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Abstract—An increasing number of community spaces are
being instrumented with heterogeneous IoT sensors and actuators
that enable continuous monitoring of the surrounding environ-
ments. Data streams generated from the devices are analyzed
using a range of analytics operators and transformed into
meaningful information for community monitoring applications.
To ensure high quality results, timely monitoring, and application
reliability, we argue that these operators must be hosted at edge
servers located in close proximity to the community space. In
this paper, we present a Resource Efficient Adaptive Monitoring
(REAM) framework at the edge that adaptively selects workflows
of devices and operators to maintain adequate quality of infor-
mation for the application at hand while judiciously consuming
the limited resources available on edge servers. IoT deployments
in community spaces are in a state of continuous flux that are
dictated by the nature of activities and events within the space.
Since these spaces are complex and change dynamically, and
events can take place under different environmental contexts,
developing a one-size-fits-all model that works for all types
of spaces is infeasible. The REAM framework utilizes deep
reinforcement learning agents that learn by interacting with each
individual community spaces and take decisions based on the
state of the environment in each space and other contextual infor-
mation. We evaluate our framework on two real-world testbeds
in Orange County, USA and NTHU, Taiwan. The evaluation
results show that community spaces using REAM can achieve
> 90% monitoring accuracy while incurring ∼ 50% less resource
consumption costs compared to existing static monitoring and
Machine Learning driven approaches.

I. INTRODUCTION

With the rise in popularity of smart city initiatives, an in-
creasing number of community spaces are being instrumented
with off-the-shelf sensors and actuators to be used as parts of
various community monitoring applications [22], [27]. These
applications can include traffic monitoring, accident detection
for emergency response, water network monitoring, and air
quality monitoring, among others. The community spaces can
cover diverse geographical areas–classrooms, buildings, road
intersections, city districts, etc.–and can be instrumented with
varying density and heterogeneity of sensors. We note that
the measurements and data from the sensors are analyzed
using various analytics, composed of multiple operators. The
sensors and analytics used by each monitoring application
are dependent on the application’s objective. The analytics
in this setting, refer to algorithms that analyze and convert
incoming sensor measurements into results based on the appli-
cation’s objective. The analytics could range from simple rule-
based heuristics to more complex machine learning models.

A common approach is to send the sensor data over the
Internet to be analyzed by analytics deployed in resource-rich
data centers. However, this can result in congested networks,
slow response times, and service interruptions since data
centers are often located far from the community spaces [10].
Moreover, monitoring applications that are time-sensitive and
critical (e.g., flood, fire detection), can suffer from significant
performance degradation that can have a large negative impact
on the community.

Leveraging the compute resources of edge servers like net-
work gateways or dedicated workstations [1], can ensure that
network bandwidth is preserved instead of sending continuous
data streams from a multitude of sensors to the cloud. Fig. 1
illustrates a sample road intersection instrumented with various
sensors. In this space, cameras, motion sensors, moisture
sensors and traffic lights are connected to the edge server and
power source via wired connections. Other sensors such as
turbidity and pH meters are battery powered and wirelessly
connected. Remote services like weather forecasts and social
media reports can also be used at the edge to provide external
information about the community. System administrators or
community stakeholders may choose to concurrently execute
different monitoring applications and hence activate different
sensors and analytics at any given moment.
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Fig. 1: Sample use case of a community space instrumented
with multiple sensors and actuators, an edge server, and other
environmental contextual information.

The objectives of monitoring applications could be met
using approaches that use different sets of sensors and analytic
operators, each of which would require a certain amount of
compute, networking and other resources, and would provide
a certain quality of results for the application [4], [5]. For



example, a pedestrian detection application could: (1) use
video feeds from a surveillance camera and an object detection
algorithm, or (2) set up a motion sensor to activate above a
certain threshold. The first approach is fine-grained and pro-
vides more accurate results while incurring much larger costs
in terms of compute and networking resources for continuous
monitoring than the second approach which is more coarse-
grained. Since the events driving most monitoring applications
are not continuous and can occur sporadically, the costs of
utilizing resource-heavy sensors and analytics for continuous
monitoring can quickly add up.

