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Abstract—Event logs contain abundant information, such as activity
names, time stamps, activity executors, etc. However, much of existing
trace clustering research has been focused on applying activity names
to assist process scenarios discovery. In addition, many existing trace
clustering algorithms commonly used in the literature, such as k-means
clustering approach, require prior knowledge about the number of
process scenarios existed in the log, which sometimes are not known
aprior. This paper presents a two-phase approach that obtains timing
information from event logs and uses the information to assist process
scenario discoveries without requiring any prior knowledge about process
scenarios. We use five real-life event logs to compare the performance of
the proposed two-phase approach for process scenario discoveries with
the commonly used k-means clustering approach in terms of model’s
harmonic mean of the weighted average fitness and precision, i.e., the
F1 score. The experiment data shows that (1) the process scenario
models obtained with the additional timing information have both higher
fitness and precision scores than the models obtained without the timing
information; (2) the two-phase approach not only removes the need for
prior information related to k, but also results in a comparable F1 score
compared to the optimal k-means approach with the optimal k obtained
through exhaustive search.

I. INTRODUCTION

Over the past decade, process mining has emerged as a new
research area that uses available data, such as event logs, to un-
derstand how processes are being executed in real life. Given an
event log, process mining aims to extract actionable process knowl-
edge (e.g., process models) and provides valuable insights to help
better understand, monitor, and improve the current processes. In
an environment where different scenarios exist, such as in health-
care [1], customer support [2], and engineering fault diagnosis [3],
it becomes more critical to discover the processes that actually
take place. The most important learning task in the broad field
of process mining is called process discovery, which is concerned
with the derivation of process models from event logs. Over time, a
range of process discovery algorithms have been proposed, such as
Alpha algorithm [4], region-based approaches [5], [6], and heuristic
approach [7], to name a few. Despite the demonstrated usefulness
of process discovery algorithms, these algorithms face challenges in
an environment where different scenarios exist [8], [9], [10], [11].
When different scenarios are grouped into one process model not
only the accuracy of the model representing the reality reduces, more
importantly, the complexity of the model becomes incomprehensible
and hence makes it difficult, if not impossible, to achieve the goal of
better understanding, monitoring and improving the current processes.

Trace clustering techniques are often used to assist in discovering
different process scenarios. Most existing trace clustering meth-
ods [9], [12], [13], [14] often contain two major steps. First, use a set
of transformation rules to convert each trace in a given event log into
a vector. Second, apply clustering algorithms, such as k-means [13],
to the vectors and partition the vectors into different clusters, and
hence partition the corresponding event log into different subsets of
logs where event traces in the same subset most likely belong to the
same scenario. Once an event log is partitioned into different clusters,
process discovery techniques are applied to individual clusters to
obtain process models for different scenarios.

Event logs often contain rich information, such as activity names,
time stamps, activity executors, etc. However, our observation is that
most transformation rules used in trace clustering techniques [12],
[13], [9], [14] to convert an event trace to a vector only use the
activity name information in the event log. We hypothesize that if
additional information is added into the constructing vectors, we shall
obtain process models that are better in terms of model fitness and
precision criteria. We have also observed that clustering algorithms
that are commonly used in trace clustering, e.g., k-means [13], [14],
[9], need a prior knowledge about the number of clusters k, which
sometimes may not be available. The question is can we derive it
from given information, i.e., the event log?

In this paper, we present an approach that uses timing information
to assist in discovering process scenarios from event logs. This
approach has three steps. First, we obtain time dependent sets from
a process model produced by applying an existing process discovery
algorithm on the entire event logs. Second, we construct aggregated
vectors that contain both activity information and timing information
which is derived from the time dependent set and event time stamps.
Third, we use a two-phase approach to generate subsets of event logs
where event traces in the same subset are most likely under the same
scenarios. The first phase of the approach is to identify the number
of scenarios (k) a given event log may have. The second phase is to
apply an existing distance-based clustering approach, i.e., k-means
algorithm [13], [14], to partition the event log into k subsets of an
event log. To evaluate the performance of the proposed approach for
process scenario discoveries, we apply an existing process discovery
algorithm, e.g., the HeuristicsMiner algorithm [15], to obtain a
process model from each subset and compare the weighted average
fitness, the weighted average precision, and F1 score against the
commonly used clustering approach, i.e., the existing approach [13].
Figure. 1 depicts the workflow of our approach.

