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Abstract—Process mining is a technique for extracting process models
from event logs. Event logs contain abundant information related to an
event such as the timestamp of the event, the actions that triggers the
event, etc. Much of existing process mining research has been focused
on discoveries of process models behind event logs. How to uncover the
timing constraints from event logs that are associated with the discovered
process models is not well-studied. In this paper, we present an approach
that extends existing process mining techniques to not only mine but
also integrate timing constraints with process models discovered and
constructed by existing process mining algorithms. The approach contains
three major steps, i.e., first, for a given process model constructed by
an existing process mining algorithm and represented as a workflow net,
extract a time dependent set for each transition in the workflow net model.
Second, based on the time dependent sets, develop an algorithm to extract
timing constraints from event logs for each transition in the model. Third,
extend the original workflow net into a time Petri net where the discovered
timing constraints are associated with their corresponding transitions. A
real-life road traffic fine management process scenario is used as a case
study to show how timing constraints in the fine management process
can be discovered from event logs with our approach.

I. INTRODUCTION

constraints with a workflow or process model constructed by any
existing process mining algorithm. The approach contains three major
steps, i.e., first for a given workflow model constructed by an existing
process mining algorithm and represented by a workflow net (which
belongs to a subset of Petri net) and, extract a time dependent
set associated with each transition in the workflow model. Second,
based on the time dependent sets, develop an algorithm to extract
implicit timing constraints from event logs for each transition in
the model. Third, extend the original workflow model into a time
Petri net where the discovered timing constraints are associated with
their corresponding transitions. Fig. 1 depicts the architecture of our
approach. A real-life road traffic fine management process [6] is used
as a case study to investigate the effectiveness and validity of the
approach. The case study provides the evidence that the approach
is able to discover timing constraints of an actual workflow process
from event logs.
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Over the last decade, process mining has emerged as a new research H Nurse Blood Calcium :
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when possible. Given an event log, the goal of process mining is to Extract

extract process knowledge (e.g., process models) in order to discover,
monitor, and improve the real processes[1]. Process mining has been
applied successfully in many application domains, such as in banking,
insurance, e-government, and medical, to name a few.

The starting point for process mining is event logs. An event log
contains information about a working process as it takes place. Each
event in such a log reflects an activity which is a well-defined step in
the process and is related to a particular trace of a process instance.
An event log may also contain other information related to the event
such as the executor of the event, the timestamp of the event, and
the recorded data related to the event.

One of the most challenging problems in process mining is to
discover a structured process model from a set of traces in event
logs. Several research groups have been working on techniques for
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automated process discovery based on event logs. The goal of many [1,10]
process mining algorithms, such as Alpha algorithm [2], region-based Test lonized
approaches [3], [4], heuristic approach [5], to name a few, is to Calcium 9

construct a process model from a set of event logs. However, these
algorithms focus only on the functional aspects of a process, the
timing information as to when an action must take place is neglected.

However, the timing information can be critical in many domains,
such as in patient care. For instance, ionized calcium test must be
tested within 10 minutes of its collection. Blood specimens received
in a lab after 10 minutes need to be re-collected for accurate results.
These timing constraints need to be enforced in order to provide safe
and effective patient care. However, process models uncovered by
most existing process mining techniques only reveal the underline
structures of an actual process, the timing constraints, such as the 10
minute limit in ionized calcium test example, are not reflected in the
process models.

In this paper, we present an approach that extends existing pro-
cess mining techniques to not only mine but also integrate timing
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Fig. 1. Mining and Integrating Timing Constraints in Workflow Models

The paper is organized as follows. Section II introduces definitions
and notations used in the rest of the paper. We present an approach
to extract time dependent set in Section III. Section IV develops
the algorithm to mine the timing constraints from event logs based
on time dependent sets and integrate the timing constraints into the
workflow net in the form of the time Petri net. Section VI discusses
the related work of process mining. A real-life road traffic fine
management process scenario is performed in Section V to investigate
the effectiveness and validity of the approach. We conclude in
Section VIIL.
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II. PROCESS MODELS

In this section, we introduce definitions and notations that will be
used in the later sections of this paper. Some of the definitions are
cited here for self-containment.

