 
deviations are calculated, and the results are presented in Table 
II. The coefficients of variation (CoV) are also shown in Table 
II, which are commonly used to evaluate and reflect the 
riskiness of marginal losses of the networks. The CoV of all the 
distribution networks are below 1.3 in this study, which is 
typical in the insurance field. The marginal distributions of the 
losses of the four water distribution networks are shown in Fig. 
6. For the three different scenarios, the pattern of the marginal 
distributions of water networks follows a similar fashion.  

 
TABLE II  

EXPECTED VALUE, STANDARD DEVIATION AND COEFFICIENT OF VARIATION OF 
ANNUAL LOSS OF WATER NETWORKS 

  Network   N1 N2 N3 N4 
𝝇 = 𝟏 

Expected Values ($) 51288 116548 167238 195604 

Standard Deviations ($) 62571 138692 192324 228857 
CoV 1.22 1.19 1.15 1.17 

𝝇 = 𝟎. 𝟓 
Expected Values ($) 55462 132245 176964 211315 

Standard Deviations ($) 69328 161339 224744 264144 
CoV 1.25 1.22 1.27 1.25 

𝝇 = 𝟎 
Expected Values ($) 53468 137396 191936 223478 

Standard Deviations ($) 64696 163501 238001 272643 
CoV 1.21 1.19 1.24 1.22 

 

 
Fig. 6. Marginal Distributions of Loss of Water Distribution Networks. 

 
The cyber risks correlation model proposed in this study will 

have a great influence on the cyber-insurance premium for each 
water distribution network while the marginal property of the 
loss distribution of each distribution network remains 
unaffected. Table III clearly presents the strength of dependence 
of the utility losses across various water distribution networks 
with different values of 𝜍 in the case studies. As mentioned in 
the previous section, 𝜍  indicates the degree of dependence 
across different water distribution networks. When 𝜍 = 0 , it 
indicates the strongest dependence case. On the contrary, when 
𝜍 = 1 , it represents the weakest dependence case. The case 
when 𝜍 = 0.5  represents an intermediate strength of 
dependence across the water grids. The results in Table III 
illustrate that the dependency of the cybersecurity threats across 
the four water distribution networks can be accurately reflected 
by the correlation model. 

 
TABLE III 

CORRELATION OF LOSSES OF WATER NETWORKS 
 Network N1 N2 N3 N4 
 
 

𝜍 = 1 
 

N1 1 0 0 0 
N2 0 1 0 0 
N3 0 0 1 0 
N4 0 0 0 1 

 
 

𝜍 = 0.5 
 

N1 1 0.27 0.28 0.28 
N2 0.27 1 0.26 0.23 
N3 0.28 0.26 1 0.28 
N4 0.28 0.23 0.28 1 

 
 

𝜍 = 0 
 

N1 1 0.54 0.56 0.57 
N2 0.54 1 0.53 0.52 
N3 0.56 0.53 1 0.55 
N4 0.57 0.52 0.55 1 

 
The individual premiums allocated for the four water utilities 

based on the three proposed premium principles are listed in 
Table IV. In the case study, the confidence level is set to as 𝛼 =
10%, which means there is only 10% chance that the total loss 
would exceed the total premium. The risk loading coefficients 
are calculated by (25), and the risk loading for different cases 
are presented in Table V. 

𝜌𝑖 =
𝜋(𝑋𝑖)

𝐸[𝑋𝑖]
− 1            for i=1, 2, …, n.            (25) 
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TABLE IV 
PREMIUM FOR EACH INDIVIDUAL DISTRIBUTION NETWORK 

Premium ($) N1 N2 N3 N4 
𝝇 = 𝟏 

𝜋1 69365 165498 232461 267978 

𝜋2 79770 188808 267581 316879 

𝜋3 81125 191139 269253 320791 

𝝇 = 𝟎. 𝟓 
𝜋1 76322 202335 265446 312746 

𝜋2 91923 243331 316766 369801 

𝜋3 93625 244653 320305 371914 

𝝇 = 𝟎 
𝜋1 83266 232258 314775 366504 

𝜋2 106159 277540 385791 438017 

𝜋3 112635 280288 387711 442486 
 

TABLE V 
RISK LOADING OF EACH INDIVIDUAL DISTRIBUTION NETWORK 

Risk Loading 𝝆 N1 N2 N3 N4 
𝝇 = 𝟏 

𝜌 for 𝜋1  0.35 0.42 0.39 0.37 
𝜌 for 𝜋2 0.55 0.62 0.60 0.62 
𝜌 for 𝜋3 0.58 0.64 0.61 0.64 

