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Abstract—Cybersecurity is emerging as one of the most critical
issues for the power system operation in recent years. The
most recent studies have shown that cyber-insurance can be an
effective solution for the cyber risk management of power grids.
In these early attempts, actuarial frameworks and premium
schemes were designed for the insurance companies to cope with
the risks on power system cybersecurity. However, due to the
potentially catastrophic consequences of malicious cyberattacks
on power grids, the tail risk events may expose the insurance
companies to undue financial risks even if applicable premiums
have been designed and collected, which will demotivate the
insurance companies from entering the market and providing
insurance to the power system stakeholders. In this paper,
a Catastrophe (CAT) bond scheme is proposed for insurance
companies to address the tail risk of power system cybersecurity
by seeking protection from the capital market. The CAT bonds
are designed based on the extreme value theory (EVT) to quantify
the underlying risk of tail cybersecurity events in power systems.
A stochastic model is developed and used in this paper to
evaluate the potential losses of power system stakeholders due
to malicious cyberattacks on the grids. An example on the IEEE
Reliability Test System (RTS-96) was conducted and analyzed
to demonstrate the validity and performance of the proposed
EVT based CAT bond scheme. The results of the example show
that the proposed CAT bond design can effectively manage the
insolvency risk of insurers when providing cyber insurance to
various stakeholders in power systems.

Index Terms—Actuarial analysis, catastrophe bond, cyberse-
curity, cyber insurance, extreme value theory, risk management.

I. INTRODUCTION

ALONG with the widespread deployment of information
and communication technologies (ICT) in power systems

over recent decades, cybersecurity threats to the power grids
are growing at the same time [1]–[3]. Real-world cases have
revealed the substantial risks of malicious cyberattacks on the
modern power systems. For instance, in December 2015, the
Ukrainian power system was struck by a vicious cyberattack,
which led to large-scale power outage and disconnection of
substations in the grid [4], [5]. Thus, cybersecurity has become
a critical issue for the electric power industry and will be
increasingly important in the roadmap towards the future smart
grid, in which more advanced ICT and digital devices will be
applied to enable more intelligent and efficient operations of
the grids [6].

Due to the fundamental importance of power systems to
the modern society, great efforts have been devoted to the
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researches on the enhancement of power system security
and resiliency against malicious cyberattacks in recent years.
Cyber vulnerability assessment models, anomaly detection
algorithms, robust state estimation methods, resilient operation
and planning methods have been proposed in literature to
harden the system against cyberattacks [7], [8]. However,
while it is important to improve the system cybersecurity itself,
power system stakeholders are in urgent need of effective
methods to hedge the residual risk of potential cyberattacks
against the grids as successful cyberattacks on power systems
can lead to enormous consequences. Insurance, as a powerful
risk management tool, can be a promising and socially ben-
eficial solution to this great challenge. Cyber insurance can
smooth the financial impact of cyber risks while incentivizing
relevant stakeholders to enhance the cybersecurity to reduce
the premium. Meanwhile, cyber insurance can also improve
the overall social welfare and benefit the entire society by
encouraging cybersecurity investments, indicating the quality
of cyber protection, and provoking replacement of obsolete
standards for cybersecurity [9]. Hence, cyber insurance holds
great potential and merits substantial research and develop-
ment toward future applications.

Although relatively new, cyber insurance is growing rapidly
with the worldwide anxiety over increasing cybersecurity risks
[10], [11]. It is an attractive and promising option for cyber risk
management in addition to preventive and remedial actions,
and will directly influence the cybersecurity landscape of
different departments and industries. Thus, cyber insurance
is gaining much attention and emerging as an important
cybersecurity research topic in recent years. Initial efforts
have been primarily devoted to the analysis on feasibility,
peculiarities, and framework design of cyber insurance [12]–
[18]. The researches analyze both the general cyber insurance
scenarios [12]–[14] and specific cases of computer networks
[15], Internet of Things (IoT) systems [16], cloud computing
[17], and cellular networks [18], among others. Meanwhile,
governments and relevant authorities start to realize the great
potential of using insurance tools to manage cyber risks for
critical infrastructure protection. The possibility of applying
cyber insurance in critical infrastructure sectors has been
suggested by the U.S. Department of Homeland Security
(DHS) and Department of Energy (DOE), and serious research
is urged to provide necessary insights for practical applications
[19], [20]. A few studies have been initiated which analyze the
relation between the cyber protection investment and cyber
insurance coverage for infrastructures [21], [22], and identify
the needs for building cyber risk models and accelerating
the research to support new and more robust cyber insurance
products that meet the evolving needs and demands of infras-
tructure systems [23], [24].
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Cybersecurity is a very important research area in power
systems with the transition toward the smart grid. A significant
research effort has been made to identify the vulnerabilities
and assess the risks of power systems against potential cyber
threats. A cybersecurity risk assessment method is proposed in
[25], [26] for the IEC 61850-based power control systems, e.g.,
substation automation systems, based on asset analysis. The
vulnerabilities of the supervisory control and data acquisition
(SCADA) systems are assessed in [27], [28] from a cyber-
security perspective, and the impacts of the cyberattacks on
the SCADA systems and power system reliability are studied.
The risk of switching attacks in power grids is measured
in [29] with a cyber-net model based on the cybersecurity
technologies in substations. Reference [30] proposes a cyber-
physical vulnerability assessment method for power grids
by calculating the graph based security indices to measure
the security level of the underlying cyber-physical setting.
Reference [31] proposes a risk assessment method on the
expected load curtailment for power systems under cyberat-
tacks considering the impacts of the bus and transmission
line protection systems. The vulnerability and consequence
analysis of false data injection (FDI) attacks on power system
state estimation is studied in [32], [33]. Meanwhile, the risk of
combined data attacks to the system operation is evaluated in
[34] based on the vulnerability assessment and impact analysis
on the power system state estimation. A cyber risk analysis
framework is proposed in [35] to evaluate the risk of increased
exposure of the smart grid to cyberattacks and quantify the
benefit of cybersecurity investment based on a Bayes-adaptive
network security model. Risk assessment methods have also
been proposed for the distribution systems and microgrids.
Reference [36] proposes two types of cyberattacks on the
remote terminal units (RTUs) in active distribution systems
(ADSs), and develops a risk assessment index to quantify
the risk of the attacks to ADSs. A risk assessment method
is proposed in [37] to study the impacts of FDI attacks on the
microgrids with solar photovoltaic (PV) and energy storage
systems (ESSs).

Another major research focus is the detection, protection
and remedial methods for risk mitigation of power systems
against potential cyberattacks. Various detection methods have
been developed and proposed against the cyberattacks on
different systems and applications in power grids [38]–[43].
Meanwhile, a wide range of defense and protection strategies
have been proposed for the security resource allocation [44],
[45], robust control [40], [46], operation and planning [47],
[48] of the power systems. A few remedial action strategies
have also been analyzed and proposed for the power grids to
reduce and limit the damage of malicious cyberattacks after
they are successfully launched on the systems [49], [50].