Definition 1 (Petri net [7]). A Petri net N is a tuple (P, T, F'), where
o P is a finite set of places;
o T is a finite set of transitions, PN'T = (; and
o« FC(PXxT)U(T x P) is a set of directed arcs.

Notation 1 (et). Given a Petri net N = (P, T, F) and a transition
t € T, we use notation et to represent a set of places immediately
before transition t, i.e., ot = {p|p € P A (p,t) € F}.

Notation 2 (te). Given a Petri net N = (P, T, F) and a transition
t € T, we use notation te to represent a set of places immediately
after transition t, i.e., te = {p|p € P A (t,p) € F}.

The state of a Petri net N = (P, T, F) is represented by its
markings which is a distribution of tokens on places P. A marking
of N is defined by a mapping function m : P — N, where N is
the natural number set. A place p is marked by a marking m if
m(p) > 0.

The execution semantics of a Petri net N = (P, T, F) are defined
by transition firings which specify the enabling conditions and the
marking transformation of the Petri net. A transition ¢ € T is enabled

by a marking m if m marks all places in its pre-set ot, i.e.,
Vp € ot : m(p) > 0. €))

The firing of an enabled transition ¢ transforms the marking m to
m’ as below:

m(p) — 1 if pEetApdte
m'(p) =< m(p)+1 if pZetApcte 2)
m(p) otherwise

We use the Petri net shown in Fig. 2 to explain the above
concepts. In the graphical representation, places, transitions, arcs,
and fokens are represented by circles, squares, arrows, and black
dots, respectively. The Petri net N shown in Fig. 2 is defined
as (P,T,F), where P {p1,p2,p3,pa}, T = {t1,12}, and
F = {(t1,p1), (p1,12), (t2, p2), (t2, p3), (t2, pa), (p2, t1)}. The cur-
rent marking is m = {(p1,3), (p2,0), (p3,0), (p1,1)}. Based on
formula (1), the transition ¢» is enabled by the marking m. After
the firing of t2, according to formula (2), the new marking becomes
m = {(ph 2)7 (p27 1)a (p37 1)7 (pla 2)}

Fig. 2. A Petri net Example

The time Petri net [8] extends Petri net by specifying a time interval
for every transition to constrain firing duration. The definition is as
follows.

Definition 2 (Time Petri Net [8]). A time Petri net N is a tuple
(P, T, F,I) such that (P, T, F) is a Petri net and I associates each
transition t € T with a static firing time interval, ie, I : T —
{[a,b] € R* x (R* U+o0)|a < b}, where R* is the set of all non-
negative real numbers.

Given a time Petri net N = (P, T, F,I), the firing time interval
I(t) = [a,b] for transition ¢t € T specifies the earliest firing time
a and the latest firing time b after the transition ¢ is enabled. For
instance, suppose the transition ¢ is enabled at time instance 7, ¢ can
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only be fired during time interval [7 + a, T + b]. If the transition ¢ is
not fired during [T + a, 7 + b], then ¢ becomes disabled.

If a transition ¢’s firing time interval is I(¢) = [0, +oc], it indicates
that ¢ can be fired immediately after enabling and never becomes
disabled if the N’s state does not change. Hence, if Vt € T : I(t) =
[0, 400], the given time Petri net N = (P, T, F,I) has equivalent
execution semantics with Petri net N’ = (P, T, F).

Note that the process model mined by most existing algorithms [9],
[10], [4] is a subclass of the Petri net named a workflow net with three
further constraints: (1) there is one and only one input place where a
process starts; and (2) there is one and only one output place where
the process ends; and (3) all elements are on a path from the input
place to the output place. The formal definition is given below.

Definition 3 (Workflow net [11]). A net N = (P, T, F) is a workflow
net, if it is a Petri net and satisfies the following constraints:
o There is one and only one input place 1, i.e.
1) Jie P, st.VteT,(t,i) ¢ F,
2) Jr,ip € P, WVt €T, (t,i1) € FA(ti2) ¢ F) — i1 = ia.
o There is one and only one output place o, i.e.
1) o€ P, s.t. YVt €T, (o,t) ¢ F,
2) doi,02 € P, (Vt S T,(O1,t) §é F/\(Og,t) §§ F) — 01 = 02
o For a pseudo transition § ¢ T, the net (P,T U {¢},F U
{((0,8), (&,4)}) is a strongly connected net.