The paper is organized as follows. Section II introduces definitions
used in the rest of the paper and the steps of obtaining time dependent
set. We develop an approach to construct vectors by aggregating
activity and timing information in Section III. Section IV presents
the two-phase clustering approach to assist in discovering process
scenarios. Section V evaluates the proposed approach in terms of
three criteria, i.e., the weighted average fitness, the weighted average
precision, and F1 score using real life even logs, and discusses our
findings. Section VI discusses the related work and we conclude in
Section VII.

II. OBTAIN TIME DEPENDENT SET FROM EVENT LOGS

In this section, we first formalize notations and definitions related
to event logs that will be used in this paper, and then briefly introduce
the process of obtaining the time dependent set for each activity in
a process model derived from event logs.

A. Event logs
The starting point of process mining is event logs which record in-

formation about activities as they take place. We adopt the definitions
similar to ones given in [16], but with additional timing information.
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Fig. 1. Workflow of using timing information and two-phase approach for process scenario discovery

Definition 1 (Event Entry (e)). An event entry e is a tuple (α, τ),
i.e., e = (α, τ), where α is activity’s name and τ is the timestamp of
activity α. The sets of all event activity names, activity timestamps,
and events in a given event log are denoted as Ω, T and E ,
respectively.

Definition 2 (Attribute Function (Fα and Fτ )). The attribution
functions are defined to obtain an event entry’s activity name and
time stamps, respectively, i.e., Fα : E �→ Ω and Fτ : E �→ T .

Definition 3 (Event Trace (σ)). An event trace σ is a finite sequence
of event entries e1, · · · , en, i.e., σ = [e1, · · · , en], where Fτ (ei) <
Fτ (ei+1) and 1 ≤ i ≤ n.

Definition 4 (Event Log (L)). An event log L is a set of event traces,
i.e., L = {σ1, · · · , σm}. The number of traces in the event log L is
denoted as |L|.

For an illustration purpose, we consider a simplified one day
event log shown in Table I. This event log L has five traces, i.e.,
L = {σ1, σ2, σ3, σ4, σ5} and |L| = 5. The log also shows that
for trace σ1, there are four event entries, i.e., σ1 = [e1, e2, e3, e4].
It is worth pointing out that the ordering of event entries within a
trace is important, while the ordering of event entries among different
traces is of no significance. The activity name and its timestamp of
an event entry in an event trace are obtained by function Fα and
Fτ , respectively. For instance, the activity name of e2 in trace σ1 is
Fα(e2) = B, and its timestamp is Fτ (e2) = “10 : 24”.

TABLE I
EXAMPLE OF AN EVENT LOG

Trace Identifier Activity Timestamp
Trace 1 (σ1) A 08:15
Trace 2 (σ2) A 08:24
Trace 3 (σ3) A 09:30
Trace 1 (σ1) B 10:24
Trace 3 (σ3) B 10:24
Trace 2 (σ2) C 10:26
Trace 1 (σ1) C 10:25
Trace 4 (σ4) A 11:45
Trace 2 (σ2) B 11:46
Trace 2 (σ2) D 12:23
Trace 5 (σ5) A 13:14
Trace 4 (σ4) C 13:17
Trace 1 (σ1) D 13:19
Trace 3 (σ3) C 14:09
Trace 3 (σ3) D 14:29
Trace 4 (σ4) B 14:43
Trace 5 (σ5) E 15:22
Trace 5 (σ5) D 15:45
Trace 4 (σ4) D 16:10

B. Time Dependent Set

In our previous work that aims to obtain possible timing constraints
from a given event log [17], we introduced the concept of activity’s
time dependent set defined below.