Efforts towards monitoring of community spaces using IoT
analytics have predominantly been based on the assumption
that each application utilizes a specific sensing and analytics
approach [27], [21]. However, it is important to note that
under certain contexts, coarse-grained approaches can provide
sufficient quality results and can also be used to trigger fine-
grained approaches. For instance, in the pedestrian detection
example described above, the number of instances of pedestri-
ans crossing an intersection on a quiet street during night time
would be low. Hence, the coarse-grained motion sensor based
approach could be used to detect the potential presence of
pedestrians and to then trigger the fine-grained camera based
approach if a pedestrian was detected. This adaptive approach
would be able to achieve sufficient quality of results while
incurring lower costs than if the fine-grained approach was
run continuously. Community monitoring applications could
attain sufficiently accurate results while incurring low costs
by intelligently deciding between using different approaches
at different times based on the state of the community space
and other contextual information. This decision making frame-
work can be implemented in different ways, including simple
heuristics, rule-based approaches and learning driven models.

However, community spaces are complex, change dynam-
ically, and events in different spaces can take place under
different contexts due to differences in location, demographics,
structure, etc., making it extremely challenging to develop
accurate rules or models for each individual space. It is
also important for the framework to be able to make online
decisions with noisy inputs and to work well under diverse
conditions. For these reasons, we use Reinforcement Learn-
ing (RL) to drive the decision making framework since it
employs agents that learn to make better decisions directly
from experience by interacting with the environment [23]. In
this paper, we study the problem of Resource Efficient Adap-
tive Monitoring of community spaces and present a decision
making framework at the edge that dynamically selects the
sensors and analytics to execute at any given time to meet
the objectives of the monitoring applications. The framework
takes into account application priorities while ensuring low
compute, networking and energy costs. Specifically, we make
the following contributions -
• We present our novel REAM framework deployed at the

edge which to our knowledge is among the first resource
efficient adaptive monitoring solutions for monitoring
community spaces (Section II).

• We formulate the problem and present our reinforcement
learning based approach for decision making at the edge
(Section III). We concretize the proposed approach using
two real monitoring applications: stormwater contamina-
tion monitoring and pedestrian counting.

• We evaluate our framework on two real-world testbeds in
Orange County, USA and NTHU, Taiwan and compare
it to baseline approaches (Sections IV, V).

II. ARCHITECTURE

In this section, we describe the architecture for our proposed
Resource Efficient Adaptive Monitoring (REAM) framework.
Fig. 2 illustrates the structure and workflow of the monitoring
framework with two edge servers that have three sample
monitoring applications running on them.
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Fig. 2: REAM framework architecture and workflow.

IoT Sensors and Analytic Operators. Each application relies
on the measurements of a specific set of sensors that have been
instrumented in the community space. The communication and
data transmission between the sensors and the edge server
can take place through various channels like WiFi, Bluetooth,
wired connections, ZigBee, LoRa, etc. Once the sensor data is
received at the edge server, it is run through a set of analytic
operators which could constitute ETL (Extract, Transforming,
Load) functions, Machine Learning models, Time-series anal-
yses, among others in order to obtain useful information.
Action Plans. Since each application can use different com-
binations of sensors and analytics to achieve its objective with
differing quality of results, we define each combination as
an action plan where each plan can be thought of as an
execution graph or workflow of sensors and analytic operators.
They can vary in their execution complexity (large workflows
with numerous sensor inputs and analytics) and their resource
requirements (resource-heavy sensors, large data volumes,
complex analytics models). In our framework, as illustrated