It is worth pointing out that the three constraints do not change
neither syntax nor execution semantics of Petri nets and time Petri
nets. Since our work is based on workflow net derived by existing
process mining algorithms, we represent the process model in terms
of time Petri net that follows the three constraints listed above.

III. EXTRACTING TIME DEPENDENT SET FROM A WORKFLOW
NET

The event logs considered in this paper is similar to the one defined
in [12]. In particular, for a given activity set X, an event entry e in an
event log records an activity happening in the operation of a process.
It not only records the activity itself, which is a well-defined step in
the process, but also contains other information, such as the time-
stamp of when the activity takes place. An event trace o is a finite
sequence of event entries ordered by their occurrence time. An event
log L is a set of traces. We assume event logs do not have noise, i.e.
every event entry is a truthful recording of an activity. In addition, we
assume the event log has sufficiently large number of event entries.
We give the definitions of event entry, event trace, and event log as
follows. Suppose the workflow net N = (P, T, F) is mined from
an event log L. The transition set in N represents the activity set
recorded in the event log L, i.e., ' = ¥. Hence, we also use the
notation ¢ to represent an activity in the event log L.

Definition 4 (Event Entry). Given an activity set ¥, an event entry
e is a tuple (t,7), where t € ¥ is an activity and T is the timestamp

of t.

Definition 5 (Event Trace). An event trace o is a finite sequence
of event entries e1,€2,...,€i,...,e, satisfying V0 < i <n:1; <
Ti+1, where e; = (ti,Ti).

Definition 6 (Event Log). An event log L is a set of event traces
{o}.

For an illustration purpose, we consider a simplified event log
shown in Table 1. This log contains information about five traces.
Note that the ordering of events within a trace is relevant, while the
ordering of events among different traces is of no importance. The
log shows that for trace 1 and 3, the tasks A, B, C, D were executed.
For trace 2 and 4, the tasks A, C, B, D were executed. For trace
5 the tasks A, E ,and D were executed. Each trace starts with the

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 24,2021 at 20:17:36 UTC from IEEE Xplore. Restrictions apply.



TABLE I
AN EXAMPLE OF EVENT LOGS

Trace Identifier | Task Identifier Timestamp
Trace 1 A 08/05/2019 : 08:15
Trace 2 A 08/05/2019 : 08:24
Trace 3 A 08/05/2019 : 09:30
Trace 1 B 08/05/2019 : 10:24
Trace 3 B 08/05/2019 : 10:24
Trace 2 C 08/05/2019 : 10:26
Trace 1 C 08/05/2019 : 10:25
Trace 4 A 08/05/2019 : 11:45
Trace 2 B 08/05/2019 : 11:46
Trace 2 D 08/05/2019 : 12:23
Trace 5 A 08/05/2019 : 13:14
Trace 4 C 08/05/2019 : 13:17
Trace 1 D 08/05/2019 : 13:19
Trace 3 C 08/05/2019 : 14:09
Trace 3 D 08/05/2019 : 14:29
Trace 4 B 08/05/2019 : 14:43
Trace 5 E 08/05/2019 : 15:22
Trace 5 D 08/05/2019 : 15:45
Trace 4 D 08/05/2019 : 16:10

execution of A and ends with the execution of D. In addition, we also
observe that if task C is executed, task B is also executed. However,
for some traces, task C is executed before task B, while for some
other traces, it is the other way around.

In the following, we will first use an example to illustrate the steps
to extract the time dependent set for each transition in a workflow net
derived from a given event log file. We will then give an algorithm
that automates the steps.