Compared with the active research on the vulnerability and
risk assessment and mitigation methods for power systems, the
study on residual cyber risk management through insurance
is very limited at present and has just been kicked off by a
few pioneering studies recently. The establishment of insur-
ance policy for the risk of switching attacks in power grids
has been suggested and briefly discussed in [29]. Reference
[51] proposes an actuarial analysis framework for the risk
management of power systems against potential cyberattacks.
In the study, a series of detailed premium principles tailored
for the power system cyber insurance are proposed for the
insurance providers considering the risk correlation. A semi-
Markov process (SMP) based model is developed to analyze
the interdependent risks of power grid cybersecurity. A cyber

insurance premium calculation framework is developed in [52]
using the ruin theory with hypothesized power outages based
on the cyber-reliability assessment of the substations. The
premium is calculated based on the expected value principle
with the safe premium loading identified in the ruin probability
calculation. In [53], a cyber insurance model is proposed based
on the power system reliability evaluation considering the
cyberattacks and optimal defense resource allocation of the
grid. The strategic allocation of defense resources of the grid
against cyberattacks is formulated by a Stackelberg security
game model. The impacts of the defense resource allocation
on the cyber insurance premiums are analyzed. By applying a
threat likelihood model, an insurance premium discount model
is proposed in [54] to incentivize the cybersecurity investment
in power industry. Besides, in [55] and [56], cyber insurance
is introduced and proposed to manage the cyber risks in the
vehicle-to-grid (V2G) systems for plug-in electric vehicles
(PEVs).

Although recent efforts have been devoted to the topic,
the research on cyber insurance for bulk power system risk
management remains in the fledgling stage. The existing
researches in literature on the topic mainly focus on the
premium principle design for the cyber insurance of power
systems, and discuss the impacts of the insurance models on
the system cybersecurity strategies and investments. Further,
although cyber risk models and analysis have been proposed
in the existing literature, the correlated cyber risks of different
entities in power systems have not been studied to meet the
special need of the cyber insurance model design, which is
highly important to the actuarial analysis for electric power
grids. One of the most critical concerns for the insurance
companies in providing cyber insurance for power systems
lies in the high tail risk of extreme cybersecurity events in
power grids, which must be addressed before the practical
applications of power system cyber insurance and yet has
never been covered by the existing works. The inherent nature
of the power system cybersecurity incidents as typical high-
impact low-frequency events [57] will place great pressure on
the cyber insurance providers, and the correlated cyber risks
of different insureds in power grids will further increase the
financial stress of the cyber insurance providers with high
insolvency risk. Such tail risk characteristics of the power
system cybersecurity will demotivate the insurance companies
and raise the barrier of the cyber insurance market entry
if a general insurance model is directly applied. Thus, the
correlated cyber risks of the insureds in power grids must be
analyzed and quantified, and specific cyber insurance models
and risk transfer methods should be tailored and developed for
the cyber risk management of power systems.

In financial and actuarial context, tail risk refers to the risk
that a potential loss distribution has a “heavy” tail, meaning
that the survival function, the probability that the random
variable exceeds a given level, decays to zero relatively slow.
Intuitively, a random variable with a heavy tail distribution has
a relatively large probability to take large values. For example,
a normal distribution is a typical light tail distribution, because
the survival function as well as the density function converges
to zero very fast, at an exponential rate. As a result, almost
all (more than 99%) of data points fall within three times
the standard deviation of the mean and very little (almost
0%) fall outside that range (known as the 3-sigma rule). On
the contrary, a Pareto distribution has a heavy tail because
the survival function is a power function and thus converges
to zero at a slower rate compared to normal distribution.
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Intuitively, that means the random variables has a relatively
large probability to take large values.

The cyber-related loss is generally considered to have a
tail risk because the total loss of the insureds is more likely
(compared to the traditional insurance business) to take large
values due to the potential dependence among cyberattacks.
To see this point, we can make a comparison to traditional
insurance where individual losses are independent. Because
individual losses are independent, the central limit theorem
implies that the total loss approximately follows a normal dis-
tribution, which is a light tail distribution. When dependence
comes into play, the central limit theorem fails, the losses
are more likely to occur simultaneously and result in large
realization of total loss, which causes tail risk.

In the context of cyber-physical power systems, the potential
losses of insureds due to cyberattacks in a certain period are
not deterministic but follow a certain probability distribution.
Such cyber risks can cause intense financial pressure on
the compromised entities of successful cyberattacks in power
grids. As an effective and mature risk management tool,
insurance is an attractive option to handle the cyber risks
in power industry. Thus, cyber insurance is suggested and
proposed for the entities in power systems to transfer and
hedge the risks for the stochastic losses due to cyberattacks.
The cyber insurance is expected to mitigate the financial
impacts of cyberattacks on the insureds in power systems
and encourage cybersecurity investment of the entities in
the power industry. Among other critical infrastructures, the
research and investigation on cyber insurance schemes for
electric power grids are encouraged by the governments and
industries to support the cyber risk management in power
energy sector. Therefore, the cyber insurance for electric power
grids deserves careful study and research. As discussed above,
the cybersecurity risk is expected to have a tail risk since the
cyber risks between different insureds are correlated, and the
potential impacts of successful cyberattacks on power systems
can be extreme. Thus, the concept of tail risk is used in
this paper to analyze the insolvency risk of cyber insurance
providers for power systems.

Many insurers hesitate to enter the cyber insurance market
due to the unknown nature of cyber risks. One of their biggest
concerns is that cyber risks are potentially dependent and
can cause extreme losses when cyber risks occur simultane-
ously across different locations and thus impose significant
insolvency risk to insurers. Reference [51] proposes a set of
premium principles to mitigate the insolvency risk, at the cost
of resulting in relatively high premiums. In this paper, the
authors aim to mitigate the insolvency risk from a different
perspective: transferring the extreme losses to the capital mar-
ket via catastrophe (CAT) bonds. CAT bonds have been proven
successful in mitigating traditional insurance catastrophe risks,
such as flood, hurricanes, and earthquakes. By issuing CAT
bonds, insurers are able to transfer the extreme tail risks to
the capital market and thus control their insolvency risk at an
acceptable level. In this paper, the idea of CAT bonds will be
adapted and tailored to mitigate and manage the cyber risks
in power systems.

The design of CAT bonds calls for detailed study on the
extreme losses, which naturally brings up the extreme value
theory (EVT). According to EVT, the extreme loss data are
fitted into the generalized Pareto distribution, and then CAT
bond is designed based on the estimated parameters in this
paper. The challenge lies in the design of the CAT bond. The
majority of the literature of CAT bonds focuses on developing

pricing techniques. Meanwhile, the CAT bonds are assumed
to follow a conventional structure. What have been missing in
the literature are justification of this conventional design, the
choice of parameters, and more fundamentally proper criteria
to evaluate the CAT bonds. In this paper, we introduce the
criterion of insolvency risk to demonstrate how to evaluate the
efficiency of CAT bonds in mitigating tail risk. It has to be
admitted that the study presented in this paper is exploratory.
More in-depth studies are subject to future work from a
theoretical actuarial perspective.