in Fig. 2, every monitoring application is a collection of
action plans which can be coarse-grained and provide a
baseline quality of continuous monitoring while consuming
less resources, or various fine-grained action plans that provide
a range of in-depth monitoring at higher costs, providing better
results than the baseline.
RL Agents. In the REAM framework, at each timestep, an
application can choose to execute one of its action plans as
denoted by the current tags in Fig. 2. The decision of which
action plan to execute is taken by a Reinforcement Learning
agent that learns by interacting with the community space
based on its application’s objective. The agent observes the
readings from the application’s sensors, outputs of the analytic
operators, and other external community space contextual
information such as the weather and time of day. It uses this in-
formation to develop a probabilistic learning model that drives
the selection of which action plan to execute. Our framework
design assigns one agent for each application. We opt not to
create a global agent across all applications at the edge for the
following reasons - (1) Flexibility: Individual agents simplify
the process of dynamically adding or removing monitoring
applications since agents can be trained independently of oth-
ers unlike with a global agent, (2) Tractability: The dynamic
and complex nature of community spaces can result in the
agent having to reason about an extremely large number of
states [6]. By assigning one agent to each application, we can
ensure that the number of states is manageable, (3) Simplicity:
Applications can have different objectives and operate at
different time granularities. It is therefore difficult to define a
global objective for each community space that is normalized
across different applications. Furthermore, individual agents
allow each application to set its own timestep granularity
for sensing, monitoring, and analysis, despite the resulting
decisions may slightly differ from the optimal ones. Hence,
we opt to create individual agents.
REAM Runtime. Since each edge server has a limited amount
of resources, there can be occasions when there are insufficient
resources available to execute all the optimal action plans
determined by each application’s agent. The REAM Runtime
is a middleware sitting on each edge server that allocates
available resources to each application based on its priority
during runtime. The REAM Runtime of an edge server main-
tains the relative priorities of its monitoring applications by
communicating with the Edge Server Coordinator.
Edge Server Coordinator. In order to maintain a repository of
the available action plans and the state of each edge server and
its applications, we design an Edge Server Coordinator that
can reside in the cloud or on an edge server. It also maintains
knowledge of (1) the application states including action plans
belonging to each application, their resource requirements as
well as the application objectives, and (2) edge server states
which include the resource availability at each server and the
current applications and action plans deployed. Agents can use
this information to take decisions, and system administrators
can use the coordinator to modify application objectives and
resource availability.

III. FORMULATION

In this section we formulate the problem of resource effi-
cient adaptive monitoring in community spaces, describe our
approach to represent the decision making as a reinforcement
learning task, and then present our RL-based approach.

A. Resource Efficient Adaptive Monitoring

We consider a community space that has a set of monitoring
applications A, where each application ai ∈ A has a priority
aφi associated with it. For example, a gunshot detection ap-
plication in a community would have a higher priority than
a parking violation monitoring application. The community
space is instrumented with a set of sensors S , whose data can
be analyzed using a set of analytic operators O that are hosted
on a set of edge servers.
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Fig. 3: Example of two action plans for a stormwater visible
contamination monitoring application.

We define a set of action plans P , where each plan pj ∈ P
consists of a workflow of sensors and analytic operators, and
services a specific application. Each action plan pj provides a
certain benefit B(pj) for the monitoring application it services
which is dependent on the application’s objective. Each plan pj
also incurs a cost C(pj) which reflects the amount of resources
Rk of type k (e.g., CPU, bandwidth, power, memory, etc.), that
it consumes to run all the sensing and analytics present in the
action plan. We then define the overall utility of an action plan
pj as : U(pj) = B(pj)

C(pj) .
Fig. 3 shows an example of two different action plans that

service the same stormwater visible contamination monitoring
application. Plan p1 utilizes a simple turbidity sensor that
would be less accurate than the camera based solution of Plan
p2, since it relies on a manually set and potentially erroneous
threshold. Moreover, today’s state-of-the-art vision algorithms
can typically achieve high levels of accuracy and thus p2 can
provide a much higher benefit to the application. However,
the cost incurred by p1 is much lower than that of p2, since
the periodic capture and transmission of images can consume
a lot of network bandwidth, the camera would require more
power, and the vision algorithm would also consume more
compute resources in order to provide results in near real-
time. The benefit vs. cost tradeoff captured by the utility of
an action plan, is also dependent on various environmental
contexts of the community space which REAM leverages.
For instance, at night, the camera images may not be good
enough for the vision algorithm to detect discoloration and



debris, which might result in both action plans having similar
accuracy. Hence, it would be a prudent decision to execute
the coarse-grained plan more frequently at night since it can
achieve similar benefit at lower costs, and the fine-grained plan
during the day when it can provide much higher benefit. The
REAM agents learn various spatio-temporal characteristics of
each community space to provide a customized and accurate
monitoring solution.