Fig. 3. A process model corresponding to the event log

Consider the event log shown in Table I, we apply an existing
process mining algorithm, for instance, the inductive miner algorithm
developed by [13], on the event log. The obtained workflow net is
depicted in Fig 3. As shown in Fig 3, the workflow net starts at task
A and finish after task D. In the workflow net constructed by the
inductive miner algorithm, there are invisible transitions represented
in black rectangles, such as €1 and €2, in Fig 3. Invisible transitions
are only for routing purposes. They are produced by process mining
algorithms, not represent recorded activities in event logs.

Before we show how to extract a time dependent set of a transition,
we first give its formal definition.

Definition 7 (Time Dependent Set). Given a workflow net N =
(P, T,F), where T = AUT, ANT = 0. A is a set of non-invisible
transitions, and 1" is a set of invisible transitions. The time dependent
relation set ©(t) of a transition t € A is defined as follows:

O(t) ={a € Al(aenNet D)V
(Ze1,onei €T :aenNec; ZDAcreNecy # 0
AN-c-Nei—r1oNeg; ZDNe,oNet £ D)}
Example 1. The workflow net shown in Fig. 3 has two invisible
transitions €1 and €2 and five non-invisible transitions. According
to Definition 7, the time dependent set of the transition D in the
workflow net is ©(D) = {E, B, C}. As the output place of invisible
transition €2 is also the input place of target transition D, we need
to trace back to until we find the visible transitions that connect to
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the invisible transition €2, which are transitions B and C. Hence, the
time dependent set of transition D is {E, B, C'}

Algorithm 1 gives the procedure of extracting time dependent set
of the transition x in the workflow net. The time complexity of
algorithm 1 is O(N?®), where N is the number of transitions in the
workflow net.

Algorithm 1: EXTRACTING TIME DEPENDENT SET OF A
TRANSITION
Data: a workflow net N = (P, T, F), a transition x
Result: The time dependent set © of transition x
begin
for each transitions t € T do
if ¢ is non-invisible transition then

| A=AU{t}
else
| T=TuU{t}

for each transition to € T do
if ez Ntpe # () then
| O(z) = O(z) U {to}

repeat
Define break condition: condition = False for each
transition t1 € ©(z) do
if t1 € I" then
condition = True ©(z) = ©(z) — {t1} for
each transition to € T do
if ot Ntoe £ () then
| ©(z) =O(z) U{ta}

until condition

IV. MINING TIMING CONSTRAINTS FROM EVENT LOGS

In this section, we design an algorithm to automatically mining
timing constraints for every transition based on the time dependent set
and represent the workflow model associated with timing constraints
by time Petri nets.

Given a workflow N = (P, T, F') mined from an event log L, we
first construct a time Petri net N’ = (P, T, F,I) where Vt € T :
I(t) = [0,4o0]. The constructed time Petri net N’ has the same
execution semantics as N as explained in Section II. The next step
is to mine the firing time interval for every transition ¢ from event
logs and update the corresponding I(t).

As presented in Section III, the time dependent set ©(t) of a
transition ¢ contains all transitions that have immediate timing impact
on the transition ¢. We use the following rules to determine the timing
constraints for each transition in a workflow net from the workflow
net’s corresponding event logs: if a transition directly follows the
workflow net’s input place, i.e., ©(t) = (), we set its timing constraint
as I(t) = [0,4oc]; otherwise, I(t) [a,b] where a and b are
determined as following:

« Earliest Firing Time: the transition ¢’s earliest firing time (a)
is the minimum value of time between an occurrence of ¢ and its
most recent occurrence of any transition ¢’ € ©(t) that occurs
before ¢ in the same event trace, i.e., a = min{ (7. — 7,-)|e. =
(t,7c) A er = (tr, ) A ®(ec, er) = True}, where

D(ec,er) =Vo € L :Vei(ti, i) € 0 :t; =tA
Te=Ti A (ej(ty,75) €0 :0<j <iA
t; €O) AT =7 AN (Ver(tr, k) €0
J<k<iAty ¢ 0O(t)))

(3
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o Latest Firing Time: the transition ¢’s latest firing time () is
the maximum value of time between an occurrence of ¢ and its
most recent occurrence of any transition ¢ € ©(¢) that occurs
before ¢ in the same event trace, i.e., b = max{(7. — 7)|ec =

(t,7c) Ner = (tr, ) A D(ec, €r) = True}, where (ec, e, ) is
given in formula (3).
Theorem 1. Given an event log L = {olo =
e1(ti,m1)y oy ei(tiy i)y ooy en(tn, ™)} and corresponding

time Petri net N' = (P, T,F,I) with I(t) = [a,b] derived by
the mining rules for each t € T, all timestamps of corresponding
activity t in log L satisfy the timing constraint 1(t) = [a, b].