Although some exiting methods are applied in designing
and pricing CAT bonds in this paper, however, the novel
contribution of the proposed work is beyond these straight-
forward applications. Specifically, the criterion of insolvency
probability is introduced in this paper to demonstrate how
issuing CAT bonds helps mitigate tail risk and thus promote
the insurer’s participation rate. Moreover, the introduction of
the criterion of insolvency probability naturally formulates
an optimization problem, which has the potential to answer
some fundamental questions in the design of CAT bonds, such
as, what is the rationale to take the ratchet payoff structure;
how to set up appropriate trigger points for payoff functions.
The current literature of CAT bond design mainly focuses on
pricing techniques and has left these questions open.

Meanwhile, in the existing literature, the correlated loss
model of different insureds in power systems due to the cyber
risks has not been analyzed quantitatively yet. In this paper, the
loss of the transmission company (TRANSCO) is correlated
with the losses of other TRANSCOs as well as the generation
companies (GENCOs) and distribution companies (DISCOs),
and vice versa. With the proposed loss models of different
insureds in power systems, the critical impact of both the
heavy-tail and correlation characteristics of cyber risk of the
insurance policy holders can be formulated and quantified
simultaneously to meet the need of cyber insurance analysis
when various types of insureds exist in the cyber insurance
scheme. As such, the potential insolvency risk of the cyber
insurance provider can be evaluated more comprehensively
and accurately. Further, the proposed model in this paper
integrates the EVT based cyber risk modeling in the CAT bond
design, which has not been covered in the existing literature.

The main contributions of this paper are summarized as
follows:
• A CAT bond scheme is designed for the cyber insurance

provider to transfer tail risks to the capital market. The
CAT bond is priced using the EVT.

• The ingredient of insolvency risk is incorporated to the
traditional CAT bond pricing model. Under the aug-
mented model, insolvency risk analysis is conducted to
demonstrate the efficiency of CAT bond in mitigating
the tail risk. Moreover, the interplay between premium
charge and CAT bond design is investigated to form a
comprehensive risk management strategy.

• A stochastic model is built to evaluate the consequences
of the power system interruptions due to potential ma-
licious cyberattacks on the grids. The consequences of
cyberattacks on the power system stakeholders including
the GENCOs, TRANSCOs or regional transmission or-
ganizations (RTOs), and DISCOs are evaluated by the
coordinated optimal operation model.

The rest of the paper is organized as follows. The proposed
CAT bond scheme and the EVT based CAT bond design are
presented in Section II. The stochastic model for evaluating
the cyber risks of entities in power systems is introduced in
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Section III. In Section IV, the proposed CAT bond scheme is
demonstrated with an example on the IEEE Reliability Test
System (RTS-96), and the results are analyzed and discussed.
Finally, Section V concludes the paper.

II. THE MECHANISM OF CATASTROPHE BONDS

In a bond transaction, an investor pays premium to the bond
issuer at the issuance and receives cash at the maturity date.
For a regular bond, the amount that the investor receives is
fixed, and equal to the principal amount. For a CAT bond, the
principal amount will be divided between the bond issuer (the
insurer) and the investor. In order to determine the amount
of indemnity to the insurer, a trigger needs to be specified. In
general, there are two categories of triggers: indemnity triggers
and non-indemnity triggers. See [58] for more discussions. In
this paper, the trigger is set to be the total loss, which is an
indemnity trigger. Denoting the total loss by X , the amount
of indemnity to the insurer is specified by

I(X) = K
n∑
k=1

αkI {X ∈ (yk, yk+1]} , (1)

where K is the principal amount of the bond, {αk, k =
1, . . . , n} ⊂ [0, 1] is an increasing sequence representing
payoff ratios on different layers, and {yk, k = 1, . . . , n} is
the sequence of trigger points to determine the payoff layers.
Intuitively, the payoff to the insurer is triggered when the
actual loss exceeds y1. If the actual loss falls into interval
(yk, yk+1], the payoff ratio to the insurer is αk. The more
severe the loss is, the more indemnity the insurer receives.

Due to the randomness of the final payoff, pricing a CAT
bond is more complicated than a regular bond. Different
approaches have been established for the CAT bond pricing in
the literature [59]. In this paper, the approach of probability
transformation will be used. Under this approach, the price is
calculated by the expected discount value of the final payoff,
with the probability measure adjusted to reflect risk award
to investors. Assume X has distribution F under probability
measure P. The price of the CAT bond is calculated by

B = E
[
e−rT (K − I(X))

]
= Ke−rT

(
1−

n∑
k=1

(αk − αk−1)Q[X > yk]
)
, (2)

where r is the risk free interest rate, T is the term of the bond,
α0 = 0, and Q is a probability measure specified by

Q[X ≤ y] = Φ
[
Φ−1 (P[X ≤ y])− Φ−1(κ)

]
. (3)

Probability measure Q is referred to as Wang’s transform [60]
of probability measure P. These two probability measures
represent perceptions of the risk from the perspectives of the
insurer and the investor. Probability measure Q is typically
more conservative than P to allow a risk award to the investor,
the amount of which can be controlled by the parameter κ.

Since a CAT bond is designed to cover high layers of loss,
its pricing requires only the information of tail distribution
of X , which naturally calls for the utilization of the EVT
[61]. Generally, EVT provides a platform to study different
types of tail risks. It concludes that the conditional distribution
of the exceedance loss above a certain level always follow a
generalized Pareto distribution, regardless of the original dis-
tribution of the loss. Specifically, the conditional distribution
of X − y1|X > y1 has an asymptotic generalized Pareto

distribution (GPD). Such a parametric model enables us to
derive explicit formulas for insolvency probability and conduct
comparative analysis. The distribution function of the GPD for
the conditional distribution of X−y1|X > y1 can be expressed
as follows.

G(x) = 1−
(

1 + ξ
x

β

)−1/ξ
. (4)

The parameters β and ξ are to be estimated from data.
The detailed application and pricing process of the proposed

EVT based CAT bond scheme for the power system cyber
insurance will be demonstrated later in Section IV.

III. LOSS MODELING OF POWER SYSTEMS WITH
CYBERSECURITY THREATS

In this study, the direct impacts of successful cyberattacks
on different entities in the power systems are analyzed. The in-
vestigated entities in this paper include the DISCOs, GENCOs
and TRANSCOs (or RTOs).

A. Losses of Entities in Power Systems due to Cyberattacks
For the cyberattacks on DISCOs, it is assumed that the

distribution substation will be disconnected from the grid if
it is compromised by the cyberattack. In this case, the load
connected to the DISCO’s substation will be lost until the
cyberattack is isolated and the control of the compromised
distribution substation is restored. The annual monetary losses
of the DISCO due to successful cyberattacks are evaluated as

XD
ϕ =

Kϕ∑
k=1

∑
i∈Nϕ

di,kVϕ (τk) =

Kϕ∑
k=1

∑
i∈Nϕ

di,kηϕτk, (5)

where XD
ϕ is a stochastic variable of the losses due to potential

cyberattacks on DISCO ϕ; di,k and τk are the load loss of the
DISCO at bus i and the duration of load loss event k due to
cyberattacks, respectively; Nϕ denotes the set of distribution
substations of DISCO ϕ; ηϕ is the cost coefficient of DISCO ϕ
for the load loss due to successful cyberattacks; Kϕ is the total
number of successful cyberattacks on the DISCO throughout
a year.