B. RL Formulation and Prioritized Resource Allocation

Fig. 4: Reinforcement Learning with DNN driven policy [13].

Consider the general setting shown in Fig. 4, where a
reinforcement learning agent interacts with an environment.
At each time step t, the agent observes some state st, and
then chooses to perform an action at based on a policy. Once
the action is performed, the environment transitions its state to
st+1 and the agent receives a reward rt. The state transitions
and rewards are stochastic and are assumed to have the Markov
property, i.e., the state transition probabilities and rewards
depend only on the state of the environment st and the action
at taken by the agent.
State Space. In the REAM framework, we represent the state
st of each application’s RL agent at any given time as a class
object that consists of the following attributes - (1) S ′ : the
operating state of the sensors servicing the application, (2) O′ :
the analytic operators currently running, (3) v(A′) : the value
returned by the analytic operators, and (4) Ext : external state
and contextual information about the community space (e.g.,
time of day, weather information, etc.), which can influence
the performance of the sensors and analytic operators.
Action Space. At each timestep, an application’s agent deter-
mines its action space as a set of valid action plans P ′ ⊆ P
that it could potentially execute from its current state. The
timestep is configurable, which can be different for individual
applications in the space. Each plan pj ∈ P ′ consists of
a set of active sensors, their operational states (on/off for
simple sensors, PTZ for a camera), and a set of active analytic
operators together with its workflow.
Reward. The reward rt obtained by the agent for executing an
action plan is the utility provided by the plan. The benefit of
plan pj depends on the specific application (e.g., classification
accuracy, distance based error, etc.) We compute the cost of pj
by first normalizing the amount of resources required of each
type (CPU, bandwidth, memory, etc.) across all action plans of
the application and then calculating a weighted sum of these
normalized costs for plan pj as : C(pj) =

∑|R|
k=1 wk × R

pj
k ,

where wk refers to the weight and Rpjk refers to the normalized

amount of resources of type k required for plan pj . The
weights allow system administrators to prioritize the conserva-
tion of certain types of resources and lessen their importance
if they are abundantly available.
Training Algorithm. Each agent can only control its action
plan selection and has no apriori knowledge of the rewards
or the state transitions which can be affected by external
factors as well. During training, the agent interacts with the
community space environment and observes the rewards and
state transitions while choosing different action plans. The
agent’s goal is to select action plans in a way that maximizes
the cumulative reward Jt it receives over any time period T ,
i.e., Jt =

∑T
t′=t γ

t′−trt′ , where γ is a discount factor ∈ [0, 1]
and rt′ is the reward at timestep t′. We then define Q∗(s, pj)
as the maximum expected reward achievable by following
a policy π(s, pj), which refers to the probability of action
plan pj being chosen by the agent when in state s. That is,
Q∗(s, pj) = E[rt + γmaxQ∗(st+1, pjt+1)|st, pjt] [20].

Since community spaces are complex and can have a
large number of possible {state, action plan} pairs, it would
be infeasible to store the policy. Hence, we use function
approximators such as Deep Neural Networks (DNNs) [8] to
represent the policy by estimating Q∗(s, pj).

Algorithm 1 Deep Q-learning Algorithm
1: Initialize Replay Buffer D
2: Initialize Q, DNN with random weights θ
3: for t = 1→ T do
4: With probability ε, select a random action plan pj

otherwise, select pj = max
p

Q(st, p; θ)

5: Communicate chosen plan with REAM Runtime and receive
allowed plan p′j

6: Execute action plan p′j and observe environment to get reward
rt and state st+1

7: Store transition (st, p
′
j , rt, st+1) in D

8: Sample random minibatch of transitions (sk, pk, rk, sk+1)
from D

9: Set yj = rj + γmax
p

Q(st+1, p; θ)