Definition 5 (Time Dependent Set Θ). Given an event log (L) and its
corresponding process model obtained by any exiting process mining
algorithm, the time dependent set (Θ(α)) of an activity α is the set
containing all activities directly followed by the activity α in the
process model.

Fig. 2. A process model corresponding to the event log given in Table I

We use an example to show how an activity’s time dependent set
is obtained.

Example 1. Consider the event log given in Table I and a cor-
responding process model shown in Fig. 2 which is derived by
applying an inductive miner algorithm [18] on the given log. In the
process model constructed by the inductive miner algorithm, there are
activities represented in rectangles and invisible activities represented
in black rectangles, such as ε1 and ε2, in Fig 2. Invisible activities
and circles in the process model are only for routing purposes. They
are produced by process mining algorithms, but not recorded in event
logs.

For activity D’s time dependent set, as the invisible activity ε2
is connected to the target activity D, we need to trace back until
we find a visible activity that connects to the invisible activity ε2,
which are activity B and C. Hence, activity D’s time dependent set
Θ(D) = {E,B,C}. Similarly, the time dependent sets of the activity
A, B, C, and D are Θ(A) = ∅,Θ(B) = {A},Θ(C) = {A}, and
Θ(E) = {A}, respectively.

The algorithm for obtaining the time dependent set for each activity
in a process model can be found in our earlier work [17].

III. CONSTRUCT AGGREGATED VECTORS WITH ACTIVITY AND

TIMING INFORMATION

In this section, we present an approach to automatically construct
aggregated vectors that contain both activity name from event traces
and timing information derived from the time dependent set and event
entry timestamps.
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We first apply a similar approach used in [13] to map each event

trace σ in a given event log into an activity vector ( �Aσ) which is
defined below.

Definition 6 (Activity Vector ( �A)). Given an event trace σ and an
activity set Ω, the activity vector �A corresponding to an event trace
σ is �Aσ = (N1(α1), · · · ,Nn(αi)), where n = |Ω|, αi ∈ Ω, and
N (αi) is the number of times the activity αi occurs in the trace σ.

Based on the definition, for event log L given in Table I, we have
the activity set Ω = {A,B,C,D,E}, hence the size of all activity

vector | �A| = 5. Furthermore, for Trace 1 (σ1), its corresponding

activity vector �Aσ1 = (1, 1, 1, 1, 0), where �Aσ1 [5] = 0 indicates
that activity E does not occur in Trace 1.

There is another important information contained in an event
trace, i.e., the time stamp of each recorded activity. Our idea is
to extend the activity vector by adding timing information related
activities in a given trace. Our hypothesis is with additional activity
related to timing information, we will be able to discover more
accurate scenarios. Our experiments shown in Section V confirms
this hypothesis.

To obtain the timing information related to each activity in a given
trace, we first introduce the following definitions.

Definition 7 (Time Dependent Pair (α, β)). Given an event log’s
activity set Ω, for any two activities α, β ∈ Ω, if β ∈ Θ(α), the
activities α and β are called a time dependent pair denoted as (α, β),
and the set of all time dependent pairs in a given activity set Ω is
denoted as O =

⋃

α∈Ω

{(α, β)|β ∈ Θ(α)}.

For instance, in Example 1, activity D’s time dependent set is
Θ(D) = {B,C,E}, the corresponding time dependent pairs are
(D,B), (D,C), and (D,E). Furthermore, the set of all time de-
pendent pairs corresponding to the event log presented in Example 1
is O = {(B,A), (C,A), (D,B), (D,C), (D,E), (E,A)}.

Definition 8 (Timing Vector (�T )). Given a time dependent pair
set O, the timing vector �T , |�T | = |O|, represents the maximal
time durations between two activities of a given time dependent pair
(α, β) ∈ O. For a given trace σ = [e1, · · · , em], the value of the
timing vector �Tσ[(α, β)] is defined as: �Tσ[(α, β)] = max{Fτ (ei)−
Fτ (ej) | 1 ≤ i, j ≤ m∧i �= j∧ei, ej ∈ σ∧Fα(ei) = α∧Fα(ej) =
β}.