In this study, the cyberattacks on DISCOs are assumed to
be launched on the distribution substations. The compromised
distribution substations are assumed to be disconnected from
the grid, and the loads connected to the compromised sub-
stations of the DISCOs are assumed to be lost. The case
with distributed generation (DG) to support all or part of
the loads in the distribution networks in the presence of
successful cyberattacks on the DISCOs is not considered in
the simulation. However, if a DISCO can support all or part
of the loads in the distribution network with DG when the
compromised substations are disconnected from the grid due
to successful cyberattacks, the loss modeling of the DISCO can
be modified in the proposed model. The lost load di,k in (5)
should be adjusted and determined based on the ability of the
DISCO in maintaining the electricity supply to demands with
the DG in its distribution network. In this case, the loss of the
DISCO will be reduced, and the premium of the DISCO will
also be reduced accordingly. The other parts of the proposed
method will remain the same, as the compromised distribution
stations are disconnected from the grid similar to the case
when DG in the distribution systems is not available.
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If a power plant of a GENCO in the grid is compromised
by the cyberattack, it is assumed that the capacity of the
generation units in the power plant will be lost until the attack
is isolated. Then losses of the GENCOs in the grid due to
cyberattacks are calculated by the lost power output which
has been scheduled by the economic dispatch at each bus of
the grid without the cyberattacks. The economic dispatch of
the grid can be formulated by the optimization problem as
follows.

p∗g = arg min
∑
g∈G

(
αgp

2
g + βgpg + γg

)
(6)

Subject to

−Msi,j 6 pi,j −
ϑi − ϑj
xi,j

6Msi,j , ∀ (i, j) ∈ E (7)∑
(i,j)∈E

pi,j −
∑
g∈Gi

pg + li = 0, ∀i ∈ N (8)

−pmax
i,j (1− si,j) 6 pi,j 6 pmax

i,j (1− si,j) , ∀ (i, j) ∈ E (9)

0 6 pg 6 pmax
g sg, ∀g ∈ G (10)

0 6 δi 6 li, ∀i ∈ N (11)

where αg , βg and γg are the generation cost coefficients
of generation unit g; pg is the active power output of the
generation unit; pi,j is the power flow of the transmission
branch between buses i and j; ϑi is the phase angle of
bus i; pmax

i,j is the capacity limit of the transmission branch
between buses i and j; pmax

g is the active power output limit
of generation unit g; li is the demand at bus i; M is a large
enough positive constant. si,j is the physical status of the
transmission branch between buses i and j. si,j = 1 if the
transmission branch between buses i and j is out of service
physically. Otherwise, si,j = 0. Meanwhile, sg represents the
physical status of generation unit g. sg = 0 if generation unit g
is out of service physically. Otherwise, sg = 1. Constraint (7)
is the power flow model considering the transmission branch
status si,j . Expression (8) is the power balance constraint
of each bus in the grid. Expression (9) is the transmission
capacity constraint considering the transmission branch status
si,j , and (10) is the generation output limit considering the
generation status sg . Meanwhile, constraint (11) is the load
shedding limit at each bus. Then the annual monetary losses
of the GENCO due to successful cyberattacks are evaluated
as

XG
υ =

Kυ∑
k=1

∑
g∈G̃υ,k

p∗g,kVυ (τk) =

Kυ∑
k=1

∑
g∈G̃υ,k

p∗g,kηυτk, (12)

where XG
υ is a stochastic variable of the losses due to

potential cyberattacks on GENCO υ; g∗g,k and τk are the
scheduled output of generation unit g and the duration of
interruption event k due to cyberattacks, respectively; G̃υ,k
is the set of generation units of GENCO υ that have been
compromised by the cyberattack in interruption event k; ηυ is
the cost coefficient of the GENCO for the interruptions due to
successful cyberattacks; Kυ is the total number of successful
cyberattacks on the GENCO throughout a year.

It should be noted that the shutdown of generation units in
the grid due to cyberattacks may lead to increased operational
cost of the grid. However, for the system operator or other
cyber insurance policy holders in the grid, the shutdown of

the generation units of a GENCO due to cyberattacks is not
different from that due to other reasons, e.g., physical failures.
The compromised GENCO is supposed to be penalized for
the undelivered power which is included in the losses of the
compromised GENCO. The compromised GENCO may get
compensated by the claims to the insurance provider. The
system operator or other cyber insurance policy holders in the
grid are not supposed to claim the coverage for the increased
operational cost. Thus, in the proposed cyber insurance model
of the paper, the damage claims of the insureds are constrained
to the losses due to direct cyberattacks on the insureds. The
increased operational cost of the grid is not included in
the losses of the insureds in the paper. Nevertheless, if an
insurance provider agrees a specific insurance policy with an
insured on the risk of extra operational cost of the grid due to
successful cyberattacks on the GENCOs or any other entities
in the network, a higher loss correlation is expected. In this
case, the insurance provider needs to evaluate the insolvency
risk considering such insurance policyholders together with the
original insureds. The insurance provider can estimate the loss
distribution by calculating the increased operational cost using
the results of the optimal redispatch model of the TRANSCOs.

When a transmission substation of the TRANSCOs (or
RTOs) is compromised by successful cyberattacks, it is as-
sumed that all the transmission branches as well as the
generation units and loads connected to the targeted substation
will be tripped and forced to disconnect from the grid until
the attack is cleared and the normal control of the substation
is restored. When successful cyberattacks on the TRANSCOs
are launched, the interconnected TRANSCOs may coordinate
their operations to minimize the load losses in the grid under
the faults at the compromised substations due to the attacks.
However, for each TRANSCO, the coordinated operations
should not result in a higher load loss than the result of the
self dispatch within its network. In other words, the interest
of each TRANSCO should be protected but not compromised
by the coordinated operations. In this paper, an alternating
direction method of multipliers (ADMM) based model is
used to formulate the coordinated operations of interconnected
TRANSCOs with the cyberattacks. The original coordinated
operation model of the interconnected TRANSCOs can be
represented as follows.

min
∑
i∈N

δi (13)

Subject to

−M (zi,j + si,j) 6 pi,j −
ϑi − ϑj
xi,j

6M (zi,j + si,j) ,

∀ (i, j) ∈ E
(14)

∑
(i,j)∈E

pi,j −
∑
g∈Gi

pg + (li − di − δi) = 0, ∀i ∈ N (15)

−pmax
i,j (1− zi,j) 6 pi,j 6 pmax

i,j (1− zi,j) , ∀ (i, j) ∈ E (16)

−pmax
i,j (1− si,j) 6 pi,j 6 pmax

i,j (1− si,j) , ∀ (i, j) ∈ E (17)

0 6 pg 6 pmax
g sgzg, ∀g ∈ G (18)

0 6 δi 6 li − di, ∀i ∈ N (19)∑
i∈Nψ

δi 6 Λ∗ψ, ∀ψ ∈ Ψ (20)
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where
Λ∗ψ = arg min

∑
i∈Nψ

δ̃i (21)