𝝇 = 𝟎. 𝟓 
𝜌 for 𝜋1  0.37 0.53 0.50 0.48 
𝜌 for 𝜋2 0.65 0.84 0.79 0.75 
𝜌 for 𝜋3 0.68 0.85 0.81 0.76 

𝝇 = 𝟎 
𝜌 for 𝜋1  0.55 0.69 0.64 0.64 
𝜌 for 𝜋2 0.98 1.02 1.01 0.96 
𝜌 for 𝜋3 1.11 1.04 1.02 0.98 

  In this study, the ratio 𝛾 is calculated to represent the cyber 
insurance premiums as a percentage of the overall operating 
revenue based on the designed cyber insurance principle. 𝛾 is 
the ratio between the annual premium and the annual revenue 
of the water utility. The detailed results are shown in Table VI. 

𝛾 =  
Annual premium cost 

Annual revenue of the water utility
× 100%                 (26) 

 
 

TABLE VI 
PREMIUM TO REVENUE RATIO FOR EACH DISTRIBUTION NETWORK 

Ratio 𝜸 N1 N2 N3 N4 
𝝇 = 𝟏 

𝛾 for 𝜋1  13.63% 3.44% 3.57% 3.37% 
𝛾 for 𝜋2  15.67% 3.92% 4.11% 3.99% 
𝛾 for 𝜋3 15.94% 3.97% 4.14% 4.04% 

𝝇 = 𝟎. 𝟓 
𝛾 for 𝜋1  14.99% 4.20% 4.08% 3.94% 
𝛾 for 𝜋2  18.06% 5.06% 4.87% 4.66% 
𝛾 for 𝜋3 18.40% 5.08% 4.92% 4.68% 

𝝇 = 𝟎 
𝛾 for 𝜋1  16.36% 4.83% 4.81% 4.61% 
𝛾 for 𝜋2  20.86% 5.77% 5.93% 5.52% 
𝛾 for 𝜋3 22.13% 5.82% 5.96% 5.57% 

 
The cyber-insurance premium to revenue ratio for the water 

utilities is relatively higher when compared to the traditional 
insurance practice. This premium to revenue ratio on one hand 
illustrates that severe system losses can be caused by cyber-
attacks against the SCADA system in water distribution 
network. Meanwhile, it also implies the importance of enhance 

the reliability of water network considering potential 
cybersecurity threats. One major difference between the water 
distribution system and other critical infrastructures is that the 
distribution networks for most water utilities are physically 
isolated. As a result, when a system failure occurred in one 
distribution network, there is minor impact on other distribution 
networks. The loss due to the system failure will remain in its 
own region. The results in Table VI show that Network 1 has 
the highest premium to revenue ratio, while Network 4 has the 
lowest premium to revenue ratio among the four distribution 
networks. The differences are mainly due to the network 
configuration, as Network 1 only has one pump station. Once 
the pump station is compromised by the cyber attackers, it will 
directly lead to a complete shutdown of the entire water 
distribution system. In other words, its system reliability 
considering cyber-attacks is relatively lower than the other 
water networks. Consequently, the cyber-insurance premium 
for Network 1 with regards to its risk level will be much higher 
than the other water networks. The simulation results imply that 
the cybersecurity level will have a significant impact on the 
premium of the water distribution network, and the water 
utilities will benefit more by enhancing its cybersecurity in the 
long run. 