Proof. We use contradiction to prove the theorem.

For transition ¢, suppose there exist event entries e = (¢,7) and
e’ = (t',7') in the same event trace o, and the transition ¢’s timing
constraint C(t) determined by event entries ¢ and €’ is 7 — 7’ < a.
Because the event entries e and e’ determine the timing constraint
C(t) for t, ®(e,e) True holds, where ®(e,e’) is defined in
formula (3). The timing constraint C(¢) < a contradicts the Earliest
Firing Time rule, ie., a = min{(7. — 7)lec = (¢, 7.) N er =
(tr,7+) A ®(ec, er) = True}. Hence, transition 's timing constraint
must be larger than or equal to a, i.e., C(t) > a.

Similarly, suppose there exist event entries ¢ = (¢,7) and ¢’
(t',7") which determines the transition ¢’s timing constraint C(¢) as
7 — 7' > b. Since the event entries ¢ and ¢’ determine the timing
constraint C(t), ®(e, e’) = True holds, where ®(e, e’) is defined in
formula (3). The timing constraint C(¢) > b contradicts the Latest
Firing Time rule, i.e., b = max{(7c — 7v)lec = (¢,7c) A er
(tr,7+) A®(ec, er) = True}. Hence, transition 's timing constraint
must be smaller than or equal to b, i.e., C(t) < b.

Therefore, a < C(t) < b holds, i.e., all timestamps of activity ¢ in
event log L satisfy the timing constraint interval I(t) = [a,b]. O

It is worth pointing out that the timing constraints defined by these
rules may not be tight. We will give an example to explain a possible
reason for its looseness in Section V.

Algorithm 2 gives the detailed steps of applying the rules to
automatically mine and update the firing timing constraints for
every transition in a workflow net model. The time complexity of
Algorithm 2 is O(K x M x N?), where K is the number of transitions
in the process model, M is the number of traces in the event log,
and NV is the number of events in a trace. We illustrate Algorithm 2
in Example 2 with the event log given in Table I.

Example 2. The Petri net N mined from the the event log L in
Table I is depicted in Fig. 3. We first construct a time Petri net
N' = (P,T,F,I) where ¥t € T : I(t) = [0, +00]. According to Al-
gorithm 1, the time dependent set of N' is © = {©(A) = 0,0(B) =
{A},0(C) = {A},0(D) = {B,C, E},0(E) = {A}}.

We take transitions A and D as examples to illustrate different
scenarios of applying Algorithm 2. As ©(A) = 0, based on Lines
2-4, Algorithm 2 does not update the firing time interval of transition
A, ie, I(A) = [0,+00].

The time dependent set of transition D is ©(D) = {B,C, E}. We
apply Lines 7-16 of Algorithm 2 for every trace in the event log L. For
instance, the trace o1 = {A, B, C, D} only contains one occurrence
of event D at time “08/05/2019 : 13:19”. Based on Lines 9-15, we
locate the event C occurring at “08/05/2019 : 10:25” and calculate
the following results A = 174, a = 174, and b = 174 with minutes
as the time units. After applying the procedure to other four traces,
the final results are a = 20 and b = 174, i.e., I(D) = [20, 174].