10: Perform gradient descent step on (yj −Q(st, pj ; θ))
2 with

respect to θ
11: end for

We represent the action plan decision making policy as a
neural network with weights θ which takes the current state
of the RL agent as input and outputs a probability distribution
over all valid potential next action plans. Note that this allows
the RL agent to continue executing the current action plan
in the next timestep as well. We train the agents using the
deep Q-learning algorithm [16] as shown in Algorithm 1. It
uses an ε-greedy policy [23] in order to select an action plan
by either randomly selecting a plan pj with a probability
ε, or selecting the plan with the maximum value of the
probability distribution. At each timestep, the chosen action
plan is executed and its reward and the next state are observed.
We store the agent’s transitions in a buffer D of fixed size
and then perform gradient descent to update the weights θ of
the neural network using a minibatch of transitions drawn at



random from the buffer.
Prioritized Resource Allocation. The REAM Runtime mid-
dleware at each edge server employs our proposed Prioritized
Resource Allocation (PRA) algorithm (Algorithm 2) to al-
locate resources among its different monitoring applications.
At each timestep, the REAM Runtime receives action plan
change requests from a subset of its monitoring applications’
RL agents. It then allocates resources to each application in
decreasing order of their priority Aφ. If the edge server does
not have sufficient resources available to execute an agent’s
requested action plan, the agent executes the baseline coarse-
grained action plan instead, resulting in potentially lower
rewards. This design choice can be easily modified into more
comprehensive approaches, for example, to select feasible fine-
grained plans.

Algorithm 2 Prioritized Resource Allocation (PRA)

1: Input: Action plan resource requirements PR = {pR1 , ..., pRj },
Application priority Aφ, Available edge server resources R =
{R1, ...,Rk}

2: for t = 1→ T do
3: Obtain set of action plan requests from subset of agents
4: A′ ⊆ A
5: Re-order ai ∈ A′ based on priority aφi
6: for i = 1→ |A′| do
7: Obtain resource requirements pRj of ai’s chosen action

plan pj
8: R = R \ pRj
9: if ∃k : Rk < 0 then

10: Allow agent to execute coarse-grained action plan p0
11: else
12: Allow agent to execute its chosen action plan pj
13: end if
14: end for
15: end for

IV. EXPERIMENTAL TESTBEDS

In this section, we describe the real-world community mon-
itoring testbeds located in Orange County, USA and NTHU,
Taiwan, and the monitoring applications that we deploy to
evaluate the performance of our REAM framework.

Inflow into drain

Sensing Unit

(a) (b)

Fig. 5: Photos of our testbeds showing: (a) a storm drain and
locations of sensing units in Orange County and (b) smart
street lamps at NTHU campus.

A. Stormwater Contamination Monitoring

We utilize five stormwater sensing units that have been
instrumented by Orange County Public Works Department
(OCPWD) in order to monitor the quality of the water flowing
through the storm drains (Fig. 5). The stormwater can get con-
taminated while flowing into the drains by collecting pollutants
like bacteria from human or animal waste, fertilizers, and even
chemicals from industries that illicitly discharge their waste
into these drains [24]. Each sensing unit consists of several
hydraulic and chemical sensors to measure pH, turbidity,
dissolved oxygen, flow rate, etc., that together are capable
of detecting a wide range of potential contaminants. The
sensor measurements are transmitted using LoRa networks
and are analyzed at an edge server using Machine Learning
classifiers to determine the presence of contamination. The
sensing units are deployed in secure underwater housing and
are battery powered. Accessing these units in order to replace
the batteries, therefore, involves significant efforts to dig up the
housing and access the hardware within, hence frequent battery
replacement would incur large costs. OCPWD’s objective is to
prolong the battery life while maintaining contamination event
detection accuracy.