Consider Trace 1(σ1) in Table I and a time dependent pair (B,A).
The trace σ1 contains the activity B at time ”10:24”, the activity A’s
time stamp is “08:15”. The time duration between the activity A’s
time stamp and the activity B’s time stamp is 129 with minutes as

the time units. Hence we have �Tσ1 [(B,A)] = 129, indicating that
activity B occurs at most 129 time units after the occurrence of
activity A in σ1. Algorithm 1 gives the detailed steps of obtaining
the timing vector from an event trace.

To obtain a vector that contains both activity information and
timing information in an event trace, we use weighted concatenation
to aggregate the activity and timing vectors.

Definition 9 (Aggregated Vector (�V)). Given an event trace σ,
assume the corresponding activity and timing vectors are �Aσ =
(a1, · · · , ai, · · · , am) and �Tσ = (t1, · · · , tj , · · · , tn), respectively,
the aggregated vector �V corresponding to an event trace σ is
�Vσ = (ωa1, · · · , ωai, · · · , ωam, υt1, · · · , υtj , · · · , υtn), where
ai = �Aσ[i], tj = �Tσ[j], and ω, υ ∈ R+.

Consider Trace 1(σ1) in Table I, assume the weighted values of
activity vector and timing vector are both one, i.e., ω = 1.0 and

υ = 1.0, the aggregated vector corresponding to σ1 is �Vσ1 =
(1, 1, 1, 1, 0, 129, 130, 175, 174, 0, 0). Table II gives the vector value
for the other four traces. Note that, the weighted values provide a

Algorithm 1 CONSTRUCT TIMING VECTOR

Input: An event trace σ = {e1, · · · , en} and the set of all time
dependent pairs O =

⋃

α∈Ω

{(α, β)|β ∈ Θ(α)}

Output: The corresponding timing vector �Tσ =
(Γ(α1, β1), · · · ,Γ(αi, βj)), where the Γ(αi, βj) indicates
the maximal time duration
between two activities of a given time dependent pair (αi, βj) ∈
O

1: for i = 1 to n do
2: j = i− 1
3: while j �= 0 do
4: if (ei, ej) ∈ O then
5: if Fτ (ei)−Fτ (ej) > Γ(Fα(ei),Fα(ej)) then
6: Γ(Fα(ei),Fα(ej)) = Fτ (ei)−Fτ (ej)
7: end if
8: end if
9: j = j − 1

10: end while
11: end for

way to emphasize which perspective should have more impact on
the outcome of discovery process scenarios.

IV. TWO-PHASE PROCESS SCENARIO DISCOVERY APPROACH

USING AGGREGATED VECTORS

In this section, we develop a two-phase approach to discover the
process scenarios from a given event log using aggregated vectors. As
mentioned in Section I, for a given event log, often times, we do not
know aprior how many different scenarios are embedded in the log.
Hence, the first phase of our two-phase approach is to identify the
number of possible scenarios k in a given log. The second phase
is to apply an existing clustering approach, such as the k-means
algorithm [13], to partition the event log into k clusters based on
the aggregated vectors so that existing process discovery algorithms
can be applied on the clusters of sub-logs to obtain different process
scenarios in terms of process models.

Fig. 3. Illustration of the strategy about the first phase

We use Fig. 3 to illustrate the basic idea used in the first phase
to obtain the number of possible scenarios k. For simplicity, assume

the cardinality of event trace’s aggregated vector |�V| = 2, therefore,
each aggregated vector (a trace) can be mapped to a point in a two-
dimensional domain shown in Fig. 3. Consider the centroid point
A, we can define two radius circles, the inner circle, and the outer
circle. The points within the inner circle of A have short distance
from A, or can be considered ‘similar’ to A, while the points outside
the outer circle (such as C) are considered far away or different
from A. The radius are the thresholds for defining if two points are
similar or different. The points outside the inner circle but within
the outer cycle, such as point B, may or may not have similar
characteristics to A. For these points, we repeat the process of
choosing a centroid point and defining similar and different points
from the new centroid points, until all points are categorized. Then
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TABLE II
AGGREGATED VECTORS TRANSFERRED FROM THE EVENT LOG PRESENTED IN TABLE I