Similarly, we apply Algorithm 2 to other three transitions and
get the following results I(B) = [54,202], I(C) = [92,339], and
I(E) = [128,128]. The updated time Petri net is shown in Fig. 4.
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Algorithm 2: MINING TIMING CONSTRAINTS

Data: The constructed time Petri net N = (P, T, F, I), the
corresponding event log L = {o}, and the
corresponding time dependent set © = {O(¢)|t € T}

Result: The time Petri net N’ = (P, T, F, I) with I updated

begin

for each t € T do

if ©(¢t) = 0 then

L CONTINUE
Define temporary variables a = +o00 and b = —oco for
each o0 = e1(t1,71),...,€i(ti,7i)s -, en(tn,Tn) € L
do
for each 1 < i <n do
if ¢, =t then
Lj=i-1

while 7 > 1 do
if t; € O(t) then

A= Ti — Tj
a = min(a, A), b = max(b, A)
BREAK
- j o
L 1(t) = [a,b]
[54,202]

(DO

(128, 128]

Fig. 4. Updated time Petri net

The proposed techniques of mining timing constraints from event
logs for a given workflow net model is implemented on an existing
open-source process mining framework pm4py [14]. The implemen-
tation of the technique is available at https://github.com/stevenzzy9/
timing-Constraints-Mining.

V. ROAD TRAFFIC FINE MANAGEMENT PROCESS CASE STUDY

In this section, we apply the technique developed in earlier sections
to a road traffic fine management process used in Italy. By the Italian
law, a traffic fine management process starts with the Create Fine
activity. A fine notification must be sent within 90 days since its
creation. After being notified, the offender can either pay the fine or
appeal the fine within 60 days of notification. If the fine is paid, the
corresponding case is closed. The system maintains a case for up to
5 years from the corresponding offense is committed. The snapshot
of the event log was taken in June 2013 [15]. After filtering out all
open (unclosed) cases, the event log contains 145,800 event traces.
Among these traces, 41 % of the traces end after two events, and
51% of the traces have five or more events. In addition, 62 % of the
traces take longer than 100 days to finish. Fig. 5 depicts the process
model mined by an open source SIMPLE algorithm [16].

We first apply Algorithm 1 to extract the time dependent sets for
all transitions in the workflow net given in Fig. 5. The time dependent
sets are generated by the tool we developed based on Algorithm 1.
Second, using the time dependent sets, we mine the timing constraints
from the event log by applying Algorithm 2. The execution results
are captured and depicted in Fig. 6. The process model associated
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Fig. 5. Road Traffic Fine Management Process Model

with mined timing constraints is represented as a time Petri net and
depicted in Fig. 7.

Create Fine : [@, INF]
Send Fine : [@, 732]
Insert Fine Notification :
Payment : [@, 1721]

Insert Date Appeal to Prefecture :
send Appeal to Prefecture : [0,

[0, 83]

(1, 674]
1272]

Receive Result Appeal from Prefecture : [0, 494]
Add penalty : [1, 60]
Notify Result Appeal to Offender : [1, 218]

Send for Credit Collection : [209, 3330]

Fig. 6. Timing Constraints

From the mined timing constraints shown in Fig. 7, we can
conclude that except the Send for Credit Collection transition, the
latest firing times of all other transitions are less than 5 years. The
latest firing time of the Insert Fine Notification transition is 83 days
which obeys Italian law’s 90-day notification restrict.

If an offender does not pay the fine on time or if the prefecture
denies a offender’s appeal, the system sends the offender’s informa-
tion to the credit card company to automatically deduct the fine.
According to the law, the fine notification and offender response
takes up to 90 and 60 days, respectively. Hence, the Send for Credit
Collection activity must occur after 150 days. The mined timing
constraint for Send for Credit Collection activity is [209, 3330] which
complies with the law and reflects the actual scenario. The time
difference between 150 and 209 is the system processing time for
Send for Credit Collection activity and/or the appeal process time by
prefecture.

As shown in Fig. 5, the Payment activity has two pre-activities:
Create Fine and Notify Result Appeal to Offender, which represent
two scenarios of the Payment activity. The first scenario indicated
by pre-activity Create Fine is that an offender directly pays the fine
after the fine creation. The second scenario represented by pre-activity
Notify Result Appeal to Offender is that an offender appeals against
the fine and pays the fine after the appeal is denied. According to the
Italian law, the timing constraint for activity Payment under the first
scenario is [0, 60], but the law does not specify when the Payment
must happen if the appeal is denied. However, our algorithm does
not distinguish these two scenarios and the mined timing constraint
[0,1721] for the Payment activity covers all cases of both scenarios.
Hence, it may be loose for the first scenario. Our further work is to
extend the proposed approach to tighten the timing constraints.