Since stormwater contamination events occur sporadically
with long periods of normal activity, measurements of a
subset of sensors can be sufficient to provide coarse-grained
signatures that can then be used to trigger all the sensors
for fine-grained monitoring during contamination events. This
is because using all the sensors for continuous monitoring
would consume a lot of battery power. The goal of deploying
our REAM framework is to accurately identify stormwater
contamination events while prolonging the battery life of these
sensing units by appropriately switching between coarse and
fine grained monitoring.
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B. Pedestrian Counting

We have instrumented eight smart street lamps on the
NTHU campus, as shown in Fig. 6, where each street lamp
is instrumented with a power supply, an Ethernet switch, a
Raspberry Pi (which also serves as a Bluetooth and Zigbee
gateway), and a wide spectrum of environmental sensors, such
as motion (PIR, passive infrared), temperature/humidity, and
air quality (PM 2.5) sensors. Four of the lamps are equipped



with 3MP cameras, of which three are fixed bullet cameras
and one is a PTZ camera. The lamps are connected using a
heterogeneous network consisting of Gigabit Ethernet, WiFi
mesh, LoRa and NB-IoT. We install edge servers in two of
the street lamps for running monitoring applications. The edge
servers are Intel NUC PCs, each has a 4-core CPU at 1.7 GHz,
8 GB RAM, and 500 GB disk.

We utilize this testbed for a pedestrian counting application
that attempts to profile the movement of people at main
intersections. This is to dynamically dispatch security guards
to direct on-campus vehicles when intersections are crowded.
The goal of the campus administration is to infer these profiles
using as little resources as possible to ensure resource avail-
ability for other on-demand (emergency) applications. Using
fine-grained camera feeds coupled with analytic libraries like
YOLOv3 [19] and OpenCV [2] can result in accurate counts,
but this approach is resource intensive. Since the flow of
pedestrians is not continuous (fewer people walking at night),
a coarse-grained motion sensor could be used to trigger
the camera based analytics in order to conserve resources.
However, since different moving objects (e.g., car, bicycle,
etc.) can also activate the motion sensor, its accuracy would
be lower than that of camera feeds. The goal of deploying
REAM is to be able to learn when pedestrians are likely to be
present and switch between coarse and fine-grained monitoring
to preserve resources.

C. Resource Consumption Measurements

Since the goal of the REAM framework for both the above
applications is to be able to achieve application objectives
while utilizing as little resources as possible, we capture the
actual resource consumption (CPU, networking, power) of the
various devices and analytic operators in order to run faithful
experiments when comparing our solution against baseline
approaches. Table I summarizes the power consumption of
the individual devices.

TABLE I: Power Consumption of Key Devices
Device Make/Model Power (W) Note
Motion Optex LX-402 0.33
Camera LiteOn 3MP 3

PC Intel i3 @ 1.7 GHz 6 Idle
PC Intel i3 @ 1.7 GHz 27.5 Loaded

Stormwater In-Situ 600 0.54

We also profile the two computer vision libraries (YOLOv3,
OpenCV) by analyzing 100 random video frames from the
surveillance camera at a resolution of 2048 × 1536 and 30
frames-per-second. For our setup, YOLOv3 takes 16.28 s to
analyze a video frame with an average CPU load of 100%,
while OpenCV takes 60.92 ms with an average CPU load of
129%. We note that the measurements are done using CPU
only, because GPUs may not be available on edge servers.

V. EVALUATIONS

A. Experimental Setup

Implementation. We implement the REAM framework using
Python. The RL agents are implemented using Keras [3],

where each agent is a neural network containing two fully
connected hidden layers with 24 neurons. We update the policy
network parameters using the Adam algorithm [12] with a
learning rate of 0.001 and implement our analytic operators
for monitoring applications using Scikit-learn [18].
Data. For the stormwater contamination monitoring appli-
cation, we use four months of sensor measurements. We
use three months for training and one month for testing.
The measurements have a granularity of 15 minutes and the
contamination event ground truth was annotated by an expert
from OCPWD. We also obtained precipitation data for the
location and battery consumption information of the sensing
unit. We use two sensors - dissolved oxygen and pH, that
are most sensitive to changes in the ecosystem to form the
coarse-grained baseline action plan along with a Support
Vector Machine (SVM) classifier. But since the changes can
be due to minor natural variances in the chemical composition
of the water, the coarse-grained plan can result in a number
of false-positives. We hence define one fine-grained action
plan that uses more information, consisting of the previous
sensors along with temperature, Total Dissolved Solids (TDS),
conductivity, and turbidity sensors and uses a Random Forest
classifier, that is triggered by the coarse-grained approach and
can more accurately determine if a contamination event has
occurred. We define the reward for the REAM RL agent based
on the utility provided, where the benefit B(pj) of every action
plan is its classification accuracy and its cost C(pj) is the total
battery consumption of the sensors and analytic operators in
the action plan.