Activity Information Timing Information
N (A) N (B) N (C) N (D) N (E) (B,A) (C,A) (D,B) (D,C) (D,E) (E,A)

�Vσ1 1 1 1 1 0 129 130 175 174 0 0
�Vσ2 1 1 1 1 0 202 122 37 117 0 0
�Vσ3 1 1 1 1 0 54 279 245 20 0 0
�Vσ4 1 1 1 1 0 178 92 87 183 0 0
�Vσ5 1 0 0 1 1 0 0 0 0 23 151

the number of centroids selected during the process is the k. There
are many existing techniques in the literature to identify the radius
of inner and outer circles, i.e., the distance thresholds, such as the
cross validation approach [19]. Sometimes, the distance threshold can
also be set by domain experts [12].In this work, we adopt the upper
quartile and the lower quartile as the two distance thresholds.

Let d(�Vi, �Vj) denote Euclidean distances between aggregated

vectors �Vi, �Vj , Algorithm 2 shows the procedure to find the number
of the scenarios from aggregated vectors. The time complexity of the
algorithm is O(N2), where N is the number of event traces in the
event log L. We use Example 2 to illustrate Algorithm 2.

Algorithm 2 ALGORITHM OF THE FIRST PHASE

Input: A set of aggregated vectors Π = {�V1, · · · , �V|L|} and a set

of Euclidean distances M = {d(�Vi, �Vj)|�Vi, �Vj ∈ Π}
Output: The number of clusters (k) and a set of centroids C for the

k clusters’ aggregated vectors
1: Let δmin and δmax be the first quartile and the third quartile of

the elements in M, respectively.
2: k ← 0 and C ← ∅
3: while Π �= ∅ do
4: Select an arbitrary aggregated vector �Vi ∈ Π
5: Π ← Π− {�Vi}
6: Δ ← {�Vi}
7: k ← k + 1
8: for each �Vj ∈ Π do
9: if d(�Vi, �Vj) ≤ δmax then

10: Δ ← Δ ∪ {�Vj}
11: end if
12: if d(�Vi, �Vj) ≤ δmin then
13: Π ← Π− {�Vj}
14: end if
15: end for
16: �c ← calculate the initial centroid of the aggregated vectors in

the set Δ
17: C ∪ {�c}
18: end while
19: return k and C

Example 2. Consider the set of aggregated vectors Π =
{�V1, �V2, �V3, �V4, �V5} given in the Table II, the set of Euclidean
distances of two aggregated vectors in L is M = {(�V1, �V2) =
166.39, (�V1, �V3) = 237.58, (�V1, �V4) = 108.03, (�V1, �V5) =
343.18, (�V2, �V3) = 315, (�V2, �V4) = 91.28, (�V2, �V5) =
306.72, (�V3, �V4) = 299.03, (�V3, �V5) = 405.6, (�V4, �V5) = 323.32},
and the first quartile and the third quartile of the elements in M is
δmin = 5 and δmax = 10, respectively.

According to Line 4-6 of algorithm, we select an aggregated vector
�V1, remove it from the set Π, and put it into the set Δ. Based on
the line 7, the number of the scenario becomes one, i.e. k = 1.
We apply Line 8-15 of algorithm for every aggregated vector in the
the set Π. For the aggregated vector �V2, since the distance between

aggregated vectors �V1 and �V2, i.e. d(�V1, �V2), is 166.39 and less than
δmin, we remove the aggregated vector �V2 from the set Π and add
�V2 into the set Δ. Hence, the set Δ is updated to {�V1, �V2}, and
Π becomes {�V3, �V4, �V5}. For the aggregated vector �V3, the distance
between aggregated vectors �V1 and �V3, i.e. d(�V1, �V3), is 237.58 and
less than δmax, we add �V3 into set Δ. Because d(�V1, �V3) > δmin,
we keep �V3 in the set Π. After applying the procedure to the other
two aggregated vectors, the Δ = {�V1, �V2, �V3, �V4}, and the Π =
{�V3, �V5}. We have the initial centroid of the aggregated vectors in
the set Δ is (1, 1, 1, 1, 0,−790,−87,−327, 0, 0, 0).