Subject to

−M (zi,j + si,j) 6 p̃i,j −
ϑ̃i − ϑ̃j
xi,j

6M (zi,j + si,j) ,

∀ (i, j) ∈ Eψ
(22)

∑
(i,j)∈Eψ

p̃i,j −
∑
g∈Gi

p̃g +
(
li − di − δ̃i

)
= 0, ∀i ∈ Nψ (23)

−pmax
i,j (1− zi,j) 6 p̃i,j 6 pmax

i,j (1− zi,j) ,
∀ (i, j) ∈ Eψ

(24)

−pmax
i,j (1− si,j) 6 p̃i,j 6 pmax

i,j (1− si,j) ,
∀ (i, j) ∈ Eψ

(25)

0 6 p̃g 6 pmax
g sgzg, ∀g ∈ Gψ (26)

0 6 δ̃i 6 li − di, ∀i ∈ Nψ (27)

where di is the load loss of the DISCOs due to the cyberattacks
on the distribution substations connected to bus i; zi,j is the
status of the transmission branch between buses i and j.
zi,j = 1 if the transmission branch between buses i and j
is out of service due to the cyberattacks on the TRANSCOs.
Otherwise, zi,j = 0. Meanwhile, zg represents the status of
generation unit g. zg = 0 if generation unit g is out of
service or disconnected from the grid due to the cyberattacks.
Otherwise, zg = 1. Constraint (14) is the power flow model
considering the transmission branch status si,j and zi,j . Ex-
pression (15) is the power balance constraint of each bus in
the grid. Expressions (16) and (17) formulate the transmission
capacity constraint considering the transmission branch status
si,j and zi,j . Expression (18) is the generation output limit
considering the generation status sg and zg . Expression (19) is
the load shedding limit at each bus. Constraint (20) guarantees
that the coordinated operations of the TRANSCOs does not
violate the interest of each individual TRANSCO. As shown
in the optimization model above, for each TRANSCO ψ, the
load loss with the coordinated operations must be lower than
the minimum load loss in the cyberattacks Λ∗ψ when only self
dispatch is considered as (21)-(27). Thus, the interest of each
TRANSCO is protected in the coordinated operations. Then
the coordination between the interconnected TRANSCOs can
be formulated and realized by the ADMM based decentralized
optimal operation model as follows.

{δκ+1
ψ,i , ϑ

κ+1
ψ,i } =

arg min

∑
i∈Nψ

δi +
∑
i∈N̂ψ

(
yκψ,iϑi +

ρ

2
(ϑi − zκi )

2
) , (28)

{zκ+1
i } = arg min

∑
i∈N̂ψ

[ρ
2

(
zi − ϑκ+1

i

)2 − yκψ,izi] , (29)

yκ+1
ψ,i = yκψ,i + ρ

(
ϑκ+1
ψ,i − z

κ+1
i

)
, (30)

where N̂ψ is the set of buses connected to the transmission tie
lines of TRANSCO ψ to the external networks. The ADMM
based decentralized optimal operation model can then be
realized by Algorithm 1 presented below.

Algorithm 1: ADMM Based Coordinated Operations of TRANSCOs
1. Set iteration index κ = 0, and initialize parameters yκψ,i and zκi ,
∀ψ ∈ Ψ, ∀i ∈ N .

2. For each TRANSCO ψ ∈ Ψ, calculate the load loss and voltage
phase angle at each bus by solving (28).

3. Update parameters zκi and yκψ,i according to (29) and (30).
4. If

∣∣ϑκ+1 − zκ+1
∣∣ 6 ε, then return δκ+1

ψ,i , ∀ψ ∈ Ψ, ∀i ∈ N as the
solution. Otherwise, go to Step 2.

Due to the convexity of the coordinated optimal operation
model, it is easy to examine and proof that the ADMM based
model can converge to the optimal solution of the coordinated
dispatch of the TRANSCOs to minimize the load losses. Then
the annual monetary losses of the TRANSCO due to successful
cyberattacks are evaluated as

XT
ψ =

Kψ∑
k=1

∑
i∈Nψ

δi,kVψ (τk) =

Kψ∑
k=1

∑
i∈Nψ

δi,kηψτk, (31)

where XT
ψ is a stochastic variable of the losses due to

potential cyberattacks on TRANSCO ψ; δi,k and τk are the
load loss at bus i and the duration of interruption event k
due to cyberattacks, respectively; ηψ is the cost coefficient
of the TRANSCO for the interruptions due to successful
cyberattacks; Kυ is the total number of successful cyberattacks
on the TRANSCO throughout a year.

When the control systems of the substations are compro-
mised by the cyberattacks, the attackers are assumed to be
able to send false commands to force the tripping of the circuit
breakers in the substations. In this case, the transmission
branches connected to the compromised substations will be
forced to be disconnected until the attacks are isolated. This
assumption has been applied in the existing cybersecurity
research [28] and validated by the real-world successful cyber-
attack on the Ukrainian power grid [62]. Thus, the assumption
is applied in this study.

In the proposed model, an optimal redispatch is performed
by the TRANSCOs to reduce the losses due to the suc-
cessful cyberattacks. Optimal redispatch is a well-accepted
and practical assumption in cybersecurity analysis of power
systems in mitigating the damage of malicious cyberattacks
[47], and thus is also applied in this study. Nevertheless,
it is believed that a reconfiguration strategy can be able
to further reduce the loss of the TRANSCOs against the
cyberattacks due to increased flexibility of the operation.
However, the reconfiguration method will considerably in-
crease the computational burden due to its inherent nature
as an integer-programming problem. A highly computational
efficient algorithm for the reconfiguration problem needs to
be developed if a reconfiguration-based mitigation strategy
is supposed to be applied by the TRANSCO when it is
compromised by malicious cyberattacks in the loss modeling.
Optimal reconfiguration and network topology optimization
methods can be good strategies for the TRANSCOs to mitigate
the damage of the cyberattacks. More in-depth analysis on
the optimal reconfiguration and network topology optimization
methods in the risk management of power systems against
cyberattacks will be carried out in the future work.

B. Modeling of Cyberattacks on Power Systems
In the study, the statuses of the distribution substations,

generation units and transmission branches are affected by the
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cyberattacks on power systems. In the cyberattacks on power
systems, the attackers are assumed to intrude into the SCADA
systems to interrupt the normal operation of the substations
and power plants in the grid. An absorbing Semi-Markov
Process (SMP) model as shown in Fig. 1 [51] is applied in this
study to formulate the cyberattacks on the SCADA systems of
the substations and power plants. The SMP model is briefly
introduced here.

G
pG

VpV H C T A R F

M I

pH pC pT pA pR pRF

pAF

pM

pTG
pCG

pHG

pVG

pI
TG TV TH TC TT TA TR

Fig. 1. Absorbing SMP Model of Cyberattacks on SCADA Systems in Power
Systems.

