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Abstract—Process Mining is a technique for extracting process models
from event logs. Event logs contain abundant explicit information related
to events, such as the timestamp and the actions that trigger the
event. Much of the existing process mining research has focused on
discovering the process models behind these event logs. However, Process
Mining relies on the assumption that these event logs contain accurate
representations of an ideal set of processes. These ideal sets of processes
imply that the information contained within the log represents what
is really happening in a given environment. However, many of these
event logs might contain noisy, infrequent, missing, or false process
information that are generally classified as outliers. Extending beyond
process discovery, there are many research efforts towards cleaning the
event logs to deal with these outliers. In this paper, we present an
approach that uses hidden Markov models to filter out outliers from event
logs prior to applying any process discovery algorithms. Our proposed
filtering approach can detect outlier behavior, and consequently, help
process discovery algorithms return models that better reflect the real
processes within an organization. Furthermore, we show that this filtering
method outperforms two commonly used filtering approaches, namely the
Matrix Filter approach and the A ly Free Aut tion approach for
both artificial event logs and real-life event logs.

I. INTRODUCTION

Over the last decade, process mining has emerged as a new research
field that uses available data, such as event logs, to understand how
processes are being executed in real life. Given an event log, process
mining aims to extract process knowledge (e.g., process models)
and provide valuable insights to help better understand, monitor, and
improve the current processes [1]. Process mining has been applied
successfully in many application domains, such as the banking sector,
the insurance industry, e-government communications, and medical
field.

The starting point for process mining is an event log. An event
log contains information about a working process as it takes place.
Each event in the log reflects an activity that can be represented as a
well-defined step in the process and is related to a particular trace of
a process instance. An event log may also contain other information
related to the event such as the executor of the event, the metadata
associated to an event, and other related data attributes. Using these
attributes of an event log, we can represent a process model that is
useful to a stakeholder. However, in practice, process mining can have
many challenges. One of the most challenging problems in process
mining is concerned with the derivation of accurate process models
from event logs.

Numerous discovery algorithms including the Alpha algorithm [2],
the heuristic algorithm [3] and region-based approaches [4], [5] claim
to address this problem thorough utilizing different trade-offs between
the degree to which they accurately capture the behavior recorded in
an event log and the complexity of the derived process model [6].

Many process mining algorithms are based on the assumption
that an event log accurately represents information about a working
process as it takes place. Unfortunately, many real-life process event
logs often contain noise and infrequent behavior. Noise refers to
inserting erroneous activities in the log, not logging some activities
that have occurred, or reporting some activities with an out-of-order
time sequence [7], [8].

The presence of noise can result from data entry problems, faulty
data collection instruments, data transmission, streaming problems,
or other technical limitations. However, infrequent behaviour refers
to a behaviour that only occurs in exceptional case within the pro-
cess. Without having business or domain knowledge, distinguishing
between noise and infrequent behaviour is a challenging task [9].
Therefore, we consider this as a separate research question and do
not cover such cases in this paper. As such, we consider both noise
and infrequent behaviour to be outliers.

The presence of outliers will lead to infrequent paths within the
derived model. This causes the process model to become cluttered
and results in a model that is simply not an accurate representation
of the actual behavior. In order to limit these adverse effects, event
logs are typically subjected to a pre-processing phase where they are
manually cleaned from outliers [6]. However, this is a challenging
and time-consuming task, with no guarantee on the effectiveness of
the resulting model, especially in the context of large event logs
exhibiting complex process behavior [10].

The inability to effectively detect and filter out outliers adversely
affects the quality of the discovered model. In particular, the dis-
covered model’s precision can be greatly affected. A frequently used
performance metric is precision that shows the degree to which a
model allows for unobserved behavior in the log. In some cases,
low levels of outliers will have a detrimental effect on the quality
of the models that are produced by various discovery algorithms.
The Heuristics Miner [3], Fodina [11], and the Inductive Miner [12]
algorithms claim to have noise-tolerant capabilities. However, they
result in low-quality models in the presence of low-levels of outliers.
For instance, the Heuristics Miner can have a 49% drop in precision
when the amount of outliers corresponds to just 2% of the total log
size [13].

In this paper, we present an approach that uses Hidden Markov
Models to filter out outliers from event logs prior to applying any
process discovery algorithms. Below we provide an outline of the
approach and an overview of the four steps required. First, we
obtain the mainstream process model by applying an existing process
discovery algorithm on process mainstream behaviors across the
entire event log. For a given event log, the process mainstream
behaviors imply either a set of frequently occurring event traces or a
set of event traces that cover all of the frequently occurring activities.
Next, we replay the original event log using the mainstream process
model and obtain a mainstream sublog. The mainstream sublog shows
us where the event traces fit within the mainstream process model.
For the third step, we use the mainstream process model and the
mainstream sublog to construct a hidden Markov model. Based on the
hidden Markov model , we calculate the probability of the occurrence
of each event trace, which is recorded in the original event log but
not in the mainstream sublog, and compare it with a user-defined
threshold. We define the event trace as an outlier if the probability
of the occurrence of an event trace derived from the hidden Markov
model is lower than the threshold. Finally, we remove the outliers
from the original event logs to improve process discovery results.