We repeat the steps until Π becomes empty, and have k = 3
and the initial centroids are (1, 1, 1, 1, 0,−790,−87,−327, 0, 0, 0),
(1, 1, 1, 1, 0, 54, 279, 245, 20, 0, 0), and
(1, 0, 0, 1, 1, 0, 0, 0, 0, 23, 151).

In the second phase, we take the number of scenarios k and the
initial centroids produced by the first phase as input and apply k-
means algorithm [20] to partition the event log into k clusters, i.e.,
scenarios. Finally, the existing process discovery algorithms can be
applied on the subset of logs to obtain different process scenarios in
terms of process models.

Next section, we apply the two-phase approach using aggregated
vectors on different sets of real-life event logs and compare the two-
phase approach with existing commonly used approaches in terms of
the quality of scenario models discovered.

V. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the proposed approach
on five real-life event logs [21], [22], [23], [24], [25].The character-
istics of these event logs are summarized in Table III. The objectives
of the evaluations are twofolds, i.e., first, evaluate if having timing
information can improve the quality of process scenario models
discovered from event logs. To do so, we choose an existing heuristic
mining algorithm [15], and apply it on the same event logs but
with and without time information. Second, compare the number
of scenarios and the scenario models obtained by the two-phase
approach with k-means approach where k is exhaustively searched.
Before the evaluation, we first define our evaluation criteria.

TABLE III
CHARACTERISTICS OF THE EVENT LOGS USED FOR THE EVALUATION

DataSet
Number of

Traces
Number of
Event Entry

Average number of
Event Entry Per Trace

BPIC2013 [21] 819 2351 2.871
BPIC2020 [22] 10500 56,437 5.374

Hospital Billing [23] 100000 451359 4.514
Review Process [24] 10000 236360 23.636

Road Traffic [25] 150370 561470 3.734

A. Performance Metrics

The quality of a process model is evaluated by two criteria, i.e., (1)
fitness f , and (2) precision p. Fitness measures how well a model can
reproduce the process behavior contained in a log, and the precision
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measures the degree to which the behavior made possible by a model
is found in a log [26].The higher fitness value and precision value, the
better quality of the process model. We use the pm4py [27] library
to calculate the fitness value and precision value.

As we may have multiple scenarios in a given event log, we
need the weighted average fitness fW and precision pW to evaluate
the quality of the multiple scenario process models. Similar to the
approach in [28], the weighted average fitness and precision are
calculated as follows:

fW =

∑k
i=1 ni × fi

|L|

pW =

∑k
i=1 ni × pi

|L|
where k is the number of subsets of logs representing the scenarios,
ni is the number of event traces in the ith subset of a given event
log, and fi and pi are the fitness value and precision value of the
process model derived from of subsets of logs, respectively.

The fitness and precision are two aspects of a process model which
may not always be consistent. The F1 score [29] is defined as the
harmonic mean of the weighted average fitness fW and precision

pW , i.e. F1 = 2×fW×pW

fW+pW
. We will also use the F1 score as an

evaluation criteria.

B. Process Model Discovery Performance Improvement with Timing
Information

This set of experiments is to evaluate whether adding the timing
information in constructing the vectors can improve process scenario
discovery performance. More specifically, given an event log, we
apply the proposed approach presented in Section III to construct the
aggregated vectors that contain both activity information and timing
information. For the same event log, we also apply the heuristic
mining approach presented in [13] to obtain the activity vectors that
contain only the activity information. For both aggregated vectors
and activity vectors, we apply the k-means algorithm to partition the
event logs into k clusters, where k is from 2 to 5, and discover a
process model from each subset of logs using the heuristic mining
algorithm presented in [7].