The absorbing SMP model of the cyberattacks {J(t) : t >
0} starts from the good state G , which represents the secure
situation of the SCADA system. Then a series of intermediate
states follow, each of which represents one phase of the
attack. The SMP transits along the intermediate states as the
attacker proceeds with the attack actions step by step and gains
a greater privilege of the SCADA system. If the malicious
intrusion is detected and isolated by the system protection
mechanisms during the penetration process, the system will
be brought back to the good state G as shown in Fig. 1.
If the attacker manages to exploit the targeted components
in the SCADA system to launch the attack, three different
cases may occur. If the protection mechanisms of the control
system manage to mask the impacts of the attack adequately,
the normal operation of the system is maintained and the SMP
will be brought back to the good state G . In contrast, if the
protection mechanisms fail to recognize and isolate the attack,
a complete failure of the control system occurs. Corresponding
contingencies in the grid will arise until the control system
is restored. In the third case, the protection mechanisms of
the SCADA system manage to recognize the attack actions
while the attack cannot be masked. The error recovery and
fault treatment mechanisms of the system will be initiated
to hedge the damage of the attack. The SMP transits to the
interrupted state I if the error recovery and fault treatment
mechanisms are able to track and identify the route of the
attack promptly. Although the contingencies in the grid still
occur, the SCADA system can be restored in a short time to
eliminate the contingencies and the damage of the attack is
reduced. Otherwise, the SMP reaches the failure state F , in
which a longer time will be required to restore the system and
greater damage of the attack will be caused. The meaning of
each transient state in the SMP model is introduced as follows:
G : The SCADA system is in a good and healthy state.
V : Vulnerabilities exist in the SCADA system.
H : The vulnerability is exploited by attacker and used to gain

one or more hosts’ privilege in the SCADA network.
C : Necessary connections in the SCADA network are com-

promised by the attacker.
T : Necessary privileges of the targeted servers are obtained

by the attacker.

A: Destination devices are exploited by the attacker.
R: Error recovery and fault treatment mechanisms are trig-

gered to hedge the damage of the attack.

Accordingly, the Markov kernel of the absorbing SMP
model QT can be expressed as follows.

QT =



pG pV 0 0 0 0 0 0 0 0
pVG 0 pH 0 0 0 0 0 0 0
pHG 0 0 pC 0 0 0 0 0 0
pCG 0 0 0 pT 0 0 0 0 0
pTG 0 0 0 0 pA 0 0 0 0
0 0 0 0 0 0 pR pM 0 pAF
0 0 0 0 0 0 0 0 pI pRF

 ,
(32)

where ST = {G,V,H,C, T,A,R} is the transient state space,
SA = {M, I, F} is the absorbing state space, and pij (i ∈
ST , j ∈ ST ∪ SA) is the transition probability between the
states in the absorbing SMP model with the following relation:∑

j∈ST∪SA

pij = 1, ∀i ∈ ST . (33)

The Markov kernel and sojourn time of the transient states in
the absorbing SMP model describe the stochastic characteris-
tics of the cyberattacks and the cybersecurity performance of
the SCADA system under attacks. The success probability of
cyberattack attempts is formulated implicitly in the proposed
SMP model. The transition probabilities of the transient states
to the next state in the SMP model represent the success
probability of each step in the process of the cyberattacks
to compromise the SCADA systems of the power plants and
substations. In contrast, the transition probabilities from the
transient states to the good state represent the probabilities of
the defense mechanisms in detecting and blocking the mali-
cious attempts. As such, the probability of each cyberattack
attempt on the entities in the grid is modeled and determined
by the proposed SMP model.

In order to generate a proper stochastic model for the perfor-
mance of the SCADA systems considering both independent
and common cyber risks, the Markov kernel and mean sojourn
time in the absorbing SMP model are not set as constants but
modeled by stochastic variables in this study. Consider the
instance of the absorbing SMP model for the SCADA systems
of an individual entity N in the power system in a certain
interval. The transition probabilities in the Markov kernel and
the mean sojourn time of the transient states (denoted by pN

ij
and TN

i respectively) are modeled as follows.

pN
ij = p̂N

iju+ p̂ij (1− u) , ∀i ∈ ST , ∀j ∈ ST ∪ SA, (34)

TN
i = T̂N

i u+ T̂i (1− u) , ∀i ∈ ST , (35)

where p̂N
ij and p̂ij are stochastic variables which represent the

transition probabilities in the Markov kernel of the absorbing
SMP model under the independent and common cyber risks
respectively; and T̂N

i and T̂i are stochastic variables which
represent the mean sojourn time of transient state i in the
absorbing SMP model under the independent and common
cyber risks, respectively. u is a stochastic variable following
a Bernoulli distribution. With the SMP model, the process
of the cyberattacks against the power grids can be simulated
efficiently.
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C. Modeling of Physical Failures in Power Grids
Meanwhile, the physical statuses of the generation units

and transmission branches in the grids are determined by a
sequential Monte Carlo method with the time-to-failure and
time-to-repair for the physical outages of generation units
and transmission branches [63]. In this study, both the time-
to-failure and time-to-repair for the physical outages of the
generation units and transmission branches are assumed to be
exponentially distributed. Therefore, the residence time of any
state j (i.e., out-of-service or in-service) can be simulated by
a random variable τ with the exponential probability density
function as follows:

fτj (t) = λje
−λjt, (36)

where 1/λj is the mean residence time of state j.
At each interval, with the statues of the system com-

ponents according to the physical failures and successful
cyberattacks in the grid, the losses of the DISCOs, GENCOs
and TRANSCOs due to the cyberattacks can be determined.
Then, the distributions of the annual losses due to successful
cyberattacks of the DISCOs, GENCOs and TRANSCOs can
be simulated with a sequential Monte Carlo approach.

The relation between the DISCOs, GENCOs and
TRANSCOs in the proposed loss modeling approach is
illustrated by the framework shown in Fig. 2. In the proposed
model, the SMP based cyberattack event sampling is
performed to determine the cyber status of the generation
units of each GENCO, the distribution substations of each
DISCO, and the transmission substations of each TRANSCO.
For the GENCO model, a physical status sampling is
performed to obtain the physical status of each generation
unit sg . Then the economic dispatch without cyberattacks is
performed to identify the scheduled outputs of the generation
units. Then the losses of the GENCOs are determined based
on the scheduled outputs and sampled cyber status of the
generation units. For the DISCO model, the loss is determined
by the sampled cyber status of the distribution substations
and the loads connected to the compromised substations at
the interval. For the TRANSCO model, a physical status
sampling is performed to determine the physical status of the
transmission branches. The cyber status of the transmission
substations is determined by the output of the SMP based
cyberattack event sampling, and the connectivity of the
generation units and transmission branches at each substation
is determined. The physical status and cyber status of the
generation units is obtained from the GENCO model, the load
at each bus is obtained from the DISCO model. With these
inputs, the coordinated redispatch model of the TRANSCOs
is performed to determine the losses of the TRANSCOs.

IV. CAT BOND MODEL DEMONSTRATION AND
DISCUSSIONS

A. Test System Model and Power System Simulation
In order to demonstrate and validate the proposed CAT

bond scheme for the insurance companies in handling the tail
risk of cyberattacks on power systems, an example on the
IEEE Reliability Test System (RTS-96) [64] is conducted and
discussed in this section. The single line diagram of the test
system used in the example is shown in Fig. 3.