Fig. 7: Sample video frames from a street lamp camera for
the pedestrian counting application. The recognized objects
and bounding boxes are given by YOLOv3.

For the pedestrian counting application, we use one week’s
worth of video data from a camera and obtain motion sensor
readings for the same period. We use five days for training and
two days for testing. The measurements have a granularity of
one second. Fig. 7 shows four sample frames of the video
data. We define the coarse-grained action plan to consist of
the binary output analyzed from the motion sensor. This plan
is sufficient to capture situations where there are none or just



one pedestrian at a given time as shown in the top left frame
of Fig. 7. However, we notice that the motion sensor can be
triggered by other objects such as the vehicles in the top right
frame resulting in false positives. Hence, we define two fine-
grained action plans that run OpenCV [2] and YOLOv3 [19]
object detection algorithms respectively, which can also handle
cases where there are many pedestrians simultaneously present
as shown in the bottom left frame. The YOLOv3 library is
more powerful in that it can more accurately handle situations
where there are multiple different objects like pedestrians and
vehicles present together as shown in the bottom right frame.
We hence assume that the output of the YOLOv3 plan is the
ground truth for our evaluations. The benefit of every action
plan is defined as its distance from the ground truth in terms
of the pedestrian count, and its cost is a weighted sum of its
power, bandwidth and CPU consumption. We assume equal
weights in the evaluations if not otherwise specified.
Comparison. For each application, we compare the perfor-
mance of the REAM framework that adaptively switches
between action plans, to the performance of each of the action
plans executed in isolation which reflects static monitoring
approaches, which is the current practice. We also compare
this Reinforcement Learning based framework to a Machine
Learning baseline approach utilizing Random Forest that uses
the same training and test data to choose action plans. This
allows us to determine the effectiveness of the continuous
learning provided by the REAM framework with its periodic
updates, compared to the supervised learning approach taken
by Random Forest.

B. Results

1) Stormwater Contamination Monitoring: We measured
the accuracy achieved in classifying contamination events for
the test data (Table II) and observed that REAM achieved a
90.9% accuracy which is comparable to the 95.4% achieved
by using only the fine-grained action plan and better than
the 88.2% obtained by using a Random Forest supervised
learning approach and the 73.3% achieved by using just the
coarse-grained action plan. Moreover, the REAM framework
consumed 44% less energy than the fine-grained action plan,
resulting in a longer battery life by 24 days that we derived
based on the two D-cell alkaline battery capacity of the In-Situ
600 stormwater sensing unit.

REAM had a 20 minute delay on average in detecting
contamination events, compared to the 14, 24 and 45 minute
delays achieved by the fine-grained, Random Forest, and
coarse-grained approaches respectively. Fig. 8 shows a zoomed
in view of the contamination event ground truth and the action
plans chosen by the REAM RL agent during a week in the test
period. We observe that for most of the contamination events,
the agent utilizes the fine grained action plan to achieve high
accuracy and ends up using the coarse grained plan during
periods when no events occur. The occasional shift to the fine
grained plan as shown by the red circle occurs since the agent
explores different action plans based on the ε-greedy policy

described in Section III-B to adapt to changing environmental
conditions, e.g., dry vs. wet weather, seasonal patterns, etc.

From these results, we can see that the REAM framework
can increase the battery replacement cycle from less than 1
month with the fine-grained approach to almost 2 months with
less than a 5% drop in accuracy and a detection delay within
5 minutes on average.

TABLE II: Stormwater Contamination Monitoring
Comparison

Approach
Accuracy

(%)
Total Energy
Consum. (J)

Exp. Batt.
Life (days)

Avg. Detection
Delay (mins)

REAM 90.9 86.4 53 20.2
Random Forest 88.2 101.77 44 24.7

Fine-grained 95.4 155.52 29 14.4
Coarse-grained 73.3 46.08 98 45.9
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Fig. 8: REAM RL Agent action plan selection to determine
contamination events.