The approach has been implemented on top of the pm4py Frame-

978-1-6654-2069-3/21/$31.00 ©2021 IEEE 171
DOI 10.1109/CBI152690.2021.00028

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 24,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.



work [14], and is evaluated by using the combination of two
commonly used filtering approaches: the Matrix Filter approach [15]
and the Anomaly Free Automation approach [13]. We measure the
effectiveness of the proposed approach when using artificial and real-
life event logs. The results of our experiments show that our approach
adequately identifies and removes outliers, leading to an increase in
the process discovery results. We measure these quality metrics in
terms of fitness, precision, and Fl-score. Additionally, we compare
our process discovery results under different model complexity levels
against the commonly used filtering approaches in terms of behavior
recall, behavior precision, structural recall, and structural precision.
The results of these experiments show that our approach outperforms
two commonly used filtering approaches, namely the Matrix Filter
approach and the Anomaly Free Automation approach.

The paper is organized as follows: Section II introduces definitions
used in the rest of the paper. Next, we develop an approach to identify
mainstream behaviors of the event log in Section III. Section IV
presents the proposed approach to construct the hidden Markov model
to filter out outliers from event logs. We evaluate the proposed outlier
filtering technique in terms of four criteria mentioned above using
artificial and real-life even logs and discuss our findings in Section V.
Section VI discusses the related work and provides an overview
of process mining algorithms with a focus on their noise tolerance
capabilities. Lastly, Section VII concludes the paper and discusses
future work.

II. NOTATIONS AND DEFINITIONS

In this section, we first formalize notations and definitions related
to event logs used in this paper, and then introduce the process model
in terms of a Petri net. Finally, we introduce the definitions related
to Hidden Markov Models.

A. Event logs

The starting point for process mining is an event log. An event
log records information about activities as they take place. For this
paper, we adopt definitions that are similar to the ones given in [16].
In particular, for a given activity set 3, an event entry e in an event
log records an activity happening within the operation of a process.
An event trace o is a finite sequence of event entries that are ordered
by their occurrence time. An event log L consists of a set of event
traces. The formal definitions of an event entry, an event trace, and
an event log are given below.

Definition 1 (Event Entry). Given an activity set ¥, an event entry e
is a tuple (o, T), where oo € X is an activity and T is the timestamp
of . Labeling functions act: e — « is used to get the activity of the
event entry.

Definition 2 (Event Trace). An event trace o is a finite sequence of
event entries [e1,...,€;,...,en] where e; = (ai, 7;). a

Definition 3 (Event Log). An event log L is a set of event traces
{o}. |L| denotes the cardinality of L. O

For an illustrative purpose, we consider a simplified event log
as shown in Table I. This event log L contains information about
five traces, i.e., L = {01,02,03,04,05}. Note that the ordering of
activities within a trace is relevant, while the ordering of activities
among different traces is of no importance. The log shows that
for trace 1, the activities A, B, C, D were executed, i.e., 01 =
le1, e2, €3, eq] where e1 = (A,708 : 157), e = (B,”10 : 24”),
es = (C,710 : 25”), and ey = (D,”13 : 19”). Due to the page
limit, we omit the representations of the trace 2, 3, 4, 5, and 6 which
are similar to the representation of trace 1. Each trace starts with the
execution of activity A and ends with activity D. We also observe that
if activity C is executed within a trace, activity B is also executed.
However, for some traces, activity C is executed before activity B,
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TABLE 1
AN EXAMPLE OF EVENT LOGS
Trace Identifier | Activity | Timestamp
Trace 1 A 08:15
Trace 2 A 08:24
Trace 3 A 09:30
Trace 1 B 10:24
Trace 3 B 10:24
Trace 2 C 10:26
Trace 1 C 10:25
Trace 4 A 11:45
Trace 2 B 11:46
Trace 2 D 12:23
Trace 5 A 13:14
Trace 4 C 13:17
Trace 1 D 13:19
Trace 6 A 13:39
Trace 3 C 14:09
Trace 6 B 14:19
Trace 3 D 14:29
Trace 4 B 14:43
Trace 5 E 15:22
Trace 6 C 15:29
Trace 5 D 15:45
Trace 4 D 16:10
Trace 6 D 16:43

while for some others, it is the other way around. The activity of
event entries in a event trace is obtained a by labeling function. For
instance, the activity of e; in trace 1 is A, i.e., act(e1) = A.

B. Petri net

The majority of process mining algorithms [17], [18], [5] use a
Petri net[4] to represent process models.

Definition 4 (Petri net [19]). A Petri net N is a tuple (P,T,F),
where

o P is a finite set of places;

o T is a finite set of transitions, PNT = 0; and

e FC(PxT)U(T x P) is a set of directed arcs. O

Given a Petri net N = (P,T,F) and a place p € P, we use
notation ep to represent a set of transitions taking place immediately
before a place p, i.e., op = {t|t € TA(t,p) € F}, we also call ep the
pre-set of p. Notation pe to represent a set of transitions immediately
after place p, i.e., pe = {t|t € T A (p,t) € F}, pe is also called the
post-set of p.