We use the pm4py tool [27] with the following settings: (1) process
mining algorithm is heuristic mining; (2) the dependency threshold
of the algorithm is 0.9; (3) the minimum number of occurrences of
an activity is 1; (4) the minimum number of occurrences of an edge
is 1; and (5) the thresholds for the loops of length is 2. The weighted
average fitness, the weighted average precision, and the F1 score of
the process models are depicted in Table IV, Table V, and Table VI,
respectively.

From the experiment results, it is clear that when we add timing
information into the vector, we are able to achieve higher weighted
average fitness, weighted average precision, and F1 score, under
different k and with different real-life event logs.

For each event log, we also calculate the average improvement
percentage of different k values which is shown in Table VII. We
observe that the improvements of the weighted average precision is
better than the weighted average fitness in general. The reason is
that the weighted average fitness resulted from the approach in [13]
is closer to 1 than the weighted average precision, which indicates
the room for fitness improvement is relatively small.

C. Two-phase Scenario Discovery Vs Exhaustive Search for k with
k-means clustering

The second set of experiments compare the performance of the
proposed two-phase scenario discovery approach with the k-means
approach. For both the two-phase scenario discovery approach and
the optimal k-means solution, we use the aggregated vectors when
partitioning the event log.

To obtain the optimal k-means solution, we use the brute-force
approach as follow. We apply the k-means algorithm to partition
the event log to a set of sub logs with the k starting from 2 with
incremental step of 1 until one of the resulted subsetsbecomes empty.
For each resulted cluster set, we apply the heuristic mining algorithm
to generate the process models, and calculate the F1 score, and the
average F1 of all resulted cluster sets from k-means approach when
k varies. Both the largest and the average F1 scores are compared
with the value obtained with the proposed solution. The results are
depicted in Fig. 4.

Fig. 4. F1 scores of two-phase clustering approach, optimal k-means
approach, and average F1 score of k-means approach

As shown in Fig. 4, the proposed two-phase scenario discovery
approach outperforms the k-means approach on average cases. More
specifically, the F1 score of the two-phase approach is 7.73%, 8.21%,
7.15%, 7.46%, and 8.10 % higher than the average F1 score for
BPIC 2013, BPIC2020, Hospital Billing, Review Process, and Road
Traffic event logs, respectively. Compared with the optimal k-means
solution, the two-phase approach results in lower f1 score, but the
difference is less than 5%.

D. Internal consistency Improvement with Timing Information

VI. RELATED WORK

Over the past decade, a range of effective process discovery
algorithms have been proposed [30] in process mining field. Despite
the demonstrated usefulness of process discovery algorithms, these
algorithms face challenges in an environment where different scenar-
ios exist [8], [9], [10], [11]. When different scenarios are grouped
into one process model, the complexity of the model becomes
incomprehensible. The work in [33] is the first study which applies
the trace clustering techniques to assist in discovering the process
scenarios in order to obtain more accurate and interpretable process
models from event logs. This study proposed an approach to cluster
the event traces based on the structural patterns frequently occurring
in the event log, and then partition the corresponding event log into
different subsets of logs where event traces in the same subset most
likely belong to the same scenario. Once the event logs are partitioned
into different clusters, process discovery techniques can be applied
on the clusters to obtain process models for different scenarios.

The most straightforward idea for clustering traces methods relies
on traditional data clustering techniques [31]. Greco et al. [12]
were pioneers in studying the clustering of log traces within the
process mining domain. They use a vector space model considering
the activities to cluster the traces in an event log with the purpose
of discovering more simple process models for the subgroups. The
authors propose the use of disjunctive workflow schemas (DWS) for
discovering process models. The underlying clustering methodology
is k-means clustering. Song et al. [13] proposed an approach to
construct a vector space model for traces in an event log. In [13],
the author allows for different kinds of attributes, e.g., activity name,
executor, to determine the vector associated with each event trace,
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TABLE IV
WEIGHTED AVERAGE FITNESS

k=2 k=3 k=4 k=5
Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information
BPIC2013 0.951 0.998 0.952 0.961 0.970 0.972 0.979 0.981
BPIC2020 0.985 0.998 0.986 0.998 0.986 0.998 0.989 0.998