In the test system, it is assumed that three individual
TRANSCOs with 12 GENCOs and 21 DISCOs serve the loads
of the grid. TRANSCO 1 covers Buses 101-124, TRANSCO

TRANSCO 1 (Physical status sampling of 
transmission branches and loss model)
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(Physical status 

sampling and loss 
model)

DISCO 1 (Loss 
model)
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Fig. 2. Loss Modeling Framework of DISCOs, GENCOs and TRANSCOs.
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Fig. 3. Test System with IEEE (RTS-96) Reliability Test System.

2 covers Buses 201-224 and TRANSCO 3 covers Buses 301-
325 in the IEEE RTS-96 system as shown in Fig. 3. The
configurations of the DISCOs and GENCOs in the test system
are listed in Table I and II, respectively.

In the sequential Monte Carlo approach to evaluate the
losses of the power grid, an hourly time sequence of 80,000
years is sampled. The mean values of the parameters in the
absorbing SMP model are listed in Table III. It should be
noted that the simulation of the proposed model in the case
study does not rule out the scenarios with relatively fast state
transition when highly skilled and resourceful attackers appear.
The sojourn time of the transient states in the case study
follows the normal distributions with the mean values shown in
Table III. There is a possibility that the sojourn time is transient
for the cyberattacks in the proposed SMP based model.

The proposed model in the case study is solved using
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TABLE I
LOAD BUSES OF DISCOS

DISCOs Load Buses DISCOs Load Buses
DISCO 1 101, 103, 104, 105 DISCO 12 214, 215, 216
DISCO 2 102, 106, 107, 108 DISCO 13 218
DISCO 3 109, 110 DISCO 14 219, 220
DISCO 4 113 DISCO 15 301, 303, 304, 305
DISCO 5 114, 115, 116 DISCO 16 302, 306, 307, 308
DISCO 6 118 DISCO 17 309, 310
DISCO 7 119, 120 DISCO 18 313
DISCO 8 201, 203, 204, 205 DISCO 19 314, 315, 316
DISCO 9 202, 206, 207, 208 DISCO 20 318

DISCO 10 209, 210 DISCO 21 319, 320
DISCO 11 213

TABLE II
BUSES WITH GENERATION UNITS OF GENCOS

GENCOs Buses No. of Units Total Gen. Cap.
GENCO 1 101,102,107,113,115 21 1490 MW
GENCO 2 116,118 2 555 MW
GENCO 3 121,122 7 700 MW
GENCO 4 123 3 660 MW
GENCO 5 201,202,207,213,215 21 1490 MW
GENCO 6 216,218 2 555 MW
GENCO 7 221,222 7 700 MW
GENCO 8 223 3 660 MW
GENCO 9 301,302,307,313,315 21 1490 MW

GENCO 10 316,318 2 555 MW
GENCO 11 321,322 7 700 MW
GENCO 12 323 3 660 MW

TABLE III
PARAMETERS IN THE ABSORBING SMP MODEL

Par. Val. Par. Val. Par. Val. Par. Val.
pV 1 pA 0.5 pAF 0.2 TH 10 days
pH 0.5 pR 0.5 pRF 0.6 TC 10 days
pC 0.5 pM 0.3 TG 200 days TT , TA 10 days
pT 0.5 pI 0.4 TV 10 days TR 10 hours

CPLEX on a laptop with Intel Core i5 quadcore CPU (1.60-
3.90GHz) and 12GB RAM. The computation time of the
ADMM based distributed optimization model is less than 2
seconds for the scenario of each interval with cyberattack
events.

Fig. 4 shows the marginal distribution of the annual loss of
TRANSCO 1 in the result as an example. It clearly shows the
heavy tail risk of the cyberattacks on the grid. Fig. 5 shows
the values of the correlation coefficients between the losses of
the DISCOs, GENCOs and TRANSCOs in the case study. It
indicates the correlation level between the DISCOs, GENCOs
and TRANSCOs’ losses. Each off-diagonal element shows the
correlation coefficient between two different entities, which
lies in the interval [−1, 1]. A higher correlation coefficient
means a higher correlation level, a zero correlation coefficient
means the two variables are independent, and a negative
correlation coefficient means negative correlation. A positive
correlation between the losses of the DISCOs, GENCOs and
TRANSCOs is clearly shown in the figure. All the off-diagonal
elements are clearly greater than zero, of which the lowest
number is about 0.26, and the average number is about 0.45.
As discussed in the paper, both the heavy tail characteristics

and positive correlation structure of the cyber risks of the
power grid will pose excessive financial tail risks on the cyber
insurance providers of power systems.
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Fig. 4. Marginal Loss Distribution of TRANSCO 1.
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Fig. 5. Correlation Coefficients of Losses of DISCOs, GENCOs and
TRANSCOs.

B. CAT Bond Design and Analysis
The simulation generates a sample of size 80,000 for the to-

tal annual loss X . Some useful characteristics are summarized
as follows:

TABLE IV
USEFUL CHARACTERISTICS OF X

Expected Value 95% Percentile 99% Percentile
E[X] = 43011 y1 = 138996 y2 = 281209

Design a one-year CAT bond that has a two-layer payoff
structure and a principal amount of K = 1000. Set the two
trigger points to be y1 and y2, and the payoff ratios to be
α1 = 0.5 and α2 = 1. The indemnity to the insurer from each
unit CAT bond is

I(X) = 0.5K × ( I{X > y1}+ I{X > y2} ) . (37)

According to EVT, X − y1|X > y1 has an asymptotic
generalized Pareto distribution specified by (4). Fitting data
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into this model using the maximum likelihood method, the
parameters ξ and β are estimated to be ξ̂ = 0.324732 and
β̂ = 69486.9. The Q-Q plot in Fig. 6 is introduced to
demonstrate the goodness of the fitting of the simulation
data into the estimated GPD model based on EVT. The Q-Q
plot show that the quantiles of the simulation data and GPD
model match well. The fitting of the estimated GPD model is
desirable.
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Fig. 6. Q-Q Plot for the Fitting into GPD Model.

Note that P{X ≤ y1} = 0.95. Following the GPD model,

P{X ≤ y2} = 0.95 + 0.05× P{X − y1 ≤ y2 − y1|X > y1}

= 0.95 + 0.05×

[
1−

(
1 + ξ̂

y2 − y1
β̂

)−1/ξ̂]
= 0.9896

(38)
Setting κ = 0.75 in (3) yields Q{X ≤ y1} = 0.8341 and
Q{X ≤ y2} = 0.9492. Assume an annual interest rate of
r = 3%. Following (2), the price of the CAT bond is calculated
to be B = 865.26.

Suppose the insurer sells w units of CAT bond at the
beginning of the year. The insurer’s net loss is

L(w) = X + w(K − I(X))− (P + wB)er, (39)

where P = (1 + θ)E[X] is the total premium collected from
the insureds, and (P+wB)er represents the accumulated value
of the insurer’s total income at the end of the year. Plugging
in the expressions for I(X) and B yields

L(w) = X − Per + wK(Q{X > y1} − I{X > y1})
+ wK(Q{X > y2} − I{X > y2}).