The state of a Petri net N = (P,T,F) is represented by its
markings which is a distribution of tokens on places P. A marking
of N is defined by a mapping function m : P — N, where N is
the set of natural numbers. A place p is marked by a marking m if
m(p) > 0.

The execution semantics of a Petri net N = (P, T, F) are defined
by transition firings which specify the enabling conditions and the
marking transformations of the Petri net. A transition ¢t € T’ is enabled
by a marking m, if m marks all places in its pre-set ot, i.e., Vp €
ot : m(p) > 0. In a Petri net N = (P, T, F'), with transition t € T,
and marking m, (N, m) - denotes that transition ¢ is enabled at the
marking m under the Petri net N. The firing of an enabled transition
t transforms the marking m to m’ as below:

m(p) — 1 if pcetAp¢dte
m/(p) =< m(p)+1 if pZetApcte 1)
m(p) otherwise
Given a Petri net N = (P,T,F), a transition ¢ € T, and two

markings m, m’, according to formula 1, (N, m) = (N, m’) denotes
that the enabled transition ¢ results in marking m’. We use the similar
way to represent the firing sequence of the transitions t1, ..., %y, i.e.,

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 24,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.



(N, mstert) byt Iy (N, me™), where m**®"* is the initial
marking, m®"? is the new marking derived by firing the sequence of
t, .. tn.

To explain on the definitions listed above, we use the Petri
net shown in Fig. 1 to provide a more concrete example. In
the graphical representation, places, transitions, arcs, and tokens
are represented by circles, squares, arrows, and black dots re-
spectively. The Petri net N shown in Fig. 1 is defined as
(P,T,F), where P {p1,p2,p3,04}, T {t1,t2}, and
F = {(t1,p1), (p1,t2), (t2, p2), (t2, ps), (t2, pa), (P2, t1)}. The cur-
rent marking is m = {(p1, 3), (p2,0), (p3,0), (p4,1)}. Hence, the
transition ¢, is enabled by the marking m denoted by (N, m) L,
According to formula (1), the firing of the transition t» transforms
the marking m to the new marking m’, i.e., (IN,m) Lz, (N,m"),
where m’ = {(p1,2), (p2,1),(ps3, 1), (ps,2)}. Note that, for a
marking m, if a place does not contain any token, i.e., (p,0),
we omit it for simplicity. For instance, we can simplify m

{(p17 3)7 (p27 0)’ (p3’ 0)’ (p47 1)} tom = {(p17 3)7 (p47 1)}

Fig. 1. A Petri Net Example

Note that the process models that are mined by most of the existing
algorithms [5], [18], [17] are subclasses of the Petri net. One such
sublcass known as a workflow net expands the Petri net by introducing
three further constraints: (1) there is one and only one input place
where a process starts, (2) there is one and only one output place
where the process ends, and (3) all elements are on a path from the
input place to the output place. The formal definition is given below.

Definition 5 (Workflow net [20]). A net N = (P, T, F) is a workflow
net, if it is a Petri net and satisfies the following constraints:
o There is one and only one input place 1, i.e.
1) JieP, st VLeT,(ti) ¢ F,
2) Jir,io € P, (Wt €T, (t,i1) € F A (tyi2) ¢ F) — i1 = ia.
o There is one and only one output place o, i.e.
1) 3oe P, st VteT,(o,t)¢ F,
2) doi,02 € P, (Vt eT, (O1,t) ¢ FA (Oz,t) ¢ F) — 01 = 02
o For a pseudo transition § ¢ T, the net (P,T U {{},F U
{((0,€),(&,4)}) is a strongly connected net. O

It is worth pointing out that the three constraints do not change
neither the syntax or the execution semantics of a Petri net. Since our
work is based on the workflow nets that are derived from existing
process mining algorithms, the process model refers to the workflow
net in the later sections of this paper.

C. Hidden Markov Models

A hidden Markov model is an extension of a discrete Markov
process, which is a combination of two probability distribution
processes wherein one of them is hidden. A hidden process can only
be determined through another process that produces a sequence of
observations [21]. Each observation depends on the states in a hidden
process. The hidden Markov model can also be interpreted as Markov
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model wherein, its proper states are not directly observed [22]. The
hidden Markov model is defined as follows.

Definition 6 (hidden Markov model [22]). A Hidden Markov Model
A is a tuple (®,0, A, B, ), where:

o D is a finite set of hidden states;

o O is a finite set of observations;

o A: (® X ®) — [0,1] is a hidden state transition matrix, such
that Vs, co ZS2E¢ A(s1,82)=1;

e B: (® x O) — [0,1] are the observation probabilities, such
that Vscae ZOGO B(s,0) = 1;

o m: ® — [0,1] is the initial state distribution, such that
YecaT(s) =1 O

From the above definition, we know that all of the observation
elements could be produced in each of the hidden states. The
probability of an observation o € O in a hidden state s € ® is
denoted by the observation probability B(s, o). Note that, for a given
event log L with an activity set >, we want to use a hidden Markov
model to represent process mainstream behaviors observed in the
event log L, and then link the observations that can be produced by
the hidden Markov model to the activities in the event log by using
the same identifier, i.e., O = X.