TABLE III: Pedestrian Counting
Comparison

Approach
Distance from

Ground truth(%)
Total Power

Consumption (W)
Total Data

Generated (GB)
REAM 7.1 61.8 33.1

Random Forest 15.4 54.6 30.3
YOLOv3 0 126.5 55.62
OpenCV 37.3 39.32 55.62

Motion Sensor 62.3 36 0.0005

2) Pedestrian Counting: Table III shows a summary of the
performance comparisons, where we report the total power
consumption as a sum of the power consumption of the
sensors (motion, camera) and the edge servers. REAM had
a 7.1% error compared to the YOLOv3 based approach that
we assumed to be the ground truth and performed better than
the Random Forest, OpenCV and the coarse-grained motion
sensor based approaches. However, the YOLOv3 library is
very resource intensive, and this coupled with the significant
power consumption of using a camera continuously, results
in REAM having 51% less power consumption over the test
period. The REAM framework also results in 40% less data
being generated than the YOLOv3 and OpenCV approaches
that require continuous generation and transmission of video
data.

Fig. 9 illustrates a heatmap based comparison of the
pedestrian count ground truth per hour during a week and
the corresponding most frequent action plan chosen by the
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Fig. 9: Comparisons of hourly pedestrian count ground truth
and action plan chosen by REAM framework during a week.

REAM RL agent during that hour. We see that the number
of pedestrians is the highest during the day (8am - 5pm) and
during those periods the predominantly used action plan is
YOLOv3 which results in high accuracy. During the night and
early mornings, when extremely few pedestrians are on the
road, the RL agent chooses to use the motion sensor approach
which is sufficiently accurate to model the pedestrian flow.
The REAM framework can thus achieve > 90% accuracy
(hence not missing many people), while consuming ∼ 50%
less power and generating less data (hence consuming less
resources), compared to static monitoring approaches.

VI. RELATED WORK AND CONCLUSION

The concept of continuously monitoring smart spaces has
appeared in several research areas, including pervasive com-
puting [7] and ambient sensing [14]. Merlino et al. [15]
progressively process sensor data at the edge servers, fog
nodes, and cloud servers to accelerate the analytics in smart
spaces. Hong et al. [10] consider the problem of splitting
analytics into smaller pieces to deploy them on heteroge-
neous fog nodes. Various Machine Learning algorithms have
been applied in smart spaces for edge analytics. Zhang et
al. [28] tailor a Convolutional Neural Network (CNN) model
for activity recognition analytics to fit it on multiple less-
powerful edge nodes. Similarly, Hung et al. [11] propose
VideoEdge, a framework to cost-efficiently determine query
plans for analyzing video streams. There are also efforts that
apply machine learning for decision making under resource
constraints [26]. Vaisenberg et al. [25] use POMDP to control
surveillance cameras to record events in resource-constrained
smart spaces. Han et al. [9] and Oda et al. [17] use reinforce-
ment learning for event identification in urban environments.
However, these efforts do not cater to heterogeneous sensor
inputs, continually changing community environments, and do
not focus on resource-efficiency.

In this paper, we present a Resource Efficient Adaptive
Monitoring (REAM) framework at the edge, that balances the
resource requirements and objectives of multiple community
monitoring applications in order to provide good quality mon-
itoring of community spaces, while incurring low compute,
networking, and energy costs. REAM uses Reinforcement
Learning agents that determine which sensors and analytics
workflows to execute by interacting with the community space
and obtaining contextual information about the environment.

We evaluate the framework with data from two real-world
testbeds and observe that the REAM framework can achieve
> 90% monitoring accuracy while incurring ∼ 50% lower
resource consumption costs than static monitoring approaches
and also performs better than another Machine Learning
approach. Our future work aims to developing resiliency un-
der sensor and communication failures, addressing cascading
events by modeling inter-event relationships, and developing
learning approaches to automate action plan creation given
some sensor and analytics association rules.
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