Hospital Billing 0.785 0.998 0.973 0.995 0.945 0.957 0.945 0.997
Review Process 0.898 0.956 0.915 0.957 0.925 0.963 0.939 0.962

Road Traffic 0.768 0.976 0.823 0.976 0.963 0.979 0.969 0.975

TABLE V
WEIGHTED AVERAGE PRECISION

k=2 k=3 k=4 k=5
Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information
BPIC2013 0.816 0.899 0.721 0.857 0.675 0.804 0.651 0.759
BPIC2020 0.943 0.953 0.876 0.941 0.876 0.907 0.989 0.996

Hospital Billing 0.883 0.917 0.792 0.890 0.870 0.907 0.863 0.944
Review Process 0.530 0.754 0.431 0.571 0.475 0.551 0.492 0.646

Road Traffic 0.640 0.729 0.606 0.729 0.561 0.719 0.561 0.708

TABLE VI
F1 SCORE

k=2 k=3 k=4 k=5
Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information
BPIC2013 0.879 0.946 0.821 0.906 0.796 0.880 0.782 0.855
BPIC2020 0.963 0.975 0.927 0.969 0.927 0.950 0.940 0.964

Hospital Billing 0.831 0.956 0.873 0.939 0.906 0.948 0.902 0.959
Review Process 0.667 0.843 0.585 0.716 0.627 0.701 0.646 0.733

Road Traffic 0.698 0.835 0.688 0.837 0.709 0.829 0.709 0.819

TABLE VII
AVERAGE IMPROVEMENT PERCENTAGE

Weighted Average
Fitness

Weighted Average
Precision

F1 Score

BPIC2013 2.02% 16.00% 9.53%
BPIC2020 1.24% 4.09% 2.71%
Hospital
Billing

10.18% 8.06% 9.06%

Review
Process

5.09% 30.30% 20.12%

Road
Traffic

15.84% 20.81% 18.73%

and then provide four clustering techniques for trace clustering.
In [9], [14], they extend the existing trace clustering techniques
by improving the way in which control-flow context information
is taken into account. The control-flow context information refers
to the execution pattern of activities in the event log. Jagadeesh
et al. [9] propose a generic edit distance technique based on the
Levenshtein distance. The approach relies on substitution, insertion,
and deletion costs to partition the event log into a set of sub
logs. Bose et al. [14] propose a refinement of the technique by
using conserved patterns, which are Maximal, Super Maximal, and
Near Super Maximal Repeats. However, their implementation applies
hierarchical clustering instead of k-means.

Event logs contain abundant information, such as activity names,
time stamps, activity executors, etc. The most existing work fo-
cuses on applying activity names information or control-flow context
information to assist process scenarios discovery. Unfortunately,
not much work is done in the area of clustering traces involving

timing information recorded in event logs. One exception is Appice’s
work [32]. In [32], the author considers that traces of an event log
can be represented in multiple trace profiles derived by accounting for
several perspectives such as activity, control flow, organization, and
timestamp of activities. Different from Appice’s work, we consider
the timing information which is derived from the time dependent set
and event time stamps.

VII. CONCLUSION

In this paper, we present a two-phase approach that obtains timing
information from event logs and uses the information to assist
process scenario discoveries. This approach does not require any
prior knowledge about process scenarios. The experiments on real-life
even logs show that: (1) the process scenario models obtained with
the additional timing information have higher fitness and precision
scores than the models obtained without the timing information;
(2) the two-phase approach results in higher F1 scores on average
compared to the k-means approach, and less than 5% lower F1 score
compared with the optimal k obtained through exhaustive search.
These results lead to the conclusions that timing information can
improve process scenario discovery performance, and the proposed
two-phase approach can discovers different process scenarios more
effectively.

From the experiment results, we also notice that the scenario
discovery process is ’mechanical’ in the sense that it does not
have domain experts in the loop neither utilize domain experts’
knowledge in the process. In the future work, we will study how
domain knowledge may be represented and also utilized in scenario
discoveries.
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