Given a hidden Markov model A\ (®,0,A,B,7) and an
observation sequence © = 01,02,...,0y, the probability of the
occurrence of ©, ie., P(©|\), can be calculated by using the
Forward-Backward [21], [23] algorithm. We apply this fundamental
problem for Hidden Markov Models to identify whether an event
trace is outlier in event logs.

For an illustration purpose, we consider a simplified hidden Markov
model A = (®,0, A, B, ) shown in Fig. 2. The depicted hidden
Markov model has two hidden states & = {S1, S2}, two observations
O = {a, b}, and the initial state distribution is 7 = [1.0,0.0]. The
labeled arrows in this model correspond to the A matrix, i.e., A =

0.2 0.8

In this example, the probability of a transition from

04 06|
hidden state S to state So is 0.8. The B matrix shown underneath the
hidden state, i.e., B = gg 857) , gives the probability of producing

each activity in that state. The probability of producing the activity a
in hidden state Sp is 0.5. Given an observations sequence © = aba,
the probability of occurrence of © corresponding to the X is 0.1682.

III. IDENTIFY MAINSTREAM BEHAVIORS IN EVENT LOGS BASED
ON FREQUENCY-BASED APPROACHES

In this section, we present a frequency-based approach to obtain
the mainstream process model and the mainstream sublog for rep-
resenting the primary process behaviors across the entire event log.
Given an event log, the process mainstream behaviors imply either a
set of event traces that occur frequently or a set of event traces that
cover all of the frequently occurring activities. Our approach consists
of three steps: (1) selecting a set of event traces based on frequency-
based approaches; (2) applying an existing process mining algorithm
on the set of event traces selected from (1) to obtain the mainstream
process model; (3) obtaining the mainstream sublog by replaying the
original event log on the mainstream process model.

To obtain the mainstream process model and the mainstream sublog
that represents the mainstream process behaviors across a given event
log, we convert the event log to the grouped event log. Before we
give the grouped event log formal definition, we first introduce the
distinct activity sequence.

Definition 7 (Distinct Activity Sequence). Given an event log L with
an activity set 3, the distinct activity sequence I is a finite sequence
of activities [, . .., ) satisfying 3o € L, |o| = |I| A (V0 < i <
lol, act(o:) = 1(i)) O
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Hidden States

Activity

Probablity

Activity | Probablity

Observations a

0.5

a 0.3

b

0.5

b 0.7

Fig. 2. A hidden Markov model Example with ® = {S1,52},0 = {A, B}, and 7 = [1.0,0.0]

For instance, given an event log as shown in Table I, the trace o
is [e1, e2, e3,e4] where ey = (A,708 : 157), ex = (B,”710 : 247),
e3 = (C,710 : 25”), es = (D,”13 : 19”). The corresponding
distinct activity sequence I is [A, B, C, D]

Definition 8 (Grouped Event Log). Given an event log L, the
grouped event log G corresponding to L is a set of distinct activity
sequences {I;} satisfying 31,1 € G,(|[1] = |I2] AV0 < n <
|I1],I1(n) = I2(n)) — I, = Is. The superscript n of a distinct
activity sequence indicates the number of corresponding event traces
in the L. Labeling function supp : I — N is used to get the
superscript of the distinct activity sequences. O

Consider the event log L in Table I, for trace 1, 3, and 6.
The corresponding distinct activity sequence for these traces is
[A,B,C, D]. For trace 2 and trace 4, the corresponding distinct
activity sequence is [A, C, B, D]. For the distinct activity sequence
[A, E, D], only one correspond event trace exists. Hence, the grouped
event log G is {[A, B,C, D]3,[A, C, B, D)?,[A, E, D]}. The num-
ber of corresponding event traces has a supp([4, B,C,D]) = 3.
Note that, if the superscript n equals 1, we omit it for simplicity.
Using this representation of an event log, we illustrate the steps to
obtain the mainstream process model and the mainstream sublog for
representing the process mainstream behaviors in the L.

In the first step, we use three different strategies to select the
event traces to represent the following mainstream behaviors: 1.)
frequent event traces, 2.) frequent activities, or 3.) a combination
of both from the event log. For the frequent event traces, the event
traces are selected from an event log based on the top xth frequency
of the distinct activity sequences in the grouped event log, where
x is user-defined. For instance, assuming that x equals two, the
distinct activity sequences are the two most frequently occurring
traces in G: [A, B, C, D], [A, C, B, D] and the corresponding set of
event traces is {o1,02,03,04,06}. For the frequent activities, we
first calculate the frequency of each activity in the grouped event
log. Then we obtain a set of frequent activities whose frequency
is larger than a user-defined threshold. The event traces that are
selected from the event log are based on the top frequencies of
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the distinct activity sequences that cover the frequent activities set.
For instance, the frequencies of activities A, B,C, and D in the
G are 3/11, 2/11, 2/11, 3/11, and 1/11 respectively. Assuming
the threshold is 2, the set of frequent activities is {A, D}. The
corresponding frequent distinct activity sequences, which cover the
frequent activities set, are [A, B, C, D] and the corresponding event
traces in the L are {o1,03,06}. For the combination of frequent
event traces and activities, we first pick up the event traces based on
frequent activities. Then, from the remaining event traces, we select
event traces based on the frequent event traces.