In order to show how the security level of the system can 
affect the cyber insurance premium, a comparative study is 
performed with the degree of dependence across different water 
distribution networks ς=0.5. Two scenarios are designed and 
compared to the basic case. The security level of the water 
distribution system can be indicated by the parameters setting in 
the SMP model. 𝑃𝐻 , 𝑃𝐶 , 𝑃𝑁  are decreased from 0.4 to 0.3 in 
scenario 1, which indicates that the system cybersecurity level 
is strengthened as more advanced and efficient detection and 
protection mechanisms are applied. As a result, the system has 
lower probabilities to be compromised by the cyber-attacks. On 
the contrary, 𝑃𝐻 , 𝑃𝐶 , 𝑃𝑁  are increased from 0.4 to 0.5 in 
scenario 2, which means that the cybersecurity level of the 
system is reduced. So the system is more vulnerable to the 
potential cyber risks, and the system has higher probabilities to 
be compromised by the cyber-attacks.  

 
TABLE VII 

THE IMPACT OF SYSTEM SECURITY LEVEL ON PREMIUM 
  N1 N2 N3 N4 
 
𝑩𝒂𝒔𝒊𝒄 𝒄𝒂𝒔𝒆 

 

Expected 
value 

$55462 $132245 $176964 $211315 

Premium 
(VaR) 

$76322 $202335 $265446 $312746 

 
𝑺𝒄𝒆𝒏𝒂𝒓𝒊𝒐 𝟏 
Security level 
strengthened 

 

Expected 
value 

$41256 $106178 $132167 $158794 

 
Premium 

(VaR) 

 
$64823 

 
$163280 

 
$203824 

 
$234715 

 
𝑺𝒄𝒆𝒏𝒂𝒓𝒊𝒐 𝟐 
Security level 

weakened 
 

Expected 
value 

$66238 $149854 $205317 $257386 

 
Premium 

(VaR) 

 
$98274 

 
$242418 

 
$326855 

 
$398572 

 
The detailed comparative case study results are presented in 

Table VII. The results in scenario 1 imply that the premiums for 
all the four water utilities are significantly reduced when the 
overall system cybersecurity is strengthened. In other words, the 
premium of cyber insurance can indicate the level of the cyber 
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protection. All the water utilities could benefit from lower 
premiums by enhancing their cybersecurity level. Therefore, the 
proposed cyber insurance scheme encourages the stakeholders 
to increase their investments on cybersecurity so that the annual 
insurance premiums will be reduced. While for scenario 2, if the 
cybersecurity of water utility is weakened, the premiums for the 
four utilities all experience dramatic increase. Both the expected 
value of the loss and the corresponding premium increase 
significantly. This implies that the water utilities will be 
financially penalized in terms of cyber insurance premiums with 
the degradation in cybersecurity. 

 
VI.  CONCLUSION  

This paper proposes a modified semi-Markov process (SMP) 
incorporating a cyber risk correlation model to evaluate the 
potential cybersecurity threats against the SCADA system in the 
water distribution network. By applying the proposed approach, 
both the independent cyber risks within one individual water 
network and the correlated cyber risks across different water 
utilities can be considered. A sequential Monte Carlo 
simulation-based algorithm is also developed to assess the 
overall system loss and the failure event duration considering 
two types of cyberattack scenarios against the water distribution 
networks. The total cyber-insurance premium can be estimated 
based on the designed actuarial principles. After that, the 
premium allocation for each individual water utility is further 
determined with regards to its individual risk level. The results 
of the case studies indicate that higher system reliability and 
more advanced self-protection mechanism can reduce the 
cyber-insurance premium of the water utilities with the 
proposed actuarial principles. Lack of research in this area may 
be a major reason why the cyber-insurance market has not been 
established yet. A detailed analysis of cybersecurity outcomes 
considering the correlation among different utilities will be 
instrumental in stipulating market-friendly cybersecurity 
coverage policies. Besides the cybersecurity threats on the water 
distribution system, the power supply reliability may affect the 
performance of water distribution system as well. In this sense, 
the cascading effect from one critical infrastructure to another 
critical infrastructure can be modeled. However, this cascading 
effect is not covered in the scope of the current work and left for 
the future work. Furthermore, in future studies, there are several 
areas where this research can be extended, such as developing a 
more comprehensive model which can tackle massive water 
utilities. Also investigating the cyberattacks on the SCADA 
system of the real water distribution networks will be 
instrumental in designing a more detailed and practical cyber 
insurance framework based on the emerging features of 
cybersecurity threats in practice. 
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