VI. RELATED WORK

Process mining is to discover, monitor and improve real processes
from information recorded while the real processes are in operation.
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Fig. 7. The Workflow Net with Timing Constraints

The research on process mining started over a decade ago [17],
[18], [19], [20], [21], [22], [23], [24], [25]. In [18], Cook and
Wolf investigated process mining issues in the context of software
engineering processes. They developed three methods for process
discovery from a single event stream, namely, using neural networks,
purely algorithmic approach, and Markovian approach. The authors
consider the purely algorithmic and the Markovian approaches are
most promising. The purely algorithmic approach builds a finite
state machine from an event stream. The Markovian approach uses
a mixture of algorithmic and statistical methods and is able to deal
with noise, i.e., rare occurrences. Cook and Wolf later extended their
work to concurrent processes [19]. They proposed specific metrics
(entropy, event type counts, periodicity, and causality) and used these
metrics to discover process models from event streams. In addition,
Cook and Wolf provided a quantitative measurement to quantify
the discrepancies between a process model and the actual behaviors
recorded in an event stream. However, their work is based on a single
event stream.

Agrawal et.al [17] developed process mining approaches that are
based on multiple event traces, or event logs. One of the most well-
known process discovery algorithms based on event logs is the a-
algorithm [2]. The «-algorithm scans the event log for particular
patterns. For example, if activity a is followed by b but b is never
followed by a, then it is assumed that there is a causal dependency
between a and b. The a-algorithm is simple and efficient. However,
it has difficulty to model a process that contains a loop with only
one or two activities. Neither can it handle noises (rare occurrences)
in the event logs. Region-based approaches are able to express more
complex structures. For practical applications of process discovery it
is essential that noise or uncompleted traces are handled well. A few
process discovery algorithms focus on addressing these issues, such
as the heuristic mining [5], fuzzy mining [10], and genetic process
mining [26].

In many application domains, such as in patient care, timing
constraints in a process are critical. Unfortunately, not much work is
done in the area of mining non-functional behaviors, such as timing
constraints, from event logs. One exception is Aalst’s work [27]
which learns statistical time information from event logs that relates
to how long it takes to complete a process at any give state. Different
from Aalst’s work, we focus on the timing constraints on each
transitions, i.e., the time interval in which a transition must take place.

Compared with process mining research which focuses more on
extracting process-related insights from event logs, business project
management research often focuses on extracting path-related insights
from process models, such as identifying a path that may impact a
project’s completion time. It is often built upon given project/process
models, such as the work of finding the longest-duration path in
Activity on Edge (AOE) nets [28], [29], [30] and analyzing the actual
project plan based on AOE nets [31], [32], while process mining is
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to discover the process models.

VII. CONCLUSION

In this paper, we have presented an approach that extends existing
process mining techniques to not only mine but also integrate timing
constraints with a workflow or process model constructed by any
existing process mining algorithm. In particular, we first introduced
the concept of time dependent set for each transition in a workflow
net model and developed an algorithm that automatically finds the
sets from a given workflow net model. Based on the time dependent
sets, we developed an algorithm to extract implicit timing constraints
from event logs for each transition in the model and represent the
process model in terms of time Petri net in which we assign each
transition with the appropriate timing constraints mined from event
logs. The algorithm is implemented based on the open-source process
mining framework pm4py. A real-life road traffic fine management
process scenario is used as a case study to investigate the effectiveness
and validity of the approach. The evaluation results show that the
algorithm is able to discover the timing constraints of an actual
workflow process from event logs. However, the case study also
shows that although the obtained timing constraints are correct, i.e.,
the timestamps of all event entries satisfy the timing constraints,
they may be not be tight. One of our future work is to tighten the
constraints. Currently, our work is based on the assumption that there
is no noise in the event logs. The other line of future work is to
improve our the mining algorithm to tolerate data noise.
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