For the second step, we apply an existing process discovery
algorithm to the event traces that are derived from the first step to
obtain the mainstream process model. Finally, for event traces in the
original event log, we identify whether an event trace is replayable
defined below on the mainstream process model . We refer the set
of replayable event traces as the mainstream sublog.

Definition 9 (Replayable). Given a workflow net N = (P,T,F)
and an event trace o = [e1,...,ey], the o is replayable on the
N that satisfies ¥j,1 < j < n, (N, m**") corleq)

act(eq)
< E—
act(en) start

(N, m*™), where marking m = (4, 1), and marking

me"?® = (o,1).

O+ B0

€1 €2
o+{C}-0

Fig. 3. The Mainstream Process Model Corresponding to Top Two Frequency
Event Traces in the Event Log

CO~[APO

We use the following example to show how the mainstream sublog
is obtained. Consider the event log L, and a mainstream process
model N = (P, T, F') shown in Fig. 3 which is derived by applying
an inductive miner algorithm [24] on the top two most frequent
event traces. From the process model that is constructed by the
inductive miner algorithm, there are activities (which are represented
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as rectangles) and invisible activities (which are represented as the
black rectangles, such as €; and €3) in Fig. 3. The invisible activities
and circles in the process model are only for routing purposes. These
components are produced by process mining algorithms, but are not
recorded in event logs.

For the event trace o; shown in Table I, the activity sequence
is [A, B,C,D]. The initial marking of the mainstream process
model N = (P, T, F) is {(¢,1)}. According to formula 1, there is
a firing sequence of transition [A, B,C, D] in the process model,

e (NAGDY) 5 (VAPL DY) 5 (VAP 1), (P 1))) 2
(Nv{(Piivl)v(P‘hl)}) - (Nv{(P‘lvl)v(Pfhl)}) =
(N,{(Ps,1)}) 2 (N,{(0,1)}). Based on definition 9, the
event trace o is replayable on the N. Similarly, o2,03,04, and
o are replayable on the mainstream process model. However, o5
is not replayable, since there is no firing sequence of transitions
in the process model N. Hence, the mainstream sublog is
{01,02,03,04,06}.

IV. APPLYING HIDDEN MARKOV MODELS TO FILTER OUT
OUTLIERS IN EVENT LOGS

In this section, we present an approach to apply the hidden Markov
model derived from the mainstream sublog and the mainstream
process model to filter out outliers within the event logs. The first step
of our approach is to construct a hidden Markov model based on the
mainstream process model and the mainstream sublog. The second
step is to apply the obtained hidden Markov model to identify the
outliers and remove them from the event log. Our hypothesis states
that this removal should improve the process discovery results. We
will validate this hypothesis in Section V.

While a hidden Markov model is an inherently stochastic model,
a workflow net is an analytical representation and does not directly
support a probabilistic description. Because of this, we need to infer
the probabilistic parameters of a hidden Markov model from the
mainstream sublog and the mainstream process model.

Given a grouped event log G that corresponds to the main-
stream sublog and a mainstream process model N = (P, T, F),
we use following rules to construct the hidden Markov model
A= (®,0,A,B,7).

« Hidden states (®): each place in the mainstream process model
is represented by exactly one state in the hidden Markov model
A le. [®] = |P[;

« Observations (O): the observations are the grouped event logs
G that correspond to the mainstream sublog

o Hidden state transition matrix (A): given two hidden state
s1,s82 € ®, and the corresponding two places pi,p2 € P, the
element A(s1,s2) of A is

Ziepo, ) supli)
Ziep,jasurli) + Xjeqo,jap suply)

satisfying 3t1 € ep1,to € (p1 @[\ ep2) : [t1,t2] € I; and
Jt1 € op1,ta € (pre[)eps) Aps € (P —{p2}): [t1,t2] € I}
« Observation probabilities matrix (B): given a hidden state s €
@, the corresponding place p € P, and a transition ¢ € T, the
element B(s, t) of B is assign as follows:
>iepo, | supli)
Ljepo, 1611 supl;)
[tl,t] € I; and dt; € op, ta € pe :

1) When p is not in the output place, B(s,t) =
satisfying 3t; € ep :
[t1,t2] € I;

When p is the output place, the corresponding hidden state s
is a final state, which does not produce any observable activity
from the event log. Hence, the element B(s,t) = 0 . Instead,
it is associated to a dummy end element €, where the element
B(s,e) = 1.

2)
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« Initial state distribution (7): the probability of the hidden state
corresponding to the input place in N equals one, and probabil-
ities of all other hidden states equal zero.

In the following figure, we will use an example to illustrate
the steps required to construct a hidden Markov model A
(®,0,A,B, ) that is based on a mainstream sublog and a main-
stream process model N = (P, T, F).