(40)

An insolvency event occurs if L(w) > 0. The insurer is
particular concerned about the tail insolvency probability, that
is, the conditional probability of insolvency given that the CAT
bonds are triggered. It is calculated by

pd = P{L(w) > 0|X > y1}

=

 Ḡ(a(w)), ifw ≤ y2−Per
Ber

Ḡ(b(w)), ifw ≥ y2−Per
Ber−0.5K

Ḡ(a(w)) + Ḡ(b(w))− Ḡ(y2 − y1), otherwise
(41)

where Ḡ(x) =
(

1+ξ xβ

)−1/ξ
is the survival function of X−y1

conditional on X > y1, and a(w) = Per +w(Ber−0.5K)−
y1, b(w) = Per + wBer − y1.

The tail insolvency probability pd is a function of θ and w.
Table V below presents the value of pd with different θ and
w:

TABLE V
TAIL INSOLVENCY PROBABILITY

θ

w
0 250 500 750 1000 1250

0% 1 0.955 0.146 0.018 0.008 0.005
25% 1 0.819 0.112 0.017 0.008 0.004
50% 1 0.694 0.083 0.017 0.008 0.004

100% 1 0.493 0.040 0.015 0.007 0.004
200% 1 0.241 0.032 0.013 0.006 0.004
300% 0.602 0.097 0.026 0.011 0.006 0.003

Table V demonstrates that, in the sense of reducing the
tail insolvency probability, increasing the sale of CAT bonds
is substantially more efficient than elevating the safe load-
ing coefficient. In particular, without any indemnity from
CAT bonds (w = 0), the safe loading coefficient has to
exceed 200%, which is already impractical, to merely avoid
insolvency with certainty; let alone control the insolvency
probability at a desirable level. The conclusion is consistent
with the TVaR premium principle proposed in [51], which
controls the insolvency risk well but results in a high safe
loading coefficient.

It is worth pointing out that, although the insolvency prob-
ability pd is a decreasing function of w, it is not sensible to
sell CAT bonds without limitation. There is an implicit cost of
issuing CAT bonds, which is hidden in the scenarios when the
CAT bonds are not triggered. To demonstrate the implicit cost,
consider the unconditional expected value (under probability
measure P) of the net loss:

E[L(w)] = X − Per +wK

2∑
k=1

(Q{X > yk} − P{X > yk}).

(42)
Typically, Q{X > yk} > P{X > yk}, and thus E[L(w)] is
increasing in w. That means, increasing the sale of CAT bonds
would increase the expected loss in general. The insurer would
balance the cost and benefit of selling CAT bonds and obtain
an optimal level of w based on its specific risk attitude.

To demonstrate the results of the proposed CAT bond design
more clearly, a comparison with the VaR-based premium
scheme proposed in [51] is conducted. The total premium of
the insureds and the safe loading coefficients with the VaR-
based premium scheme are listed in Table VI. As shown in
the table, a high total premium and safe loading coefficients
are necessary for the VaR-based premium in order to achieve
a low insolvency probability. Fig. 7 shows the safe loading
coefficients with the VaR-based premium and the proposed
CAT bond scheme with w = 750. As shown in the figure,
the safe loading coefficient is much lower with the proposed
CAT bond scheme compared with the result of the VaR-based
premium model. As such, the premiums of the insureds can be
reduced and extremely high safe loading levels can be avoided
while a low insolvency probability can be achieved by the
cyber insurance provider with the proposed CAT bond design.

In the case study, an hourly time sequence of 80000
years was simulated. In fact, the sequence can be shorter
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TABLE VI
TOTAL PREMIUM AND SAFE LOADING WITH VAR-BASED PREMIUM IN

[51]

Insolvency Probability 5% 4% 3%
Total Premium 138997 156518 178467
Safe Loading 2.23 2.64 3.15

Insolvency Probability 2% 1% 0.5%
Total Premium 211140 281237 371813
Safe Loading 3.91 5.54 7.64
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Fig. 7. Safe Loading Coefficients to Insolvency Probabilities with VaR-based
Premium and CAT Bond Schemes.

in the simulation while obtaining a stable result of the loss
distribution. Fig. 8 shows the relative changes of the critical
statistics including the expected value, 95%-percentile and
99%-percentile of the total annual loss X to the length of the
time sequence. As shown in the figure, the relative changes
of all the three statistics fall below a criterion of 5e-3 when
the horizon of the sample time sequence is over 27000 years.
The extra length of the time sequence was sampled to further
guarantee the stability of the results.

0 1 2 3 4 5 6 7 8
#104

0

0.01

0.02
(a) Absolute Value of Relative Change of E [X]

0 1 2 3 4 5 6 7 8
#104

0

0.01
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(b) Absolute Value of Relative Change of 95% Percentile
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Years #104
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0.02
(c) Absolute Value of Relative Change of 99% Percentile

Fig. 8. Relative Changes of the Expected Value, 95% and 99% Percentiles
of X to the Length of Sample Time Sequence.

In practice, the insurer gathers the risk data from the

insureds in power systems and third-party investigation/survey
to evaluate the tail insolvency risk with the EVT based
GPD model. Then the insurer sets the insolvency probability
criterion according to his/her risk attitude, and determines
the price and amount of CAT bonds to sell accordingly. The
indemnity of the bonds to the insurer determined by the actual
total loss due to successful cyberattacks in the power system.
When preset trigger points are reached, the corresponding
indemnity amount is determined accordingly.

The proposed work in the paper is developed based on the
concept of tail risk, and the results of the simulation also
demonstrate that the cyber risks of the insureds have heavy
tails in the case study. It is somehow difficult to construct a
valid comparative scenario without tail risk. When the cyber
risks of the insureds in power systems have not heavy tails,
there will be no obvious need for the insurance providers to
handle the insolvency risk in the insurance scheme, and it does
not agree with current understanding and concerns on cyber
risks [65], [66]. Therefore, the case without tail risk is not
simulated in the case study.

V. CONCLUSION

In this paper, a CAT bond scheme is proposed for the power
system cyber insurance providers to mitigate the impacts of the
tail risk of power system cybersecurity. The EVT is used to
model the tail and price the CAT bond. A case on the IEEE
RTS-96 system is conducted to validate and demonstrate the
performance of the proposed CAT bond scheme. The results
demonstrate that issuing CAT bonds can efficiently reduce the
tail insolvency probability even the premium is charged at a
low safe loading coefficient. Generally, there is high demand
for cyber insurance products. However, insurer’s participation
in cyber insurance market is not active, mainly due to the
concern of insolvency risk. Reference [51] proposes a set
of premium principles to ease this concern, but results in
relatively high premiums, which would jeopardize insureds’
interest in participation. In this paper, we aim to improve
participation rates of both insurers and insureds by designing
CAT bonds. Indeed, the case study shows that by issuing
appropriate amounts of CAT bonds, the insolvency probability
can be controlled at a desirable level, this benefits the insurers.
Meanwhile, the premium does not have to be charged as
high as revealed in [51], which benefits the insureds. It is
worth noting that, although the tail insolvency probability
is decreasing in the number of units of CAT bonds, the
hidden cost of issuing CAT bonds prevents the insurer to issue
CAT bonds without limitation. How to determine the optimal
units to sell remains an open question and calls for further
investigation.
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