Example 1. Consider the new grouped event log G shown in
Fig. 4, we select the event traces corresponding to the top three
frequency of the distinct activity sequences from the event log,

e, [ABD],[ACD], and [ACECD). Then, we apply an exist-
ing process mining algorithm, for instance, the inductive miner
algorithm developed by [24], on the selected event traces. The
obtained mainstream process model is represented by a workflow
net N (P,T,F) that is depicted in Fig. 4. Based on the
mainstream process model, the event traces corresponding to the
distinct activity sequence [ABEBD)| are replayable. Hence, the
grouped event log G that is corresponding to the mainstream sublog
is {{ABD]*°,[ACD]'°,[ACECD]*, [ABEBD]?}.

According to the rules to construct the hidden Markov model
A = (®,0,A,B, ), the hidden states ® contains s1, Sz, S3, Sa
that represent the places p1, p2, ps, pa respectively. O is the grouped
event log G that corresponds to the mainstream sublog, i.e., O =
{[ABD]*,[ACD]*°,|[ACECD]'°,[ABEBD)?}. For initial state
distribution , the input place of N is p1, which corresponds to the
hidden state sy and = = [1,0,0,0].

We take the hidden states s3 and s4 as an example to illustrate the
steps for element A(ss3,s4) in a hidden state transition matrix. The
places corresponding to the hidden states s3 and s4 are p3 and pa,
respectively. As eps = {B, C'} and pze() eps = {D}, we sum up the
superscripts of the distinct activity sequences containing the subse-
quent B, D] or [C, D), such that the sup([ABD))+ sup([ACD])+
sup([ACECD]) + sup([ABEBD)) results in 33 as the numerator
of A(ss, s4). Since p3 o (ep2 = {E}, we sum up the superscripts
of the distinct activity sequences containing the subsequent [C, E| or
[D, E), i.e., the 9up([ACECD]) + sup([ABEBD)]) results in 13.
Hence the A(ss, s4) is 33“3 7.

We take the hidden states so and si as examples to illustrate
different scenarios of constructing the observation probabilities
matrix. The place corresponding to the hidden state sz is po.
Consider the transition C, since eps {A}, we sum up the
superscripts of distinct activity sequences containing the subsequent
[A, O, i.e., sup([ACD])+ sup([ACECD]) = 20 as the numerator
for B(s2,C). Since pae {B,C}, we sum up the superscripts
of distinct activity sequences containing the subsequent [A, B] or
[A,C], ie., sup([ACD]) + sup([ABD]) + sup([ABEBD]) +
sup([ACECD]) and the following result is 33. Hence the B(sz2, C)
is 22 = 0.606. For the hidden state s4, the place pa corresponding
to 54 is output place in the mainstream process model. According to
the rule,

the element B(s4, A) = B(ss, B) = B(s4,C) = B(s4,D) =
B(ss, E) = 0, and B(s4,€) = 1. Similarly, based on the rules, we
construct other elements of A and B, and get the following results:

0 1 o0 1
A_ 0 0 1 0
~ 1o 028 0 0.72

0 0 0 1

1 0 0 0 0
0 0.39 0.61 0 0
0 0 0 028 0.72
0 0 0 0 0

~

B =

— O OO

In the second step, we take the event log L and use the hidden
Markov model X produced by the first step as input. Given an event
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Fig. 4. A mainstream process model corresponding the mainstream sublog

trace o = [e1,...,en], We compute the probability of o, given the
model ), i.e., Pr(c|)), using the Forward-Backward Procedure [23],
[25]. Then, we compare the resulted probability with the user-
defined threshold . We identify each event trace in the L with
the probability conditioned on A being higher than the threshold,
ie., Pr(c|A) > &k as an outlier. Finally, we remove the outliers
from the event log in order to improve process discovery results.
For example, consider the event trace corresponding to the distinct
activity sequence [ABDC D] in Example 1. We apply the Forward-
Backward Procedure to the event trace, and the probability is 0.038.
Assuming the threshold of « is 0.01, the event trace corresponding to
[ABDCD] is not an outlier. Similarly, we calculate the probability
of the event trace corresponding to [ABBD] and find that it is
under the A, so we treat it as an outlier. Finally, the resulted event
log contains event traces corresponding to distinct activity sequence
[ABD],[ACD],[ACECD],[ABEBD],[ABDCD].

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed approach using both
artificial event logs and real-life event logs from [26], [27], [28],
[29], [30]. The artificial logs are generated from the Processes and
Logs Generator (Plg) [31], which is an open-source tool that is used
to generate artificial event logs based on the user-defined process
model. The characteristics of the real-life event logs we selected are
summarized in Table II. The objectives of our evaluations consist
of two components. First, we evaluate if filtering out outliers by
using the hidden Markov model can improve the quality of the
process models that are discovered from event logs. To do so,
we choose an existing Inductive mining algorithm [24], and apply
it on the same real-life event logs with and without the hidden
Markov model approach. Second, we compare the performance of the
proposed approach with two commonly used filtering approaches, i.e.,
the Matrix Filter approach [15] and the Anomaly Free Automation
approach [13], using the artificial and real-life event logs. Before the
evaluation, we first define our evaluation criteria.

TABLE II
CHARACTERISTICS OF THE EVENT LOGS USED FOR THE EVALUATION

DataSet Number of | Number of | Average number of
Traces Event Entry Event Entry
BPIC2013 [26] 819 2351 2.871
BPIC2020 [27] 10500 56,437 5.374
Hospital Billing [28] 100000 451359 4.514
Road Traffic [30] 150370 561470 3.734

A. Performance Metrics

The quality of a process model is evaluated by two criteria: (1)
fitness f, and (2) precision p. The fitness measures how well a model
can reproduce the process behavior that is contained within a log,
and the precision measures the degree to which the behavior that
is made possible by a model is found within a log [13].The higher
the fitness and precision values are, the better quality of the process
model. We use the pm4py [32] library to calculate these performance
metrics value. However, the fitness and precision are two aspects of a
process model which may not always be consistent. The F'1 score [6]
is defined as the harmonic mean of the weighted average fitness f"
and precision p", ie. F1 = %}Vfﬁ&v‘/. We will also use the F'1
score as an evaluation criteria.

For any given artificial event log, we will have two process models
that represent the reference model and the mined model. As such, we
need to determine the behavioral and structural similarity between
these two models [33]. The behavioral similarity metrics analyze the
event log to quantify how similar the behavior of the mined model
is to that of its reference model in terms of precision and recall [34].
The higher that the behavioral precision and recall is, the greater the
similarity is between the referenced model and the mined model. The
structural similarity metrics reflects the degree of correct causality
relations that exist in the referenced model or the mined model. This
is typically measured in terms of precision and recall. A value of
both structural precision and recall close to 1 indicates two process
models are structurally, very similar.

B. Process Model Discovery Performance Improvement Using the
Hidden Markov Model

This set of experiments is to evaluate whether filtering out outliers
by using the hidden Markov model can improve the quality of process
models discovered from event logs. More specifically, given an event
log, we apply the three different approaches presented in Section IIT
to obtain the mainstream sublog and mainstream process model. For
each mainstream sublog and mainstream process model , we apply
the proposed approach in Section IV to construct the hidden Markov
model and filter out outliers from the original event log. Then, we
discover a process model from event logs using the inductive mining
algorithm presented in [24]. The fitness, precision, and FI-score of
each event log and their respective process models are depicted in
Table III.

From the experiment results, it is clear that when we use our
proposed approach to filter out the outliers from an event log, prior
to applying process discovery algorithms, we are able to achieve
higher fitness, precision, and F1 score with different real-life event
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TABLE III
FITNESS, PRECISION, AND F1 SCORE

BPIC 2013 BPIC 2020 Road Traffic Hospital Billing
Fitness | Precision F1 Fitness | Precision F1 Fitness | Precision Fl1 Fitness | Precision F1

NX pf)irl(‘)f;ciﬁg 0.922 0478 | 0629 | 0913 0679 | 0.778 | 0.768 0.561 | 0.648 | 0.785 0539 | 0.639

AC‘Q‘Q;YH/?\E%E‘C}‘ 0.935 0595 | 0.798 | 0.945 0785 | 0.858 | 0.791 0.604 | 0.684 | 0.858 0.543 | 0.665

Trzzz ?I‘I’\E’I;‘/’I‘fh 0.937 0577 | 0.786 | 0.947 0787 | 0.860 | 0.812 0.667 | 0732 | 0.826 0.597 | 0.693

gﬁgﬁl’;ﬁ;}f‘ 0.947 0641 | 0832 | 0958 0842 | 0.896 | 0.829 0709 | 0.764 | 0.889 0.61 0.723

logs. For the real-life event logs, the average improvement percentage
of fitness, precision, and F1 score are 7.23%, 24.44%, and 19.57%,
respectively.

C. Hidden Markov Model Approach Vs Two Commonly Used Filter-
ing Approaches

This set of experiments is to compare our proposed approach with
the two commonly used filtering approaches such as the Matrix Filter
approach (MF) [15] and the Anomaly Free Automation approach
(AFA) [13] using the aforementioned artificial and real-life event
logs.

Artificial event logs: For benchmarking the different filtering
approaches, we consider two different complexity levels for the ref-
erence models by using four basic structures found within a process.
The first level of the reference model contains a parallel structure, an
exclusive-choice structure, a loop structure, and a sequence structure.
The second level of the reference model contains the interactions
between these basic structures by combining them together. For each
level of the reference model, we create ten different reference models
that contain an increasing activity number. Then, for each referenced
model, we use the Plg tool to generate ten event logs by injecting an
incremental amount of noise ranging from 1% to 30% to produce an
event log that contains one thousand event traces.

For each artificial event log, we first use the three different
approaches presented in Section III to obtain the mainstream sublog
and mainstream process model , and construct the hidden Markov
models. Then, we filter out the outliers from the given event log
based on the hidden Markov model. We also apply the two commonly
used approaches, i.e., MF and AFA on the given artificial event
log to filter out the outliers. For each clean event log derived from
five different filtering approaches , we apply the inductive mining
algorithm to discover a process model, and calculate the behavioral
recall, behavioral precision, structural recall, and structural precision.
The results are depicted in Fig 5, Fig 6.

As shown in Fig 5, Fig 6, the proposed approach outperforms the
two commonly used approaches on average cases. More specifically,
the performance of our proposed approach (Combination + HMMs)
is 10.43%, 11.92%, 9.61%, 9.20% higher than the performance
of the MF approach with respect to behavioral recall, behavioral
precision, structural recall ,and structural precision, respectively. The
performance of our proposed approach (Combination + HMMs) is
8.89%, 9.57%, 7.47%, 8.85% higher than the performance of ANA
approach with respect to behavior recall, behavior precision, struc-
tural recall ,and structural precision, respectively. We also observe
that the approach using the combination strategy to construct the
hidden Markov models outperforms the approaches using frequent
activity or event traces to construct a hidden Markov models with
respect to the four criteria.

Real-life event logs: We use five different approaches, i.e., MF
approach, AFA approach, HMMs derived from frequent activity
approach, HMMs derived from frequent event trace approach, and
HMMs derived from combination approach on the real-life event logs
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to filter out outliers. Then, we apply the inductive mining algorithm
on clean event logs to discover a process model and calculate fitness,
precision, and F1 score. The results are depicted in Fig 7, Fig 8, and
Fig 9.

From the experiment results, the performance of the proposed
approach (Combination + HMMs) is 0.4%, 11.3%, and 6.7% higher
than the MF approach with respectively for fitness, precision, and F1
score. The fitness derived from the proposed approach (Combination
+ HMMs) is 0.54% lower than the ANA approach, but the precision
is higher. Hence, we are able to achieve 3.9% higher F1 score with
different real-life event logs.

VI. RELATED WORK

The presence of outlier data in the event logs can adversely affect
the quality of discovered process models. The ProM framework offers
several plugins for filtering anomalous data. These filtering meth-
ods are performed based on activity frequencies/positions, certain
attributes associated with events, and prefix-based rules. i.e, whether
a trace is a prefix of another trace in the given event log or not, etc.
However, these plugins require user input and domain knowledge. As
a result, several studies have leveraged various methods to remove
the so-called outliers from event logs before implementing process
discovery algorithms. Among these works, some require a reference
model to replay process instances and filter out outliers. However,
these methods are not often applicable due to the unavailability of
reference models.

On the other hand, several studies perform filtering based on
sequence mining algorithms. Some of these generic methods are
based on creating data models to represent normal behaviour. The
constructed models are then used for filtering out anomalous traces.
An approach of this type is proposed in [13], which creates an
abstraction of the observed behaviors based on event transitions using
an Anomaly-Free Automaton (AFA). Subsequently, this algorithm
removes the infrequent event transitions from the constructed automa-
ton, and considers non-replayable log traces on the so-called automa-
ton as outlier traces. Although showing improvement in performance
measures, this method cannot take incomplete traces or the ones with
missing events into account. In [15], the authors propose a method
for computing the occurrence likelihood of particular activities based
on their preceding sequence of activities. In this method, an event
with a likelihood lower than a pre-defined threshold is considered an
outlier. Consequently, using trace-level filtering, the corresponding
trace is opted out. The filtering method proposed in [35] yields an
improvement upon the latter method by repairing traces which contain
outlier event(s) instead of totally removing them. Outliers in this study
are identified based on contexts frequency in traces. A drawback
of this method is the addition of unreal activities to the event log
thorough repairing process.

All the aforementioned algorithms which are based on direct
event relationships ignore the existence of parallel activities and long
term dependencies in the traces. In [15], the length of sequence
can be increased but it results in increasing the complexity of this
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method. Also, long term relations cannot be identified in the proposed
AFA algorithm. To address these issues and capture long term flow
relationships between activities, [36] proposes a filtering technique
based on sequential patterns and rules. e.g, whether a particular event
is followed by another one somewhere in the trace or not. A limitation
of this method is that it disregards the directly follow relations and
merely considers indirectly follow relations. Therefore, this algorithm
might fail to capture some outlier behaviours.

In this study, we use a statistical model of sequential data, the
hidden Markov model, for filtering outlier traces from event logs.
Hidden Markov models (HMM) are applied for anomaly detection in
sequenced data as they are believed to capture the sequences in their
hidden space built from input sequences. HMM was initially used
for anomaly detection in [37] to learn the patterns in processes and
classify them as normal and abnormal. In this study, we use HMM to
detect outliers in event log and compare our performance results with
other state-of-the-art algorithms. Using HMM’s ability to preserve the
nature of sequences [38], we outperform merely preserving indirect
event relations or direct follows respectively proposed in AFA and
MF algorithms in [13] and [15].

VII. CONCLUSION

In this paper, we present an approach that uses hidden Markov
models to filter out outliers from event logs prior to applying
process discovery algorithms to improve process discovery results.
Our experiments on artificial event logs and real-life event logs
show that: (1) process models obtained by filtering out outliers
with hidden Markov models have higher fitness, precision, and F1
score than process models obtained by directly applying discovery
algorithms on the event logs; (2) the proposed filtering method
outperforms two commonly used filtering approaches, namely the
Matrix Filter approach and the Anomaly Free Automation approach
for both artificial event logs and real-life event logs. As future work,
we want to distinguish between noise and infrequent behaviour based
on features of the given event log. Our goal is to better identify
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the infrequent behaviour information, which is a behaviour that only
occurs in an exceptional case within a process, and improve the
accuracy for process representation.
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